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Although the origin of matter-antimatter asymmetry remains unknown, continuing advances in theory
and improved experimental limits have ruled out some scenarios for baryogenesis, for example,
sphaleron baryogenesis at the electroweak phase transition in the Standard Model. At the same time,
the success of cosmological inflation and the prospects for discovering supersymmetry at the Large
Hadron Collider have put some other models in sharper focus. We review the current state of our

understanding of baryogenesis with emphasis on those scenarios that we consider most plausible.
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I. INTRODUCTION

When we observe the universe, the most obvious and
easily studied objects are stars and gas, made up of pro-
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tons, neutrons, and electrons. Astrophysicists speak of
the density of protons and neutrons, which constitute
the bulk of the mass of this matter, as the baryon content
of the universe.

But we know that there is much more to the universe
than baryons. By indirect means, astronomers have es-
tablished that approximately 1/3 of the energy density of
the universe is in the form of some nonbaryonic matter,
referred to as dark matter, while roughly 2/3 is in a form
with negative pressure, perhaps due to a cosmological
constant (Peebles and Ratra, 2003). The baryons make
up a mere 5% of the total energy density of the uni-
verse.

Another even more striking measure of the smallness
of the baryon density is provided by the ratio of baryons
to photons in the Cosmic Microwave Background Ra-
diation (CMBR). Big-bang nucleosynthesis gives a good
measure of the baryon density; this measurement is well
supported by recent measurements of the fluctuations of
the cosmic microwave radiation background. As a result,
the ratio of baryons to photons is now known to about
5% (Bennett et al., 2003):

25 (61709)x10710, (1)

n, :
where ny and n,, are the densities of baryons and pho-
tons, respectively. There is good evidence that there are
no large regions of antimatter at any but cosmic distance
scales (Cohen, De Rujula, and Glashow, 1998), although
some small domains of antimatter in the matter-
dominated universe are not ruled out by observations
(Dolgov and Silk, 1993; Belotsky et al., 1998; Khlopov
et al., 2000).

It was A. Sakharov who first suggested that the
baryon density might not represent some sort of initial
condition, but might be understandable in terms of mi-
crophysical laws (Sakharov, 1967). He listed three ingre-
dients to such an understanding:

(1) B violation: Baryon-number violation must occur in
the fundamental laws. At very early times, if
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baryon-number-violating interactions were in equi-
librium, then the universe can be said to have
“started” with zero baryon number. Starting with
zero baryon number, baryon-number-violating inter-
actions are obviously necessary if the universe is to
end up with a nonzero asymmetry. As we will see,
apart from the philosophical appeal of these ideas,
the success of inflationary theory suggests that,
shortly after the big bang, the baryon number was
essentially zero.

(2) CP violation: If CP (the product of charge conjuga-
tion and parity) is conserved, every reaction which
produces a particle will be accompanied by a reac-
tion which produces its antiparticle at precisely the
same rate, so no baryon number can be generated.

(3) An arrow of time (departure from thermal equilib-
rium): The universe, for much of its history, was very
nearly in thermal equilibrium. The spectrum of the
CMBR is the most perfect blackbody spectrum mea-
sured in nature. So the universe was certainly in
thermal equilibrium 10° years after the big bang.
The success of the theory of big-bang nucleosynthe-
sis (BBN) provides strong evidence that the uni-
verse was in equilibrium two to three minutes after
the big bang. But if, through its early history, the
universe was in thermal equilibrium, then even B-
and CP-violating interactions could not produce a
net asymmetry. One way to understand this is to re-
call that the CPT theorem assures strict equality of
particle and antiparticle masses, so at thermal equi-
librium, the densities of particles and antiparticles
are equal. More precisely, since B is odd under
CPT, its thermal average vanishes in an equilibrium
situation. This can be generalized by saying that the
universe must have an arrow of time.

One of the great successes of the Standard Model is
that it explains why baryon and lepton number are con-
served, to a very good approximation. To understand
what this means, consider first the modern understand-
ing of Maxwell’s equations. A quantum field theory is
specified by its field content and by a Lagrangian den-
sity. In the Lagrangian, one distinguishes renormalizable
and nonrenormalizable terms. Renormalizable terms
have coefficients with mass dimension greater than zero;
nonrenormalizable terms have coefficients (couplings)
with mass dimension less than zero. For example, in
quantum electrodynamics, the electron mass has dimen-
sion 1, while the charge of the electron is dimensionless
(throughout we use conventions where % and c are di-
mensionless), so these are renormalizable. In fact, re-
quiring Lorentz invariance, gauge invariance, and renor-
malizability leaves only one possibility for the
Lagrangian of electrodynamics: the Maxwell Lagrang-
ian, whose variation yields Maxwell’s equations. One
can, consistent with these symmetry principles, write
down an infinite number of possible nonrenormalizable
terms, which would yield nonlinear modifications of
Maxwell’s equations. There is nothing wrong with these,
but each is characterized by a mass, or inverse length
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scale M. So the size of nonlinear corrections at wave-
length A is of order (AM) ™" for some integer n. M rep-
resents some scale at which the laws of electricity and
magnetism might be significantly modified. Such correc-
tions actually exist, and are for most purposes quite
small.

Similarly, in the Standard Model, at the level of renor-
malizable terms, there are simply no interactions one
can write which violate either baryon number or the
conservation of the separate lepton numbers (electron,
muon, and tau number). It is possible to add
dimension-5 operators (having a scale 1/M) which vio-
late lepton number, and dimension-6 operators (having a
scale 1/M?), which violate baryon number. Again, these
nonrenormalizable terms must be associated with a mass
scale of some new baryon- and lepton-violating physics.
The dimension-five lepton-number-violating operators
would give rise to a mass for the neutrinos. The recent
discovery of neutrino mass probably amounts to a mea-
surement of some of these lepton-number-violating op-
erators. The energy scale of new physics associated with
these operators cannot yet be determined, but theoreti-
cal arguments suggest a range of possibilities, between
about 10" and 10" GeV.

