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Implicit solvent models are important tools for calculating solvation free energies for chemical and
biophysical studies since they require fewer computational resources but can achieve accuracy com-
parable to that of explicit-solvent models. In past papers, geometric flow-based solvation models have
been established for solvation analysis of small and large compounds. In the present work, the use of
realistic experiment-based parameter choices for the geometric flow models is studied. We find that
the experimental parameters of solvent internal pressure p = 172 MPa and surface tension γ = 72
mN/m produce solvation free energies within 1 RT of the global minimum root-mean-squared devia-
tion from experimental data over the expanded set. Our results demonstrate that experimental values
can be used for geometric flow solvent model parameters, thus eliminating the need for additional
parameterization. We also examine the correlations between optimal values of p and γ which are
strongly anti-correlated. Geometric analysis of the small molecule test set shows that these results
are inter-connected with an approximately linear relationship between area and volume in the range
of molecular sizes spanned by the data set. In spite of this considerable degeneracy between the sur-
face tension and pressure terms in the model, both terms are important for the broader applicability
of the model. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4832900]

I. INTRODUCTION

Implicit solvent models have received much attention in
the past two decades due to their low computational cost and
relatively high accuracy. Such models consist of a “nonpo-
lar” free energy functional that accounts for cavity creation
and dispersive interactions and a polar free energy functional
that accounts for the difference in charging free energies of
the solute between vacuum and solvent. While both of these
terms depend on the solute-solvent boundary position and the
resulting position-dependent dielectric, the polar and nonpo-
lar functionals are often optimized independently. For exam-
ple, different arbitrary choices of the boundary (e.g., the van
der Waals surface1 or molecular surface2) may be used for
calculating solvent-accessible surface area (SASA) and the
position-dependent local dielectric coefficient, respectively.
To address this problem, some groups have recently devel-
oped methods that couple formalisms for the two functionals
so that a single, optimal solvent-solute boundary can be esti-
mated. For example, Dzubiella et al. proposed minimization
of the solvation free energy with respect to a solvent volume
exclusion function3, 4 and Bates et al. introduced surface def-
initions via surface free energy minimization.5 Recently, we
have developed an approach to describe the solute-solvent in-
terface using a potential-driven geometric flow model.6, 7 The
key parameters in the geometric flow approach, such as solute

and solvent dielectric constants ε, solvent internal pressure
p, and surface tension γ can be systematically optimized for
any training set of small molecules.8 However, such param-
eters would ideally be based on experimental measurements
to provide more physical relevance and to remove unneces-
sary free parameters from the model to improve robustness
and generalizability. Optimal choices for parameters such as
solvent pressure and surface tension have been shown to vary
significantly over a range of possible parameters with strong
anti-correlation between these two quantities.8

Although a wide range of values are used in practice, a
reasonable value of the solute dielectric constant εm has been
estimated at 1.8 based on the high-frequency contributions to
molecular polarizability.9 As explained by Marcus,10 the sol-
vent internal pressure p is a nebulous concept that represents
incremental isothermal stretching of local interactions, but
without breaking the solvent intermolecular attractive forces.
In particular, the internal pressure is defined as p = ( ∂U

∂V
)T ,

the rate of change of the internal energy U with respect to
the volume V at given temperature T. Experimental mea-
surements estimate the solvent internal pressure at 172 MPa
(0.0248 kcal mol−1 Å−3) which is about 2000 times higher
than atmospheric pressure.10 Surface tension γ is character-
ized by the energy required to change the area of an inter-
face and is often associated with the energetics of hydrogen
bonding structure of water molecules near the solute/solvent
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interface. The experimental measurement for the water-air in-
terface at 25 ◦C is 72 mN/m (0.103 kcal mol−1 Å−2).11 Be-
cause of water’s high number and strength of hydrogen bonds,
its surface tension is larger relative to its internal pressure than
for organic liquids.10

