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ORIGIN OF QUASAR PROGENITORS FROM THE COLLAPSE OF

LOW-SPIN COSMOLOGICAL PERTURBATIONS

Daniel J. Eisenstein

1

and Abraham Loeb

Astronomy Department, Harvard University

60 Garden St., Cambridge MA 02138

ABSTRACT

We show that seeds for quasar black holes could have originated from the initial cosmo-

logical collapse of overdense regions with unusually small rotation. The gas in these rare

regions collapses into a compact disk that shrinks on a short viscous time scale. Using an

analytical model, we calculate the low-spin tail of the probability distribution of angular

momenta for objects that collapse out of a Gaussian random �eld of initial density pertur-

bations. The population of low-spin systems is signi�cant for any viable power spectrum

of primordial density perturbations. Most objects form just above the cosmological Jeans

mass �10

5

M

�

at high redshifts z

>

�

10. In the standard cold dark matter cosmology, the

comoving density of 10

6�7

M

�

objects with viscous evolution times shorter than �10

6�7

years is �10

�3

(h=0:5)

3

Mpc

�3

, comparable to the local density of bright galaxies. The seed

black holes tend to reside within larger mass systems that collapse later and supply the gas

needed for the bright quasar activity.

Subject headings: black hole physics{cosmology: theory{quasars: general

1 Also at: Physics Department, Harvard University
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1. INTRODUCTION

The extraordinary luminosity and compact size of quasars as inferred from unresolved

lensed images (Rauch & Blandford 1991; Rix et al. 1992), radio jet cores (Baath et al. 1992),

and rapid x-ray variability (Remillard et al. 1991), indicate that active galactic nuclei are

most probably powered by the accretion of gas onto massive black holes. Indeed, recent

observations of the gas kinematics near the center of the giant elliptical galaxy M87 (Harms

et al. 1994) suggest a central black hole with a mass of order 10

9

M

�

, as expected if this

galaxy had a past quasar history. The integrated light of quasars (So ltan 1982; Chokshi &

Turner 1992) implies that a fraction

>

�

3� 10

�5

of all the baryons in the universe ended up

in black holes. Formation of black holes must therefore be a non-negligible consequence of

gravitational instability in the early universe, yet the origin of these �10

6�10

M

�

black holes

in standard cosmologies is enigmatic (Turner 1991; Loeb 1993).

A key obstacle to forming the seeds for massive black holes in galactic centers is the cen-

trifugal barrier. Because of its angular momentum, a typical gas cloud that collapses at high

redshifts, becomes rotationally supported on a scale larger by �10

6�8

than its Schwarzschild

radius. While turbulent viscosity could in principle transport angular momentum outwards,

thus allowing the gas distribution to contract, this process is too slow for typical galactic

disks. Instead, the gas is expected to fragment and form an extended stellar system rather

than a relativistic object (Loeb & Rasio 1994). In this paper, we argue that some systems

acquire much less angular momenta than average during their cosmological collapse. After

forming a compact gaseous disk in their initial collapse, these low-spin systems would quickly

contract to form a relativistic object that serves later as a seed for a quasar black hole.

To �nd the fraction of systems with su�ciently low initial angular momenta, we apply a

cosmological collapse model developed elsewhere (Eisenstein & Loeb 1995, hereafter Paper I).

In hierarchical structure formation scenarios, collapsing objects acquire angular momentum

by tidal interactions with their surroundings (Hoyle 1949; Peebles 1969). The total amount

of angular momentum J is often quoted in terms of a dimensionless spin parameter � =

J jEj

1=2

=GM

5=2

, where E and M are the binding energy and the mass of the object at

virialization. N-body simulations (Barnes & Efstathiou 1987) �nd a mean value of h�i �

0:05 that depends only weakly on the power spectrum of density uctuations or the mass

scale. Here, however, we need to study the full distribution of the angular momentum and

in particular its low-spin tail. State-of-the-art N-body simulations (Warren et al. 1992)

are limited by computation power from probing the rare low-spin tail of this distribution,
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especially on small mass scales (� 10

6

M

�

). We therefore adopt an analytical model to

calculate the angular momentum of collapsing ellipsoidal systems subject to a cosmological

shear. By calculating � as a function of initial conditions, we then use the statistics of

Gaussian random �elds to compute the fraction of low-spin objects that could potentially

result in quasar progenitors.