The question, then, is what might be the scale My
associated with baryon-number violation. At the very
least, one expects quantum effects in gravity to violate
all global quantum numbers (e.g., black holes swallow
up any quantum numbers not connected with long-range
fields like the photon and graviton), so M g<M ,, where
M,=\Gy ~10" GeV is the Planck mass, defined in
terms of the Newtonian gravitational constant G . The
leading operators of this kind, if they have Planck-mass
coefficients, would lead to a proton lifetime of order 10**
years or so.

If quantum-gravitational effects were the only source
of baryon-number violation, we could imagine that the
baryon asymmetry of the universe was produced when
the temperature of the universe was of order the Planck
energy (102 K). Some complex processes associated
with very energetic configurations would violate baryon
number. These need not be in thermal equilibrium (in-
deed, in a theory of gravity, the notion of equilibrium at
such a high temperature almost certainly does not make
sense). The expansion of the universe at nearly the mo-
ment of the big bang would provide an arrow of time.
CP is violated already at relatively low energies in the
Standard Model through the Kobayashi-Maskawa (KM)
mechanism, so there is no reason to believe that it is
conserved in very-high-energy processes. So we could
answer Sakharov by saying that the magnitude of the
baryon number is the result of some very complicated,
extremely high-energy process, to which we will never
have experimental access. It might be, in effect, an initial
condition.

There are good reasons to believe that this pessimistic
picture is not the correct one. First, we are trying to
understand a small, dimensionless number. But in this
Planck-scale baryogenesis picture, it is not clear how
such a small dimensionless number might arise. Second,
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there is growing evidence that the universe underwent a
period of inflation early in its history. During this period,
the universe expanded rapidly by an enormous factor (at
least ¢®). Inflation is likely to have taken place well
below the scale of quantum gravity, and thus any baryon
number produced in the Planck era was diluted to a
totally negligible level. Third, there are a variety of pro-
posals for new physics—as well as some experimental
evidence—which suggests that baryon- and lepton-
number-violating interactions might have been impor-
tant at scales well below the Planck scale. So there is
some reason for optimism that we might be able to com-
pute the observed baryon number density from some
underlying framework, for which we could provide both
direct (i.e., astrophysical or cosmological) and/or indi-
rect (discovery of new particles and interactions) evi-
dence.

Several mechanisms have been proposed to under-
stand the baryon asymmetry:

(1) Planck-scale baryogenesis: this is the idea, discussed
above, that Planck-scale phenomena are responsible
for the asymmetry. We have already advanced argu-
ments (essentially cosmological) that this is unlikely;
we will elaborate on them in the next section.

(2) Baryogenesis in grand unified theories (GUT baryo-
genesis): this, the earliest well-motivated scenario
for the origin of the asymmetry, will be discussed
more thoroughly in the next section. Grand unified
theories unify the gauge interactions of the strong,
weak, and electromagnetic interactions in a single
gauge group. They invariably violate baryon num-
ber, and they have heavy particles, with mass of or-
der Mgur~10'° GeV, whose decays can provide a
departure from equilibrium. The main objections to
this possibility come from issues associated with in-
flation. While there does not exist a compelling mi-
crophysical model for inflation, in most models, the
temperature of the universe after reheating is well
below Mgyr. But even if it were very large, there
would be another problem. Successful unification re-
quires supersymmetry, a hypothetical symmetry be-
tween fermions and bosons, which will play an im-
portant role in this review. Supersymmetry implies
that the graviton has a spin-3/2 partner, called the
gravitino. In most models for supersymmetry break-
ing, these particles have masses m3, of order TeV,
and are very long lived. Even though these particles
are weakly interacting, too many gravitinos are pro-
duced, unless the reheating temperature is well be-
low the unification scale (Kallosh et al., 2000).

(3) Electroweak baryogenesis: as we will explain, the
Standard Model satisfies all of the conditions for
baryogenesis. This is somewhat surprising, since at
low temperatures the model seems to preserve
baryon number. It turns out that baryon and lepton
number are badly violated at very high tempera-
tures. The departure from thermal equilibrium can
arise at the electroweak phase transition—a transi-
tion between the familiar state in which the W and
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Z bosons are massive and one in which they are
massless. This transition can be first order, providing
an arrow of time. However, as we will explain below,
any baryon asymmetry produced is far too small to
account for observations. In certain extensions of
the Standard Model, it is possible to obtain an ad-
equate asymmetry, but in most cases the allowed re-
gion of parameter space is very small. This is true,
for example, of the minimal supersymmetric Stan-
dard Model (MSSM). Experiments will soon either
discover supersymmetry in this region, or close off
this tiny segment of parameter space. This scenario
has been reviewed by Cline (2000).

(4) Leptogenesis: The observation that the weak inter-
actions will convert some lepton number to baryon
number means that if one produces a large lepton
number at some stage, this will be processed into a
net baryon and lepton number. The observation of
neutrino masses makes this idea highly plausible.
Many but not all of the relevant parameters can be
directly measured.

(5) Production by coherent motion of scalar fields
(Affleck and Dine, 1985): This mechanism, which
can be highly efficient, might well be operative if
nature is supersymmetric. In this case, as we will
explain in much greater detail, the ordinary quarks
and leptons are accompanied by scalar quarks and
leptons. It has been widely conjectured that super-
symmetry may be discovered in the next generation
of high energy accelerators. So again, one might
hope to uncover the basic underlying physics, and
measure some (but it will turn out not all) of the
relevant parameters. In nonsupersymmetric theo-
ries, it is believed that scalar fields with the requisite
properties (low mass, very flat potentials) are un-
natural. This supersymmetric baryogenesis mecha-
nism will be the main focus of this review. See also
the review by Enqvist et al. (2002).