While models considering only the area of the cavity
have been traditionally popular,12, 13 the recent inclusion of
solute volume and nonpolar dispersive interactions in im-
plicit solvation models is an important improvement.3, 4, 6, 14, 15

Considerations from scaled particle theory16, 17 and multiple
recent studies concerning the solute size-dependence of the
hydrophobic effect18–20 motivated this innovation which im-
proves predictions of solvation forces and energies.3, 4, 15, 21, 22

In the present work, we combine these improvements with the
use of realistic experiment-based parameters in the context of
the geometric flow solvation model. We find that the experi-
mental parameters of solvent internal pressure p = 172 MPa
and surface tension γ = 72 mN/m produce solvation free en-
ergies within 1 RT of the global minimum root-mean-squared
deviation from experimental data over a set of 58 molecules.
Our results demonstrate that experimental values can be used
for geometric flow solvent model parameters, thus elimi-
nating the need for additional parameterization. It is worth
noting that we focus on the applicability of the experimental-
based solvation parameters with relevant physics in the ge-
ometric flow solvation model; the optimization of the force-
field charge and radius parameters is not pursued.

II. METHODS

A. The geometric flow solvation model

The geometric flow based solvation model is briefly
summarized below; more details are provided in previous
publications.6–8, 23, 24 The total free energy functional for
the solute-solvent system (G) can be written as the sum,
G[χ, φ] = Gp[χ, φ] + Gnp[χ, φ], of the polar free energy
functional (Gp) and a nonpolar free energy functional (Gnp).
In the absence of mobile ions, the polar free energy functional
is described by

Gp[χ, φ] =
∫

�

(
χ

(
�f φ − 1

2
εm‖∇φ‖2

)

+ (1 − χ )

(
−1

2
εs‖∇φ‖2

))
dx, (1)

where � is the problem domain, χ is a solvent accessibil-
ity indicator or characteristic function varying smoothly from
1 at the solute van der Waals surface to 0 in the bulk sol-
vent. More specifically, χ defines a smooth interface between
van der Waals and solvent accessible surfaces in a thermo-
dynamically self-consistent manner, coupled with the local
charges and electrostatic potential. The distribution function
�f denotes the fixed charge distribution of the fixed solute
molecule, the scalars εm and εs are the dielectric constants of
the solute and solvent, respectively, and φ is the electrostatic
potential. The nonpolar free energy functional is described by

Gnp[χ, φ] = γA + pV + ρ0

∫
�

(1 − χ )U att
vdWdx, (2)

where γ is the solvent surface tension, A is the surface area
of the solute, p is the solvent pressure, V is the volume of the
solute, and ρ0 is the solvent bulk density. The function U att

vdW
is the attractive potential of the van der Waals dispersion in-
teraction between the solute and the solvent, which can be
represented by a summation of the attractive interaction po-
tential (using a Weeks-Chandler-Anderson decomposition25)
for each atom. The area and volume can be calculated directly
from the characteristic function χ via

A =
∫

�

‖∇χ‖dx, (3)

V =
∫

�

χdx. (4)

The polar and the nonpolar free energy functionals are
coupled via the characteristic function χ . Therefore, extrem-
izing the total free energy G with respect to φ and χ leads to
two coupled partial differential equation. The first equation is
a generalized Poisson equation which governs φ,

− ∇ · (ε(χ )∇φ) = χ�f , (5)

where the dielectric function ε(χ ) is defined as

ε(χ ) = εmχ + εs(1 − χ ) (6)

such that it achieves the solute dielectric constant value εm in
the solute interior and the solvent dielectric constant value εs

in the exterior. The second equation resulting from variation
of G is the generalized geometric flow equation which gov-
erns χ ,

− ∇ ·
(

γ
∇χ

‖∇χ‖
)

+ w(φ) = 0, (7)

where w is a driving potential for the flow

w(φ) = p − ρ0U
att
vdW + �f φ − 1

2
(εm − εs)‖∇φ‖2. (8)

Solving Eqs. (5) and (7) together provide a self-consistent def-
inition of both the electrostatic potential φ and the solvent
density, defined via the solvent accessibility indicator func-
tion as 1 − χ . The solvation energy can be determined from
these functions,

�Gsolv[χ, φ] = G[χ, φ] −
∫

�

�f ψdx, (9)

where ψ is the electrostatic potential in the presence of a
medium with the same dielectric constant as that of the solute.

