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Abstract: We conducted petrological and mineral chemistry investigations of Cr-spinel in ultramafic
rocks of the Yanmenguan mafic–ultramafic complex in the North China Craton. The Cr-spinel grains
occur as inclusions in enstatite, tschermakite, phlogopite, and olivine, or as interstitial grains among
the aforementioned silicate minerals, and show concentric or asymmetrical textures. Back-scattered
electron and elemental images and compositional profiles of the spinel grains indicate the presence
of Cr- and Fe-rich cores and Al- and Mg-rich rims. The host silicate minerals display a decrease in
Al and Mg contents accompanied by an increase in Cr and Fe away from the spinel. These textures
and compositional variations suggest that subsolidus elemental exchange more likely gave rise to
the compositional zonation, resulting in the transfer of Al and Mg from the silicate minerals to the
spinel. The Mn, Ni, and Ti contents in spinel and the major elements of olivine-hosted spinel are
relatively stable during subsolidus elemental diffusion and thus are more reliable tracers of primary
high-temperature processes. The temperature estimates reveal that the subsolidus diffusion might
have occurred at 600–720 ◦C, which could be linked to the regional metamorphic event.

Keywords: compositional zoning; spinel; elemental exchange; North China Craton

1. Introduction

Chromium-bearing spinels are stable and highly refractory minerals that are very resistant to
alteration, weathering, and melt percolation, in comparison with paragenetic silicate minerals [1,2].
They are therefore good petrogenetic indicators of the source characteristics, evolution, and tectonic
setting of magmas [3–6]. Nonetheless, they can occasionally display compositional zonation. The most
common zoning texture in Cr-spinels is characterized by Al- and Mg-rich cores and Cr- and Fe-rich
rims, referred to as “normal zonation” [7–9]. The normally zoned Cr-spinels have been reported in
ophiolites [10], layered mafic–ultramafic complexes [11], komatiites [12], mantle xenoliths [13,14],
and metamorphosed ultramafic massifs [15]. Their formation is generally ascribed to high temperature
hydrothermal alteration [16] or metamorphism [15,17], evidenced by the presence of secondary phases
such as chlorite and antigorite surrounding the Cr-spinel or relict magnetite [15,18,19].
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Relative to normal zonation, reverse zoning texture in Cr-spinel shows the opposite compositional
feature, characterized by Al- and Mg-rich rims and Cr- and Fe-rich cores. The reverse zoning texture
in Cr-spinel has been reported in meteorites [20], mid-ocean ridge basalts (MORBs), [21] and various
mafic–ultramafic complexes (e.g., Alpine-type [22]; layered [23]; Alaskan-type [24]). Although this type
of texture has been investigated in some mineralogical [25], geochemical [22], and experimental [26,27]
studies, its origin is still a matter of continuous debate. The texture has been interpreted as a product
of fractional crystallization [21,25,28–32], reaction with non-homologous melt [33–36], and elemental
exchange with host silicate minerals [22,24,37].

In this study, we report reverse zoning texture in Cr-spinels from ultramafic rocks of the
Yanmenguan mafic–ultramafic complex. The zoned-textured Cr-spinel occurs as inclusions in a variety
of silicate minerals or as interstitial grains among different silicate minerals, and the texture is variable
from concentric to asymmetrical. Mineral morphology, elemental mapping images, and compositional
profile analyses were employed to determine the mechanism and origin of the reverse zoning texture
and its implications.

2. Geology of the Yanmenguan Mafic–Ultramafic Complex

The North China Craton is traditionally divided into two major continental blocks, the Western
and Eastern Blocks, which are separated by a collision zone referred to as the Trans-North
China Orogen (TNCO), and are composed of TTG (tonalite–trondhjemite–granodiorite) gneisses
and granite–greenstone belts [38] (Figure 1a). The Hengshan–Wutai–Fuping area located in the
central segment of this orogen is identified as an extensive exposure in the NCC (Figure 1b).
Thereinto, abundant Neoarchean mafic–ultramafic boudins are distributed in the Wutai Group in
a NE–SW direction, and separated by the Fuping terrane and Hengshan gneiss complex. All of
these complexes are scattered within strongly deformed flysch-like metabasic and metapelitic rocks,
which record the amphibolite- to granulite-facies metamorphism in the region [38]. Because of intensive
metamorphic overprint [39], the origin and tectonic setting of these mafic–ultramafic rocks are disputed.
Li et al. [40,41] interpreted these mafic–ultramafic complexes as remnants of paleo-oceanic lithosphere.
Wang et al. [39] identified them as a mélange of Neoarchean ophiolite, whereas Polat et al. [42]
suggested that some of them formed in a forearc setting. Recently, Yanmenguan complex, one of these
mafic–ultramafic complexes which was akin to Alaskan-type complex in aspects of mineral chemistry,
greatly depended on the compositions of Cr-spinel and silicate minerals [43,44].

