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Inertial flow in porous media occurs in many situations of practical relevance among which one can cite flows

in column reactors, in filters, in aquifers, or near wells for hydrocarbon recovery. It is characterized by a deviation

from Darcy’s law that leads to a nonlinear relationship between the pressure drop and the filtration velocity. In

this work, this deviation, also known as the nonlinear, inertial, correction to Darcy’s law, which is subject to

controversy upon its origin and dependence on the filtration velocity, is studied through numerical simulations.

First, the microscopic flow problem was solved computationally for a wide range of Reynolds numbers up to

the limit of steady flow within ordered and disordered porous structures. In a second step, the macroscopic

characteristics of the porous medium and flow (permeability and inertial correction tensors) that appear in the

macroscale model were computed. From these results, different flow regimes were identified: (1) the weak inertia

regime where the inertial correction has a cubic dependence on the filtration velocity and (2) the strong inertia

(Forchheimer) regime where the inertial correction depends on the square of the filtration velocity. However,

the existence and origin of those regimes, which depend also on the microstructure and flow orientation, are

still not well understood in terms of their physical interpretations, as many causes have been conjectured in the

literature. In the present study, we provide an in-depth analysis of the flow structure to identify the origin of the

deviation from Darcy’s law. For accuracy and clarity purposes, this is carried out on two-dimensional structures.

Unlike the previous studies reported in the literature, where the origin of inertial effects is often identified on

a heuristic basis, a theoretical justification is presented in this work. Indeed, a decomposition of the convective

inertial term into two components is carried out formally allowing the identification of a correlation between

the flow structure and the different inertial regimes. These components correspond to the curvature of the flow

streamlines weighted by the local fluid kinetic energy on the one hand and the distribution of the kinetic energy

along these lines on the other hand. In addition, the role of the recirculation zones in the occurrence and in the

form of the deviation from Darcy’s law was thoroughly analyzed. For the porous structures under consideration,

it is shown that (1) the kinetic energy lost in the vortices is insignificant even at high filtration velocities and (2)

the shape of the flow streamlines induced by the recirculation zones plays an important role in the variation of

the flow structure, which is correlated itself to the different flow regimes.

DOI: 10.1103/PhysRevE.96.043105

I. INTRODUCTION

Creeping flow in porous media, where viscous forces are

dominant compared to inertial ones, is generally characterized

by Reynolds numbers Red < 1 with Red = ρ|〈v〉|d
μ

. In this

definition, |〈v〉| is the magnitude of the filtration velocity of

the fluid phase β, ρ and μ are, respectively, the density and

the dynamic viscosity of the β-phase, and d, the reference

length, can be considered as the average grain diameter. In

porous media, a flow in the creeping regime (also known as

the Darcy regime) is generally modeled at the macroscopic

scale by means of Darcy’s law. It describes a linear relationship

between the pressure drop and the filtration velocity and was

derived empirically first [1]. This law has been widely used for

more than 150 years in a broad range of fields, especially in

hydrology, petroleum engineering, and chemical engineering.

Later several works provided a theoretical justification for

Darcy’s law by means of different up-scaling techniques [2–6].

It is given for an incompressible Newtonian fluid β, saturating
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a nondeformable porous medium, in isothermal conditions, in

a one-dimensional form, by

∂〈p〉β

∂x
= −

μ

k
〈vx〉 + ρgx, (1)

where ∂〈p〉β/∂x, 〈vx〉, and gx are, respectively, the gradient

of the average pressure, the filtration velocity of the fluid β,

and the gravitational acceleration along the x axis, k being the

permeability of the porous medium.

As the Reynolds number becomes larger, the inertial forces

are no longer negligible and Darcy’s law loses accuracy. Many

studies treated the upper limit of the validity of Darcy’s law.

The limit Reynolds number ranges from 1 to 10 according to

different authors [7–9]. Above this limit, the flow becomes

inertial after a gradual transition [9] but remains steady and

laminar.

Many situations of practical relevance can be raised where

the inertial effects may be important and Darcy’s law becomes

invalid. Among these situations, one can cite flows in column

reactors, in filters, in aquifers, in soil remediation, and near

hydrocarbon recovery wells, for instance. Forchheimer was

the first to propose an equation derived empirically [10] to

describe inertial flow in porous media at the macroscopic

scale. Forchheimer’s equation consists of Darcy’s law to which
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correction terms are introduced to account for inertia leading to

a nonlinear relationship between the filtration velocity and the

macroscopic pressure gradient. After Forchheimer’s works,

several studies focused on modeling rapid flows in porous

media [2,11–18] and consolidated the Forchheimer’s equation

type. This latter equation can be given, in one dimension, under

the following form:

∂〈p〉β

∂x
= −

μ

k
〈vx〉 − ρβ〈vx〉2 − ρ2γ 〈vx〉3, (2)

where β and γ are parameters intrinsic to the porous medium.

The quadratic correction in Eq. (2) is the Forchheimer

correction and was confirmed by different authors [19,20].

Equation (2) is also valid for creeping flow, where it reduces

to Darcy’s law, and steady laminar inertial flow regimes. The

steady inertial flow in porous media is then followed by a

quasiperiodic regime and turbulent flow at higher Reynolds

numbers [21]. Many efforts have been made in order to

classify the inertial flow in porous media into different

subregimes depending on the form of the inertial correction.

A generally accepted classification distinguishes the following

three inertial regimes:

(1) Weak inertia regime [18,20,22] where the inertial

correction scales as 〈vx〉3. It appears at the onset of the

nonlinearity in the flow. It must be emphasized here that, even

if this regime was identified by almost all authors [23–32],

it is generally ignored in practical situations, as in petroleum

engineering, due to its short range of validity compared to

the other inertial regimes for flow in natural porous media. In

fact, some authors discussed the existence of this regime and

considered it as a transition to strong inertia regime [33].

(2) Strong inertia regime, also known as Forchheimer

regime, where the correction scales as 〈vx〉2. It occurs at

Reynolds number values between 1 and 10, but its existence

and range of validity remain controversial. Recent works

demonstrated that this regime is not identified for all flow

configurations and depends strongly on the microstructure

and the orientation of the macroscopic pressure gradient

[24,29,30,32].

(3) At Reynolds numbers above the limit of validity of the

Forchheimer regime, some authors identified a third inertial

regime. The existence of a regime above strong inertia,

called “transition to turbulence regime,” was reported [34,35].

The occurrence of this regime was confirmed later [24,36]

characterized by different inertial correction forms depending

on the morphology of the porous medium [34].

In summary, the existence of those regimes and their range

of validity are strongly dependent on the microstructure and

the flow [24,29,30,32], thus requiring more investigation to

understand the phenomena that trigger their apparition. Fur-

thermore, even the precise origin of the deviation from Darcy’s

law itself remains controversial. Indeed, many postulates have

been put forth to explain the origin of inertial effects.

The origin of the deviation from Darcy’s law was first

attributed to turbulence [37]. It has been supported by different

authors [38,39] until a study indicated that the onset of

turbulence in porous media was not enough to explain the

deviation from Darcy’s law [19]. Subsequently, different

authors supported this latter idea after observing deviations

from Darcy’s law in the laminar flow regime [20,40,41].

Various origins of the deviation were mentioned in a heuristic

way in the literature. Among them, one can mention pore

roughness [42,43], loss of kinetic energy in restrictions and

constrictions [44], development of inertial cores [9,45], bends

in the flow paths [46], formation of a hydrodynamic boundary

layer [15], change in spatial distribution of the kinetic energy

within the structure [47], flow tortuosity [48], and pore-throat

curvature [49]. Some authors distinguished contributions due

to linear losses in pores and channels and quadratic losses in

contractions and expansions [50].