The outline of this work is as follows. In x2, we estimate the viscous contraction time of

a compact gaseous disk with some initial angular momentum and mass. In x3, we describe

the methods of Paper I that are used to calculate the abundance of low-spin systems as

a function of their mass and angular momentum. In x4, the numerical results from this

approach are combined with the results of x2 to determine the abundance of quasar seeds as

a function of mass scale in a cold dark matter cosmology. Finally, x5 summarizes our main

conclusions.

2. EVOLUTION OF COMPACT GASEOUS DISKS

In this work we consider the possibility that conditions in the initial collapse of a cos-

mological perturbation may favor the formation of a compact gaseous seed for a quasar

black hole. We examine a collapsing region in a universe of cold dark matter particles and

baryons. During the initial collapse and virialization of the system, the baryons separate

from the dark matter due to their ability to shock and dissipate energy. Since the collapse

is at high redshifts (z

>

�

10), the gas cools quickly via Bremsstrahlung and inverse Compton

scattering o� the microwave background photons. Thus, within a few dynamical times the

baryons settle into a rotationally-supported thin disk. If such a disk is not disrupted and

does not fragment, then turbulent viscosity transports angular momentum outwards and

the disk contracts. Eventually the rate of gravitational energy being released approachs the

Eddington luminosity and the disk thickens due to radiation pressure. Further contraction of

the bloated disk is limited by cooling. However, at this stage the system is quite relativistic

and rapidly evolves to a massive black hole (Loeb & Rasio 1994).

This sequence of events would be altered if a considerable fraction of the gas fragments

into stars (Loeb & Rasio 1994). Stellar systems will not dissipate energy or transport angular

momentum as e�ciently, and supernovae driven winds may blow the remaining gas out of the

potential well (Haehnelt & Rees 1993). The �rst possibility is that stars might form before

the gas settles to a cold disk. However, in analogy with the over-abundance of spiral galaxies

relative to ellipticals in the �eld, it is likely that a fair fraction of all gaseous systems collapse
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to a disk before they fragment into stars. The next possibility is that star formation occurs

inside the disk before viscous transport of angular momentum allows the disk to shrink to a

black hole. The disk will not form a quasar seed if its viscous contraction time t

vis

is longer

than the time for supernovae to expel the gas or the time for a dominant fraction of the gas

to be converted into stars. We denote the characteristic timescale for the fastest of these

processes as t

?

. Based on the conditions in other star formation environments t

?

� 10

6�9

years; therefore we will consider a broad range of values for t

?

in the subsequent analysis

(cf. Fig. 3). Our approach will be to estimate the viscous time for a disk of a given mass

and angular momentum, and compare this time to the threshold value t

?

. In doing so, we

will neglect the e�ects of non-axisymmetric modes (e.g. bars). Only disks with lower than

usual angular momentum (and therefore small initial size) have a su�ciently short viscous

evolution time to form a quasar seed. In x4, we will calculate the probability distribution

of initial angular momenta for the compact disks considered in this section. The low-spin

tail of this distribution, de�ned by the condition t

vis

< t

?

, will then be used to calculate the

abundance of black hole progenitors.

For the purpose of estimating t

vis

we focus on the global evolution of the disk rather

than on its detailed radial structure. In addition, we tailor our analysis to the low-spin case,

where the disk is small and optically thick. To begin, we consider a collapsing region with

initial angular momentum J , total mass of dark matter and gas M , and gas fraction 


g

. In

low-spin systems especially, the disk size is much smaller than the core radius of the dark

matter. The dark matter therefore has a negligible contribution to the disk potential and

we may treat the gas as self-gravitating. Under this assumption, the gas reaches rotational

support at a radius r

b

� j

2

=GM

g

, where j � J=M is its speci�c angular momentum,

G is Newton's constant, and M

g

� 


g

M the mass of the gas. Note that here we have

assumed that the gas and dark matter have the same speci�c angular momentum; this is the

simplest case and ignores any transfer between the two components during their separation

(Fall & Efstathiou 1980; see however Hernquist 1989). We then de�ne x

b

� r

b

=r

Sch

, where

r

Sch

� 2GM

g

=c

2

is the Schwarzschild radius of the gas, and c is the speed of light. In

x3 and x4 we will derive a probability distribution of x

b

for an ensemble of system drawn

from a random set of initial cosmological conditions (Fig. 1). For now, let us quantify the

rarity of a disk size by de�ning y � x=hx

b

i, where x is the disk radius in units of r

Sch

, and

hx

b

i � 1:4� 10

8

(M

g

=5� 10

6

M

�

)