The Yanmenguan mafic–ultramafic complex is located in the northwest of the Hengshan–Wutai
–Fuping area (Figure 1b). It cuts through the Neoarchean gneisses, and has a formation age of 2.2 Ga
(zircon U–Pb dating; [43]). The complex occurs as lenses with a distinctive zoning pattern of peridotite,
olivine pyroxenite, pyroxenite, hornblendite, and gabbro, in the order from center to margin (Figure 1c).
The peridotite shows granoblastic or porphyroclastic textures and is mainly composed of olivine,
enstatite, diopside, Cr-spinel, and tschermakite, with minor phlogopite, magnetite, and sulfides.
Olivine grains occur as mainly cumulate minerals in variable sizes from 0.2 to 1 mm (Figure 2a,b),
and occasionally display granular and equilibrated texture with nearly 120◦ triple junctions (Figure 2c).
All other minerals show subhedral or anhedral texture. Enstatite is the dominant intercumulus
mineral, forming oikocrysts in the range of 0.1–0.5 cm in diameter. Diopside and tschermakite occur as
large oikocrysts or small anhedral grains at the boundary of olivine grains. Olivine pyroxenite shows
gradational contacts with the peridotite and consists mainly of enstatite, tschermakite, diopside, olivine,
and Cr-spinel, with accessory phlogopite, chlorapatite, and magnetite (Figure 2d–h). Enstatite and
diopside are oikocrysts with sizes in the range of 0.2–1 cm, whilst tschermakite is relatively small
in size and less abundant. Olivine occurs as interstitial grains or as inclusions in enstatite, diopside,
or tschermakite (Figure 2d–g). The radial fractures in enstatite are exhibited for the differential
contraction between encapsulated olivine and host enstatite during the cooling process (Figure 2h) [45].
Intercumulus tschermakite is present as the latest intercumulus voids or resorption-induced rim
around the diopside (Figure 2i). Phlogopite in many places occurs with chlorapatite as inclusions in
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enstatite (Figure 2j). Cr-spinel is the most common accessory mineral in the ultramafic rocks and rarely
occurs in the mafic rocks. It is euhedral to subhedral, ranging in size from 0.05 to 0.2 mm, and occurs
within or among silicate minerals. Apart from the opaque or green spinel (Figure 2k), zoning texture is
commonly emphasized by the light brown core and greenish rim (Figure 2l).
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Fig.1 

 

Figure 1. (a) Subdivisions of the North China Craton and location of the Yanmenguan mafic–ultramafic
complex (modified after [38]). (b) Simplified geological map of the Hengshan–Wutai–Fuping area
(modified after [43]). (c) Geological sketch map of the Yanmenguan complex, showing the major rock
units of peridotite, olivine pyroxenite, pyroxenite, hornblendite, gabbro, and the surrounding Archean
gneiss as a country rock. Note that the lithological units are zonal patterns in the vertical section
(modified after [43]).
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Figure 2. Polarized optical images and back-scattered electron images of ultramafic suits: (a–c) Olivine
(Ol) occurring as cumulate crystals and partially serpentinized; (d) Olivine crystals surrounded
by enstatite (Opx); (e) Olivine crystals surrounded by diopside (Cpx); (f) Olivine surrounded by
tschermakite (Hbl); (g) Olivine surrounded by phlogopite (Phl). (h) Enstatite-hosted olivine with radial
fractures. (i) Resorption-induced rim of tschermakite around diopside (j) Chlorapatite (Ap)–phlogopite
pairs; (k) Three different appearances of Cr-spinel (Sp) in enstatite and olivine under polarizing
microscope; (l) Zoned Cr-spinel under a polarizing microscope.

3. Analytical Methods

Polished thin sections of all the samples from the ultramafic rock suits were investigated by a FEI
Nova nano450 scanning electron microscope (SEM), equipped with energy dispersive spectrometry
(EDS) at the State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics,
Chinese Academy of Sciences (IGGCAS), Beijing, China. High-resolution elemental mapping images
were obtained at the working conditions of 20 kV accelerating voltage and 3.5 nA beam current, with a
working distance of 4 mm from the polepiece to the sample surface.

