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Allergic asthma is a chronic in�ammatory disease of the airways that is driven by 

maladaptive T helper 2 (Th2) and Th17 immune responses against harmless, airborne 

substances. Pulmonary phagocytes represent the �rst line of defense in the lung where 

they constantly sense the local environment for potential threats. They comprise two 

distinct cell types, i.e., macrophages and dendritic cells (DC) that differ in their origins 

and functions. Alveolar macrophages quickly take up most of the inhaled allergens, yet 

do not deliver their cargo to naive T cells sampling in draining lymph nodes. In contrast, 

pulmonary DCs instruct CD4+ T cells develop into Th2 and Th17 effectors, initiating the 

maladaptive immune responses toward harmless environmental substances observed 

in allergic individuals. Unraveling the mechanisms underlying this mistaken identity of 

harmless, airborne substances by innate immune cells is one of the great challenges 

in asthma research. The identi�cation of different pulmonary DC subsets, their role in 

antigen uptake, migration to the draining lymph nodes, and their potential to instruct 

distinct T cell responses has set the stage to unravel this mystery. However, at this point, 

a detailed understanding of the spatiotemporal resolution of DC subset localization, 

allergen uptake, processing, autocrine and paracrine cellular crosstalk, and the humoral 

factors that de�ne the activation status of DCs is still lacking. In addition to DCs, at least 

two distinct macrophage populations have been identi�ed in the lung that are either 

located in the airway/alveolar lumen or in the interstitium. Recent data suggest that 

such populations can exert either pro- or anti-in�ammatory functions. Similar to the DC 

subsets, detailed insights into the individual roles of alveolar and interstitial macrophages 

during the different phases of asthma development are still missing. Here, we will pro-

vide an update on the current understanding of the origin, localization, and function 

of the diverse pulmonary antigen-presenting cell subsets, in particular with regard to 

the development and regulation of allergic asthma. While most data are from mouse 

models of experimental asthma, we have also included available human data to judge 

the translational value of the �ndings obtained in experimental asthma models.
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CURRENT UNDERSTANDING OF 
ALLERGIC SENSITIZATION

Allergic asthma is a chronic in�ammatory disease of the airways 
with high associated morbidity that is increasing in prevalence in 
western nations (1, 2). Patients su�er from airway hyperreactivity 
(AHR) and mucus overproduction resulting in recurrent episodes 
of chest tightness, breathlessness, wheezing, and coughing. In 
human, allergic asthma is also characterized by the recruitment 
of eosinophils, lymphocytes, and mast cells (2). Currently avail-
able therapeutics target the e�ector phase of the disease. �ey 
either reduce the in�ammatory processes that drive the clinical 
symptoms or decrease the resistance in the airways and increase 
the air�ow in the lung. In order to develop strategies that prevent 
allergic asthma development, we need a better understanding of 
the mechanisms underlying disease development and exacerba-
tion. Most of our mechanistic insights into the pathways underly-
ing the development of maladaptive immunity are derived from 
mouse models of experimental allergic asthma with all of their 
limitations (3). It is now generally accepted that the disease devel-
ops as an inappropriate �2/�17-adaptive immune response 
toward harmless environmental substances in genetically 
susceptible individuals (4). During sensitization, allergens enter 
the lung and reach the airway epithelium. �e epithelial cell (EC) 
layer is not only a physical barrier but is activated by allergens 
via their protease activity (5–7) and through pattern-recognition 
receptors, in particular Toll-like receptors (TLR) 4 (8, 9). Allergen 
contact and loss of physical barrier integrity trigger the release 
of alarmins, including interleukin (IL)-33, high-mobility group  
box 1, uric acid, and adenosine triphosphate; cytokines, such as 
IL-1α, IL-25, thymic stromal lymphopoietin (TSLP), granulocyte–
macrophage colony-stimulating factor (GM-CSF, CSF-2); and  
chemokines (e.g., CCL2), from the airway epithelium (6).  
�ese soluble mediators, in turn, recruit and activate cells of 
the innate immune system, such as macrophages, type 2 innate 
lymphoid cells (ILC2), and the pulmonary dendritic cell (DC) 
network (10). Among these, DCs are specialized in antigen 
uptake, processing, and presentation to naive T cells (11) and help 
them to di�erentiate into e�ector T cells, thereby bridging innate 
and adaptive immunity. In established allergic airway disease, 
pulmonary DCs are an important source of the chemokines 
CCL17 and CCL22, which attract e�ector T cells to the site of 
in�ammation (12). In the sensitized lung, the release of IL-4, IL-5, 
and IL-13 from �2 cells mainly contributes to the development 
of chronic in�ammation, mucus overproduction, and AHR (13). 
In recent years, di�erent pulmonary DC subsets in the lung have 
been identi�ed. �ese subsets have unique localizations and 
functions indicating a division of labor regarding antigen uptake, 
activation of di�erent T cell subsets, and activation of in�am-
matory innate e�ector cells. DCs are necessary and su�cient to 
induce adaptive immunity (14). However, recent reports show 
that alveolar macrophages (AM) and interstitial macrophages 
(IMs), the predominant phagocyte populations in the lung, play 
more important roles than previously recognized.

�us, the entire phagocyte compartment with its complexity 
regarding developmental origin, tissue localization, and func-
tional diversity has to be taken into account to gain a holistic 

view of the processes that drive the development of maladaptive 
immunity in allergic asthma.

�e goal of this review is to detail recent advances in our 
understanding of pulmonary phagocytic cell subset biology 
regarding their origin, localization, and their functions in the 
context of allergic asthma.

DIVERSITY OF LUNG PHAGOCYTES

While it is appreciated that in both humans and mice, pulmonary 
DCs and macrophages are the major phagocyte population that 
can function as professional antigen-presenting cells (APCs), 
most of the studies focusing on the composition of lung phago-
cytes have been performed in mice. Pulmonary APCs were origi-
nally described as a homogenous population of cells (15–18). It 
is now well appreciated that the mouse lung contains at least four 
di�erent DC subsets and two macrophage subpopulations that 
can be distinguished by the expression of distinct surface mark-
ers, as well as monocytes (Table 1). DCs can be separated into 
CD11b+ and CD103+/Langerin+ conventional DCs (cDCs) (19, 
20), plasmacytoid DCs (pDCs), and under in�ammatory condi-
tions, monocyte-derived DCs (moDCs). Lung macrophages can 
be divided into AMs and IMs. AMs comprise at least two distinct 
subsets, i.e., airway macrophages and macrophages truly residing 
in the alveolar space. In the rat, the available data suggest that they 
are of identical origin and that airway macrophages represent aged 
alveolar macrophages (AMs) with minor phenotypical and func-
tional di�erences (21). Most studies refer to them collectively as 
AMs (22). In the alveolus, AMs are located in the alveolar lumen, 
while IMs are situated inside the lung interstitium. However, con-
�icting data concerning the expression of CD11b at the surface 
of IMs have been reported and suggest that IMs could be divided 
into two subpopulations (Table 1). Using a combination of con-
ditional cell targeting and adoptive cell transfer, one study showed 
that blood monocytes transform into IMs and then migrate into 
the alveolar space, suggesting that IMs serve as an intermediate 
between monocytes and AMs (23). In addition to IMs, monocytes 
serve as precursors of monocyte-derived DCs (moDCs). Two 
types of circulating monocytes have been described, the classical 
Ly6Chi and the non-classical Ly6Clo monocytes (24, 25).