In this review we will survey these mechanisms, and
explain in more detail why the last two are by far the
most plausible. The question then becomes: can we
eventually establish that one or the other is correct? In
order to establish or rule out particular models for the
origin of the matter-antimatter asymmetry, we would
hope to bring to bear both astrophysical/cosmological
observations and particle-physics experiments, as well as
theoretical arguments. Ideally, we would some day be in
the position of measuring all of the parameters relevant
to the asymmetry, and calculating the asymmetry in
much the same way that one presently calculates the
light element abundances. One question we will ask is:
how close can we come to this ideal situation?

In the next section, after a very brief review of the
standard cosmology, we present our survey of these
mechanisms, both explaining how they work and dis-
cussing their theoretical plausibility. Both electroweak
baryogenesis and leptogenesis rely on the existence of
processes within the Standard Model which violate
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baryon and lepton number at high temperatures, and we
include a brief explanation of these phenomena.

We then turn to a more detailed discussion of coher-
ent production of baryons or leptons, the Affleck-Dine
mechanism. This mechanism is potentially extremely ef-
ficient; it can also operate relatively late in the history of
the universe. As a result, it can potentially resolve a
number of cosmological puzzles. The Affleck-Dine
mechanism presupposes low-energy supersymmetry. Su-
persymmetry (sometimes called SUSY for short) is a hy-
pothetical extension of Poincaré invariance, a symmetry
which would relate bosons to fermions. If correct, it pre-
dicts that for every boson of the Standard Model, there
is a fermion, and vice versa. It is believed that the
masses of the new particles should be about a TeV. As
supersymmetry will play an important role in much of
our discussion, a brief introduction to supersymmetry
will be provided in the next section. The supersymmetry
hypothesis will be tested over the next decade by the
Tevatron and the Large Hadron Collider at CERN. In-
terestingly, most other proposals for baryogenesis in-
voke supersymmetry in some way. These include elec-
troweak baryogenesis and most detailed models for
leptogenesis.

Il. A BARYOGENESIS ROADMAP
A. A cosmology overview

Our knowledge of the big bang rests on a few key
observational elements. First, there is the Hubble expan-
sion of the universe. This allows us to follow the evolu-
tion of the universe to a few billion years after the big
bang. Second, there is the CMBR. This is a relic of the
time, about 10° years after the big bang, when the tem-
perature dropped to a fraction of an electron volt and
electrons and nuclei joined to form neutral atoms. Third,
there is the abundance of the light elements. This is a
relic of the moment of neutrino decoupling, when the
temperature was about 1 MeV. As we have noted,
theory and observation are now in good agreement,
yielding the baryon-to-photon ratio given by Eq. (1). Fi-
nally, there are the fluctuations in the temperature of the
microwave background, measured recently on angular
scales below one degree by BOOMERANG (de Bernar-
dis et al., 2000; Netterfield er al., 2002), MAXIMA (Ha-
nany et al., 2000), DASI (Pryke et al., 2002), and WMAP
(Bennett et al., 2003). These fluctuations are probably a
relic of the era of inflation (discussed in more detail be-
low). The baryon density can be inferred independently
from the CMBR data and from the BBN determination
of the baryon density based on the measurements of the
primordial deuterium abundance (Burles, Nollett, and
Turner, 2001a, 2001b; Kirkman et al., 2003). The agree-
ment is spectacular: Qzh?=0.0214+0.002 based on
BBN (Kirkman et al., 2003), while the CMBR anisot-
ropy measurements yield Qgh%=0.0224+0.0009 (Ben-
nett et al., 2003). Here Q is the fraction of critical den-
sity contributed by baryons, and 4 is the Hubble
constant in units of 100 km sec™! Mpc™!.
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The first and perhaps most striking lesson of the mea-
surements of the CMBR is that the universe, on large
scales, is extremely homogeneous and isotropic. As a
result, it can be described by a Robertson-Walker met-
ric:

2

2_ 3.2 p2
ds*=di? = R¥0)| 177

+rd 6>+ r? sin® 0d ¢ |.

2
R(t) is known as the scale factor; the Hubble rate is H

= R/R. The Hubble rate is essentially the inverse of the
time; in the radiation-dominated era, H= 1/2¢; in the
matter-dominated era, H= 2/3t. Here the constant k is
the curvature of the universe. It is puzzling that the uni-
verse should be homogeneous and isotropic to such a
high degree. If one runs the clock backward, one finds
that vast regions of the universe which have only re-
cently been in causal contact have essentially the same
temperature.

Inflation provides an explanation for this and other
puzzles (Kolb and Turner, 1990; Linde, 1990). The basic
idea (Guth, 1981; Albrecht and Steinhardt, 1982; Linde,
1982) is that for a brief period, R(t) grew extremely
rapidly, typically exponentially. This has several effects:

e The observed universe grew from a microscopically
small region, explaining homogeneity and isotropy.

e k=0, i.e., the universe is spatially flat. This is now well
verified by observations.

e Small fluctuations in the metric and the field during
inflation explain the observed small (one part in 107)
variation in the temperature of the CMBR. Detailed
features of this structure, in agreement with the infla-
tionary theory, have now been observed. These fluc-
tuations provide the seeds for formation of the ob-
served structure in the universe.

e Inflation also explains the absence from the universe
of objects such as magnetic monopoles expected in
many particle physics theories.

While it is probably fair to say that no compelling
microscopic theory of inflation yet exists, it is very suc-
cessful as a phenomenological theory. Most pictures of
inflation invoke the dynamics of a scalar field in a crucial
way. This scalar field must have very special properties.
Typically, for example, the curvature of its potential
must be very small. The most plausible theories which
achieve this invoke supersymmetry in a significant way.
Supersymmetry, a hypothetical symmetry between fer-
mions and bosons, will be discussed at greater length
later in this article. It has been widely considered as a
possible solution to many puzzles in particle physics.
Most importantly for inflation, supersymmetry is a the-
oretical framework which naturally gives rise to scalars
with very flat potentials. It also gives rise to stable par-
ticles with just the right properties to constitute the dark
matter. There are difficulties as well. One is associated
with the fermionic partner of the graviton, the gravitino.
In many models, this particle is very long-lived (7
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>10° sec), and can spoil conventional big-bang cosmol-
ogy if too many are produced.