�0:6

is a reasonable �t to the mean value of the probability

distributions in Figure 1. Typical objects have y

b

� 1, while low-spin objects have y

b

� 1.
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The viscous timescale for the initial disk is t

vis

� �r

2

b

=�, where � is an average disk

density, and � is the viscosity coe�cient. In a thin disk, the viscosity can be parametrized

by a single constant �

<

�

1 (Shakura & Sunyaev 1973), so that

� = �p

�

r

3

GM

g

�

1=2

; (1)

where p � �c

2

s

is the ionized gas pressure, c

s

= (5kT=3m

p

)

1=2

is the sound speed, k is

Boltzmann's constant and m

p

is the proton mass. Thus, we �nd

t

vis

�

p

2GM

g

�cc

2

s

x

1=2

b

: (2)

In evaluating the viscosity (cf. Eq. (1)) we have ignored radiation pressure. If radiation

pressure p

rad

dominates over gas pressure, then the disk radiates energy at a rate close

to the Eddington luminosity. This can be shown as follows. The radiation ux emerging

from the surface of an ionized disk is F � �(cm

p

=�

T

)(�

�1

[@p

rad

=@z]), where �

T

is the

Thomson cross-section, and � is the mass density. Hydrostatic equilibrium along the vertical

z-axis implies �

�1

(@p

rad

=@z) � �2�G�, where � � M

g

=�r

2

is the surface density of the

disk. By substituting this relation in the expression for F , we get the total luminosity

of the disk, L � 2�r

2

F � L

E

, where L

E

� 4�GM

g

m

p

c=�

T

is the Eddington luminosity.

Thus, a disk dominated by radiation pressure would radiate its gravitational binding energy,

E

grav

� GM

2

g

=r, on the cooling time

t

cool

=

E

grav

L

E

�

2 � 10

8

x

yr: (3)

The collapse of a primordial gas cloud with low-spin is therefore divided into two stages.

Initially, the gas cloud collapses to a radius x � 1 at which t

cool

� t

vis

, and the system

cools to a state where the gas pressure dominates (because viscous heating is much weaker

than radiative cooling otherwise). Subsequently, the system contracts due to viscous angular

momentum transport, and so the value of x drops while the value of c

2

s

increases. Eventually,

the decreasing value of t

vis

approaches the increasing value of t

cool

, and the disk becomes

dominated by radiation pressure. The later contraction of the bloated supermassive disk

is limited by cooling at the Eddington rate. Because the disk is supported by radiation

pressure, it resists gravitational fragmentation and star formation, and so inevitably evolves

into a massive black hole (cf. Loeb & Rasio 1994). Thus, the gaseous system is vulnerable to
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disruption primarily during the �rst phase, when the potential well of the disk is relatively

shallow and the Jeans mass is low due to the dominance of gas pressure. We therefore identify

t

vis

in equation (2) as the relevant quantity to be compared to the disruption timescale t

?

(e.g., due to star formation or supernovae) in determining whether a system can become a

black hole progenitor.

The only remaining unknown in equation (2) is the temperature that sets the value of c

2

s

in the interior of the disk. For an optically thick disk, the internal temperature is determined

by the balance between the rate of gravitational energy release and the luminosity emerging

from the disk surface. Assuming full ionization, the vertical optical depth of the disk to

Thomson scattering is given by

� �

�

T

M

g

2�r

2

m

p

� 6� 10

4

�

M

g

5 � 10

6

M

�

�

0:2

�

y

5 � 10

�4

�

�2

: (4)

If � � 1 for both scattering and absorption processes, the surface of the optically-thick disk

radiates as a blackbody at a temperature T

s

. However the interior temperature T

c

at the

symmetry plane of the disk, is higher. The radiative ux at the disk surface is F = �T

4

s

,

where � is the Stefan-Boltzmann constant. At a steady state for the vertical heat transfer,

the same ux originates from the symmetry plane of the disk F = �c(dp

rad

=d� ) � �T

4

c

=� .