�e identi�cation of lung DCs is complex and many markers 
are required to distinguish them properly (see Table 1). In most 
reports, CD11c, CD11b, MHC-II, SiglecF, CD64, and CD103 
have been used as DC subset-de�ning markers on lineage nega-
tive cells. Additional markers were reported in individual studies 
(26, 28, 36, 41, 42), pointing toward the heterogeneity of �ow 
cytometry-based gating strategies to distinguish DC subsets. As 
a result, absolute numbers of a given DC subset in the lung, and 
even some functional properties, markedly vary between studies. 
Further complexity arises from the use of di�erent cell isolation 
procedures, which may liberate DCs from di�erent tissues with 
di�erent e�ciencies. Indeed, a recent study has shown that cell 
isolation followed by �ow cytometric analysis results in up to 
70-fold underestimation of resident memory CD8+ T cells in 
di�erent organs (including the lung), when compared to quanti-
tative immuno�uorescence microscopy (43). In contrast, the cell 
numbers in spleen and lymph nodes were essentially the same 
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FIGURE 1 | Frequency of pulmonary conventional DC subsets. 

Frequencies of CD11b+ or CD103+ cDC subsets as described in the studies 

outlined on the right. Open symbols: lung tissue digestion using collagenase 

D and closed symbols: lung tissue digestion using other collagenases.

TABLE 1 | Phenotypic markers of murine pulmonary dendritic cells (DCs), alveolar macrophages (AMs), and interstitial macrophages (IMs).

CD11b+ cDCs CD103+ cDCs pDCs moDCs AMs IMs

CD11b +++ (26) + (19, 20, 26) + (27) +++ (26) − (27, 28) − (29)

++ (30)

+++ (31, 32)

CD11c +++ (26) +++ (26) ++ (26) +++ (26) +++ (26, 31, 33) − (31, 32)

+ (28, 30)

CD64 − (28) − (26) − (26) +++ (26) − (26) + (28)

+ (34)

CD103 − (19, 20) +++ (19, 20) − (20) − (26) + (27) ?

CD207 (Langerin) − (19, 20) +++ (19, 20) − (19, 20) − (19, 20) − (19, 20) ?

CD317 (PDCA-1) − (27) − (27) +++ (27, 35) − (27) − (27) ?

CXCR1 − (19) +++ (19) ? ? ? ?

DNGR-1 ++ (36) +++ (36) − (36) − (36) − (36) ?

F4/80 ++ (19, 37) − (19) − (28) ? − (27, 38) + (28, 30)

+ (28)

FcεR1 − (26) − (26) − (26) +++ (26) − (26) ?

Ly6C − (27) − (27) + (26, 39) + (26) + (27) ?

+ (28)

MHC-II +++ (26, 28) +++ (26, 28) + (28) +++ (26) − (27) ++ (28)

+ (26)

SiglecF − (26) − (26) − (26) − (26) +++ (26) − (28)

SiglecH − (27) − (27) + (27, 39) − (27) − (27) ?

Zbtb46 +++ (40) +++ (40) − (40) − (40) − (40) ?

+++, high expression level; ++, intermediate expression level; +, low expression level; −, not expressed; ?, unknown.
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for both techniques (43). Given these challenges, it is perhaps not 
surprising that while most studies report cDCs as the dominant 
DC population in the lung, varying numbers (20, 28) and ratios 
of CD11b+ cDCs to CD103+ cDCs (from 1:1 up to 4:1) (20, 26, 28, 
36, 41, 42, 44–47) have been reported (Figure 1).

In humans, Demedts et al. described three pulmonary DCs sub-
set, i.e., two “myeloid” DC (mDC) populations and one population 
of pDCs. �e mDC1 subset expresses BDCA1 (CD1c), whereas 
the mDC2 subset is BDCA3+ (CD141+). �e pDC express BDCA2 
(CD123) (48). More recently, a detailed characterization of the DC 
subsets has been described in human blood and skin [reviewed by 
Reynolds and Hani�a (49)]. �ese studies con�rmed the existence 
of two subsets of cDCs, BDCA1/CD1c+ cells (termed cDC1s) and 
BDCA3/CD141+ cells (termed cDC2) (49). Transcriptome pro�l-
ing and functional studies showed that the cDC1 population is 
equivalent to the murine CD103+ cDC subset (50, 51). Similar 
studies revealed that cDC2 are similar to the murine CD11b+ 
cDC population with whom they share additional markers such 
as CD11b, CX3CR1, and SIRP-a (52). Interestingly, transcriptome 
mapping analysis of human and mouse non-lymphoid tissue sug-
gests that the mouse pulmonary CD11b+ cDCs are heterogeneous 
and comprise cells that are related to both human CD14+ DCs 
and BDCA1/CD1c+ cDC2 (50). In agreement with this pro�le, 
the mDC1 population has originally been described as a mixed 
CD14−/CD14lo population of DCs (48).

�ese results demonstrate the inherent variability that can be 
introduced by di�erent isolation/analysis techniques and high-
light the fact that di�erences observed between studies and 
groups may be more artifactual than accurate representations of 
true biological di�erences. As such, caution should be applied 
when comparing results from di�erent studies.

Origin of Lung DCs
Surface markers do not unambiguously distinguish DC subpopu-
lations. Some populations, i.e., CD11b+ cDCs and moDCs, have 
largely overlapping marker pro�les, despite the fact that these DC 
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subsets have di�erent functions and derive from di�erent precur-
sors. An alternative approach to identify di�erent DC populations 
is based on their cellular origin. In the next section, we will pro-
vide an update on our current understanding of the origin of lung 
phagocytes and recent approaches developed for lineage tracking.

Generation of Pulmonary CD103+ and CD11b+ cDCs 

and pDCs
Dendritic cells in the lung originate from hematopoietic stem cells 
(HSCs) in the bone marrow (BM) that give rise to a macrophage 
DC progenitor (MDP) (53). �is MDP then di�erentiates either 
into the common monocyte progenitor (cMoP) (54) or the com-
mon DC progenitor (CDP) (45, 55). However, at this point, it is 
not entirely clear whether CDPs may also develop without the 
intermediate MDP step (56). CDPs give rise to pre-DCs that can 
di�erentiate into cDCs and pDCs but lose their capacity to di�er-
entiate into monocytes or macrophages (57, 58). In the classical 
model, developed using mouse data, CD11c+ MHC-II− CD135+ 
pre-DCs (19, 59) di�erentiate into lung tissue-resident CD103+ 
and CD11b+ cDC subsets depending on di�erent transcription 
and growth factors (see below) (53, 60–62). More recently, two 
alternative models have evolved based on single-cell mRNA 
sequencing (63) or chromatin pro�ling (64) of mouse cells. �ey 
suggest that the commitment into the di�erent cDC subsets can 
already occur at the pre-cDC stage, since they found precom-
mitted cells in the pre-DC pool of the BM (63) (Figure 2). Such 
pre-cDCs can be locked into their terminal di�erentiation state 
(CD103+ and CD11b+ cDCs) through an IRF8/BATF3-dependent 
ampli�cation loop (64). Although pre-DCs can enter the lung and 
cells phenotypically resembling such pre-DCs have been found in 
the lung, the di�erentiation into the two cDC populations has not 
yet been shown in situ (19, 62).