Furthermore, more precise physical justifications of the

deviation from Darcy’s law were given. Indeed, they stated

that, at the onset of nonlinearities, macroscopic inertial forces

are negligible compared to microscopic ones [13,15] that are

themselves larger than viscous ones [51,52]. A dependence

between microscopic inertial and viscous origins of the non-

linearity was also reported. In fact, inertial effects contribute

to the change of the microscopic streamlines shapes and flow

patterns in pore space, causing positive nonlinear changes in

the microscopic drag forces [51]. The microscopic inertial

origin of the deviation from Darcy’s law is generally accepted

[14,53]. However, the existence and origin of different inertial

regimes are still not well understood in terms of their physical

interpretations, which is the motivation of this work.

The present study was carried out considering two-

dimensional (2D) ordered and disordered model porous

structures (see Fig. 1). Since the objective is to capture the

physical mechanisms at play to explain the occurrence of the

different regimes, 2D configurations were used in this work.

This is further motivated by the fact that accurate numerical

simulations are tractable, and their results can be more easily

and more clearly interpreted in that case. Moreover, a thorough

analysis of 2D and three-dimensional (3D) configurations

showed that the deviation from Darcy’s law resulting from

inertia exhibits the same behavior in both cases [32]. The

ordered structures, referred to as OS (OC), correspond to

ordered arrays of parallel cylinders of square (circular) cross

sections. The disordered structures, referred to as DS (DC),

were obtained from a random placement of the cylinders in

each original unit cell of the OS (OC) following a procedure

described earlier [24]. All porous media have a porosity of

75%. The choice of such a high porosity is motivated by the fact

that inertial effects are stronger when the porosity increases

for a given value of the macroscopic pressure gradient applied

to the structure [23]. This article is organized as follows:

(1) The nonlinear, inertial, correction to Darcy’s law for

the stationary inertial and incompressible flow of a single

phase Newtonian fluid through the model porous structures

of Fig. 1 was obtained numerically. The effective properties

appearing in the macroscopic model [15], resulting from the

volume averaging of the mass and momentum (Navier-Stokes)

equations at the pore scale, were determined by means of the

resolution of the closure problem resulting from the up-scaling

procedure. The physical model and the numerical method

adopted for its resolution are presented in Sec. II.

(2) The results of the numerical simulations are presented

in Sec. III. The different inertial regimes are first investigated

for the considered model porous structures. The dependence

of the correction to Darcy’s law on the microstructure and on

the orientation of the macroscopic pressure gradient is then
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(a)

(b) (d)(c)

fluid phase 

solid 
phase 

fluid phase 
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FIG. 1. 2D model structures of porous media corresponding to ordered (a, b) and disordered (c, d) arrays of parallel cylinders of square (a,

c) and circular (b, d) cross sections. (a) OS, (b) OC, (c) DS, and (d) DC. Representative elementary volume (REV) made of 1 × 1 (a, b) and

30 × 30 (c, d) geometrical unit cells. Porosity ǫ = 75%.

discussed. In a final step, since the deviation from Darcy’s

law has microscopic origins as mentioned earlier, attention

is focused on the analysis of the microscopic flow structure

that is correlated to different inertial regimes. The originality

of this work lies in the fact that a formal derivation of the

quantities characterizing the flow structure is provided from

the decomposition of the convective inertial term. Moreover,

the role of the recirculation zones is thoroughly analyzed.

(3) Finally, the general conclusions of this work are

summarized and presented in Sec. IV.

II. PHYSICAL MODEL AND METHODOLOGY

A. Initial boundary value problem

The problem under consideration is that of a single-

phase, permanent, isothermal, and incompressible flow of

a Newtonian fluid β through nondeformable model porous

structures. A representative elementary volume (REV), of

characteristic length scale l, containing all the microscopic

information of the original structure, of length scale L, from

which it is extracted is considered (see Fig. 2). Indeed, for

steady flow, the REV of a periodic structure corresponds to

the geometrical unit cell [21] over which periodic boundary

conditions are employed.

l

d

-phase

-phase

FIG. 2. Large (macroscopic) scale structure (OS) and the periodic

unit cell that corresponds to the REV for steady flow.

Periodicity is applied to the fluid velocity v and pressure

deviation p̃ that is obtained from the decomposition of the

pressure p according to [54,55]

p = 〈p〉β + p̃, (3)

where 〈p〉β is the intrinsic average of p. Considering Vβ as the

volume of the fluid phase β within the REV of volume V , the

intrinsic volume average of a quantity ψ is defined by

〈ψ〉β =
1

Vβ

∫

Vβ

ψ dV. (4)

The superficial average is given by 〈ψ〉 = ǫ〈ψ〉β where ǫ =
Vβ/V is the porosity of the structure.

The dimensionless physical quantities are denoted using

the superscript ∗: velocity v∗, pressure p∗, and time t∗. These

quantities are defined from their dimensional reference values,

respectively, given by vref = l2

μ
|∇〈p〉β |, pref = l|∇〈p〉β |, and

tref = μ/(l|∇〈p〉β |) considering l as the reference length and

where ρ and μ are, respectively, the density and the dynamic

viscosity of the β phase. The dimensionless initial boundary

value problem, where the dimensionless operator ∇∗ = l∇

is noted in the same way as its dimensional analog ∇ for

simplicity, is given, in its general 3D form, by

∇ · v∗ = 0 in Vβ , (5a)

Re∗
(

∂v∗

∂t∗
+ v∗ · ∇v∗

)

= −∇p̃∗ + ∇2v∗ − ∇〈p∗〉β

+
Re∗

Fr
êz in Vβ , (5b)

v∗ = 0 at Aβσ , (5c)

v∗(r∗ + l∗i ) = v∗(r) i = 1,2,3, (5d)

p̃∗(r∗ + l∗i ) = p̃∗(r∗) i = 1,2,3, (5e)

v∗ = 0 in Vβ at t∗ = 0, (5f)

p̃∗ = 0 in Vβ at t∗ = 0. (5g)

In Eq. (5c), Aβσ represents the fluid-solid interface within

the β phase volume Vβ and the vector l∗i = (l∗i1,l
∗
i2,l

∗
i3),
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i = 1,2,3, characterizes the periodic REV. The Froude number

given by Fr = l3|∇〈p〉β |2

μ2g
, where g = gêz is the gravity accel-

eration, was kept in Eq. (5b) for the sake of completeness

although the analysis is carried out in the absence of gravity

in the remainder of the article thus assuming Re∗

Fr
≪ 1. Since

periodic boundary conditions are adopted for v∗ and p∗, it

should be noted that the flow is induced by the gradient of the

average pressure ∇〈p∗〉β , which is a unit vector. The Reynolds

number Re∗ appearing in Eq. (5b) is given by

Re∗ =
ρl3

μ2
|∇〈p〉β |. (6)

The classical Reynolds number, based on the characteristic

dimension d of the solid phase (see Fig. 2) and the average

velocity, is related to Re∗ by

Red = |〈v∗〉|d∗Re∗. (7)

The choice of the intensity of the macroscopic pressure

gradient ∇〈p〉β that forces the flow is made by setting the

value of Re∗, while the orientation of the macroscopic flow is

specified from the unit vector ∇〈p∗〉β in Eq. (5b).