Equating these two ux estimates implies a central temperature T

c

� �

1=4

T

s

. We use this

central temperature to �x the sound speed in equation (2). The luminosity of the disk is

ultimately provided by the gravitational binding energy release over the viscous timescale,

L � E

grav

=t

vis

� M

g

c

2

=2xt

vis

, but is also given by 2�r

2

�T

4

s

. Setting these two expressions

equal closes our set of equations. Combining these equations, we get our basic result

t

vis

� 1:6 � 10

6

yr � �

0:1

�4=3

�

M

g

5 � 10

6

M

�

�

0:6

�

y

b

5� 10

�4

�

7=3

; (5)

where �

0:1

� �=0:1 (cf. the limit on � in Narayan, Loeb & Kumar 1994). In addition,

T

c

� 1:2� 10

4

K�

0:1

1=3

�

M

g

5 � 10

6

M

�

�

0:1

�

y

5� 10

�4

�

�11=6

: (6)

If the gas is not fully ionized as assumed above (i.e. the temperature

<

�

6000 K), then the

opacity calculation is more complicated (Lenzuni, Cherno�, & Salpeter 1991). However,

t

vis

/ �

�1=3

, so the uncertainties in the opacity of the disk due to atomic or molecular

contributions have a weak inuence on the estimate of its viscous time in equation (5). Note
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that the above equations apply only to low-spin objects since they require � � 1 [cf. Eq.

(4)]. Typical disks with y

b

� 1 are optically-thin and have viscous times greater than the

age of the universe.

Without other processes taking over, the central part of a compact gaseous disk would

evolve to a black hole progenitor over the viscous time given in equation (5). We should

compare this timescale to the timescales for processes that might disrupt this evolution

history. The disk gas may fragment into stars or be expelled by supernovae; however, these

processes require a minimumtime t

?

to occur. We therefore require t

vis

< t

?

for the formation

of black holes from the gaseous disks. In x4 we will consider the consequences of di�erent

values for t

?

, ranging from � 10

6

yr up to the age of the universe � 10

8

yr at the typical

collapse redshift z � 20. Note that disks with low viscous times are quite small and therefore

are bound by deep potential wells. The depth of the potential well of the initial gaseous disk

is represented by the characteristic rotational velocity (2x

b

)

�1=2

c = 210 km s

�1

(x

b

=10

6

)

�1=2

.

Although lower mass systems have on average shallower potential wells (cf. Fig. 1), the

low-spin tail for all mass scales naturally results in compact semi-relativistic disks in which

the gas is better trapped against supernovae winds. For example, a 5 � 10

6

M

�

disk with

y � 10

�3

has a gravitational binding energy GM

2

g

=r � 10

55

erg, roughly equivalent to the

hydrodynamic energy output of 10

4

supernovae; i.e. it takes many simultaneous supernovae

to disrupt this disk.

According to equation (5), the disk luminosity L = E

grav

=t

vis

approaches the Eddington

luminosity L

E

at a value of y � 8 � 10

�5

�

0:1

0:4

, independent of M

g

. In this regime the

system bloats into a thick disk (or equivalently, a rotating supermassive star), and further

contraction is limited by the cooling time in equation (3). For initial values y

b

>

�

5 � 10

�4

,

we �nd that L

<

�

0:002�

4=3

0:1

L

E

, and a thin disk forms in the initial collapse, as assumed.

3. COSMOLOGICAL COLLAPSE MODEL

In x2 we considered the viscous evolution time of compact self-gravitating gaseous disks.

If the disks are su�ciently compact initially, they are likely to evolve into massive black

holes before being disrupted by supernovae and star formation. We next attempt to �nd the

abundance of such systems in the universe.

The initial radius of a disk is determined by its mass and angular momentum. The

system acquires its angular momentum through tidal coupling to external torques during its

cosmological collapse. Most of the angular momentum is gathered when the system reaches
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maximum expansion and turns around, long before the baryons virialize and collapse to a

disk. Di�erent systems get di�erent amounts of speci�c angular momentum, depending on

the particular random realization of the density �eld in their environment. The abundance

of compact disks is therefore related to the low-spin tail of the probability distribution of

angular momenta for collapsing systems in the universe. Low-spin objects result from rare

environments that produce very weak tidal forces. Since the objects in this tail are rare and

compact, it is di�cult to identify them in state-of-the-art numerical simulations (e.g. Warren

et al. 1992) due to the limited resolution and simulated volumes. We are therefore motivated

to study this low-spin tail analytically using the non-linear collapse model for cosmological

perturbations described in Paper I. As shown in Paper I and demonstrated later, this model

is well-suited in particular to studying the cosmological collapse of low-spin systems.

We begin at a high redshift with a Gaussian random �eld of linear density uctuations

that has a cold dark matter power spectrum (Bardeen et al. 1986), although our results are

only weakly dependent on the shape of the power spectrum on large scales. We use 
 = 1,

H

0

= 50 km s

�1

Mpc

�1

(h = 0:5), and a power-spectrum normalization of �

8h

�1

Mpc

= 1:0.