For major elements, compositional profiles of minerals as well as back-scattered electron images
were obtained by wavelength-dispersive spectrometry (WDS) using a JEOL JXA8100 electron probe
at the State Key Laboratory of Lithospheric Evolution, IGGCAS, Beijing, China, operating at an
accelerating voltage of 15 kV, 12 nA beam current, 5 µm beam spot size, and 10–30 s dwell time as
well as 11 mm working distance. The elements were acquired using three crystals as follows: LIFH
for Cr, Mn, Fe, and Ni, PETJ for K, Ca, and Ti, and TAP for Na, Mg, Al, and Si. The standards used
were albite for Na, diopside for Si, Ca, and Mg, haematite and synthetic Cr2O3 for Cr, synthetic TiO2

for Ti, orthoclase for K, synthetic Al2O3 for Al, synthetic MnO for Mn and synthetic NiO for Ni.
K(α) lines were selected for analysis, and the detection limits were in the range of 0.008~0.02 wt %
(1σ). The spacing of points in the profiles was within 10~15 µm and traversed the Cr-spinel and
paired silicates. Matrix effects were corrected by a program based on the ZAF procedure. Fe2+–Fe3+

redistribution from electron microprobe analyses was carried out using the general equation for
estimating Fe3+ defined by Droop [46]. The profiles of reverse-zoned Cr-spinel in and among different
silicate minerals are provided in supplementary materials.

4. Zoning Texture of Cr-Spinel

Reverse zoning texture is commonly found in Cr-spinel inclusions in enstatite (Figure 3a,b),
tschermakite (Figure 3c,d), phlogopite (Figure 3e) and olivine (Figure 3f), which are all from the
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ultramafic rocks in the Yanmenguan complex. Specifically, the concentric-reverse zonation shows a
gradual variation from bright core to dark rim in back-scattered electron images, except for the
uniqueness of olivine-hosted Cr-spinels with very thin rims relative to broad cores (Figure 3f).
Interstitial Cr-spinel grain that occurs amongst different silicate minerals is also zoned with concentric
texture (Figure 3g,h), except that the Cr-spinels among the olivine–Cr–spinel–enstatite (or tschermakite)
arrangements display asymmetrical zonation (Figure 3i–l), with their cores usually restrict close to the
direction of olivine. In addition, the occurrence of a cluster of Cr-spinel indicates that zoning textures
are well developed in larger grains, whilst some of the relatively small Cr-spinel grains hardly preserve
any zoning texture (Figure 3m–p). 

2 

Fig.2 

 
Fig.3 

Figure 3. Back-scattered electron images of Cr-spinel (Sp), and the arrows denote the trend of
compositional profiles: (a,b) Zoned Cr-spinel surrounded by enstatite (Opx) along with tschermakite
(Hbl) and phlogopite (Phl); (c,d) Zoned Cr-spinel surrounded by tschermakite carrying ilmenite (Ilm),
showing the seeming disconnection between the reverse zonation and the crack in Cr-spinel; (e) Zoned
Cr-spinel surrounded by phlogopite; (f) Zoned Cr-spinel surrounded by olivine; (g) Interstitial zoned
Cr-spinel located between tschermakite and enstatite; (h) Interstitial zoned Cr-spinel located between
phlogopite and enstatite; (i,j) Interstitial asymmetrically-zoned Cr-spinel located between olivine and
enstatite; (k,l) Interstitial asymmetrically-zoned Cr-spinel located between olivine and tschermakite;
(m–p) Cr-spinel cluster enclosed in enstatite, tschermakite, and olivine, with only relatively large
Cr-spinel grains showing zonation.

The clear distribution of elements in reverse-zoned Cr-spinel and host silicate minerals is evident
in elemental mapping images (Figure 4) and representative compositional profile (Figure 5). In general,
the Cr-spinel displays a bell-like distribution of the major elements: the cores are enriched in heavy
elements such as Cr and Fe, whereas the rims show conjugated enrichment in light elements such as
Al and Mg. The host silicate minerals are characterized by a general decrease in Al and Mg contents
accompanied by increasing Cr and Fe contents with the distances close to Cr-spinel. With respect to
the minor elements, the elemental mapping images could hardly detect any non-accidental elemental
variation. The limited variation in the contents of Ni, Mn, and Ti in both Cr-spinel and host silicate
minerals is revealed by the compositional profiles.
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3 