B. Macroscopic model

Satisfying the condition of quasisteady flow and the length

scale constraint d ≪ l ≪ L where d is the characteristic

microscopic length scale (pore or solid grain diameter), l is

the characteristic size of the averaging volume, and L is the

macroscopic length scale, a macroscopic transport model [15]

derived using the volume averaging method applied to the

microscopic mass and momentum equations [Eqs. (5)] over a

REV has been obtained [15]. This macroscopic model is more

complete compared to the classical Forchheimer equation

(2) that is based on empirical correction coefficients. In a

dimensionless form, based on the reference variables defined

above, it is given by

〈v∗〉 = −K∗ · (∇〈p∗〉β) − F · 〈v∗〉, (8a)

∇ · 〈v∗〉 = 0, (8b)

where K∗ = K/l2 is the intrinsic permeability tensor and

F the inertial correction tensor. Equation (8a) can also be

written as

〈v∗〉 = −H∗ · ∇〈p∗〉β, (8c)

where H∗ = (I + F)−1K∗ = H/l2 is the apparent permeability

tensor. It must be emphasized that, while K∗ is only dependent

on the structure of the porous medium, H∗ and F depend

on both the structure of the porous medium and flow con-

figuration (i.e., the Reynolds number Re∗ and orientation of

∇〈p∗〉β).

C. Closure problem

Determination of the macroscopic tensors K∗ and F appear-

ing in the macroscopic model [Eqs. (8a) and (8c)] requires the

solution of the associated closure problem resulting from the

up-scaling procedure [15] using periodic boundary conditions

on a periodic or pseudoperiodic model of a porous medium.

In a dimensionless general 3D form, this closure problem is

given by

Re∗v∗ · ∇M∗ = −∇m∗ + ∇2M∗ + I, (9a)

∇ · M∗ = 0, (9b)

M∗ = 0 at Aβσ , (9c)

m∗(r∗ + l∗i ) = m∗(r∗), i = 1,2,3, (9d)

M∗(r∗ + l∗i ) = M∗(r∗), i = 1,2,3, (9e)

〈M∗〉 = H∗, (9f)

where m∗ and M∗ are closure variables that map 〈v∗〉 onto p̃∗

and ṽ∗, respectively [15]. Under this form, the closure problem

requires the solution of the microscopic velocity field [Eqs. (5)]

present in Eq. (9a). The solution of the closure problem

[Eqs. (9)] for Re∗ = 0 allows to determine the intrinsic

permeability tensor that is given, in these circumstances, by

〈M∗〉= K∗. In addition, the solution of Eqs. (9) for a prescribed

Re∗ provides the correction tensor F that is given by

F = K∗ · H∗−1 − I. (9g)

D. Closure problem under a closed form

The procedure described above to compute H∗ and F was

followed by different authors [24,29–32,56]. A more elegant

approach which does not require the microscopic flow problem

solution can be used, as developed earlier [57]. In fact, the

microscopic velocity can be expressed in terms of the closure

and macroscopic quantities as [15]

v∗ = ǫM∗ · H∗−1 · 〈v∗〉β (10)

or, when Eq. (8c) is taken into account,

v∗ = −∇〈p∗〉β · M∗T . (11)

Replacing this expression back into the original closure

problem [Eqs. (9)], a closed form is obtained, given by

− Re∗∇〈p∗〉β · M∗T · ∇M∗ = −∇m∗ + ∇2M∗ + I, (12a)

∇ · M∗ = 0, (12b)

M∗ = 0 at Aβσ , (12c)

m∗(r∗ + l∗i ) = m∗(r∗), i = 1,2,3, (12d)

M∗(r∗ + l∗i ) = M∗(r∗), i = 1,2,3, (12e)

〈M∗〉 = H∗ =
H

l2
. (12f)

As before, the solution of this closed form of the closure

problem allows the determination of K∗ (with Re∗ = 0), H∗,

and F. Moreover, the microscopic pressure and velocity fields

can be reconstructed from Eq. (11) for the velocity and

p̃∗ = −m∗ · ∇〈p∗〉β (13)

for the pressure deviation. It must emphasized that, while the

solution of Eqs. (5) and (9) can be achieved by making use

of a Navier-Stokes solver, the solution of Eqs. (12) requires

a specific treatment due to the coupling between the different

terms of the closure tensor M∗ in the left-hand side of Eq. (12a).
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In this work, the latter form of the closure problem was

solved considering the ordered and disordered model porous

structures of Fig. 1 for Reynolds numbers up to the limit

of steady flow [21] in order to investigate the impact of the

microstructure on macroscopic inertial effects. For a stationary

flow on the ordered structure, the REV clearly corresponds to

the geometric periodic unit cell as a result of symmetry. For

the disordered structures, REVs containing 30 × 30 inclusions

were considered as they proved to have the same macroscopic

behavior as the infinite disordered structure, in agreement with

previous studies [24,32]. Furthermore, in order to analyze the

effect of flow orientation, two different macroscopic pressure

gradients were considered, namely, ∇〈p∗〉β = êx (i.e., θ = 0◦)

and ∇〈p〉β = (êx + êy)/
√

2 (i.e., θ = 45◦). The analysis of

the deviation from Darcy’s law is performed considering the

dimensionless inertial correction vector fc given by [24]

fc =
−F · 〈v∗〉

|〈v∗〉|
=

〈v∗〉 + K∗ · ∇〈p∗〉β

|〈v∗〉|
. (14)

The analysis of inertial effects is performed with respect to the

Reynolds number Rek based on macroscopic quantities only

and given by [24]

Rek = |〈v∗〉|
√

k∗Re∗ =
√

k∗

d∗ Red, (15)

where k∗ is the permeability such that, for an orthotropic

structure, K∗ = k∗I in the 2D plane of Fig. 1. It must be

noted that, while the intrinsic permeability tensor is always

symmetric [58], the F and H∗ tensors are not [24] even if

H∗ can be decomposed in its symmetric and skew-symmetric

irreducible parts on a physical basis [59].

E. Numerical method

The numerical tool COMSOL Multiphysics [60] based on

the Finite Element Method was used to solve the closure

problem under consideration [Eqs. (12)]. The computational

domain was discretized using a triangular mesh. Control

volumes are defined around each node by joining the centers

of mesh elements, and values obtained at mesh nodes are

interpolated using linear Lagrangian interpolation for the com-

ponents of m∗, whereas a quadratic interpolation is adopted for

the components of M∗. The problem under consideration was

implemented using the COMSOL PDE General Form Module

under the following form:

∇ · Ŵ = �, (16a)

∇ · M∗ = 0 (16b)

with the associated boundary conditions [see Eqs. (12)]. The

two terms Ŵ and � are defined by

Ŵ = −m∗I + ∇M∗, (16c)

� = −Re∗∇〈p∗〉β · M∗T · ∇M∗ − I. (16d)

The system of equations is solved with the COMSOL

Stationary Solver. The solution is sought by making use

of a Newton-Raphson algorithm that starts with the initial

conditions as an initial guess. The resulting system of

linearized equations, within each Newton-Raphson iteration,
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x

x

FIG. 3. Normalized intrinsic average of the x component of the

velocity, (〈v∗
x〉

β )
n
, versus the number of grid blocks. Model porous

structures of Fig. 1. Normalization with respect to 〈v∗
x〉

β obtained with

the finest mesh. OS, Re∗ = 17 500 (Rek = 23.41); OC, Re∗ = 17 500

(Rek = 21.09); DS, Re∗ = 30 000 (Rek = 18.58); DC, Re∗ = 30 000

(Rek = 19.87); ǫ = 75%; ∇〈p∗〉β = êx .

is solved using the Parallel Sparse Direct Solver MUMPS

(MUltifrontal Massively Parallel sparse direct Solver) [61]

based on LU factorization with a relative tolerance of 10−8.

To avoid interpolation operations while imposing periodic

boundary conditions, opposite edges of the computational

domains are discretized with duplicate segments. Simulations

are initiated with the fluid at rest.