There is not space here to review the subject of infla-
tion (Kolb and Turner, 1990; Linde, 1990). Instead, we
will give a “narrative” of a possible history of the uni-
verse, which will be useful to orient our discussion:

e Before t~10~ % sec, the universe was very inhomoge-
neous, with an extremely large energy density. At ¢
~10~%, inflation began in a small patch. This was as-
sociated with a scalar field, called the inflaton, which
moved slowly toward the minimum of its potential.

e The scale of the inflaton potential was of order
10%° GeV*, give or take a few orders of magnitude.

¢ During inflation, the scale factor increased by an enor-
mous factor. Any conserved or approximately con-
served quantities, such as monopole number or
baryon number, were reduced by at least a factor of
10% in this process.

¢ Inflation ended as the inflaton approached the mini-
mum of its potential. At this point, decays of the in-
flaton lead to reheating of the universe to a high tem-
perature. Depending on the detailed microscopic
picture, there are constraints on the reheating tem-
perature. If nature is supersymmetric, there is a dan-
ger of producing too many gravitinos and other long-
lived particles. Typically, this constrains the reheating
temperature to be below 10° GeV. Even without su-
persymmetry, detailed inflationary models have diffi-
culty producing high reheating temperatures without
fine tuning.

e The baryon asymmetry is generated some time after
the era of inflation. Any upper limit on the reheating
temperature constrains the possible mechanisms for
baryogenesis.

B. Planck-scale baryogenesis

It is generally believed that a quantum theory of grav-
ity cannot preserve any global quantum numbers. For
example, in the collapse of a star to form a black hole,
the baryon number of the star is lost; black holes are
completely characterized by their mass, charge, and an-
gular momentum. Virtual processes involving black
holes, then, would also be expected to violate baryon
number.

In string theory, the only consistent quantum theory of
gravity we know, these prejudices are born out. There
are no conserved global symmetries in string theory
(Banks et al., 1988). While we cannot reliably extract de-
tailed predictions from quantum gravity for baryon-
number violation, we might expect that it will be de-
scribed at low energies by operators which appear in an
effective-field theory. The leading operators permitted
by the symmetries of the Standard Model which violate
baryon number carry dimension 6. An example of an
interaction term in the Lagrangian is

1 -
Ly=yed*d*d*. 3)
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In this equation and those which follow, the various
fermion fields, d, d, e, e, v, etc., are spinors of left-

handed chirality. d contains the creation operator for the
right-handed d quark; d' for the left-handed anti-d
quark. The other two d-quark states are created by d
and d'. We have indicated that its coefficient has dimen-
sions of inverse mass squared because the operator is of
dimension 6. This is analogous to the effective interac-
tion in the Fermi theory of weak interactions. If quan-
tum gravity is responsible for this term, we might expect
its coefficient to be of order 1/M,2,.

Because of this very tiny coefficient, these effects
could be important only at extremely early times in the
universe, when, for example, H~M,. It is probably
very difficult to analyze baryon production in this era. It
is certainly unclear in such a picture where the small
number in Eq. (1) might come from. But even if the
baryon number was produced in this era, it was com-
pletely diluted in the subsequent period of inflation. So
gravitational baryogenesis seems unlikely to be the
source of the observed matter-antimatter asymmetry.

C. GUT baryogenesis

The earliest well-motivated scenarios for implement-
ing Sakharov’s ideas within a detailed microscopic
theory were provided by grand unified theories (GUT’s)
(Kolb and Turner, 1990). In the Standard Model, the
strong, weak, and electromagnetic interactions are de-
scribed by non-Abelian gauge theories based on the
groups SU(3), SU(2), and U(1). Grand unification posits
that the underlying theory is a gauge theory with a
simple group, and that this gauge symmetry is broken
down to the group of the Standard Model at some very-
high-energy scale. This hypothesis immediately provides
an explanation of the quantization of electric charge. It
predicts that, at very high energies, the strong, weak,
and electromagnetic couplings (suitably normalized)
should have equal strength. And most important, from
the point of view of this article, it predicts violation of
baryon and lepton numbers.

If nature is not supersymmetric, the GUT hypothesis
fails. One can use the renormalization group to deter-
mine the values of the three gauge couplings as a func-
tion of energy, starting with their measured values. One
finds that they do not meet at a point, i.e., there is no
scale where the couplings are equal. Alternatively, one
can take the best measured couplings, the SU(2) and
U(1) couplings, and use the GUT hypothesis to predict
the value of the strong coupling. The resulting predic-
tion is off by 12 standard deviations (Hagiwara, 2002).
But if one assumes that nature is supersymmetric, and
that the new particles predicted by supersymmetry all
have masses equal to 1 TeV, one obtains unification,
within 30. The scale of unification turns out to be
Mgur=~2x10' GeV. The unified coupling agyr
~g?/4mr is approximately 1/25. Relaxing the assumption
that the new particles are degenerate, or assuming that
there are additional, so-called threshold corrections to
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the couplings at the GUT scale (within ~4% of Mgyr),
one can attain complete agreement.

This value of Mgyt is quite interesting. It is suffi-
ciently below the Planck scale that one might hope to
analyze these theories without worrying about quantum
gravity corrections. Moreover, it leads to proton decay at
a rate which may be accessible to current proton decay
experiments. In fact, the simplest SUSY GUT based on
the gauge group SU(5) is almost completely ruled out by
the recent Super-Kamiokande bounds (Murayama and
Pierce, 2002). However, there are many other models.
For example, nonminimal SU(5) or SO(10) SUSY
GUT’s may have a proton lifetime about a factor of 5
above the present experimental limit (Altarelli, Fer-
uglio, and Masina, 2000; Babu, Pati, and Wilczek, 2000;
Dermisek, Mafi, and Raby, 2001; Bajc, Perez, and Sen-
janovic, 2002). Witten has recently advocated an ap-
proach to GUT model building (Friedmann and Witten,
2002; Witten, 2002) which resolves certain problems with
these models, and in which proton decay might be diffi-
cult to see even in large detectors which are being con-
sidered for the future.