B. Numerical methods

A grid-based optimization was carried out in (p, γ ) space
with p ranging from 0.001 to 0.055 kcal mol−1 Å−3 and γ

ranging from 0.055 to 0.165 kcal mol−1 Å−2, and a spacing
of 0.005 along both of these axes. εm was held constant at
1.8 per the work of Leontyev and Stuchebrukhov,9 εs (solvent
dielectric) at 80, solvent density at 0.0334 Å−3, and the min-
imum molecule-box edge distance at 3.8 Å. The equations
were solved using the second-order central finite difference
scheme discussed in Chen et al.,6 and the solver grid spac-
ing was set at 0.25 Å. The experimental solvent internal pres-
sure at 172 MPa10 converts to 0.0248 kcal mol−1 Å−3, and
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the experimental surface tension of 72 mN/m11 converts to
0.103 kcal mol−1 Å−2. Linear regression fits of γ min (p) vs. p
were performed with scipy (www.scipy.org).

C. Small molecule test sets

We investigate three different sets of molecules to pro-
vide a diverse range of molecular sizes and chemical prop-
erties. First, we re-examine the SAMPL0 set compiled origi-
nally by Nicholls et al.26 that was analyzed by Thomas et al.8

Second, the linear, branched, and cyclic alkane set of Levy
and Gallicchio27 provides a basic set of nonpolar molecules
with a range of geometries. Third, the SAMPL2 set28 provides
twice as many molecules as SAMPL0, with a broader range
of experimental solvation energies, from −25 to +5 kcal/mol,
for more robust testing of the methods. Prominent types of
molecules in this set include uracils, parabens, and carboxylic
acids.

For alkane and SAMPL0 sets, the charges, van der Waals
radii, and well depth parameters were taken directly from
the OPLS-AA (Optimized Potentials for Liquid Simulations
- All Atom) force field.29 For SAMPL2, these parameters
were taken directly from Klimovich and Mobley,28 who used
Generalized Amber Forcefield (GAFF)30, 31 van der Waals pa-
rameters and computed charges using AM1-BCC.32, 33 We
used the same approach to generate GAFF parameters for the
SAMPL0 set molecules in Antechamber.30

Although the ZAP-9 forcefield performed well in our pre-
vious analysis of SAMPL0,8 the OPLS-AA force field was
chosen because it employs van der Waals interactions be-
tween solvent and solute, and thus experimental p and γ are
likely to produce reasonable solvation free energies given the
importance of the van der Waals term in the nonpolar free en-
ergy functional (Eq. (2)).

III. RESULTS AND DISCUSSION

A. Overall performance of the geometric flow method
for a range of pressures and surface tensions

To test the hypothesis that the geometric flow solvation
model can predict reasonable solvation free energies with ex-
perimental or near-experimental parameters, we analyzed the
root-mean-squared error (RMSE) for small molecule solva-
tion energy in the space of p and γ parameter values for dif-
ferent sets of molecules. Figure 1 shows that there is a linear
“valley” region in (p, γ ) space along which the RMSE varies
by less than RT by comparison to the minimum value for the
entire surface. This linear valley covers a wide range of pres-
sures, (0.001 < p < 0.055) kcal mol−1 Å−3, but a narrow
range of surface tensions ±0.01 kcal mol−1 Å−2 for γ at any
given p.