F. Mesh sensitivity

Sensitivity of the solution to the problem [Eqs. (12)] with

respect to the number of grid blocks used to discretize the

computational domain Vβ was analyzed for the four model

porous structures of Fig. 1. The dependence of (〈v∗
x〉

β)
n
,

the intrinsic average of the dimensionless x component of

the velocity, normalized by 〈v∗
x〉

β obtained with the finest

mesh, is represented versus the number of grid blocks in

Fig. 3. For each structure, the analysis was carried out for

the maximum Reynolds numbers considered in this study,

which correspond to the limit of steady flow, keeping in mind

that the number of grid blocks ensuring mesh convergence

increases with the Reynolds number [24]. The maximum

Reynolds numbers considered in this study are Re∗ = 17 500

(Rek = 23.41 and Red = 102.52) for the OS, Re∗ = 17 500

(Rek = 21.09 and Red = 101.39) for the OC, Re∗ = 30 000

(Rek = 18.58 and Red = 80.8) for the DS, and Re∗ = 30 000

(Rek = 19.87 and Red = 93.46) for the DC. The gradient of

average pressure is ∇〈p∗〉β = êx (θ = 0◦).

Figure 3 shows that the value of (〈v∗
x〉

β)
n

is quasi insensitive

to the number of grid blocks for the investigated range of

mesh sizes. Indeed, for each ordered structure (OS and OC),

increasing the number of grid blocks ∼39 times leads to a

relative error on (〈v∗
x〉

β)
n

of less than 0.12%. The same applies

to the disordered structures (DS, DC), where the relative

error on (〈v∗
x〉

β)
n

is less than 0.86% while increasing the

number of grid blocks ∼3.3 times. Thus, meshes adopted in

this work comprise 168 662 elements for the OS, 1726 80
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elements for the OC, 573 190 elements for the DS, and

692 007 elements for the DC. Correspondingly, numbers of

grid blocks across d (see Fig. 2) are 144 and 10 in the OS

and DS configurations, respectively, while, for the OC and DC

structures, 512 and 36 nodes were placed on the circumference

of each circular inclusion respectively. These meshes yield grid

block sizes smaller than the minimum required to ensure mesh

convergence. This choice was made in order to guarantee an

accurate computation of the flow streamlines to analyze the

flow structure discussed in the next section.

III. RESULTS AND DISCUSSION

The inertial correction fc = (fcx,fcy) [Eq. (14)] was com-

puted for the different Reynolds numbers under consideration.

It must be noted that, for θ = 0◦, fcy is zero for the ordered

structures and perfectly negligible for the disordered media,

while, for θ = 45◦, fcx and fcy are equal for ordered structures

and do not differ significantly for disordered ones. Hence,

in the remainder of this article, focus is laid upon fcx only

as it fully characterizes the deviation from Darcy’s law.

While simulations were limited to a pressure gradient aligned

with êx (θ = 0◦) for disordered structures, two orientations,

θ = 0◦ and θ = 45◦, were adopted for the ordered ones.

Computational results on fcx allow the identification of the

different inertial regimes by fitting the curves fcx(Rek) defined

by Eqs. (17) to (19) under the constraint on the Pearson

correlation coefficient [62,63] R2 � 0.999. For the weak

inertia regime, where the inertial correction fcx scales as Rek
2

(or 〈v∗
x〉

3), the following correlation is obtained:

fcx = ARek
2 + B. (17)

In the same way, for the strong inertia regime, where the inertial

correction fcx scales as Rek (or 〈v∗
x〉

2), the linear relation is

given by

fcx = CRek + D. (18)

Finally, for the regime above strong inertia, the dependence

of the inertial correction fcx on Rek can be described by a

polynomial of the form

fcx = ERek
2 + FRek + G. (19)

Comparisons can be made between the inertial factors β and

γ of the empirical equation (2) and the coefficients A and

C identified with Eqs. (17) and (18), respectively, using the

following relations:

β = C/
√

k,

γ = A/μ. (20)

Coefficients B and D are assumed to be zero in Eq. (2). The

gradual transition from weak to strong inertia regimes can be

characterized by a critical Reynolds number [24], Rekc, defined

as the value that minimizes the difference on fcx estimated

from the models in these two regimes [∂(δfcx)/∂Rek = 0],

yielding

Rekc =
C

2A
. (21)

Intervals of Rek corresponding to the different inertial

regimes and the corresponding coefficients A, C, E, and F

are summarized in Table I. For completeness, the values of

the intrinsic permeability, k∗, of the different model structures

(Fig. 1) are also reported in Table I. Values of k∗ show that the

ordered structure of circular cylinders, OC, is slightly more

permeable than the ordered structure of square cylinders, OS,

with a relative increase of 5.68%. Furthermore, the structural

disorder slightly increases the intrinsic permeability as DS

is 1.38% more permeable than OS and DC is 4.57% more

permeable than OC. In addition, porous structures were also

characterized at the macroscale by means of the streamlines

tortuosity T , whose values are indicated in Table I. A thorough

discussion on the tortuosity will be provided later in this

section.

TABLE I. Summary table: Model porous structures of Fig. 1: OS, OC, DS, and DC with diameters d∗ of the solid inclusions. Two different

orientations of the macroscopic pressure gradient, ∇〈p∗〉β , with respect to the horizontal principal axis (êx) of the porous structures are

considered: θ = 0◦ and θ = 45◦. Intrinsic permeabilities k∗ of the model porous structures. Streamlines tortuosity, T , determined for Rek = 0

using Eq. (23). Reynolds number, Rek, ranges of validity of weak, strong, and above strong inertia regimes. Coefficients A, C, E, and F

of Eqs. (17)–(19) obtained from fittings of computational results satisfying the Pearson coefficient constraint R2 � 0.999. Critical Reynolds

number Rekc characterizing the transition from weak to strong inertia regimes obtained from Eq. (21). Porosity ǫ = 75%.

Structure OS OC DS DC

d∗ 0.5 0.564 0.5 0.564

Inclination of ∇〈p∗〉β on êx θ = 0◦ θ = 45◦ θ = 0◦ θ = 45◦ θ = 0◦ θ = 0◦

k∗ 0.01303 0.01377 0.01321 0.01440

T (Rek = 0) 1.018 1.192 1.039 1.164 1.127 1.115

Weak inertia Rek ∈ [0.03,0.33] [0.03,0.44] [0.03,0.48] [0.032,0.45] [1.51 × 10−5,0.22] [1.71 × 10−5,0.26]

regime A 0.0102 0.0622 0.0212 0.0363 0.0683 0.0631

Rekc 0.75 1.33 0.97 1.13 0.72 0.83

Strong inertia Rek ∈ [0.89,2.31] [2,3.56] [1.1,2.68] [2.08,6.33] [1.13,5.16] [1.27,6.77]

regime C 0.0153 0.1654 0.0411 0.0824 0.0989 0.1042

Rek ∈ [8.16,23.41] [3.62,6.76] [5.53,21.09] [6.66,9.66] [5.54,18.58] [7.14,19.87]
Regime above

E −10−4 0.025 −4.6 × 10−4 0.0033 −83 × 10−5 −11.7 × 10−4

strong inertia
F 0.0053 −0.012 0.0228 0.038 0.0915 0.1025
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FIG. 4. x component of the inertial correction vector, fcx , versus

the Reynolds number Rek for the model porous structures of Fig. 1

(OS, OC, DS, and DC) and two different orientations of ∇〈p∗〉β : θ =
0◦ (∇〈p∗〉β = êx) and θ = 45◦ [∇〈p∗〉β = (êx + êy)/

√
2]. Porosity

ǫ = 75%.

A. Analysis of the deviation from Darcy’s law

In Fig. 4 we have reported fcx versus Rek for the different

structures and pressure gradient orientations. Clearly inertial

effects are stronger for the OC compared to the OS when

θ = 0◦. This can be explained by a higher resistance to the

flow for the former structure, supported by the larger value

of the tortuosity in the OC [T (Rek = 0) = 1.039] compared

to the OS [T (Rek = 0) = 1.018] indicating that flow paths

are longer in the OC. The shape of the solid inclusions plays

an important role on the intensity of inertia by affecting the

streamlines tortuosity. When a structure as the OS with a solid

phase presenting straight edges is subject to a flow along one of

its principal axis, flow is conditioned by the straight edges and

develops quasistraight streamlines [see Figs. 5(a) and 5(b)].