GUT’s provide a framework which satisfies all three
of Sakharov’s conditions. First, baryon-number violation
is a hallmark of these theories: they typically contain
gauge bosons and other fields which mediate B-violating
interactions such as proton decay. Second, CP violation
is inevitable; any model necessarily contains at least the
KM mechanism for violating C P, and typically there are
many new couplings which can violate CP. Third, de-
parture from equilibrium is associated with the dynamics
of the massive, B-violating fields. Typically one assumes
that these fields are in equilibrium at temperatures well
above the grand unification scale. As the temperature
becomes comparable to their masses, the production
rates of these particles fall below their rates of decay.
Careful calculations in these models often lead to
baryon densities compatible with what we observe.

We can illustrate the basic ideas with the simplest
GUT model, due to Georgi and Glashow (1974). Here
the unifying gauge group is SU(5). The model we will
discuss is not supersymmetric, but it illustrates the im-
portant features of GUT baryon number production. A
single generation of the Standard Model (e.g., electron,
electron neutrino, u quark, and d quark) can be embed-

ded in the 5 and 10 representations of SU(5). It is con-
ventional, and convenient, to treat all quarks and lep-
tons as left-handed fields. So in a single generation of
quarks and leptons, one has the quark doublet O, the
singlet u and d antiquarks (their antiparticles are the
right-handed quarks), and the lepton doublet,
e
().

14

Then it is natural to identify the fields in the 5 as

5= )

RN NN
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The generators of SU(3) of color are identified as

)\fl
Z 0

ri=| 2 ; ©)
0 0

where \* are the eight Gell-Mann matrices, while those
of SU(2) are identified with

0 0
Ti' = 0 ii , (6)
2

where the o are the three Pauli matrices and i’ =i+8.
The U(1) generator is the diagonal matrix

2

1
Y,:\/ﬁ 2 . (7)
-3

Here the coefficient has been chosen so that the normal-
ization is the same as that of the SU(3) and SU(2) ma-
trices [Tr(T*T?)=6,,]. The corresponding gauge boson
couples with the same coupling constant as the gluons
and W and Z bosons. This statement holds at M gyr; at
lower energies, there are significant radiative corrections
(which in the supersymmetric case reproduce the ob-
served low-energy gauge couplings).

In the Standard Model, the hypercharge Y is related
to the ordinary electric charge, Q, and the isospin gen-
erator, T3, by OQ=T;5+ Y/2. So one sees that electric
charge is quantized, and that Y=3/40Y’. Since Y
couples with the same strength as the SU(2) generators,
this gives a prediction of the U(1) coupling of the Stan-
dard Model, and correspondingly of the Weinberg angle
Oy , sin*(@y)=3/8. This prediction is subject to radiative
corrections which, assuming supersymmetry, bring it
within experimental errors of the measured value. In a
single generation, the remaining fields lie in the 10 rep-
resentation. The 10 transforms as the antisymmetric

product of two 5°s. It has the form

0 wp -u 0O 0Of
-u, 0 u; 03 0}

0= u, -uw 0 0} 03|, (8)
-0; -0; -0} 0 @
-0f -03 03 —¢ 0

where Q!=u; and Q?=d, are left-handed quark fields,
which transform as doublets under SU(2).

SU(5) is not a manifest symmetry of nature. It can be
broken by the expectation value of a scalar field ® in the
adjoint representation having the same form as Y:
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FIG. 1. Interference between the tree-level (a) and one-loop (b) diagrams with complex Yukawa couplings can provide the
requisite source of CP violation for GUT baryogenesis. In viable models, to avoid the unwanted cancellations, one must often
assume that the two scalars are different or go to higher loops, as in (c) (Barr, Segre, and Weldon, 1979; Kolb and Turner, 1990).

2

(P)=v 2 , )
-3
-3

where v is a constant. The unbroken generators are
those which commute with ®, i.e., precisely the genera-
tors of SU(3)XSU(2)xU(1) above.

The vector bosons which correspond to the broken
generators gain mass of order gv. We will refer to the
corresponding gauge bosons as X; they are associated
with generators which do not commute with (®), such as

000 10
0000 0
0000 0. (10)
1000 0
0000 0

They carry color and electroweak quantum numbers and
mediate processes which violate baryon number. In this
example, one sees from the definition (4) that there is a

coupling of the X bosons to a d quark and an electron.
Similarly, there is a coupling of the X boson to a quark
doublet and a positron. Note that there is no way to
assign baryon and lepton number to the X boson so that
it is conserved by these couplings.

In the GUT picture of baryogenesis, it is usually as-
sumed that at temperatures well above the GUT scale,
the universe is in thermal equilibrium. As the tempera-
ture drops below the mass of the X bosons, the reactions
which produce the X bosons are not sufficiently rapid to
maintain equilibrium. The decays of the X bosons vio-
late baryon number; they also violate CP. So all three
conditions are readily met: baryon-number violation,
CP violation, and departure from equilibrium.

To understand in a bit more detail how the asymmetry
can come about, note that CPT conservation requires
that the total decay rate of X is the same as that of its

antiparticle X. But it does not require equal partial
widths, i.e., the decays to particular final states. So start-

ing with equal numbers of X and X particles, there can
be a slight asymmetry between the processes

X—dL:X—Qu (11)
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and
)?—>d_L,A_’—>Qu (12)

The tree graphs for these processes, shown in Fig. 1, are
necessarily equal; any C P-violating phase simply cancels
out when we take the absolute square of the amplitude.
This is not true in higher order, where additional phases
associated with real intermediate states can appear. Ac-
tually computing the baryon asymmetry requires a de-
tailed analysis of a kind we will encounter later when we
consider leptogenesis.