�e origin of human DCs is still incompletely understood. 
Originally, most studies focused on in vitro development of pro-
genitor cells in the presence of CSF-2 (GM-CSF) and/or IL-4, but 
such approaches are of limited relevance as they re�ect the lineage 
development of moDCs but not of steady-state cDC subsets (71). 
More recent studies have shown that DCs arise from BM progeni-
tor cells, in particular granulocyte/macrophage progenitors and 
multi-lymphoid progenitors, but a complete picture, including 
the identity of intermediate cells, is missing (71). However, the 
nature of the cytokines (CSF-2 and Flt3L) and of the transcription 
factors (e.g., Ikaros, PU.1, IRF4, IRF8, and BATF3) involved in 
human DCs development [reviewed in Ref. (71)] suggests that 
the mechanisms described for the development of mouse cDCs 
could be similar in humans.

Cytokines That Control cDC Differentiation
�e development of DC precursors and di�erentiated DC sub-
sets is dependent on several signaling molecules. In the BM and 
in peripheral organs, Fms-like tyrosine kinase receptor 3-ligand 
(Flt3L) drives the development from early progenitors into DC 
precursors (pre-DCs) and DCs (19, 45, 72–74). Importantly, 
Flt3L is required for the development of cDCs and pDCs but 
not for moDCs (75). Furthermore, pre-DCs are present at lower 
numbers in Flt3L−/− than in wild-type (WT) mice (19), sug-
gesting that Flt3L drives the proliferation and di�erentiation of 

pre-DCs in situ (62). However, the cDC subsets are not equally 
dependent on Flt3L for their di�erentiation since ~10% of 
CD11b+ cDCs remain in the lungs of Flt3L−/− animals, whereas 
CD103+ cDCs are almost completely absent (19, 26). In line 
with these observations, lung CD103+ cDCs depend exclusively 
on Flt3L and its downstream target the Phosphatidylinositol-
3-kinase gamma (PI3Kγ) for their development. Pulmonary 
CD11b+ cDCs and cDCs in other tissues depend on both 
Flt3L and other yet unknown cell signals for their terminal 
 di�erentiation (76).

CSF-2 is another important factor for the di�erentiation of 
DCs in non-lymphoid tissues, which acts synergistically with 
Flt3L (73). CSF-2 exerts its function through CSF-2 receptor that 
is expressed on MDPs and CDPs. �e exact contribution of CSF-2 
for pulmonary cDC di�erentiation is not entirely clear. In one 
study, CSF-2 has been described as a critical factor for the homeo-
stasis of cDCs in the lung (77). �e authors found lower numbers 
of resident cDCs in lung tissue as well as migratory CD103+ 
cDCs in the lung draining lymph nodes in Csf2−/− mice (77).  
In contrast, others showed that CSF-2 did not a�ect pulmonary 
cDC numbers but was critical for the surface expression of CD103 
(78, 79) and cross-presentation (80).

In addition to Flt3L and CSF-2, several other cytokines 
contribute to cDC di�erentiation [for detailed review, see Ref. 
(65)]. CSF-1 (M-CSF) is primarily known for its function as a 
regulator of macrophage survival, proliferation, and di�eren-
tiation (81) With regard to cDC di�erentiation, CSF-1 acts on 
CDPs and may strengthen the Flt3L signal. Since CSF-1 receptor 
(CD115) expression is lost upon di�erentiation from pre-cDCs 
into CD103+ cDCs, but not into CD11b+ cDCs, CSF-1 partly 
regulates their di�erentiation and survival (19). Lymphotoxin-β 
plays an important role in the di�erentiation of lymphoid cDCs; 
its role for the di�erentiation for cDCs in non-lymphoid organs 
remains elusive (65). Finally, TGF-β has been described as an 
important cytokine for Langerhans cell di�erentiation (65). Its 
role for pulmonary cDCs di�erentiation has yet to be explored.

Transcriptional Regulators of cDC Development
In addition to cytokines, several transcription factors regulate the 
development of cDCs. �e development of CD103+ cDC criti-
cally depends on the transcription factors BATF3 (82, 83), IRF8, 
and Id2 (Figure 2) (19). For the homogenous population of lung 
CD103+ cDCs, it was reported that their development is similar 
to CD8α+ DCs in lymphoid organs (19, 42). �e situation for 
CD11b+ cDCs is less clear. �eir development is critically depend-
ent on the transcription factor IRF4 (52). However, many studies 
have not taken into account that even at steady state, CD11b+, 
CD11c+, and MHC-II+ cells in the lung are a mixed population 
consisting of CD11b+ cDCs, short-lived Ly6Chi, and long-lived 
Ly6Clo CD11b+ moDCs. At this point, it remains unclear whether 
peripheral and CD11b+ cDCs and their counterparts in lymphoid 
organs have the same origin (47, 74, 84–86).

Lineage Tracking of Pulmonary APCs
Conventional DCs
As mentioned above, the distinction of DC subsets by surface 
marker expression is di�cult. �erefore, new tools have been 
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FIGURE 2 | Development of pulmonary DC and macrophage subsets. This model of pulmonary DC and macrophage subset differentiation in mice 

summarizes recent �ndings suggesting early lineage commitment of cDCs in the BM and differentiation of monocytes into different population with DC, macrophage, 

or suppressive functions. All DC subsets present in the lung originate from hematopoietic progenitors (HSC) that differentiate into a common myeloid progenitor 

(CMP). Such CMPs further differentiate to a common DC progenitors (CDPs) or macrophage DC progenitors (MDPs) (53, 62, 65). MDPs give rise to a common 

monocyte precursor (cMoP). In a CSF-1-dependent mechanism, Ly6Chi monocytes develop, which can further differentiate into Ly6Clo monocytes. Such Ly6Clo 

monocytes may also derive directly from cMoPs. Both monocyte populations can enter the lung and become monocyte-derived DCs, macrophages, or suppressor 

cells (25, 62). CDPs also serve as precursors for pDCs and pre-cDCs. Recent studies suggest that the two cDC populations deriving from the pre-cDC progenitor, 

i.e., CD103+ cDCs and CD11b+ cDCs, arise already in the bone marrow as pre-cDC1/cDC2 subtypes (66). One study suggested that pulmonary monocytes may 

differentiate into pulmonary CD103+ and CD11b+ DC; however, it is unclear whether such cells are phenotypically and functionally identical to CD103+ and CD11b+ 

cDCs (67). Activation of de�ned transcription factors (in blue) at distinct time points is critical for lineage commitment of the different DC precursors (68). During the 

early developmental stages, important transcription factors include STAT3, IRF8, and PU.1. At later stages, E2-2 is decisive for pDC commitment of CDPs. BATF3 

and IRF8 are associated with the CD103+ cDC and IRF4 with the CD11b+ differentiation. In addition to the transcription factors, several growth factors (in green) play 

key functions in the development of pre-cDCs and the different DC subsets, in particular Flt3L, CSF-1 (M-CSF), and CSF-2 (GM-CSF). The lung contains two major 

macrophage populations, i.e., alveolar and interstitial macrophages (AMs and IMs, respectively). It is now well appreciated that AMs derive from yolk sac and fetal 

liver progenitors that colonize the embryonic lung and are maintained by self-renewal at steady state (62). The origin of IMs remains elusive. Some data suggest that 

they represent monocyte-derived macrophages (69, 70). Solid arrows depict pathways that are found by independent studies; dashed arrows show pathways that 

are rely on a single study or that are controversial. HSC, hematopoietic stem cells; CMP, common myeloid progenitor; MDP, monocyte–macrophage DC progenitor; 