This leads to a channeling effect with a flow that closely

resembles that in channels characterized by a tortuosity close

to unity and, hence, to weak inertial effects.

When θ = 45◦ for ∇〈p∗〉β , intensity of inertial effects

increases compared to θ = 0◦ (Fig. 4). This confirms the de-

pendence of the deviation from Darcy’s law on the orientation

of the macroscopic pressure gradient [24]. This increase of

inertia can be explained by the fact that, when θ = 45◦, flow

paths become longer and tortuosity increases (see Table I).

While a channeling effect is observed for θ = 0◦, the flow

structure is a succession of constrictions and enlargements for

θ = 45◦ leading to more curved streamlines (see Fig. 5).

Figure 4 highlights the dependence of the deviation from

Darcy’s law on structural disorder. Inertial effects increase

when disorder is introduced for θ = 0◦. This increase can be

explained by the fact that, for the disordered porous structures,

disturbed positions of the cylinders break the channeling

effect observed on the ordered ones as in Figs. 5(a) and 5(b).

Therefore, streamlines tend to be longer in order to bypass the

cylinders leading to an increase of the tortuosity (see Table I)

and, consequently, of inertial effects. Furthermore, when

structural disorder is introduced into the porous structure, the

influence of the shape of the solid inclusions on the deviation

from Darcy’s law decreases. In fact, fcx(Rek) corresponding to

the DS and DC are closer to each other compared to fcx(Rek)

corresponding to the OS and OC for θ = 0◦. This indicates

that structural disorder has a more significant contribution to

inertial effects than the shape of solid inclusions.

In order to illustrate the relationship between the inertial

correction and the filtration velocity (or Reynolds number), the

normalized first derivative of fcx with respect to Rek versus

Rek, (∂fcx/∂Rek)n(Rek), is plotted in Fig. 6 for all cases under

study. The weak inertia regime, where fcx has a quadratic

dependence upon Rek (cubic upon 〈v∗
x〉), is identified in all

configurations at low Reynolds numbers, Rek � 0.5, over short

intervals. These intervals are centered on inflexion points of

(∂fcx/∂Rek)n(Rek) located at Rek ≈ 0.25. Ranges of validity

of the weak inertia regime are reported in Table I. Whereas the

interval of validity of the latter regime is quasi-insensitive to

the shape of the solid inclusions and orientation of ∇〈p∗〉β , it

is shorter in the presence of structural disorder (see Table I)

as it has been observed in previous works [24], even on 3D

structures [29].

The identification of the strong inertia regime (where fcx

scales as Rek) from (∂fcx/∂Rek)n(Rek) is less obvious than the

weak inertia. For the OS and OC with θ = 0◦, the strong inertia

regime corresponds to narrow intervals around the maxima

of (∂fcx/∂Rek)n(Rek) located at Rek ≈ 1.61 for the OS and

Rek ≈ 1.84 for the OC. These intervals also correspond to

short ranges centered on inflexion points of fcx(Rek) (see

Fig. 4). Although the range of validity of the strong inertia

regime is not significantly affected by the shape of solid

inclusions, it remains very small compared to the whole range

of steady laminar flow. Furthermore, for ∇〈p∗〉β oriented with

θ = 45◦, the range of validity of strong inertia regime on

the OC is larger than for θ = 0◦. Indeed, (∂fcx/∂Rek)n(Rek)

corresponding to the OC (θ = 45◦) presents a plateau for

2.08 � Rek � 6.33. However, still for θ = 45◦, the inertial

regime in question has a shorter and much less evident interval

of validity for the OS. Regarding the disordered structures,

DS and DC, the Forchheimer regime is identified on a larger

interval than for the corresponding ordered media (see Table I).

Thus, it can be concluded that, unlike the weak inertia

regime, the Forchheimer regime is not well-identified in all

configurations but appears to be clearly more distinguishable

on disordered porous structures.

From Table I and Fig. 6, it can be noted that the Forchheimer

regime does not persist until the end of steady laminar regime.

A regime above strong inertia is identified on a wide range of

Rek. Except for the OS with θ = 45◦, the regime above strong

inertia resembles the Forchheimer regime since coefficients F

of Eq. (19) are at least one order of magnitude larger than E

(see Table I). Hence, relaxing the Pearson coefficient constraint

to R2 � 0.98, fcx scales as Rek (or 〈v∗
x〉

2) on this Reynolds

number interval. However, this regime is not considered as a

strong inertia regime for two main reasons. First, it occurs at

high velocities, which are rarely reached in reality such as

for flows of water or oil in geological formations. Second, it

implies a large transition interval from weak to strong inertia

regimes. Moreover, for the OS with θ = 45◦, the regime above

strong inertia appears more like the weak inertia regime rather

than the Forchheimer one. From Table I, coefficient F is
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FIG. 5. Fluid kinetic energy color map, v∗2, and steady flow streamlines in the OS of Fig. 1. The thick red streamlines delimit recirculation

zones. The dotted line represents an arbitrary cross section S ⊥ to ∇〈p∗〉β . (a) Rek = 0, (b) Rek = 23.41, (c) Rek = 0, (d) Rek = 6.76.

(a and b) θ = 0◦ (∇〈p∗〉β = êx). (c and d), θ = 45◦ [∇〈p∗〉β = (êx + êy)/
√

2]. Porosity ǫ = 75%.

smaller than E in this latter configuration. It emerges from this

analysis that, beyond the Forchheimer regime, a regime above

strong inertia takes place on a large range of Reynolds number

values until the onset of unsteady flow. In conclusion, for the

regime above strong inertia, depending on the configuration,

deviation from Darcy’s law features various dependencies on

the Reynolds number.

B. Role of the recirculation zones

As noted in Sec. I, the deviation from Darcy’s law arises

from the microscopic flow structure. One of the phenomena

at play mentioned in some studies [52,64,65] is the loss of

kinetic energy in the recirculation zones. The role of these

zones in the emergence of different inertial regimes has not

been explored thoroughly in the literature although they might

occupy large portions of the pore space in certain situations.

In addition, their shape may strongly evolve with the filtration

velocity. For these reasons, a careful analysis of their role is

addressed here. Indeed, as evidenced in Fig. 6, the variation of

the volume of the recirculation zones is obviously an important

feature that controls the flow streamlines deformation. As will

be further shown in Sec. III C, the streamlines deformation
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FIG. 6. First derivative of the x component of the inertial

correction normalized by its maximum value (∂fcx/∂Rek)n versus

Rek for the model porous structures of Fig. 1 (OS, OC, DS, and DC)

and two different orientations of ∇〈p∗〉β : θ = 0◦ (∇〈p∗〉β = êx) and

θ = 45◦ [∇〈p∗〉β = (êx + êy)/
√

2]. Porosity ǫ = 75%.

results in a change of the rate of inertial losses with respect to

the Reynolds number.

For clarity, the analysis of the impact of the recirculation

zones is performed on the ordered model porous structures

of Fig. 1 (OS and OC) for a macroscopic pressure gradient,

∇〈p∗〉β , oriented at θ = 0◦ and θ = 45◦. As shown in Fig. 5,

recirculation zones, limited by red flow streamlines, consist in

two vortices downstream the cylinders. In order to distinguish

different inertial regimes and identify correlations between

their onset and the change in flow structure, in all the following

investigations of Figs. 7 through 12, flow regimes were

identified from data in Table I. In Fig. 7, the ratio between
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FIG. 7. Ratio between the fluid kinetic energy in the vortices and

the total fluid kinetic energy, Ec∗
Vort/Ec∗, versus the Reynolds number

Rek. Ordered model porous structures OS and OC of Fig. 1. Two

different orientations of the macroscopic pressure gradient, θ = 0◦

and θ = 45◦. Identification of flow regimes from data in Table I.