 

Figure 4. Elemental mapping images of zoned Cr-spinel (Sp): (a) Zoned Cr-spinel surrounded by
enstatite (Opx); (b) Cr-spinel cluster enclosed in olivine (Ol); (c) Interstitial zoned Cr-spinel located
between tschermakite (Hbl) and enstatite (Opx) (d) Interstitial zoned Cr-spinels located between olivine
and enstatite; (e) Interstitial zoned Cr-spinel located between olivine and tschermakite.
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Figure 5. Compositional profile analyses of zoned Cr-spinel located between enstatite and tschermakite.
The profile shows in Figure 3k.

5. Discussion

Clear reverse zoning in Cr-spinel within the ultramafic rocks of the Yanmenguan complex and the
origin(s) of the reverse zonation have been the subject of continuous debate. In this study, therefore,
we look at all the possible mechanisms to enable us to establish the most likely process responsible for
the observed zonation in the Yanmenguan complex.

5.1. Reaction with Melt

5.1.1. Reaction with Non-Homologous Melt

The reaction between crystals and non-homologous melt may generate reverse zoning in
spinels [34,35,47]. The most common is the inherited or captured spinel grains, exhibiting sharp
variation from Cr-rich core to Al-rich rim. This kind of reverse zoning has been reported in arc volcanic
rocks [48] and those in greenstone belts [49], suggesting marked disequilibrium between spinel core
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and host silicate liquid. However, the limited number of inherited spinel is inconsistent with the
abundance of zoned spinel in the Yanmenguan complex.

Magma mixing or assimilation with crust-derived wall rock can also result in significant change
in the melt composition as well as the disequilibrium between the previously formed core and the
evolved silicate liquid. Relevant studies have been reported in seamount lavas [35] and tholeiitic
basaltic magmas [36]. This mechanism can explain the localized asymmetric zonation in Cr-spinel
hosted in olivine and shielded from reaction with mixed magma (Figure 3i–l). However, the evolved
melt can be excluded by the contradiction of increasing Cr concentrations in silicates and increasing Al
concentrations in spinel (Figure 5). Thus, the reaction with non-homologous melt could not be the
fundamental cause of the reverse zonation observed in the Cr-spinel from the Yanmenguan complex.

5.1.2. Reaction with Homologous Melt

It has been suggested that abundant [34] or rapid [21,28] growth of spinels could lead to localized
Cr-depletion in homologous melt, and the continued growth of accumulated spinel grains gives rise
to the massive reverse zoning texture in the postcumulus stage. The former is well-documented
in the large, layered mafic–ultramafic complex, in which the extensive accumulation of chromitite
as well as the absence of supplementary magma could also induce the dramatic change in melt
composition and generate reverse zoning chromite (Rhum-layered mafic–ultramafic complex [33];
Panton Sill-layered mafic–ultramafic complex [34]). However, it is clearly different from the sparse
Cr-spinel in the Yanmenguan complex, which can hardly lead to the large-scale variation in the melt at
the post cumulus stage.

The latter is currently the dominant origin for reverse zoning spinels which, combined with
the relative difficulty of nucleating crystals of Al-rich silicate minerals [20,29,47,50], results in the
formation of extremely Al-rich melt. The increasing Al with decreasing Cr could result in progressive
changes in crystal chemistry of the spinels from Cr- and Fe-rich crystal cores to Al- and Mg-rich
rims and leading to the formation of reverse zonation [28,30,51–54]. Related observation was first
described by Sigurdsson [25] to explain the intensely-zoned spinels in olivine–spinel pairs in basalts
collected during the ocean drilling program, marked by a decrease in Cr# (Cr/(Cr + Al) × 100)
from core to rim with re-equilibrated zoning of Mg# (Mg/(Mg + Fe2+) × 100) [55]. Subsequently,
the reverse-zoned spinel grains through the same mechanism have been reported in alkali basaltic
glasses from Iceland [21,31], quenched basaltic lavas from Hawaii [56], and MORB-type greenstones in
East Takayama [32], and confirmed by thermodynamic experiments [26].