CDP, common DC progenitor; cMoP, common monocyte progenitor; Mo, monocyte; MoMΦ, monocyte-derived macrophage; cDC, conventional DC; moDC, 

monocyte-derived DC; AM, alveolar macrophage; IM, interstitial macrophage.
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developed to allow lineage tracing of di�erent populations to 
clearly assign DCs to a single subset. Recently, the zinc �nger 
transcription factor Zbtb46 has been identi�ed and shown to be 
selectively expressed by all cDCs and pre-DCs but not in pDCs 
and macrophages (85). However, this marker is downregulated 
a�er DC stimulation and is also expressed on endothelial cells, 
early erythroid progenitors, and IL-4-stimulated monocytes (40, 
85, 87). Another study (36) described DNGR-1 (Clec9A) as a 
bona �de marker of mouse cDC precursors. �e authors found 
high levels of DNGR-1 expression in CD8α+ and CD103+ CD11b− 
cDCs and lower levels in pDCs (88–90). Further, Schraml et al. 

(36) presented a model to identify CDP, pre-cDC, and their prog-
enies using the Clec9a+/creRosa+/EYFP mouse. �is mouse allows, by 
recombination during cell development, the labeling of DNGR-1+ 
cells and their progeny by the enhanced yellow �uorescent protein 
(eYFP). In the lung, >95% of the eYFP+ cells were cDCs or pDCs 
with low numbers of eYFP positive moDCs. In agreement with 
their high expression of DNGR-1 (41, 89), CD103+ cDCs were 
homogenously positive for the lineage marker, con�rming that 
they derived from CDP progenitors and pre-DCs. However, not 
all cells within the DC lineage expressed eYFP despite DNGR-1 
expression in precursors, due to a general problem within the  
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cre/loxP system during DC development. �erefore, the incom-
plete eYFP expression observed in the CD11b+ DC population 
points toward a mixed population comprising CD11b+ cDCs and 
cells from another lineage resembling CD11b+ cDCs but does not 
formally prove this hypothesis.

Regarding CD11b+ DCs, it was recently reported that the com-
plement C5aR1/CD88 is highly expressed on moDCs but at lower 
levels on CD11b+ cDCs (42, 91). In contrast, only the CD103+ 
and CD11b+ cDC populations express the dipeptidyl peptidase-4 
(DPP4)/CD26 (42) allowing the authors to distinguish cDCs 
(CD26+ C5aR1−) from moDCs (CD26− C5aR1+). However, the 
use of CD26 in combination with C5aR1 seems to be restricted to 
the C57Bl/6 background and does not apply to Balb/c mice (42).

Plasmacytoid DCs
Plasmacytoid DCs account for a minor population under 
steady-state conditions and can be de�ned by the expression of 
intermediate levels of CD11c and MHC-II, BM stromal antigen 
2 (mPDCA-1; CD317), SiglecH, B220, and Ly6C, which is also 
part of the Gr-1 marker (20, 92–94). In contrast to cDCs, pDCs 
di�erentiate from the CDP into a mature pDC (Figure 2) in the 
BM before they migrate to other organs (95). As for cDCs, Flt3L is 
also important for the pDC development through the induction of 
STAT3 and the induction of various transcription factors among 
which E2-2 is considered to be highly speci�c for the pDC lineage 
(96, 97). It has been shown that cell signals induced by CSF-2 in 
CDP counteracted the Flt3/STAT3 pathways in a STAT5-dependent 
manner (96). In addition, other cytokines, such as CSF-1 (98), and 
thrombopoietin (57) synergize with Flt3L during pDC di�erentia-
tion. Furthermore, IL-7 can complement Flt3L signaling (99).

Monocytes
Like cDCs, monocytes start their development in the BM from 
HSCs that generate MDP, which give rise to cMoPs (54). Out of 
such cMoPs, the Ly6Chi monocyte population is generated that 
can convert into Ly6Clow monocytes (Figure  2). �e classical 
Ly6Chi CC-chemokine receptor 2 (CCR2)hi (Gr-1hi) monocytes 
emigrate to the sites of ongoing in�ammation, while the non-
classical Ly6Clo CCR2lo (Gr-1lo) monocytes express high amounts 
of CX3CR1 and patrol the vascular wall (100–102). �e classical 
Ly6Chi monocytes have a very short half-life of about 1 day (45, 
103). As outlined above, they can serve as precursors for the 
Ly6Clo population (86, 103–105), but this is still controversial 
(25). Further, Ly6Chi monocytes can di�erentiate into short-lived 
Ly6Chi CD11b+ moDCs (29, 34, 106). In contrast, Ly6Clo mono-
cytes give rise to long-lived Ly6Clo CD11b+ moDCs. However, 
at steady state, Ly6C+ monocytes that migrate into the lung not 
necessarily differentiate into DCs but can further migrate to 
the lymph nodes without differentiation (34), suggesting that 
additional stimuli must exist that drive monocyte differentia-
tion in the lung tissue.

Monocyte-Derived DCs
At steady state, pulmonary moDC numbers are very low (26, 52). 
Environmental factors (e.g., cigarette smoke or ozone) or airborne 
allergens, including house dust mite (HDM), can trigger the pro-
duction of cytokines and chemokines. HDM comprises bacterial 

and fungal contaminants that activate pattern-recognition receptors 
of the TLR and the C-type lectin families. Among the chemokines, 
CCL2 drives the migration of monocytes to the lung in a CCR2-
dependent manner (59, 84, 107–109). �ese CCR2+ precursors can 
give rise to the moDC subset in the presence of both CCL2 (26) 
and CSF-1 (19) (Figure 2). In the lung, moDCs are characterized 
by the expression of CD11c, CD11b, Ly6C, CD64, and FcεR1 (26). 
However, mature moDCs tend to lose the Ly6C marker (26, 84). Of 
note, using an adoptive transfer model, the Randolph’s laboratory 
showed that monocytes can serve as precursor for pulmonary DCs. 
A pulmonary CD103+/Langerin+ subset can arise from a Ly6Chi 
CCR2hi monocyte precursor, while a CD11b+ moDC subset can 
arise from Ly6Clo CCR2lo monocytes in the lung (67).

Alveolar Macrophages
Alveolar macrophages derive from yolk sac macrophages or fetal 
liver monocytes. �ese cells enter the lung during embryonic 
development and colonize the alveoli in the �rst days a�er birth 
(38). While early monocyte precursors were recruited to the lung 
in animals lacking CSF-2, early AM commitment was absent in 
these animals. Moreover, short-term CSF-2 therapy restored AM 
development for weeks, although such AMs had a rather imma-
ture phenotype (38). �ese results suggest that local production 
of CSF-2 in the lung is required for both the transition from 
monocyte precursors and full maturation of AMs and that once 
AMs begin to populate the lung, they self-maintain throughout 
the lifetime of the host.