For a more quantitative analysis, we calculated linear fits
for γ min (p), the value of γ which minimizes the RMSE at
a given p, for each set of molecules. Table I shows that the
resulting slopes are −0.74 to −0.78 Å, while the intercepts
range from 0.11 to 0.12 kcal mol−1 Å−2. The Pearson cor-
relation coefficient was R2 > 0.98 for all three sets and the
pooled set. As described below, we also analyzed linear cor-
relations for random subsets of the pooled set. Figure 2 shows

that these parameter estimates are robust in cross-validation
tests. Specifically, we examined fitting parameter distributions
among a large number (10 000) of random subsamples of n
molecules from the pooled set of N = 58 compounds, at vary-
ing levels of n. For n = N − 5 = 53, among the 10 000 random
samples, the intercept estimate varies by less than 0.001 from
the pooled-set value of 0.119 and the slope varies by less than
0.04 from the pooled-set value of −0.78. Pearson R2 values
for the γ min (p) vs. p fits vary from 0.985 to 0.991 among the
10 000 subsamples of size n = 53. Even for n = N/2 = 29,
the estimated intercept and slope vary by less than 0.005 and
less than 0.05, respectively, relative to the full set (Figure S1
of the supplementary material34). Furthermore, the R2 for
γ min (p) vs. p is 0.94 or higher for each molecule in the pooled
set, with the intercept ranging from 0.09 to 0.14 (see Table S1
of the supplementary material34). These high R2 values indi-
cate that the negative linear correlation between p and γ is
an inherent property of small molecule solvation in water and
not merely an average phenomenon.

Table I also presents the errors RMSEexp for solva-
tion free energy using experimental values for the pres-
sure, p = 0.025 kcal mol−1 Å−3, and surface tensio,n γ

= 0.103 kcal mol−1 Å−2, parameters.10 For the pooled
set, RMSEexp = 3.72RT which is very close to the global
minimum error, RMSEmin = 3.21RT at (p, γ ) = (0.045,
0.085). The difference between RMSE values is denoted
by �RMSE = RMSEexp − RMSEmin; the largest �RMSE is
1.15 RT for the SAMPL0 set. In addition, Figure S2 of the
supplementary material34 shows that the small �RMSE is ro-
bust in cross-validation tests. In 10 000 size n = 53 samplings,
�RMSE ranges from 0.35 to 0.75 for the majority of subsets
and is less than 1RT for all sets. Even when the sample size
is decreased from n = 53 to n = 38, �RMSE never exceeds
1.5RT, and n has to be reduced to 18 (0.31N) to find any sub-
set for which �RMSE exceeds the approximate thermal noise
level of 2RT.

Furthermore, our results are consistent with several pre-
vious investigations which estimated optimal water internal
pressures of 0.03–0.09 kcal mol−1 Å−3 for fitting implicit sol-
vent models with a pressure-volume energy term to molecular
dynamics (MD) simulation predictions of solvation forces on
proteins.15, 22, 35 These observations, and our optimal surface
tension and pressure estimates, are well explained by an in-
ternal pressure of p = 0.025 kcal mol−1 Å−3 but poorly ex-
plained by the use of atmospheric pressure.10

In addition to statistical validation, we can demonstrate
that these results are robust to the choice of force field used to
model the small molecules. For the SAMPL0 set, we gener-
ate GAFF30, 31 parameters and compare the solvation free en-
ergy predictions from these parameters to those obtained from
OPLS parameters. The resulting RMSE vs. (p, γ ) landscape
is shown in Figure S3 of the supplementary material,34 and
Table I shows that, for the SAMPL0 set, the slope and
intercept of γ min (p) vs. p are very similar regardless of
whether OPLS or GAFF charges and radii are used. In ad-
dition, RMSEexp and �RMSE are lower for SAMPL0-GAFF
than SAMPL0-OPLS, which suggests that the auto-generated
GAFF parameters are actually superior to OPLS parameters
when used in the geometric flow model. These results show