This mechanism is well-documented to explain the gradual elemental change in spinel core
and rim by continuous crystallization (e.g., Figure 3a) and the larger crystals display more distinct
zoning texture than the small ones (Figure 3m–p) caused by the different nucleation period [33,34,50].
The asymmetric zonation (Figure 3i–l) most likely resulted from local melt heterogeneity due to
disequilibrium induced by crystallization of various phases with different compositions, which could
affect the diffusion rates of ions into the growing crystals [33,50,57]. However, this type of reverse
zonation is usually generated in the olivine–spinel paired samples, accompanied by the absence of
Al-rich silicate minerals [50,57]. On the contrary, zoned Cr-spinel grains are preferentially distributed
in the enstatite (Figure 3a,b), tschermakite (Figure 3c,d), and phlogopite (Figure 3e) in the Yanmenguan
complex, where the abundant silicate minerals could buffer the Cr/Al ratio in melt to some extent [32].
More importantly, the compositional variation in spinel from core to rim cannot decrease temperature
and increase oxygen fugacity (Figure 6a), suggesting that the zonation could not be the result of
fractional crystallization [58]. In addition, the marked increase in Cr and decrease in Al in silicate
minerals cannot conform to the elemental variation of magma differentiation (Figure 5). Therefore,
the aforementioned mechanisms could not explain the reverse zonation in the Yanmenguan complex.
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Figure 6. (a) Cr-spinel empirical thermometer after Sack and Ghiorso [58]. The equipotential curves
and Fe3+/Fe2+ of melt are from Irvine [1] and Agata and Adachi [33]. Equipotential curves shifting to
the left represent magmatic differentiation, and the paralleled arrow denotes the trend of elemental
exchange. (b) Olivine–spinel thermometer after Ballhaus [59]. The compositions for temperature
estimates based on the rim of spinel and co-existing olivine. The presupposed pressures (1.2 and
1.4 GPa) are from Wang et al. [39]. Data are available in supplementary material. P–T diagram with
eight principal metamorphic facies is from Spear [60].

5.2. Elemental Exchange with Coexisting Silicate Minerals

Elemental exchange with coexisting silicate minerals is another important factor modifying the
composition of spinel [61–65], and is commonly induced by the variation of physical conditions [66–69].
Generally, diffusion-induced zonation is caused by the long-term exchange between crystals subjected
to continuous, high subsolidus temperatures [23,70–72]. In the study of the Red Mountain Alpine-type
mafic–ultramafic complex in South Island, New Zealand [22,72–74], Sinton [22] discovered significant
reverse zoning in spinel grains in a spinel–enstatite pair. It is believed that the continuous reaction
with enstatite led to the enrichment of Al and Mg in the Cr-spinel, whereas the enstatite became
enriched in Cr and Fe. Similar interpretations were assigned to reverse zonation in spinel grains from
the Rhum-layered mafic–ultramafic complex in Scotland [37] and also to spinel grains from the Gabbro
Akarem Alaskan-type mafic–ultramafic complex in Egypt [24,75,76].

The aforementioned compositional variations between spinel and silicate minerals are consistent
with the result of elemental mapping images (Figure 4) and compositional profiles (Figure 5) of
the Yanmenguan complex. The asymmetrical zonation (Figure 3i–k) is interpreted to be caused by
various degrees of elemental exchange with different silicate minerals, which are also characterized
by variable degrees of solubility and different capacities to accommodate elements [22,77–79]. Thus,
tschermakite, phlogopite, and enstatite with higher contents of Al and high Cr-bearing capacity impose
greater influence on spinel than olivine, which only contains limited concentrations of Cr [72,80,81]
and Al [82,83]), and acts as a relatively perfect barrier to elemental diffusion [84]. In addition,
the characteristic of large Cr-spinel grains preserving well-developed zonation (Figure 3m–p) suggests
that the relatively small grains are completely controlled or equilibrated by the surrounding silicate
minerals, thereby destroying the zoned texture [85]. Obviously, the elemental exchange with coexisting
silicate minerals can reasonably explain the reverse zonation in Cr-spinel.

5.3. Inducement of Elemental Exchange

According to the empirical model supplied by Sack and Ghiorso [58], the crystallization
temperature of the Cr-spinel in the Yanmenguan complex approximates 1050 ◦C (Figure 6a). However,
the calculated temperature of the spinel–olivine pair from the Yanmenguan complex measured by the
thermodynamics thermometer from Ballhaus [59] yielded a range of 600–720 ◦C, which is similar to
the medium- and high-grade metamorphic temperature (Figure 6b). The calculated temperature may
be associated with the complex metamorphic history recorded in the Hengshan–Wutai–Fuping area.
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Previous studies have shown that a pre-existing ocean was completely consumed by subduction
between the Eastern and Western Blocks of the North China Craton [38,86,87]. Consequently,
the continent-arc-continent collision [88] introduced those rocks into lower crustal levels or the upper
mantle [88], where granulite to eclogite facies [89–92] or greenschist to lower amphibolite facies [93–96]
metamorphism occurred. This metamorphic history may provide long-lived dynamics and thermal
status for elemental exchange in the Yanmenguan complex.