Under in�ammatory conditions, blood monocytes are recruited 
into tissues and di�erentiate into macrophages (34, 110) as exempli-
�ed in LPS-induced lung in�ammation (111). �is macrophage 
population is expressing high levels of CD11b and low levels of 
CD11c, which is in contrast to resident CD11chiCD11blo AMs, 
suggesting that monocyte-derived macrophages rather resemble 
CD11b+ IMs than AMs. �is view is in accordance with the �nding 
that monocyte-derived IMs serve as a transition state for AMs (23). 
However, in a model of HDM-driven allergic asthma, the increased 
number of AMs resulted rather from the proliferation of existing, 
tissue-resident AMs than from the di�erentiation of circulating 
monocytes (112). Together, the available data suggest that in addition 
to the proliferation of self-maintaining AMs, the alveolar compart-
ment may also be �lled up with macrophages of monocytic origin.

Interstitial Macrophages
Interstitial macrophages are a rather poorly de�ned pulmonary 
cell population that expresses the F4/80 and CD11b markers but 
lack the expression of CD11c (31, 32). In addition to this popula-
tion, a similar cell type termed non-migratory myeloid cell, that 
is, CD11b+ Gr-1int F4/80+ has been described (69, 70). Up to now, 
the origin of IMs is unclear. �ey may either arise from a common 
unknown precursor, or, more likely, derive from the macrophage 
or monocytic lineage (see above). In line with the view that IMs 
derive from the monocyte/macrophage lineage, both IMs and 
cells of the monocyte/macrophage lineage e�ectively suppress 
�2 responses (31, 70).

Understanding the developmental origin of the di�erent 
pulmonary DC subsets will help to reliably identify individual 
DCs subsets by cell-speci�c markers that may also prove useful 
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as therapeutic targets allowing DC subset-speci�c manipulation. 
Moreover, such knowledge may provide preliminary insights 
into the functional di�erences of the distinct DC subsets and 
their roles in driving and maintaining the maladaptive immune 
response that are central to asthma pathogenesis.

LOCALIZATION OF APC SUBSETS  
IN THE LUNG

Pulmonary cDCs are critical for allergen uptake in the lung, 
its processing, presentation in the context of MHC-II, and the 
subsequent activation of naive CD4+ T cells in the draining lymph 
nodes. However, a detailed spatiotemporal resolution of initial 
allergen contact and capture is still lacking. A prerequisite for 
such studies is a detailed picture of the localization of the di�erent 
DC subsets within the lung under steady-state conditions. �e 
lung consists of di�erent compartments, i.e., the airways, veins, 
arteries, the alveolar compartment, and the pleura. Interestingly, 
lymph vessels that are required for DC migration to the draining 
lymph node run with veins, around airways, and in the connec-
tive tissue between airways and pulmonary arteries (113), which 
make these compartments likely areas for DC location.

Early immunohistochemical studies describing DCs in the 
lung used MHC-II as the sole DC marker. Such studies reported 
DCs in many compartments of the lung, including the large 
conducting airways, lung parenchyma, alveolar compartment, 
pleura, perivascular space, and inside pulmonary lung vessels (17, 
114). However, in addition to DCs, type II pneumocytes and IMs 
also express MHC-II, demonstrating that MHC-II alone is not 
su�cient as a DC marker and that further studies are needed to 
clarify the localization of DC subsets. Until now, no comprehen-
sive study exists that describes the localization of all DC subsets 
in the lung. �is section summarizes the available data regarding 
the localization of individual pulmonary DC subsets.

CD103+ cDCs
MHC-II+ intraepithelial DCs (115, 116) described in the trachea 
of the rat were later equated with the CD103+ cDC subset in the 
lung of mice (108). Although immunohistochemical analysis of 
the CD103+ cDC subset showed its localization close to the airway 
epithelium, cell bodies were rarely observed in the epithelium 
itself (20). �e apparent discrepancy between the intraepithelial 
network in the rat trachea that was described to sample antigen 
through the epithelial barrier (115, 116) and the localization of 
CD103+ DCs below the epithelium was later explained by the 
observation that CD103+ DCs extend their dendrites through 
the epithelial layer and into the airway lumen (20). �is �nding 
supported the observation that CD103 (alpha integrin) and beta7 
integrin can interact with E-cadherin that is expressed at the 
basal side of ECs (20). Additionally, CD103+ cDCs have a higher 
expression of the tight junction proteins Claudin-1, Claudin-7, 
and Zonula Occludens (ZO)-2 as compared to other DC subsets. 
�is might facilitate the extensions of dendrites through the 
epithelial barrier into the airway lumen (20).

Two-photon analyses of precision-cut lung slices from CD11c-
eYFP mice showed approximately four times more subepithelial 

than intraepithelial DCs (117). Nevertheless, DC extensions 
to the airway lumen were exceptional observations in a few 
experiments. �is �nding was supported by a similar study using 
OVA-sensitized mice, where DCs extended no protrusions into 
the airway lumen, while a high activity of transepithelial antigen 
uptake in the alveolar region was observed (118). In addition, 
CD103+ cDCs can be found on the parenchymal side of arteriole 
walls underneath the vascular endothelial cells and potentially 
attached to the basal lamina, but they are absent in the alveolar 
region (20). No data are available for pulmonary veins.

Monocytes and CD11b+ DC Populations 
(CD11b+ cDCs and moDCs)
Monocytes that reside in the lung at steady state can take up 
antigen and migrate to the draining lymph node (34). However, 
data regarding their localization in the lung are scarce. Most of 
the studies dealing with lung DCs focused on functional cell 
analyses but not on spatial distribution. �e �rst study describing 
the localization of CD11b+ DCs used a �ow cytometric method. 
�e lung was divided into main conducting airways (trachea and 
main bronchi) and lung parenchyma (peripheral third of the 
lung) to determine the localization of di�erent APC subsets (18). 
CD11b+ DCs were found in the lung parenchyma and in the main 
conducting airway fraction (18). However, this approach did not 
take into account that the distal part of the lung still contains 
airways and blood vessels. Upon infection with Bacillus anthracis, 
a CD11b+ DCs population was observed in the alveolar region 
(119). A study based on immunohistochemistry showed CD11b+ 
DCs in the perivascular regions but only few cells in the epithelial 
region (20). Another group showed that in PBS-treated mice, 
CD11b+ DCs can be found around the airways up to a distance of 
about 200 μm (118). �us, the available data suggest that CD11b+ 
DCs can be widely distributed within the lung.

More recently, an elegant approach has been used that combines 
Csfr1-EGFP (120), Cx3cr1-EGFP (121), and Csf1r-ECFPtg/+ mice 
(MacBlue), the latter of which lacking a conserved distal element 
of the Csfr1 promoter. Blood monocytes of the MacBlue mice 
strongly express ECFP, whereas most lung tissue macrophages are 
ECFP negative (122). �e authors used such mice and monitored 
lung monocyte tra�cking in  situ in explanted lungs by two-
photon imaging (123). �ey found that monocyte-derived cells 
are located at the interface between blood and airways, whereas 
lung DCs are strictly located in the airways.