We consider a high density peak at the origin and divide the universe into two regions, the

collapsing object and the source of the external torque acting on it. By taking a spherical

boundary, the external torque spinning the object may be expanded as a multipole series.

The monopole produces no torque, and the dipole corresponds to a uniform acceleration of

the object and so produces no rotation about its center of mass. Hence, the quadrupole is

the leading term. Previous studies found the higher multipoles to be much smaller (Ryden

1988; Quinn & Binney 1992). We use only the quadrupole tide of the background and ignore

higher terms.

The evolution of the quadrupole moment of the object with time is approximated by

treating the object as a homogeneous triaxial ellipsoidal overdensity above a uniform back-

ground. We choose the initial ellipsoid to be the unique homogeneous ellipsoid that matches

the mass, overdensity, and quadrupole moments of the inner region. When the ellipsoid is

placed in a quadratic gravitational potential, the equations of motion scale linearly with

radius so that all similar shells of the ellipsoid behave uniformly (Peebles 1980). Both the

ellipsoid self-gravity and the quadrupole tidal potential are of this form. The latter ingre-

dient allows the method to include the tidal shear at the origin, the importance of which

has been emphasized recently (Bertschinger & Jain 1994; Bond & Myers 1993). We then

assume that the background remains smooth with a density equal to its unperturbed value
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through the non-linear regime (Icke 1973; White & Silk 1979). Hence the background con-

tributes a spherical quadratic potential, which at late times is small. This approximation

has been shown to be remarkably good even past turnaround in the case without external

forces (White 1993). The quadrupole moments of the ellipsoid obey the correct linear regime

scaling at early times, thereby exactly matching the linear quadrupole moments of the ac-

tual perturbations. In di�erence from previous analytical treatments (Ryden 1988; Quinn &

Binney 1992), we use the non-zero initial peculiar velocity �eld associated with the growing

mode velocities, as determined by both the ellipsoid and the tidal shear.

Under the above approximations, the dynamics of the ellipsoid is reduced to a set of nine

second-order ordinary di�erential equations, which can be easily integrated given a random

set of initial conditions and the time dependence of the tidal potential (see paper I for

details). As a consequence of virialization, we arti�cially prevent any further contraction of

an axis beyond 40% of its maximum length (Bond & Myers 1993). The precise value of this

threshold has little e�ect on the quadrupole moments. We stop evolving the system when

the time is equal to the collapse time of a spherical object with the same initial overdensity.

Since the tidal �eld has already been included in the dynamics, the ellipsoid rotates and one

simply measures its angular momentum at the end. The vorticity of the object remains zero

before the arti�cial virialization, since all forces are derived from a potential.

Previous analytical work has assumed that because the object is a high density peak,

the background tidal torques can be described by linear perturbation theory. We �nd this

assumption unjusti�ed, as the region just outside the boundary of the object has a similar

overdensity to that of the object. We therefore evolve the background torque beyond the

linear regime by dividing the exterior region into twenty spherical shells centered at the

origin. The initial radii of the shells are a �xed set of multiples of the radius of the boundary

between the object and the background. These radii evolve with time according to the mass

interior to them (Gunn & Gott 1972). Each shell has a mean initial overdensity �

0

and

carries a separate contribution to the tidal torque. The overdensity of each shell �(z) is

computed as a function of redshift z and the tidal force exerted on the ellipsoid is scaled by

(1 + z)�(z)=(1 + z

0

)�

0

above linear theory. This scaling matches linear theory at early times

but provides more torque at late times, when the torquing material is closer to the ellipsoid

than the Hubble expansion would imply.

The initial conditions are the mean overdensity and quadrupole moments of the inner

region and the surrounding twenty shells. The joint probability distribution for these may

9



be computed in an exact form, given a Gaussian random �eld of primordial density pertur-

bations (cf. Appendix A in Paper I). We then place certain restrictions on the allowed range

of initial conditions to make them more suitable to our approximations. The inner region is

required to have an overdensity of at least 2:5�, where � = (�M=M)

rms

for this mass scale.

This makes it more likely that the object is the �rst in its neighborhood to collapse. To

favor formation of bound objects, the initial shear is constrained not to cause any part of the

ellipsoid to have a peculiar velocity that is radially outward. We also require that the initial

overdensity of the tidal shells is less than 95% of the ellipsoid overdensity, so that these shells

do not collapse before the end time. For 10

8

M

�

regions, only 0.40% of all regions satisfy all

of the above restrictions, primarily because overdensities above 2:5� occur only 0.62% of the

time. Higher mass scales have slightly larger acceptance rates.