There are reasons to believe, however, that GUT
baryogenesis is not the origin of the observed baryon
asymmetry. Perhaps the most compelling of these has to
do with inflation. Assuming that there was a period of
inflation, any preexisting baryon number was greatly di-
luted. So in order that one produce baryons through X
boson decay, it is necessary that the reheating tempera-
ture after inflation be at least comparable to the X bo-
son mass. But as we have explained, a reheating tem-
perature greater than 10° GeV leads to cosmological
difficulties, especially overproduction of gravitinos.

D. Electroweak baryon-number violation

Earlier, we stated that the renormalizable interactions
of the Standard Model preserve baryon number. This
statement is valid classically, but it is not quite true of
the quantum theory. There are, as we will see in this
section, very tiny effects which violate baryon number (’t
Hooft, 1976). These effects are tiny because they are due
to quantum-mechanical tunneling, and are suppressed
by a barrier penetration factor. At high temperatures,
there is no such suppression, so baryon-number viola-
tion is a rapid process, which can come to thermal equi-
librium. This has at least two possible implications. First,
it is conceivable that these sphaleron processes can
themselves be responsible for generating a baryon asym-
metry. This is called electroweak baryogenesis (Kuzmin,
Rubakov, and Shaposhnikov, 1985). Second, as we will
see, sphaleron processes can process an existing lepton
number, producing a net lepton and baryon number.
This is the process called leptogenesis (Fukugita and
Yanagida, 1986).

In this section, we summarize the main arguments that
the electroweak interactions violate baryon number at
high temperature. In the next section, we explain why
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the electroweak interactions might produce a small
baryon excess, and why this excess cannot be large
enough to account for the observed asymmetry.

One of the great successes of the Standard Model is
that it explains the observed conservation laws. In par-
ticular, there are no operators of dimension four or less
consistent with the gauge symmetries which violate
baryon number or the separate lepton numbers. The
leading operators which can violate baryon number are
of dimension six, and thus suppressed by O(1/M?). The
leading operators which violate the separate lepton
numbers are of dimension 5, and thus suppressed by one
power of 1/M. In each case, M should be thought of as
the energy scale associated with some very-high-energy
physics which violates baryon or lepton number. This
scale cannot be determined except through measure-
ment or by specifying a more microscopic theory.

However, it is not quite true that the Standard Model
preserves all of these symmetries. There are tiny effects
which violate them, of order

g7(277/“W)%107917 (13)

where ay~0.03 is the weak coupling constant. These
effects are related to the fact that the separate baryon-
number and lepton-number currents are anomalous.
When one quantizes the theory carefully, one finds that
the baryon-number current j% is not exactly conserved
but rather satisfies

. 3 a Ta 3
(9N]§=167T2FMV “V=WTI'FMVF’(LV. (14)

Here F,, are the SU(2) field strengths, and we have
introduced matrix-valued fields in the last expression,

szg Fo, T (15)

The dual of F, F, is defined by
1

F =5 €unprt”” (16)
In electromagnetism, FW’FWF 2E-B.
The same anomaly (14) appears in the lepton-number

current as well, i.e.,

3 - 3 -
a/‘]ﬁ:16772FZV ZVZWTI‘FMVF’MV. (17)

However, the difference of the two, j5—j4, is anomaly
free and is an exactly conserved quantity in the Standard
Model as well as in SU(5) and SO(10) grand unified
theories.

One might think that such a violation of current con-
servation would lead to dramatic violations of the sym-
metry. But the problem is more subtle. The right-hand
side of the anomaly equation is itself a total divergence:

TtF,,F,,=d,K", (18)

where
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2
KH*= etvPoTy FVpA(T+ gAVAPAU s (19)

where the A; are components of the vector potential.' In
view of this,

~_ . 38

J=ig— g 2 K* (20)

is conserved. In perturbation theory (i.e., calculated by
Feynman diagrams), K* falls to zero rapidly (typically
like 1/r°) at infinity, and so its integral is zero. This fact
ensures that baryon number is conserved.

In Abelian gauge theories, this is the end of the story.
In non-Abelian theories, however, there are nonpertur-
bative field configurations which contribute to the right-
hand side. These lead to violations of baryon number
and the separate lepton numbers proportional to e ~2™¢,
where « is the coupling constant of the theory. These
configurations are called instantons. We will not discuss
them in detail here; a pedagogical treatment is given by
Coleman (1989). They correspond to the contribution of
a tunneling amplitude. To understand what the tunnel-
ing process is, one must consider more carefully the
ground state of the field theory. Classically, the ground
states are field configurations for which the energy van-

ishes. The trivial solution of this condition is A =0,
where A is the vector potential. More generally, one can
consider A which is a “pure gauge,”

I T
A=-U VU

2 P (21)

where U, is a gauge transformation matrix. In an Abe-
lian [i.e., U(1)] gauge theory, fixing the gauge eliminates
all but the trivial solution, A =0.2 This is not the case for
non-Abelian gauge theories. There is a class of gauge
transformations, labeled by a discrete index n, which do
not tend to unity as |X|— o, which must be considered to
be distinct states. These have the form

Un()Z) — einf(f))?- 7/2’ (22)

where f(x)—2m as Xx—o, f(¥)—0 as x—0, and 7 are
the generators of the gauge group.

So the ground states of the gauge theory are labeled
by an integer n. Now if we evaluate the integral of the
current K°, we obtain a quantity known as the Chern-
Simons number:

1 3 4
nc5=mj d°xK

2/3

— 3 -1 -1 -1
—Wfdxei}»kTr(Ug al‘UgUg ﬁ]UgUg 0-'kUg)'

(23)

The reader can quickly check this for a U(1) gauge theory
like electromagnetism.

2More precisely, this is true in axial gauge. In the gauge A,
=0, it is necessary to sum over all time-independent transfor-
mations to construct a state which obeys Gauss’s law.
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FIG. 2. (Color in online edition) Schematic Yang-Mills
vacuum structure. At zero temperature, the instanton transi-
tions between vacua with different Chern-Simons numbers are
suppressed. At finite temperature, these transitions can pro-
ceed via sphalerons.