http://www.scipy.org
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FIG. 1. Root-mean-squared error (RMSE) in solvation free energy for different sets of molecules as a function of solvent internal pressure p and surface tension
γ for a solute dielectric constant εm = 1.8 using the OPLS-AA force field.29 (a) Linear, branched, and cyclic alkane set of Levy and Gallicchio;27 (b) SAMPL0
set;26 (c) SAMPL2 set;28 (d) pooled set. The RMSE is normalized by RT = 0.592 kcal mol−1 at 298 K, shown as contours. The linear regression fit of γ min (p)
vs. p is indicated in black, where γ min (p) is the choice of γ at any given p which minimizes the RMSE (values provided in Table I). The experimental values
for the pressure10 p = 0.0248 kcal mol−1 Å−3 and surface tension11 γ = 0.103 kcal mol−1 Å−2 are indicated with a cross on each plot and the minimum
(γ , p) values are indicated with a circle.

TABLE I. Solvent pressure and surface tension relationships. The intercept and slope were determined from a linear regression fit of γ min (p) vs. p, where
γ min (p) is the value of γ which minimizes the RMSE at a given p. R2 is the Pearson correlation coefficient value for the linear fit. Numbers in brackets indicate
the 95% confidence interval for calculated values. RMSEexp is the solvation energy error in units of RT = 0.592 kcal mol−1 when using experimental values10

for p = 0.0248 kcal mol−1 Å−3 and surface tension γ = 0.103 kcal mol−1 Å−2. RMSEmin is the error found when scanning the space of (p, γ ) parameters and
choosing the pmin and γ min values which minimize the error.

SAMPL0 SAMPL0
Set Alkanes (OPLS) (GAFF) SAMPL2 Pooled

R2 0.99 0.99 0.99 0.98 0.99
Slope − 0.74 − 0.75 − 0.74 − 0.77 − 0.78
(Å) [ − 0.80, −0.68] [ − 0.80, −0.69] [ − 0.80,−0.68] [ − 0.84, −0.70] [ − 0.83,−0.72]
Intercept 0.120 0.114 0.118 0.121 0.119
(kcal mol−1 Å−2) [0.118, 0.122] [0.112, 0.116] [0.116, 0.120] [0.119, 0.123] [0.117, 0.121]
pmin 0.040 0.030 0.025 0.055 0.045
(kcal mol−1 Å−3)
γ min 0.090 0.090 0.100 0.080 0.085
(kcal mol−1 Å−2)
RMSEexp 1.03 4.69 4.12 3.61 3.72
(RT)
RMSEmin 0.32 3.47 4.12 3.27 3.21
(RT)
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FIG. 2. Histograms of the intercept (left panel) and slope (right panel) for linear fits of the optimal surface tension γ min and p based on 10 000 random sets of
53 small molecule compounds drawn randomly and without replacement from the set of 58 compounds.

that the geometric flow results are robust to minor variations
in force field. More detailed cross-validations of the optimal
pressure and surface tension values can also be found in the
supplementary material.34

B. Performance of the geometric flow solvation model
for individual molecules

While the RMSE differences between experimental
(p, γ ) and the global minimum are small, Table S1 of the sup-
plementary material34 shows that for individual molecules,
RMSE difference between experimental (p, γ ) and the
global minimum averages 2.96 RT and can be as high as
10 RT for N, N-4-trimethylbenzamide and N, N-dimethyl-
p-methoxybenzamide. Many molecules with RMSE differ-
ences above 3 RT are nitrogen-rich compounds, including
imidazole, uracils, caffeine, cyanuric acid, and benzamides.
One unusual property of such molecules is that they form
very strong hydrogen bonds with water; this may be poorly
approximated by geometric flow and warrant further investi-
gation. In another study,23 it was shown that errors for ben-
zamides can be reduced with different charged assignments
obtained from the density functional theory on a different set
of atomic coordinates. Molecules with ether linkages (e.g.,
diethoxyethane) also tend to perform poorly, with the excep-
tion of dimethoxymethane.