In agreement with N-body simulations, our model yields h�i � 0:04 for all mass scales

between 10

7

and 10

12

M

�

, independent of the normalization of the power spectrum. When

the integration ends, typical objects have undergone collapse along two axes, but their long

axis is still near turnaround. This is likely to result in orbit crossing with the collapsing

background shells. However, this complicated situation is avoided in low-spin objects. Be-

cause the shear is small, these objects are more spherical during their evolution, and their

long axis collapses in a time close to the spherical top-hat prediction (cf. Fig. 8 in Paper I).

These systems collapse before the tidal shells and thereby avoid the complex shell-crossing

phenomena that a�ect typical objects. Our approximate treatment of the quadrupole torque

is therefore well-suited to studying the low-spin tail of the probability distributions of an-

gular momenta. There is, however, a background of objects that at the �nal time are very

elongated and yet by chance have a low angular momentum. These objects should not be

considered black hole candidates, as the gas is settling into a long �lament rather than a

compact disk. Figure 2 shows the distribution of axis ratio (long over short) at the end

time for all objects with angular momentum lower than some threshold. The threshold for

this sample was �xed so that t

vis

< 10

7

years in equation (5). One can see that more than

half of all low-spin objects have axis ratios less than two, making them good candidates for

becoming black hole progenitors. For simplicity, we will include all objects with su�ciently

low angular momenta in the results presented in the next section, regardless of their �nal

shape.
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4. RESULTS AND DISCUSSION

According to equation (5), the viscous time of systems with y

b

<

�

10

�3

is comparable to

a star formation time or to the time it takes a supernova to form out of the �rst generation of

stars. More important, t

vis

depends on y

b

to a high power. Therefore, the critical value of y

b

for the formation of a black hole progenitor is only weakly dependent on the uncertain values

of t

?

or �. Because t

vis

/M

0:6

g

, we expect more candidates for black holes at lower masses.

The lower bound on M

g

is the cosmological Jeans mass of �10

5

M

�

, at which the e�ects of

gas pressure and thermal feedback strongly inuence the dynamics of the collapse (Peebles &

Dicke 1968; Peebles 1993). For each mass scale, a threshold value for t

vis

de�nes a maximum

y

b

for black hole formation; we then �nd the fraction of systems with y

b

lower than this

value. For example, the condition that the viscous time of a system with M

g

= 5� 10

6

M

�

be smaller than 10

7

years is that y

b

is less than 1:1 � 10

�3

. This corresponds to a disk of

size �10

17

cm, smaller than average by about 10

3

, with a rotational velocity of 550 km s

�1

, a

surface density of order 10

9

M

�

pc

�2

, and a speci�c angular momentum smaller than average

by a factor of 30.

To calculate the number densities of black hole progenitors, we begin by noting that

the number density of regions of mass M is simply n

0

= �

c

=M . These regions represent

all possible initial conditions; however, as described in the previous section, we only work

with a small fraction A � 0:40% of these, since we require high-� peaks. We conservatively

assume that all the initial conditions that we reject do not lead to black hole progenitors.

After evolving many examples of the accepted initial conditions, we denote the fraction with

su�ciently low angular momentum (low y

b

) as f . The number density of low-spin objects is

then n

0

Af . For our results, we evolve 2 � 10

5

realizations of accepted initial conditions for

each of several total (baryonic + dark matter) mass scales: 10

8

M

�

, 10

9

M

�

, 10

10

M

�

, and

10

12

M

�

. In all cases, we use a viscosity parameter � = 0:1, a gas mass fraction 


g

= 0:05,

and a bias parameter of unity. The probability distributions for x

b

are shown in Figure 1.

The comoving densities n

bh

of black hole progenitors with di�erent masses are plotted in

Figure 3, as a function of the viscous time threshold t

?

in the constraint t

vis

< t

?

. Regardless

of stellar processes, the value of t

?

should not exceed the time scale for cosmological infall of

additional mass with higher speci�c angular momentum. This upper bound corresponds to

the Hubble time �10

8

yr at the typical collapse redshift z � 20. At the low mass end, the

number densities are comparable to the comoving density of bright galaxies (Peebles 1993),

n

?

= 1:25 � 10

�3�0:2

(h=0:5)

3

Mpc

�3

. The masses of the resulting black holes are assumed

11



to be M

g

� 


g

M ; this is an overestimate because a fraction of the gas must carry o� the

angular momentum of the initial disk to in�nity. The curves in Figure 3 are very nearly

power laws with n

bh

/ t

0:62

?

.