For U,=U,, ncgs=n. The reader can also check that for
U,=U,(x)h(x), where h is a gauge transformation
which tends to unity at infinity (a so-called “small gauge
transformation”), this quantity is unchanged. n oy is to-

pological in this sense. Note that for A’s which are not
pure gauge, n g is not quantized.

Schematically, we can thus think of the vacuum struc-
ture of a Yang-Mills theory as indicated in Fig. 2. At
weak coupling, we have an infinite set of states labeled
by integers and separated by barriers from one another.
In tunneling processes which change the Chern-Simons
number, the baryon and lepton numbers will change be-
cause of the anomaly. The exponential suppression
found in the instanton calculation is typical of tunneling
processes, and in fact the instanton calculation which
leads to the result for the amplitude is nothing but a
field-theoretic WKB calculation.

At zero temperature, the decay amplitude is sup-
pressed, not only by e 2™ but by factors of Yukawa
couplings. The probability that a single proton has de-
cayed through this process in the history of the universe
is infinitesimal. But this picture suggests that, at finite
temperature, the rate should be larger. One can deter-
mine the height of the barrier separating configurations
of different ng by looking for the field configuration
which corresponds to the barrier saddle point. This is
the sphaleron solution of the static equations of motion
with finite energy (Manton, 1983). When one studies the
small fluctuations about this solution, one finds that
there is a single negative mode, corresponding to the
possibility of rolling downhill into one or the other well.
The sphaleron energy E, has the form

c

ESp = Z MW 5 (24)
where ¢ is a numerical coefficient and My is the mass of
the W particle. The form can be seen by scaling argu-

ments on the classical equations; determining the coeffi-
cient ¢ requires a more detailed analysis. The rate I'y,
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for thermal fluctuations to cross the barrier per unit time
per unit volume should be of order of the Boltzmann
factor for this configuration, times a suitable prefactor
(Kuzmin, Rubakov, and Shaposhnikov, 1985; Arnold
and McLerran, 1988; Dine et al., 1990),

FSP=T4e_Esp/T. (25)

Note that the rate becomes large as the temperature 7'
approaches the W boson mass. In fact, at some tempera-
ture the weak interactions undergo a phase transition to
a phase in which the W boson mass vanishes. At this
point, the computation of the transition rate is a difficult
problem—there is no small parameter—but general
scaling arguments show that the baryon-violating transi-
tion rate is of the form?

— 4 74
Fbu_awT' (26)

Returning to our original expression for the anomaly,
we see that while the separate baryon and lepton num-
bers are violated in these processes, the combination B
— L is conserved. This result leads to three observations:

(1) If in the early universe, one creates baryon and lep-
ton number, but no net B— L, B and L will subse-
quently be lost through sphaleron processes.

(2) If one creates a net B—L (e.g., creates a lepton
number) the sphaleron process will leave both
baryon and lepton numbers comparable to the origi-
nal B— L. This realization is crucial to the idea of
leptogenesis, to be discussed in more detail below.

(3) The Standard Model satisfies, by itself, all of the
conditions for baryogenesis.

E. Electroweak baryogenesis

As we will see, while the Standard Model satisfies all
of the conditions for baryogenesis (Kuzmin, Rubakov,
and Shaposhnikov, 1985), nothing like the required
baryon number can be produced. It is natural to ask
whether extensions of the Standard Model, such as theo-
ries with complicated Higgs, or the minimal supersym-
metric Standard Model (MSSM), can generate an asym-
metry, using the sphaleron process discussed in the
previous section. We will refer to such a possibility more
generally as electroweak baryogenesis.

1. Electroweak baryogenesis in the Standard Model

How might baryons be produced in the Standard
Model? From our discussion, it is clear that the first and
second of Sakharov’s conditions, baryon-number viola-
tion and CP violation, are satisfied. What about the
need for a departure from equilibrium?

Above we alluded to the fact that in the electroweak
theory, there is a phase transition to a phase with mass-
less gauge bosons. It turns out that, for a sufficiently
light Higgs, this transition is first order. At zero tempera-

3More detailed considerations alter slightly the parametric
form of the rate (Arnold, Son, and Yaffe, 1997, 2000).
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FIG. 3. Generic free-energy functions for
first- and second-order phase transitions.

E

T<T,
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ture, in the simplest version of the Standard Model with
a single Higgs field ®, the Higgs potential is given by

A
U(®)=—p|oP+ 5| D[ 27)

The potential has a minimum at ®= (1V2) v, = Ju?/X,
breaking the gauge symmetry and giving mass to the
gauge bosons by the Higgs mechanism.

What about finite temperatures? By analogy with the
phase transition in the Landau-Ginsburg model of su-
perconductivity [see, e.g., de Gennes (1966)], one might
expect that the value of (®) would change as the tem-
perature increases. To determine the value of ®, one
must compute the free energy as a function of ®. The
leading temperature-dependent corrections are obtained
simply by noting that the masses of the various fields in
the theory—the W and Z bosons and the Higgs field, in
particular—depend on ®. So the contributions of each
species to the free-energy density F are ® dependent:

d3
A 1)=+73 [ S hmwe Wi o)

where T is the temperature, the sum is over all particle
species and physical helicity states, and the plus sign is
for bosons, the minus for fermions. In the Standard
Model, for temperature 7~100 GeV, one can treat all
the quarks as massless, except for the top quark. The
effective potential (28) then depends on the top quark
mass m,, the vector boson masses M, and My, , and on
the Higgs mass My . Performing the integral in the
equation yields

A
A®,T)=D(T*-T*)D*— ETD*+ Z<1>4+ e (29)

The parameters 7,, D, and E are given in terms of the
gauge boson masses and the gauge couplings below. For
the moment, though, it is useful to note certain features
of this expression. £ turns out to be a rather small di-
mensionless number, of order 10~ 2. If we ignore the &3
term, we have a second-order transition, at temperature
T,, between a phase with ®#0 and a phase with ®
=0. Because the W and Z masses are proportional to ®,
this is a transition between a state with massive and
massless gauge bosons.