C. Scaling relationships between small molecule
volumes and areas

Figures 3(a) and S1 of the supplementary material34

illustrate the relationships between volumes and areas calcu-
lated using the geometric flow models described above. Be-
low, we offer two complementary interpretations of the ob-
served strong correlation between volume and area.

A linear model with no intercept fits poorly to the data
with a slope of 0.92 ± 0.01 Å, RMSD residuals of 74 Å3,
and Pearson correlation coefficient R2 = 0.997. With a
floating intercept, the model fits much better with a slope of
1.07 ± 0.01 Å, RMSD = 23 Å3, and Pearson correlation coef-

ficient R2 = 0.990; however, the intercept obtained is −27 Å3,
or more than 10% of the median volume for the unified set.
Additionally, a strictly “spherical” model (V ∝ A3/2 with no
intercept) also performs badly (RMSD = 219 Å3). Thus, we
perform a nonlinear least-squares fit with a floating exponent,
fitting to the model V = αAβ and obtain α = 0.383 ± 0.030
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FIG. 3. Area/volume relationship for small molecule test sets. In panel
(a), the solid line indicates a linear least-squares fit with a slope of 1.1
± 0.014 Å, an intercept of −27.3 ± 2.44 Å3 and a Pearson correlation co-
efficient of R2 = 0.99. The dotted line indicates a nonlinear least-squares
“spherical” fit (V = αA3/2), where α = 0.066 ± 0.001, and the dashed line
indicates a “free exponent” fit V = αAβ where α = 0.38 ± 0.03 and β = 1.17
± 0.02. The nonlinear least-squares fits were performed with the nls function
in R (www.R-project.org). Panel (b) shows the natural log of the radial count-
ing function about the center of mass vs. log (r) for the protein villin. The first
2/3 of the points, representing the “interior volume,” can be fit with a slope of
2.83, which is the fractal density dimension λCM.

38 Panel (c) shows the dis-
tribution of fractal density dimensions λCM for small molecules in the pooled
set for which the correlation coefficient of log atom count vs. log (r) is greater
than 0.9. 38 of the 58 molecules in the unified set met this criterion.

http://www.R-project.org


204108-6 Daily et al. J. Chem. Phys. 139, 204108 (2013)

and β = 1.17 ± 0.015 with a resulting RMSD of 22 Å3.
Analysis of variance (ANOVA) shows that the floating-
exponent model outperforms both the linear and spherical
models with p-values of 10−15 or less (see Table S2 of the
supplementary material34). Furthermore, the 95% confidence
interval around β is [1.14,1.20], indicating that the exponent
is statistically distinct from either 1 or 1.5.

In addition, we examine the area/volume relationship
more broadly and its force field dependence using data
from Gong and Yang36 (see Figure S4 of the supplementary
material34). Four other types of molecular area/volume calcu-
lations (molecular face, van der Waals area/volume, solvent-
accessible surface area and volume, and solvent-excluded
area/volume) show a scaling behavior of V ∝ A1.2, suggest-
ing this shape behavior is general across different small
molecules and different molecular area/volume calculation
methods.

1. Geometric interpretation of volume-area correlation

In Figures 3(b) and 3(c), we use the concept of density
dimension to further explore the origin of the volume-area
scaling relationships. For a given molecule, the “fractal” den-
sity dimension λCM(x) about a point x is the best-fit slope of
log (N(x, r)) vs. log (r) according to a linear least squares re-
gression, where N(x, r) is the “radial counting function”; i.e.,
the number of atoms within radius r of x.37, 38 If a molecule
has an “interior volume,” then its radial counting function
should scale with approximately r3 except for the rough sur-
face region. We use the protein villin, which is large enough
to have an interior volume, as a reference case. To exclude
contributions from the non-flat surface, we perform a linear
regression of log (N(x, r)) vs. log (r) over the inner 2/3 of
atoms to estimate λCM of 2.83 (Figure 3(b)), but that beyond
r ≈ 1 nm, the radial counting function, and thus V , scales with
a smaller power of r. By comparison, we fit log (N(x, r)) vs.
log (r) over the inner 2/3 of atoms for the small molecules in
this work, which reveal density dimensions averaging about
1.84 and ranging from 1.05 to 3.71 (Figure 3(c)).