The number densities in Figure 3 have a variety of dependences on the parameters of the

model. First, because t

vis

/ 


�4:07

g

, a reduction in the fraction of gas that ends in the disk

(e.g. due to star formation during the initial infall or a di�erent value of the baryon density

parameter 


b

) would increase t

vis

considerably. Second, the number densities in Figure 3

use only a small subset (� 2:5�) of all the available regions for each mass scale; lowering

the peak threshold would increase the number of black holes. However, the ellipsoid model

is more applicable for isolated peaks, which suggests high-� peaks. In addition, there is an

anti-correlation of peak height and angular momentum, so that requiring high-� peaks makes

for an e�cient search. Third, since the candidates listed must have angular momenta lower

by at least an order of magnitude than the mean, it is possible that subleading e�ects in the

calculation of � are important at this level. While this may change some of the numbers

in Figure 3, the existence of a signi�cant low-spin tail is in qualitative agreement with the

broad probability distributions obtained in N-body simulations (Warren et al. 1992). Fourth,

hx

b

i is inversely proportional to the mean collapse redshift, which in turn depends on the

unknown amplitude of the power spectrum on small mass scales. Higher collapse redshifts

(i.e. lower bias) result in denser objects and shorter viscous times.

In the ellipsoid model, we focus on a collapsing region as a complete object, but real

systems collapse over a range of time, with continuing accretion forming larger and larger

objects. In this ongoing process, the angular momentum of the object is continually chang-

ing in time. How correct is it, then, to use the angular momentum of a �xed mass scale

(equivalent to freezing the collapse in time) as the input to our model for the evolution of

the gaseous disk? First, the contraction of the thin disk occurs rapidly, with a time scale

much smaller than the time scale for accretion to signi�cantly alter its angular momentum.

Second, once a system with low angular momentum has undergone free fall to a small radius,

it will have a very high surface density and small cross-section compared to any clumps of

new accreting material (of order � 10

6

times higher), and thus be relatively una�ected by

collisions with such clumps. It therefore seems reasonable that a compact disk will contract

without interference from the new infall.

In this model, we have neglected the role played by non-axisymmetric perturbations such

as bars. In fact, because the low-spin gaseous disks studied here are self-gravitating, one

12



expects the systems to be unstable to bar formation as they cool to low temperatures. These

instabilities act on the dynamical timescale

t

dyn

�

r

3�

G�

� 2 � 10

2

yr

�

y

5� 10

�4

�

3=2

�

M

g

5 � 10

6

M

�

�

0:1

; (7)

which is far shorter than the viscous timescale. While bars do generally transport angular

momentum outward and allow material to move inward (Larson 1994), it is not clear that this

can lead directly to the formation of massive black holes (see, for example, the simulations

by Loeb & Rasio 1994, where bar formation did not result in a massive gaseous core near the

center). Rather, we expect the bar to heat and thicken the disk, possibly fragmenting it into

clumps. Unlike typical galactic conditions, the time scale in equation (7) is too short for stars

to form and turn the disk into a collisionless system. With pressure ocassionally stabilizing

the newly-heated disk, turbulent viscosity is again the mechanism responsible for further

contraction. A detailed calculation of the viscous transport of angular momentum would

depend on the complicated structure resulting from the bar, and so we rely the simpli�ed

�-viscosity model presented in x2 to estimate the viscous time.

Within our model it is not possible to calculate the initial mass function of quasar black

holes. Although two regions of the same mass are correctly sampled from the underlying

density �eld, one cannot study di�erent mass scales at the same time. There is no guarantee

that two low-spin objects of slightly di�erent masses are not actually the same perturbation

with slightly di�erent boundaries. While this overcounting might be small when considering

very di�erent mass scales, the predicted number density of black holes drops quickly with

mass. Thus, most of the seed population of black holes would form just above the Jeans

mass at relatively high redshifts (z � 20). This result is consistent with the lowest values

of the empirically determined black hole masses in active galactic nuclei (Peterson 1993;

Padovani, Burg, & Edelson 1990). Moreover, Loeb & Rasio (1994) have argued recently

that quasar black holes can grow by stable accretion in galactic bulges only if their seed

mass is

>

�

10

5�6

M

�

, and therefore postulated the existence of a primordial population of

massive seeds. The coincidence between the Jeans mass and this lower limit allows our model

to provide just this postulated population.
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5. CONCLUSIONS

The appearance of quasar black holes at high redshifts is naturally linked to a seed

population of compact gaseous systems, more massive than the cosmological Jeans mass of

� 10

5

M

�

. While compact gas clouds of this type are not common due to the centrifugal

barrier of typical systems in the universe (Loeb & Rasio 1994), they can still result from the

initial collapse of rare systems with unusually low angular momentum. Such systems origi-

nate in environments where the surrounding cosmological density �eld induces an unusually

low shear during their collapse. The gas in these low-spin systems settles into a compact

semi-relativistic disk, whose viscous time is su�ciently short to avoid disruption by either

star formation or supernovae.