Porosity ǫ = 75%.
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total volume of fluid β, VβVort/Vβ , versus the Reynolds number Rek.

Ordered model porous structures OS and OC of Fig. 1. Two different

orientations of the macroscopic pressure gradient, θ = 0◦ and θ =
45◦. Identification of flow regimes from data in Table I. Porosity

ǫ = 75%.

the fluid kinetic energy in the vortices and the total fluid

kinetic energy, Ec∗
Vort/Ec∗, is represented versus the Reynolds

number Rek. We note here that Ec∗
Vort = 1

2

∫

VβVort

v∗2 dV ∗ and

Ec∗ = 1
2

∫

Vβ

v∗2 dV ∗ where VβVort is the domain occupied by

the vortices in Vβ . The quantity Ec∗
Vort/Ec∗ remains constant

in the weak inertia regime and then exhibits different behaviors

beyond this regime. However, the most important result

emerging from Ec∗
Vort/Ec∗(Rek) is that the kinetic energy lost

in the recirculation zones is always insignificant as it remains

less than 0.5% of the total energy in the system. Therefore,

it cannot be considered as the origin of the deviation from

Darcy’s law. This contrasts with the situation of turbulent

flow where the kinetic energy lost in the vortices can be

important.

The ratio between the volume of the vortices and the total

volume of the β phase, VβVort/Vβ , versus Rek, is represented

in Fig. 8. This ratio remains constant (or very slightly varying)

in the weak inertia regime for all configurations under study.

This indicates an invariant flow structure for this regime that

resembles that observed in the creeping flow regime. At the

onset of the transition from weak to strong inertia, VβVort/Vβ

starts increasing with Rek even if the rate of increase is

insignificant for θ = 45◦. The increment in this ratio indicates

the expansion of the recirculation zones with Rek as illustrated

in Fig. 5 and evidences the correlation between the microscopic

flow structure and the transition from weak to strong inertia

regimes. However, beyond the transition from weak to strong

inertia regimes, different behaviors are observed depending

on the configuration (see Fig. 8). For θ = 0◦, a well-identified

increase of VβVort/Vβ at the onset of the Forchheimer regime

can be noticed with different slopes for the OS and OC.

For θ = 45◦, VβVort/Vβ slightly decreases at the onset of

strong inertia regime for the OC and slowly increases for the

OS. Regarding the onset of the regime above strong inertia,
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an increase of VβVort/Vβ with Rek with different slopes is

observed for all configurations. The only general correlation

between this ratio and inertial regimes, that is valid for all

configurations, is at the onset of the transition from weak to

strong inertia regimes. The other regimes that were found to be

strongly dependent on the shape of the solid inclusions as well

as on the orientation of ∇〈p∗〉β and structural disorder cannot

be differentiated from each other using this ratio. Beyond the

transition from the weak inertia regime to the Forchheimer

one, enlargement or contraction of recirculation zones occurs

with different rates depending on the configuration. This may

explain why, beyond this latter regimes, the behavior of the

deviation from Darcy’s law is not universal.

From Fig. 8, the recirculation zones fill up to ∼35% of the

total volume occupied by the β phase. Compared to the ratio of

kinetic energies, that is, Ec∗
Vort/Ec∗ < 0.5% in all situations,

the volume ratio, VβVort/Vβ , is not negligible. This shows the

important role of the recirculation zones in the apparition of the

different inertial regimes through the variation (enlargement

or contraction) of their volume with the filtration velocity.

This variation affects the shape of the flow streamlines and the

distribution of kinetic energy in the active part of the flow as

will be shown below. We note that the resulting streamlines

deformation contributes to either lengthen or shorten them and

may hence be characterized by the flow tortuosity.

1. Effect of the recirculation zones on flow tortuosity

In light of the above observation, the present subsection is

dedicated to the analysis of the streamlines tortuosity, T . It is

computed on the two ordered structures OS and OC for the

two orientations of ∇〈p∗〉β under consideration (see Fig. 9).

The analysis is also extended to the disordered structures DS

and DC. A similar analysis on the tortuosity, was reported

recently [48] on a disordered structure of cylinders of circular

cross section comparable to DC. One should note two main

weaknesses in this reference, however. First, no justification
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FIG. 9. Streamlines tortuosity, T , versus the Reynolds number
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and two different orientations of ∇〈p∗〉β : θ = 0◦ (∇〈p∗〉β = êx), and

θ = 45◦ [∇〈p∗〉β = (êx + êy)/
√

2]. Identification of flow regimes

from data in Table I. Porosity ǫ = 75%.

was provided for the choice of this parameter (i.e., T ) to explain

the origin of the deviation from Darcy’s law. It should be

emphasized here that this remark applies for most of the studies

mentioned in Sec. I that attempted to investigate the origin of

the inertial regimes. Second, conclusions of the reported study

[48] are based on a single flow configuration only, and it will

be shown that the conclusions reached in this reference cannot

be generalized to other configurations.

In this work, the flow tortuosity is investigated in various

situations in order to draw more general conclusions on the

dependence of this parameter on Rek and its correlation

with the onset of the different flow regimes. The theoretical

justification of the use of this parameter will be addressed in

Sec. III C.

Several definitions of the tortuosity, T , can be found in the

literature [66–68]. The most popular one, given in a continuous

form, is

T =
∫

S
τ̃ (q)dq
∫

S
dq

� 1, (22)

where S is an arbitrary cross section perpendicular to the

macroscopic flow direction (i.e., perpendicular to ∇〈p∗〉β in

this study), τ̃ (q) = τ (q)/l′ is the tortuosity of the streamline

crossing S at point q, while τ (q) is the length of the streamline

passing through q and l′ the length of the porous structure along

∇〈p∗〉β . The expression of T in Eq. (22) can be discretized to

give

T ≈
1

N

N
∑

i=1

τ̃ (qi) � 1. (23)

In the present study, S is an arbitrary edge of the structure and

is discretized using N equidistant points qi . For the ordered

structures (OS and OC), S is materialized by a dotted line

in Figs. 5(a) and 5(b) for θ = 0◦ and on Figs. 5(c) and 5(d)

for θ = 45◦. For the disordered structures (DS and DC), S

is defined on the right boundary (inlet) of the unit cell (see

Fig. 1). For θ = 0◦, S is discretized using N = 500 points for

the OS and OC and N = 10 000 points for the DS and DC.

For θ = 45◦, N = 400 for the OS and N = 480 for the OC. It

must be noted that flow streamlines in the recirculation zones

are not taken into account in the computation of T . The value

of N adopted for each configuration was chosen based on a

sensitivity analysis of T with respect to N .

In Fig. 9 we have represented the tortuosity, T , versus

Rek. As expected from the analysis of VβVort/Vβ (Rek) of

Fig. 8, T remains constant in the weak inertia regime and

decreases for larger Rek for all the different configurations.

This can be explained by the small volume of the recirculation

zones in the weak inertia regime, which leads to longer flow

streamlines to adapt to the shape of the solid inclusions (see

Fig. 5). At the beginning of the transition from weak inertia

to the Forchheimer regime, a well-identified decrease of T

can be observed. In fact, the growing recirculation zones at

the onset of this transition result in shorter flow streamlines

and thus lower tortuosity. However, as observed above for the

dependence of the recirculation zones on the Reynolds number,

beyond this latter transition, the behavior of the tortuosity with

Rek in the strong inertia regime cannot be distinguished from

that in the regime above strong inertia. Figure 9 also shows that,
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unlike the other configurations where the tortuosity is always

decreasing beyond the transition from weak to strong inertia, T

converges to its lower bound (T = 1) for the ordered structures

when θ = 0◦. Indeed, for the OS and OC for θ = 0◦, at

high Reynolds numbers, the recirculation zones fill the whole

space between successive cylinders [see Fig. 5(b)], leading to

quasistraight flow streamlines (i.e., a strong channeling effect).