For the interior volume (V ) of an idealized spherical
molecule, V ∝ r3 and area A∝r2, thus V ∝ A3/2; i.e., the
“density dimension” is 3.37 In practice, molecules such as pro-
teins have dimensions closer to 2.9 for the interior volume due
to imperfect packing.37, 38 However, the surface region of a
large molecule does not behave as a three-dimensional object
since rather than being flat-surfaced like a sphere, the surface
region has many crevices and protrusions.37 Similarly, in a
small molecule, the surface is only a few atomic diameters
from the center of mass and there may not be a proper “inte-
rior volume”; this likely explains why we estimate an average
fractal density dimension of about 1.67 for small molecules.
Thus, most small molecules behave more like the protein sur-
face than the protein interior, with the exception of d-xylose
(λCM = 2.98) and diethyl propanedioate (λCM = 3.71). Since
glucose also has a relatively high λCM = 2.58, this may be
a property of sugars due to their compact ring structure. By
contrast, the molecules with the lowest λCM like pen-
tachloronitrobenzene and the parabens are primarily aromatic

and thus flat, so that the radial counting function will only
scale in two dimensions with r. Given the large differences in
V/A scaling between small and large molecules, our results
suggest that for broad applicability, both γ A and pV terms
are important.

2. Thermodynamic interpretation
of volume-area correlation

The observed volume-area correlation can also be inter-
preted based on thermodynamic arguments.39 For simplicity,
we will focus only on the nonpolar contribution, assuming
that this is the energetic contribution primarily associated with
the anti-correlation between p and γ , without loss of general-
ity. Consider a small nonpolar solute inserted into a solvent
where a differential Gibbs energy (dG) can be described by

dG = −SdT + V dP +
∑

i

μidNi + γ dA + ρ0

∫
�s

U att
vdWdx,

(10)

where T, S, and V denote the temperature, entropy, and vol-
ume of the solvent, respectively, and �s is the region of space
in the solvent outside of the solute. Here, μi and Ni are the
chemical potential and number of moles for ith component of
the solvent. Consider a cavity in a homogeneous solvent at
constant temperature and assume that the solute-solvent van
der Waals interactions give a negligible contribution to the
overall energy. Under this approximation, Eq. (10) becomes
dG = γ dA + V dp and a simple Maxwell relationship gives(

∂γ

∂p

)
A

=
(

∂V

∂A

)
p

. (11)

The total amount of volume resulting from both solvent (V )
and cavity (Vm) is Vtotal = Vm + V and the change due to cav-
ity insertion is dV = −dVm. Furthermore, the created surface
area in the solvent due to insertion is dA = dAm if there is
no significant deformation of the cavity upon the insertion.
Given the assumptions above, the Maxwell relationship can
be rewritten as (

∂γ

∂p

)
As

= −
(

∂Vm

∂Am

)
p

, (12)

which provides a simple relationship between the variation
of surface tension with respect to pressure and that of solute
volume with respect to solute surface area. To test the applica-
bility of Eq. (12), we examined the relation between ( ∂γmin