Plasmacytoid DCs
Similar to the moDC subset, very limited data are available for the 
localization of pDCs. Immunohistochemical staining suing the 
Gr-1 and B220 markers identi�ed pDCs mainly in the alveolar 
interstitium (20, 92). However, pulmonary pDCs comprise a very 
small fraction in the naive lung (92), which makes them di�cult 
to accurately identify under steady-state conditions.

Alveolar Macrophages
In contrast to all other populations described so far, AMs are 
not located in the lung tissue but reside in the airways and the 
alveolar lumen (18, 21, 33, 124). Soroosh et al. (33) also reported 
tissue-resident AMs. �ey de�ned tissue-resident AMs as 
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cells that are not removed by a bronchoalveolar lavage (BAL). 
Unfortunately, they did not perform any histological studies (33). 
�us, it remains unclear whether such AMs were not washed out 
because they were located inside the lung parenchyma or due 
to their attachment to the alveolar wall. Interestingly, studies 
in iron oxide-treated mice or hamsters demonstrated that AMs 
adhere to the surface of airway ECs (125, 126). More recently, it 
was shown that AMs can be divided into alveolus-adherent and 
non-adherent populations (127), supporting the view that the 
reported tissue-resident macrophages are attached to the airway 
and alveolar walls.

Interstitial Macrophages
As outlined above, IMs are poorly de�ned (31, 32). Only one 
paper examined the localization of IMs based on the presence of 
F4/80 and the absence of the CD11c markers. �ey found these 
cells exclusively in the alveolar interstitium close to DCs (31). It 
is likely that not all pulmonary IM populations were identi�ed 
in this paper. Clearly, further studies are needed to get a better 
picture of the spatial distribution of all IMs in the lung.

Taken together, our picture of pulmonary DC subset and IM 
localization is rather sketchy and incomplete. Unraveling the exact 
localization of pulmonary phagocytes will provide preliminary 
insights, in which areas in the lung-speci�c DC subtypes take up 
antigen during initial allergen encounter. Further, it is a crucial 
step to identify proximity or even physical interactions between 
speci�c DC subtypes, other lung tissue-resident cells, and incom-
ing in�ammatory cells that act in concert to regulate DC function 
in response to allergen contact. �us, combining knowledge of 
cell origin and localization will help us to understand the spe-
cialized functions of the di�erent DC subsets. In the following 
section, we will summarize our current understanding of APC 
subset functions during the di�erent phases of allergic asthma.

LUNG DC SUBSET FUNCTIONS DURING 
ALLERGEN SENSITIZATION AND THE 
EFFECTOR PHASE

Dendritic cells are well appreciated for their critical roles during 
allergen sensitization and the e�ector phase of allergic asthma. 
Numerous studies have summarized their multiple roles in 
allergen uptake, cytokine, chemokine production, and most 
importantly, their capability to induce di�erentiation of naive 
T cells toward the �1, �2, �17, and Treg subtypes (7, 128). 
Pulmonary DCs were long considered as a homogeneous popu-
lation that shares functional similarities with BM-derived DCs. 
However, it is now well appreciated that at least three di�erent 
pulmonary DCs exist that originate from CDPs and cMoPs (see 
above) and ful�ll di�erent tasks in the development of allergic 
asthma and the regulation of allergic in�ammation. Accordingly, 
new data regarding the function of each subset arise continuously 
(Figure 3).

CD103+ cDCs
CD103+ cDCs have been shown to e�ciently take up viral par-
ticles (129). Furthermore, CD103+ cDCs have been associated 

with the antiviral response of CD8+ T cells due to their ability to 
cross-present antigens (130) and their antigen MHC-I-loading 
machinery, which is superior to CD11b+ cDCs (129). Interestingly, 
the ability of CD103+ cDCs to migrate to the lymph node a�er 
in�uenza infection is dependent on the secretion of CSF-2 from 
ECs (131). However, CD103+ cDCs are less active in antigen 
uptake compared to other DC subsets in an HDM-dependent 
asthma model (26). CD103+ cDCs express the tight-junction 
proteins Claudin-1, Claudin-7, and ZO-2, which allow them to 
form tight junctions with airway ECs. �ese �ndings suggest that 
they sample the airway lumen without barrier damage (20). As 
indicated above, imaging data are lacking to support this notion. 
In the gut, macrophages were shown to sample the lumen and 
transfer allergen–MHC-II complexes to CD103+ cDCs in a 
connexin 43-dependent manner (132). Interestingly, a subset of 
AMs has recently been described that uses connexin 43 to build 
syncytial communication with ECs (127). However, transport of 
antigen from AMs to CD103+ cDCs has not been described at the 
mucosal interface of the lung. �e role of CD103+ cDCs in �2/
�17 skewing, which is characteristic for allergic asthma, is still 
controversial (26, 106). Nakano et al. showed that CD103+ cDCs 
can e�ectively uptake antigen, migrate toward draining lymph 
nodes, and drive �2 responses (106). In contrast, Plantinga et al. 
could not con�rm this �nding (26). �e nature of the allergen 
(OVA, cockroach, or HDM) and the amount used during the 
sensitization phase may explain the di�erent �ndings. In con-
trast to the involvement of CD103+ cDCs in �2 di�erentiation 
of T cells, other studies showed that CD103+ cDCs promote a 
�1-biased response (133). Furthermore, CD103+ DCs were also 
suggested to play a prominent role in tolerance induction. It was 
shown that they induce de novo di�erentiation of Tregs through 
the production of retinoic acid and PPARγ (134, 135). �is is in 
agreement with recent evidence showing that CD103+ cDCs can 
limit the in�ammatory response during OVA- or HDM-driven 
asthma (136). Lastly, CD103+ cDCs are a major source of CCL17 
and CCL22 (26, 137), suggesting a signi�cant role in homing of 
activated T cells into the pulmonary compartment.

CD11b+ cDCs
Together with CD103+ cDCs, CD11b+ cDCs are the major DC 
population in the lung. �ey are very e�cient in allergen uptake ex 
vivo as well as in vivo (133) and have been identi�ed as the major 
“migratory” DC subset, translocating quickly to the mediastinal 
lymph nodes a�er allergen exposure (26). Consequently, they are 
thought to be essential for the allergen-induced �2 response 
(26, 133, 138). In addition to their role in driving �2 di�erentia-
tion, CD11b+ cDCs drive the induction of �17 responses in a 
fungal infection model (52). In a HDM-mediated asthma model, 
CD11b+ cDCs promote �2 and �17 di�erentiation via a dectin-
2-dependent mechanism (139).

Compromising the epithelial barrier integrity triggers the 
release of epithelial danger signals and cytokines, such as CSF-2, 
TSLP, IL-25, and IL33. CSF-2 has not only been shown to promote 
the survival and homeostasis of CD11b+ cDCs (77) and their 
recruitment to the lung (131) but also to license CD11b+ cDCs 
for �2 di�erentiation in a Blomia tropicalis dust mite model 
(140). TSLP upregulates the expression of OX40L at the surface 
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of CD11c+ cDCs (141), thereby enhancing DC-driven �2 di�er-
entiation (142). Furthermore, neutralization of TSLP decreases 
the expression levels of CD40, CD80, and CD86 costimulatory 
molecules on the surface of CD11c+ DCs (143). Unfortunately, 
the authors did not de�ne the exact subtype of DC that was 
a�ected by this treatment. More recently, OX40L expression has 
been described at the surface of CD11b+ but not of CD103+ cDCs 
in a respiratory syncytial virus model (144). IL-25 promotes both 
the �2 and the �17 di�erentiation of T cells through activation 
of CD11c+ DCs (52, 145). So far, the impact of IL-33 on lung DC 
subsets has not been investigated.