Analyzing Figs. 8 and 9, for the OS and OC for θ = 45◦, one

can observe that, while the recirculation zones do not markedly

grow at the transition from weak to strong inertia regimes (see

Fig. 8), a significant decrease of T with Rek can be observed

for the same range of Rek (Fig. 9). This decrease of T can

be explained by the elongation of the recirculation zones in

the direction of the flow while their volume remains almost

the same, yielding straighter streamlines. This shows that, in

addition to the variation of the volume of the recirculation

zones, change in their shape affects the flow tortuosity and the

intensity of inertia.

Furthermore, Fig. 9 shows that the sigmoidal form of

T (Rek), reported in a previous work [48], is observed here

only for the OS and OC for θ = 0◦. This demonstrates that,

apart from the fact that T remains quasiconstant in the weak

inertia regime and decreases at the onset of the transition to

the Forchheimer regime, no other conclusion regarding the

behavior of T can be generalized to all the porous structures,

at least in the laminar stationary regime.

2. Effect of the recirculation zones on the distribution

of kinetic energy

The distribution of the fluid kinetic energy in Vβ with re-

spect to the Reynolds number is investigated in this subsection.

It is quantified by the variance of v∗2, Var(v∗2) as shown in

Fig. 10. As for the flow tortuosity, this type of analysis was

mentioned in a previous study [47] over a disordered structure

of square cylinders comparable to DS. However, conclusions
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FIG. 10. Variance of the fluid kinetic energy, Var(v∗2), versus

the Reynolds number Rek for the model porous structures of Fig. 1

(OS, OC, DS, and DC) and two different orientations of ∇〈p∗〉β :

θ = 0◦ (∇〈p∗〉β = êx) and θ = 45◦ [∇〈p∗〉β = (êx + êy)/
√

2]. Iden-

tification of flow regimes from data in Table I. Porosity ǫ = 75%.

drawn from this analysis suggest the same questioning as those

regarding the flow tortuosity [48].

The variance of the kinetic energy, Var(v∗2), is given by

Var(v∗2) = 〈v∗4〉β − (〈v∗2〉β)2. (24)

As observed on T (Rek) (Fig. 9), Var(v∗2) versus Rek in Fig. 10

shows that the variance of the kinetic energy remains constant

in the weak inertia regime for all the configurations under in-

vestigation. After this regime, for higher Rek, a well-identified

decrease of Var(v∗2) characterizing the transition to the strong

inertia regime is observed, highlighting a more homogeneous

distribution of the fluid kinetic energy in the structure. The

decrease of Var(v∗2) with Rek can be explained by the fact

that, in the weak inertia regime, the confined recirculation

zones force the flow to be tortuous [see Figs. 5(a) and 5(c)].

As a consequence, the cross section of the pseudochannels,

bounded by the solid phase and the recirculation zones,

presents constrictions and enlargements. Invoking the mass

flow rate conservation argument, the velocity (and hence the

kinetic energy) is then mostly concentrated in the constrictions.

Moreover, at higher Reynolds numbers, the expansion of the

recirculation zones, that yields a decrease of flow tortuosity

and marked preferential channels, results in a quasiconstant

pseudochannels’ cross section. Thus, a more homogeneous

distribution of the kinetic energy is observed [see Figs. 5(b)

and 5(d)].

The microscopic flow structure stays invariant in the weak

inertia regime for all the configurations investigated here

(different porous structures and orientations of ∇〈p∗〉β), and it

explains why this regime is always well identified. For regimes

occurring at larger filtration velocities, the flow structure is

subject to complex and contrasted variations depending on

the configuration justifying many different behaviors of the

deviation from Darcy’s law observed earlier.

C. Relation between the convective acceleration term and the

microscopic flow structure

In the present subsection, we attempt to provide a theo-

retical justification to the analysis of the flow tortuosity and

distribution of the fluid kinetic energy from the microscale

flow fields as indicators of the macroscale flow regimes. To

do so, the microscopic flow structure is analyzed through

quantities obtained from a formal decomposition of the inertia

term, (v∗ · ∇)v∗ at the microscopic scale. Paradoxically, the

macroscopic counterpart of this term has a perfectly negligible

contribution [13,15,51,52].

In order to analyze the impact of the inertia term on the

flow structure, a decomposition of (v∗ · ∇)v∗ is performed in

the local Frenet frame (t̂, n̂) where the unit vectors t̂ and n̂

form an orthonormal basis. We recall that t̂ = v∗

|v∗| = (tx, ty) is

always tangent to flow streamlines and directed along the flow

velocity while n̂ = (−ty, tx) is the normal direct vector. It can

be easily shown that the decomposition is given by

(v∗ · ∇)v∗ = v∗2κn̂ +
1

2

dv∗2

ds
t̂, (25)

where κn̂ = d t̂
ds

is the local curvature of the flow streamlines

and s is a curvilinear abscissa. This decomposition suggests

that the microscopic flow structure can be analyzed through
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FIG. 11. Intrinsic average of the absolute value of the streamlines

curvature weighted by the local kinetic energy, 〈|v∗2κn̂|〉β
, versus

the Reynolds number Rek for the model porous structures of Fig. 1

(OS, OC, DS, and DC) and two different orientations of ∇〈p∗〉β :

θ = 0◦ (∇〈p∗〉β = êx) and θ = 45◦ [∇〈p∗〉β = (êx + êy)/
√

2]. Iden-

tification of flow regimes from data in Table I. Porosity ǫ = 75%.

the local normal and tangential terms on the right-hand side of

Eq. (25). By taking the intrinsic average of the magnitude of

these two terms, it can be noted that 〈|v∗2κn̂|〉β corresponds to

the intrinsic average of the absolute value of the streamlines

curvature weighted by the local kinetic energy and can be

further thought as being related to the average streamlines

tortuosity. The second term, 1
2
〈| dv∗2

ds
t̂|〉

β
, characterizes the

variation of the kinetic energy along the streamlines in the

flow direction. Both quantities are considered in terms of their

magnitude since, due to the flow symmetry, in the ordered

structures, 〈v∗2κn̂〉β = 0 and 1
2
〈 dv∗2

ds
t̂〉

β
= 0 over the whole

unit cell.

1. Analysis of 〈|v∗2κ n̂|〉
β

Plots of 〈|v∗2κn̂|〉β versus Rek (see Fig. 11) show that

the quantity 〈|v∗2κn̂|〉β remains constant in the weak inertia

regime. As already observed, this attests that the flow structure

does not vary in this regime. It is close to that observed in

the creeping flow regime with tortuous streamlines as shown

in Figs. 5(a) and 5(c). At the beginning of the transition

to the strong inertia regime, 〈|v∗2κn̂|〉β decreases with Rek

for all configurations. This indicates that the streamlines

become less curved as the filtration velocity increases [see

Figs. 5(b) and 5(d)]. After this transition, 〈|v∗2κn̂|〉β continues

to decrease with Rek. However, it is impossible to distinguish

the Forchheimer regime from that above strong inertia.