∂p
)As

and ( ∂Vm

∂Am
)p over all three sets with van der Waals energetics

set to zero to be consistent with the conditions for Eq. (12)
(see Figure S5 of the supplementary material for details34).
The two derivatives were linearly correlated with a slope of
−1.00 ± 0.08, intercept of −0.22 ± 0.08 Å, and a Pearson
correlation coefficient of R2 = 0.72. This relationship implies
that our data are qualitatively consistent with Eq. (12). The as-
sumptions of constant area and pressure in the two respective
derivatives are approximately justified since the calculated ar-
eas and volumes vary from the mean by less than 3% and 9%,
respectively, for each set of molecules over the entire (p, γ )
space examined in this study.
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Furthermore, our results suggest that ( ∂γ

∂p
)As

varies over

a small range from −0.9 to −0.7 Å. This small variation in
the rate of change is supported by past work which investi-
gated the pressure dependence of the interfacial tension be-
tween two immiscible fluid phases with a planar interface39

and concluded that the dependence comes from the coupling
of the pressure to differences in the partial molar volumes of
two fluids between the two phases. The study also showed that
the dependence also varies slightly for the interface of several
hydrocarbon molecules with experimental measurements of
( ∂γ

∂p
)A in the range of approximately −0.7 to 0.3 Å. This range

is similar to the range we obtained in our analysis of optimal
computed surface tensions and pressures using the geometric
flow method.

IV. CONCLUSIONS

The geometric flow approach provides a physically re-
alistic solvation model without considering explicit solvent
and has previously compared well to experimental data in
limited tests. In this work, calculated solvation energies for
multiple sets of small molecules with the OPLS-AA force
field and showed that the geometric flow model has good
accuracy for most molecules. More importantly, we demon-
strated that experimental values can be used the solvent in-
ternal pressure and surface tension model parameters, thus
eliminating the need for additional ad hoc parameterization
of the model. With a set of 58 molecules and a solute di-
electric constant of εm = 1.8, we find that the experimental
parameters for the air-water interface, pressure p = 172 MPa
(0.0248 kcal mol−1 Å−3) and surface tension γ = 72 mN/m
(0.103 kcal mol−1 Å−2), produce solvation free energies
within 1 RT of the global minimum root mean square devi-
ation over the set. Thus, it is possible that the previously re-
ported need to use a different “microscopic” surface tension
closer to 0.03 kcal mol−1 Å−2 for small molecules12, 13 may
result not from the curvature of small molecules,40 but rather
from the neglect of pressure-volume work and of a correct
definition of internal pressure.10 Future work investigating ge-
ometric flow solvation predictions for a wider size range of
small molecules is required for a detailed test of this hypoth-
esis. The ability of geometric flow to make reasonable pre-
dictions of solvation free energy with experimentally derived
parameters argues for the physical relevance of the model and
its broad applicability. The reduction in the number of free pa-
rameters will also facilitate the extension of geometric flow to
multi-conformational systems, proteins, and other more com-
plicated cases where solvation is important to function. This
adds to the existing benefit that the geometric flow formu-
lation allows for simultaneous optimization of the polar and
nonpolar components of solvation free energy.

In our previous work,8 we found that the optimal val-
ues for γ and p are strongly anti-correlated for all molecules.
Thomas et al. rationalized this anti-correlation based on
the fact that γ increases with stronger water/water interac-
tions, while water/water interactions become weaker as p
increases.8 While the p and γ terms of the solvation model are
linearly correlated, our data on the interior volumes of pro-

teins and small molecules suggest that this correlation only
holds over a small range of molecular sizes, and that these
terms are thus not redundant.

In summary, the geometric flow approach not only pro-
vides unambiguous coupled development of nonpolar and po-
lar free energy functionals but also provides excellent results
using experimental values for p and γ . This reduction in the
number of free parameters will also facilitate the extension of
geometric flow to blind predictions of solvation free energy
and its use as a complement for interpreting related experi-
ments. Future work should investigate the scalability of the
geometric flow model to larger systems such as host-guest or
protein-ligand binding energies where a broader range of sol-
vation phenomena, including cavity de-wetting, influences the
energetics of the system.
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