Plasmacytoid DCs
Plasmacytoid DCs sense viral infections through activation of 
TLR7 and TLR9, resulting in the production of large amounts 

of type I interferon (IFN-α), which is critical for a quick antivi-
ral response. �us, pDCs play a major role in respiratory viral 
infection and clearance (146, 147), in particular in the context of 
allergic asthma (148, 149). Of note, in contrast to the spleen, lung 
pDCs do not express TLR9 (150).

At steady state, pDCs are present at very low numbers in the 
lung, where they maintain tolerance to harmless inhaled antigens 
(92, 93). Upon allergen contact, the number of pDCs increases 
(151) partly due to the release of IL-15 by airway ECs (152). 
However, pDCs are poor allergen presenters in comparison to 
CD11b+ cDCs in di�erent models of experimental allergic 
asthma (26, 92, 151).

Originally, pDCs were described as tolerogenic, as they can 
drive Treg cell di�erentiation in response to allergen uptake 
and migration to the lymph nodes (92, 93, 153). Speci�c 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


10

Hoffmann et al. Antigen-Presenting Cells in Allergic Asthma

Frontiers in Immunology | www.frontiersin.org March 2016 | Volume 7 | Article 107

depletion of pDCs, using a SiglecH-DTR system resulted in 
decreased tolerance (154). Interestingly, a speci�c subtype of 
pDCs, characterized by the expression of CD8α/CD8β, was the 
major inducer of Treg cells (39). CD8α+/CD8β+ pDCs express 
retinal dehydrogenases (RALDHs) resulting in the generation 
of retinoic acid, which is a metabolite critical for the develop-
ment of Treg cells (39). In a recent study, the increased number 
of CD8α+/CD8β+ and CD8α+ pDCs has been associated with 
increased tolerance in a HDM-driven peptidoglycan recogni-
tion protein (Pglyrp1)-de�cient mouse model (155). However, 
the dominant role of pDCs in the development of Treg cells 
has been challenged recently, since lung CD103+ cDCs but not 
pDCs showed increased expression of RALDHs a�er allergen 
administration (135).

In addition to the direct e�ect of pDCs on Treg cell devel-
opment, they were also shown to act in trans by regulating the 
functions of mDCs (presumably a mixture of CD11b+ cDCs and 
moDCs) during the crosstalk with naive T cells (151, 156) in a 
mechanism that involves the regulation of B7 molecule expression 
(157). Administration of Flt3L increased the number of pDCs 
in the lung and promoted a strong anti-in�ammatory response 
through an increase of the pDC/cDC ratio (158). �is impact 
of pDCs in modulating cDC function has also been observed in 
pulmonary viral infections (159).

Monocyte-Derived DCs
At steady state, the moDC subset is very di�cult to discriminate 
from the CD11b+ cDC, due to the lack of a clear and universally 
used surface marker-based strategy. Markers to identify them 
encompass Ly6C (160), CD64, FcεR (26), and more recently, 
C5aR1 (42). Forty-eight hours a�er initial HDM exposure, 
CD11b+ CD64+ FcεR+ moDCs accumulate at high numbers in 
the lung. Seventy-two hours a�er HDM challenge, they peak in  
the draining lymph nodes (26). Although they are very e�cient  
in antigen uptake, their potency to drive naive T cell proliferation 
at low allergen doses is lower than that of CD11b+ cDCs (26). More 
importantly, the production of cytokines and chemokines, such as 
CCL24 (eotaxin-2), CCL2, CCL4, CCL7, CCL9, and CCL12 that 
are critical for the activation and recruitment of eosinophils and 
monocytes in response to allergen challenge, has been suggested 
as the major function of moDCs (26).

It could be shown that the massive recruitment of moDCs to 
the lung is dependent on both the CCL2/CCR2 signaling axis 
and the formyl peptide receptor 2 (26, 161). Since the stimulation 
of a human bronchial EC line with the HDM associated protease 
Der p1 resulted in the release of CCL2, this mechanism was sug-
gested to account for the recruitment of moDCs in HDM-driven 
asthma (162).

DENDRITIC CELL FUNCTIONS IN 
CHRONIC ASTHMA

Many studies have focused on the role of pulmonary DCs in 
allergen sensitization and the acute phase of allergic in�am-
mation. Much less is known about their role for the resolution 
of airway in�ammation. Resolution encompasses various 

mechanisms, such as removal of apoptotic cells (e�erocytosis), 
dampening of the in�ammatory cytokine signals, increase of 
anti-in�ammatory signals (including IL-10), production of 
protective lipid mediators (such as resolvins and protectins), 
and the expansion of Treg cells (163). Failure to perform these 
tasks together with a constant recall of the in�ammatory �2 
response upon repeated allergen contact will lead to a chronic 
in�ammatory state (164), resulting in remodeling of the airways. 
In the asthmatic lung, the resolution of the initial in�ammatory 
insults is impaired. Although the mechanisms are poorly de�ned, 
they were proposed to include a decreased clearance of apoptotic 
cells (165) and a decreased secretion of resolvin E1 (166). Our 
knowledge about the contribution of the di�erent DC subsets 
to the resolution of in�ammation in the asthmatic lung is rather 
limited. CD103+ cDCs have been shown to remove apoptotic 
cells and to cross-present antigens in draining lymph nodes (41). 
CD103−/− mice have a reduced capacity to resolve lung in�am-
mation in allergic asthma models (136). Resolvin E1 inhibits the 
motility of skin DCs and reduces their capacity to drive T cell 
priming (167). In addition, BMDCs generated in presence of the 
resolvin E1 do not acquire chemokine receptor expression but 
trigger apoptosis of activated CD4+ T cells (168), suggesting that 
such DCs help clearing the excessive in�ltration of �2 cell in 
the in�amed lung.

�e cellular aspects of airway remodeling include not only the 
recruitment of in�ammatory cells, such as eosinophils, neutro-
phils, and mast cells, but also the uncontrolled expansion of �bro-
blasts and airway smooth muscle cells (169). DCs may actively 
contribute to airway remodeling. In an HDM-driven chronic 
asthma model, recurrent allergen contact triggers TSLP release 
from the airway epithelium, which leads to an increased surface 
expression of OX40L as well as CD80 and CD86 on CD11c+ DCs. 
In this model, neutralization of TSLP alleviated not only the �2 
in�ammation but also the airway remodeling (161). Additionally, 
in an OVA-mediated model of chronic allergic asthma, DCs 
sustained �2 activation and airway remodeling through the 
secretory phospholipase A2-V (sPLA2-V)-dependent eicosanoid 
generation in DCs (170). During the chronic phase of asthma, 
TGF-β is considered as a key regulator of remodeling (171). 
TGF-β secreted by �broblasts has been shown to modulate the 
migration of DCs in the lung (172), which might be another way 
by which DCs control the remodeling of the airways. In conclu-
sion, even though the presence and functions of DCs in chronic 
asthma have been underestimated so far, recent studies indicate 
that modulation of their function may play a critical role for the 
resolution of the in�ammation and therefore may be critical for 
the remodeling of the airways.