In this work we have calculated the abundance of low-spin systems in the universe,

assuming a Gaussian random �eld of initial density perturbations in a standard cold dark

matter cosmology. The resulting number density of progenitors for primordial � 10

6�7

M

�

black holes is estimated to be somewhat larger or comparable to the density of bright galaxies

(cf. Fig. 3). After their cosmological collapse, these compact progenitors have initial disk

radii less than 10

17

cm and rotational velocities greater than 500 km s

�1

, leading to viscous

evolution times shorter than 10

6�7

yr. If the resulting black holes were to sink to the center

of galaxies by dynamical friction, they would later serve as seeds for quasar activity. In

particular, their initial mass

>

�

10

6

M

�

would be su�ciently high to dominate gravity near

the center and to stabilize a steady accretion ow from the gas reservoirs of their host galactic

bulges (Loeb & Rasio 1994).

Because of the strong dependence of the viscous time of the initial disk on its speci�c

angular momentum, most gaseous disks in the universe fragment into stars long before their

angular momentum is transported away by viscosity. For typical systems, the resulting stellar

relaxation time is much longer than the Hubble time at the relevant redshifts. However, low-

spin objects that for some reason were unable to avoid star formation, would still result

in compact stellar systems. These dense systems have short relaxation times and could

dynamically evolve to additional black holes (Quinlan & Shapiro 1990).

If a seed black hole of mass

>

�

10

6

M

�

is initially located inside a galactic bulge, dynamical

friction will bring it to the center on a time shorter than the age of the universe (Binney &

Tremaine 1987). On the other hand, if the black hole is located far away from the nucleus (e.g.

in the galactic halo) it will not spiral inwards and the low accretion rate of gas onto it will

be unobservable. As shown in Appendix A of Paper I, a high-� peak on the M

g

= 10

6�7

M

�
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mass scale is very likely to be surrounded by a high density peak on the galactic bulge mass

scale. For example, we �nd that a 3� peak on the 10

8

M

�

(total mass) scale constrains the

density �eld to have a 2:2� peak on average for the 10

10

M

�

spherical region centered on the

�rst peak. Thus, the seed black holes that form out of high-� peaks are very likely to reside

inside galactic bulge systems and therefore sink to their center of mass by dynamical friction.

The observed peak in the quasar population at z � 2 may simply reect the epoch of galaxy

formation when considerable infall feeds these seed black holes (Haehnelt & Rees 1993). The

decline in the quasar density at lower redshifts would then result from the dilution of their

gas supply.

The observed mass function of quasar black holes should be very di�erent from its initial

state due to accretion. Since a typical quasar luminosity L

q

corresponds to an accretion rate

of 1:7 M

�

yr

�1

(L

q

=10

46

ergs s

�1

)(�=0:1)

�1

, where � is the conversion e�ciency of accreted

mass into radiation, it is possible to get considerable variations in the �nal black hole masses

due to di�erences in the fuel reservoir of their host galaxies. These di�erences are generic,

as the seed black holes considered in this work are likely to be surrounded by galactic mass

systems that collapse later and feed them with additional gas, thus resulting in the bright

quasar activity.
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FIGURE CAPTION

Fig. 1: Probability distribution P (x

b

) for the centrifugal barrier radius of the gas in units

of the Schwarzschild radius, x

b

� r

b

=r

Sch

. The three histograms correspond to di�erent total

mass systems. The gas fraction is assumed to be 5% of the total masses listed.

Fig. 2: Probability distribution for the ratio of long axis length to short axis length at the

�nal time. The broad histogram (dashed line) includes the full sample of objects with a total

(dark matter and baryonic) mass of 10

8

M

�

The sharp histogram (solid line) includes only

the low-spin objects de�ned by the condition t

vis

< t

?

= 10

7

yrs.

Fig. 3: Number density of black hole progenitors for three di�erent mass scales as a function

of the viscous time threshold t

?

in the condition t

vis

< t

?

. The densities are for a standard

cold dark matter cosmology with 
 = 1, h = 0:5.
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