Comparison between flow tortuosity, T (Fig. 9), and the

average of the streamlines curvature weighted by the local

kinetic energy, 〈|v∗2κn̂|〉β (Fig. 11), shows that these two

quantities have very similar behaviors with respect to the

Reynolds number. This justifies why the tortuosity, usually

invoked in a heuristic way, can be correlated to the onset of

inertial regimes, and it can be further explained by the fact

that the streamlines tortuosity is obviously related to their
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FIG. 12. Variation of the kinetic energy along the streamlines in

the direction of flow, 1

2
〈| dv∗2

ds
t̂|〉

β

, versus the Reynolds number Rek for

the model porous structures of Fig. 1 (OS, OC, DS, and DC) and two

different orientations of ∇〈p∗〉β : θ = 0◦ (∇〈p∗〉β = êx) and θ = 45◦

[∇〈p∗〉β = (êx + êy)/
√

2]. Identification of flow regimes from data

in Table I.

curvature. Indeed, highly curved streamlines lead to longer

flow paths and larger tortuosity. However, it should be noted

that, for other flow configurations, a difference between T

and 〈|v∗2κn̂|〉β , in terms of their dependence with respect to

the Reynolds number, may be observed due to the fact that

for the tortuosity, the streamlines have equal contribution in

T independently of their kinetic energy. As a matter of fact,

this suggests that, rather than T , 〈|v∗2κn̂|〉β might be a better

indicator of the flow structure modification by inertia as it has

a clear physical basis.

2. Analysis of 1

2
〈| dv∗2

ds
t̂|〉β

The dependence of the second term on the right-hand

side of Eq. (25), 1
2
〈| dv∗2

ds
t̂|〉

β
, on the Reynolds number is

represented in Fig. 12. As observed earlier during the analysis

of other quantities characterizing the flow at the pore scale,
1
2
〈| dv∗2

ds
t̂|〉

β
is constant in the weak inertia regime. When Rek

increases, a decrease of this quantity occurs at the beginning

of the transition to the Forchheimer regime. This decrease

indicates that the variation of the fluid kinetic energy along the

streamlines becomes smaller as Rek increases. As noted for the

analysis of Var(v∗2) in Sec. III B, the decrease of 1
2
〈| dv∗2

ds
t̂|〉

β

with Rek is due to the channeling effect in favor of a fluid

flow in pseudochannels of identical cross-sectional area [see

Figs. 5(b) and 5(d)].

Results of flow simulations on OS structures reported

earlier for small values of ǫ (down to ∼0.15) [21] show

that, in this range of porosity, the flow structure is similar

to that between parallel planes with quasistraight streamlines

(see, for instance, Fig. 13 in this reference). This yields

weak streamlines curvature, a homogeneous distribution of

kinetic energy along these lines and weak inertial effects.

This is fully consistent with the fact that fcx decreases

with ǫ at a given ∇〈p〉β , confirming the fact that the
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two parameters are physically relevant signatures of inertial

effects.

As a conclusion, the analysis of the microscopic flow

structure showed that flow paths stay unchanged in an

interval of Rek that coincides with the weak inertia regime.

This explains why this regime is well identified on all the

configurations under consideration. The flow structure can be

related to two quantities: the streamlines curvature and the

variation of the kinetic energy along these lines. Each graph of

these two quantities versus log(Rek) is such that (1) the plateau

corresponds to the weak inertia regime in accordance with flow

paths that remain unmodified; (2) a strong decrease following

the plateau is obtained as a signature of the transition towards

the strong inertia regime; and (3) the strong inertia regime

is featured by a quasilinear decrease. The different modes of

variation and the coupling between these two quantities explain

the different forms of the inertial correction to Darcy’s law that

have been observed. It must be emphasized that tese variations

are enhanced by the expansion of the recirculation zones. The

two quantities evaluated here, obtained from the microscopic

inertial term, are related to those evaluated in Sec. III B, T and

Var(v∗2). This justifies their use in the literature as indicators

of inertial regimes.

IV. CONCLUSIONS

In this work, the inertial correction to Darcy’s law, for

ordered and disordered model porous structures, was analyzed,

and its behavior was correlated to that of the flow structure.

The inertial correction was obtained from numerical resolution

of the closure problem written in a closed form, resulting from

the up-scaling of the Navier-Stokes equations with volume

averaging. The dependence of the deviation from Darcy’s

law on the microstructure and orientation of the macroscopic

pressure gradient was demonstrated. It is explained by the fact

that these two parameters directly affect the flow tortuosity, on

which the intensity of inertia depends. It was also shown that

the influence of the shape of the solid inclusions on the inertial

correction becomes weak in the presence of structural disorder,

which otherwise, significantly amplifies the intensity of inertia.

As a function of the different behaviors of the deviation from

Darcy’s law, the flow was classified in different regimes calling

upon the following remarks:

(1) The weak inertia regime, where the inertial correction

has a cubic dependence upon the filtration velocity, is well

defined for the two different shapes of the solid inclusions,

different orientations of the pressure gradient, and both on

ordered and disordered structures. However, its interval of

validity is shorter when structural disorder is introduced to the

structure. This confirms previous results [24].

(2) Regarding the strong inertia regime (or Forchheimer

regime), where the inertial correction is proportional to the

square of the filtration velocity, it was observed that this regime

is not clearly identified and thus is only an approximation that

depends on the microstructure and orientation of the pressure

gradient. It is important to note, however, that the structural

disorder leads to a larger validity interval of this regime.

This is consistent with previous published observations

[24].

(3) A regime above strong inertia was identified, on large

ranges of Reynolds number, in all configurations, from the

upper limit of validity of the Forchheimer regime to the limit

of steady flow. For this regime, the dependence of the inertial

correction upon the filtration velocity is quadratic, or cubic

depending on the porous structure and on the orientation of

the pressure gradient.

Furthermore, the analysis of the recirculation zones in the flow

showed that the kinetic energy lost in these zones is negligible

compared to that of the total fluid phase and hence cannot be

at the origin of the deviation from Darcy’s law. By contrast,

the volume of these zones is particularly important, not only

in comparison to the total volume of fluid, but also from the

point of view of its evolution with the Reynolds number that

was correlated to the flow regimes. Indeed, the volume of these

zones remains constant on the weak inertia regime, and then

starts to grow at the onset of the transition from weak to strong

inertia regimes.

In addition, the flow structure was also analyzed through

the average of the streamlines curvature weighted by the local

kinetic energy and the variation of the kinetic energy along

these lines. These quantities were derived from a decomposi-

tion (in the Frenet frame) of the convective acceleration term

in the momentum transport equation. They give a theoretical

basis to the analysis in terms of streamlines tortuosity and

distribution of the kinetic energy invoked in a heuristic

way in the literature. From these analysis, we found the

following:

(1) As a consequence of the constant volume of the

recirculation zones in the weak inertia regime, this regime

is characterized by a constant flow streamlines curvature (and

hence, constant tortuosity). In addition, the variation of fluid

kinetic energy along these lines also remains constant. This

explains why this regime is always well identified.

(2) From the transition to the strong inertia regime, the

expansion of the recirculation zones with the Reynolds number

leads to a decrease in the streamlines curvature (a decrease

of the tortuosity as well). This expansion also tends to

homogenize the distribution of the kinetic energy in the system

and to reduce the variation of the kinetic energy along the

streamlines. The streamlines curvature weighted by the local

kinetic energy and the variation of the kinetic energy along

these lines feature a quasilinear dependence upon log(Rek)

in the strong inertia regime, although different forms of the

deviation from Darcy’s law can be observed depending on

the porous structure and on the orientation of the pressure

gradient.

A thorough analysis in 3D configurations still needs to

be carried out to generalize the conclusions drawn from the

present work. However, previous results [32] indicate that the

behavior, at least regarding fcx , is similar on 3D ordered or

disordered structures made of cubic or spherical inclusions.

Since in three dimensions the decomposition of the convective

acceleration indicated by Eq. (25) remains valid in the Frenet

frame of coordinates (i.e., trajectory curvature weighted by

the kinetic energy in the normal direction and variation of

the kinetic energy along the trajectory for the tangential

component), results of such an analysis in three dimensions

that is currently under progress are expected to be analogous

to those in the present 2D case.
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