LUNG MACROPHAGE SUBSET 
FUNCTIONS IN ALLERGIC ASTHMA

The Dual Roles of AMs in the Regulation 
of Allergic Asthma
As outlined above, the term AM is frequently used to describe air-
way and AMs. In rats, the two populations have slightly di�erent 
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functions, in particular with regard to their enzymatic activities, 
phagocytotic potency, expression of surface markers CD163 
and CD68 (21), and particle clearance (173). In mice, no data 
are available that show a di�erence in the modulation of allergic 
asthma by these two subsets.

Alveolar macrophages recognize and clear apoptotic cells and 
pathogens. In order to ful�ll these tasks, they express a wide range 
of pattern-recognition receptors, the activation of which drives 
the strong production of reactive oxygen intermediates (174). 
Considering AMs only as garbage collectors that remove poten-
tially dangerous self or non-self components from the alveolar 
space seems to be too simplistic. Instead, AMs are potent sentinels 
which sense inhaled pathogens that interact with each other and 
surrounding cells such as ECs. As already outlined above, AMs 
can be distinguished based on the strength of adherence to the 
epithelium. Strongly connected AMs express connexin 43. �is 
expression not only allows a physical connection between AMs 
and ECs but also enables AMs to exchange information with sur-
rounding AMs via a Ca2+ �ux through connexin 43-containing 
gap junctional channels using ECs as the conducting pathway 
(127). On the one hand, this crosstalk suppresses secretion of 
proin�ammatory chemokines, such as MIP-1a and CXCL1/5, by 
AMs and ECs; on the other hand, it leads to a diminished recruit-
ment of proin�ammatory neutrophils (127). �ese data are in 
contrast to the observation of Song et  al., who reported AMs 
as the major source of IL-17 in an OVA model of experimental 
asthma (175). A possible explanation for this apparent con�ict 
might be that Westphalen et  al. studied the function of tightly 
adhered AMs (127), whereas Song et al. focused on total AMs 
(175). Moreover, immunosuppressive functions of AMs were 
also shown by Zaslona et  al., who observed that depletion of 
AMs leads to a decrease of TGF-β production (112). Whether the 
underlying immunosuppressive mechanism is mediated by induc-
ible Treg cells is still not entirely clear (2, 112, 176). �is �nding 
was supplemented by two reports, which showed an AM-mediated 
suppression of DC-driven antigen presentation and DC-mediated 
in�ammation (115, 177). Despite these anti-in�ammatory proper-
ties of AMs, most AMs present in the allergic asthmatic lung are 
predominantly M2-polarized macrophages (178), expressing 
M2  type-related proteins (arginase 1, YM1 and 2, resistin, and 
EAR-11), chemokines (CCL-8 and CCL-17), and metalloproteases 
(MMP-14 and ADAM-18) (179), thus acting mainly as proin�am-
matory cells. In order to combine both anti-in�ammatory and  
pro-asthmatic properties of AMs, di�erent models of activation 
and function of AMs have been described. One model sug-
gested by Peters-Golden et al. proposes that AMs di�erentiate 
between direct and indirect uptake of pathogenic particles, 
hence leading to tolerance or in�ammation (180). While 
the indirect uptake of pathogens by phagocytosis of infected 
apoptotic cells induces anti-in�ammatory functions, the direct 
uptake of opsonized microbes induces in�ammation (180). 
Hussell et al. noted that the exact location of AMs in the alveoli 
or the mucous layer of bigger airspaces and the microenviron-
ment, which is largely shaped by the microbial �ora, needs to 
be taken into account in order to fully appreciate AM functions 
in the pulmonary tissue (22).

The Enigmatic Roles of IMs in the 
Regulation of Allergic Asthma
In contrast to AMs, less is known about the functions of IMs. 
A�er migration into the lung, the majority of circulating mono-
cytes di�erentiates into IMs and starts expressing COX-2 and 
MHC-II (34). Depletion of circulating monocytes resulted in a 
decreased asthmatic phenotype, suggesting a proin�ammatory 
function of IMs during asthma development, which is in part 
mediated by IL-5 (112). Moreover, IMs were shown to express 
IL-17 but were not increased in allergic asthma as compared to 
AMs (175). �ey also express CCL-11 but not CCL-24 (179). 
Depletion of AMs by clodronate in IL-13-driven airway in�am-
mation resulted in an increased number of IMs in the tissue (181). 
Also, tissue-resident macrophages have been shown to induce 
Treg cells in response to uptake of harmless antigens (33) and to 
produce IL-10 following airway challenge with low doses of LPS 
(31). However, not all monocytes that enter the lung di�erentiate 
into IMs. Instead, they can keep their monocytic phenotype, take 
up antigens, and migrate via CD62L to draining lymph nodes, 
suggesting that monocytes can mimic IM functions in vivo (34). 
However, it should be noted that di�erent approaches were used 
in these studies to de�ne IMs. It is, therefore, not clear if the same 
cell population was examined.

CONCLUSION

Taken together, the functions of the di�erent DC subsets dur-
ing the onset of allergic asthma are very complex and highly  
dependent on both the nature and the levels of inhaled allergen. 
Moreover, the composition of the local microenvironment, de�ned 
by the surrounding cells and consequently by DC localization within 
the lung, also in�uences DC activation and T cell di�erentiation. 
During the past decade, evidence has accumulated that within the 
group of pulmonary DC subsets, CD11b+ cDCs mainly drive the 
development of maladaptive �2/�17 immune responses, whereas 
moDCs are recruited to orchestrate the local in�ammation in the 
lung. Since CD103+ cDCs can sample the airway lumen without 
epithelial damage, they may serve as an important interface for sig-
nal transmission to neighboring cells, thereby licensing such cells to 
exert in�ammatory functions. However, their role in �2 skewing is 
still controversial. Furthermore, several studies have demonstrated 
a role for CD103+ cDCs and pDCs in keeping pulmonary tolerance. 
In addition, there is increasing evidence that the di�erent DC subsets 
also contribute to the resolution of in�ammation in allergic asthma. 
At this point, a holistic view of the individual roles of each DC  
subset is still missing, but we are beginning to assemble the required 
information (see Figure  3). Finally, recent studies suggest that 
pulmonary macrophages have been illegitimately neglected in 
asthma. In fact, they seem to regulate the development of maladap-
tive T cell immunity, maintenance, and/or resolution of asthmatic 
in�ammation. Interestingly, their localization in the alveolar 
space or their attachment to ECs seems to determine their pro- or 
anti- in�ammatory functions. �e role of IMs in this scenario is 
ill-de�ned. Clearly, more studies are needed that de�ne their spa-
tiotemporal distribution and the cells with whom they interact in 
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the lung during the di�erent phases of allergic asthma. In light of 
the emerging contributions of AMs to the asthmatic phenotype, we 
would not be surprised to also see critical roles of IMs in asthma 
development.
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