In fact, the occurrence of the coexistence of both reddish-brown and green spinel grains in the
Nikubuchi peridotite in Japan has been reported [97]. The textural relationships and mineral chemistry
of the Nikubuchi rocks indicate that the spinel from the peridotite was equilibrated at granulite facies
conditions before being emplaced into the Sanbagawa metamorphic belt [97]. Similar occurrences are
also recorded in ultramafic peridotite rocks metamorphosed under granulite facies conditions from
the Rio de Las Tunas Belt in Argentina [98]. In Skye Island, the peridotite is also characterized by
the occurrence of red and green spinel grains. Lenaz et al. [99] suggested that the green pleonaste is
a by-product of the metasomatism of previously Cr-rich spinel, resulting in the mobilization of Cr
during a localized thermal event.

Interestingly, the elemental exchange is commonly mentioned in Mg–Fe2+ exchange without
the equilibrium of Cr–Al–Fe3+, because the diffusion rates of divalent ions are several magnitudes
faster than those of trivalent ions [24]. However, all the compositional profiles in this study show that
elemental exchange is more pronounced in Cr–Al–Fe3+ than in Mg–Fe2+ (Figure 5 and Supplementary
Materials). We assume the discrepancy could be associated with the relatively faster rate of diffusion of
divalent ions in Cr-spinel, during which the well-developed zonation preferentially preserves trivalent
ions instead of divalent ions. The blocking temperatures of divalent ions are also lower than those
of trivalent ions [23], and therefore, the increased frequency and prolonged exchange of divalent
ions between the core and rim of Cr-spinel can destroy the already formed zonation texture. It is
suggested that the re-equilibration of spinel with adjacent silicate restricts the application of spinel to
investigate igneous processes [15,23,100,101]. Thus, the trivalent ions may be relatively appropriate,
especially for olivine-hosted spinel (Figure 6a), to trace the original composition of spinel (Figure 7a,b).
There are limited variations in the contents of Ni, Mn, and Ti in Cr-spinel (Figure 5). In this respect,
much attention should be paid to these minor elements in their application to trace geologic processes
(Figure 7c), since these elements are not affected by elemental exchange and are therefore more reliable
and valid than the traditional index [64].
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Fig.7 

Figure 7. Chemical compositions of spinel, compared with spinel from different tectonic settings on
(a) Cr2O3 vs. Al2O3 (b) Cr2O3 vs. Al2O3 vs. Fe2O3 (c) TiO2 vs. Cr2O3 diagrams. The komatiite and
oceanic cumulate complex fields are from Kamenetsky et al. [5]. Podiform and stratiform fields are
from Musallam et al. [102] and Arai et al. [103].

6. Conclusions

The widespread reverse zoning in Cr-spinel from rocks of the Yanmenguan complex is
compositionally characterized by Al- and Mg-rich rims and Cr- and Fe-rich cores. The zoning
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texture is discriminative in the different host silicate minerals and the sizes of Cr-spinel grains.
These features rule out fractional crystallization and the reaction with melt as responsible for the
zoning. The compositional profiles traversing the Cr-spinel and host silicate mineral were generated
to investigate the elemental exchange reaction that gave rise to the zonation. Based on the calculated
temperature of 600–720 ◦C, we postulate that the metamorphic event was the origin of elemental
exchange in the Hengshan–Wutai–Fuping area.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-163X/8/2/62/s1,
Figure S1: Compositional profiles of reverse zoned spinel in enstatite; Figure S2: Compositional profiles of reverse
zoned spinel in tschermakite; Figure S3: Compositional profiles of reverse zoned spinel in phlogopite; Figure
S4: Compositional profiles of reverse zoned spinel in olivine; Figure S5: Compositional profiles of zoned spinel
among enstatite and olivine; Figure S6: Compositional profiles of zoned spinel among enstatite and phlogopite;
Figure S7: Compositional profiles of zoned spinel among olivine and phlogopite; Table S1: Data of compositional
profiles; Table S2: Supplementary coupled olivine and spinel compositions for temperature estimations.
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