Because of the ®° term in the potential, the phase
transition is potentially at least weakly first order. This is
indicated in Fig. 3. Here one sees the appearance of a
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second distinct minimum at some critical temperature.
A first-order transition is not, in general, an adiabatic
process. As the temperature decreases towards the tran-
sition temperature, the transition proceeds by the for-
mation of bubbles. Inside the bubble the system is in the
true equilibrium state, i.e., the state which minimizes the
free energy, while outside it is closer to the original state.
These bubbles form through thermal fluctuations at dif-
ferent points in the system, and grow until they collide,
completing the phase transition. The moving bubble
walls are regions where the Higgs fields are changing,
and all of Sakharov’s conditions are satisfied. It has been
shown that various nonequilibrium processes near the
wall can produce baryon and lepton numbers (Cohen,
Kaplan, and Nelson, 1993; Rubakov and Shaposhnikov,
1996).

Describing these processes would take us far afield.
Even without going through these details, however, one
point is crucial: after the bubble has passed any given
region, the baryon-violating processes should cease. If
these processes continue, they wash out the baryon
asymmetry produced during the phase transition.

To avoid washing out the asymmetry, the sphaleron
rate after the phase transition should be small compared
to the expansion rate of the universe. According to Eq.
(25), this requires that after the transition the sphaleron
energy be large compared to the temperature. This, in
turn, means that My, [see Eq. (24)] and the Higgs ex-
pectation value must be large immediately after the
transition. Using Eq. (29) or more refined calculations to
higher orders, one can relate the change in the Higgs
expectation value to the Higgs mass at zero tempera-
ture. It turns out that the current lower limit on the
Higgs boson mass* rules out any possibility of a large
enough Higgs expectation value immediately after the
phase transition, at least in the minimal model with a
single Higgs doublet.

The shape of the free-energy potential F(®,T) near
the critical temperature 7. determines whether the
phase transition is first order, a necessary condition for
electroweak baryogenesis to work. Equation (29) repre-
sents the lowest-order term in perturbation theory;
higher-order terms have been computed as well (Arnold

4Carena and Haber (2003) report a lower limit of My
~115 GeV from LEP searches.
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and Espinosa, 1993; Bagnasco and Dine, 1993; Farakos
et al., 1994; Laine, 1994). However, these calculations
are not reliable, because of infrared divergences which
arise in the perturbation expansion. These arise because
the Higgs field is nearly massless at the transition. Nu-
merical simulations are required, often combined with a
clever use of perturbation theory (Farakos et al., 1995).
The simulations (Kajantie er al, 1996a, 1996b, 1997,
1999; Gurtler et al., 1997; Karsch et al., 1997; Rummu-
kainen et al., 1998; Csikor et al., 1999) have shown that,
for the Higgs mass above 80 GeV (which it must be, to
satisfy the present experimental constraints), the sharp
phase transition associated with the low mass Higgs
turns into a smooth crossover.

However, even for an unrealistically light Higgs, the
actual production of baryon asymmetry in the minimal
Standard Model would be highly suppressed. The Stan-
dard Model CP violation arises from the Yukawa cou-
plings of the quarks to the Higgs boson and must involve
all three generations (Kobayashi and Maskawa, 1973).
As a result, the lowest-order diagram that contributes to
C P-violating processes relevant to baryogenesis is sup-
pressed by 12 factors of the Yukawa couplings (Shaposh-
nikov, 1986, 1987). These couplings are small, leading to
a contribution of the order of 10™?° to the amount of the
baryon asymmetry that could arise in the Standard
Model.

Clearly, one must look beyond the Standard Model
for the origin of baryon asymmetry of the universe. One
of the best motivated candidates for new physics is su-
persymmetry.

Before closing this section, for completeness, we give
the values of the parameters 7,, B, D, and E in Eq.
(29) (Dine, Leigh, et al., 1992):

T2

2_
S=5p (W= 4Bv))= (M

—8Bv?), (30)

while the parameters B, D, and E are given by

= 4(2M‘;V+M4 4m?),

_ 1 2 2 2
D= W(ZMW'FMZ-FZWQ),

1 3 3 -2
E:m(zMW+MZ)N1O . (31)
As before, M,, My, and My, are the masses of the Z,
the Higgs, and the W particles, and m, is the mass of the
top quark.

2. Supersymmetry, a short introduction

In this section we provide a brief introduction to su-
persymmetry. Much more detail can be found in Dine
(1996) and in many texts.

There are many hints that supersymmetry, a hypo-
thetical symmetry between fermions and bosons, might
play some role in nature. For example, supersymmetry
seems to be an essential part of superstring theory, the
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only consistent theory of quantum gravity which we
know. If supersymmetry is a symmetry of the laws of
nature, however, it must be badly broken; otherwise we
would have seen, for example, scalar electrons (“selec-
trons™) and fermionic photons (“photinos”). It has been
widely conjectured that supersymmetry might be discov-
ered by accelerators capable of exploring the TeV en-
ergy range. There are several reasons for this. The most
compelling is the “hierarchy problem.” This is, at its
most simple level, the puzzle of the wide disparity of
energies between the Planck scale (or perhaps the unifi-
cation scale) and the weak scale—roughly 17 orders of
magnitude. While one might take this as simply a puz-
zling fact, within quantum theory the question is made
sharper by the fact that scalar masses (particularly the
Higgs mass) are subject to very divergent quantum cor-
rections. A typical expression for the quantum correc-
tions to a scalar mass is

, «a 4, 1
n 2; d kp (32)

This integral diverges quadratically for large momentum
k. Presumably, the integral is cut off by some unknown
physics. If the energy scale of this physics is A, then the
corrections to the Higgs mass are much larger than the
scale of weak interactions unless A~TeV. In this form,
the hierarchy problem is often referred to as the natu-
ralness problem. While various cutoffs have been pro-
posed, one of the most compelling suggestions is that the
cutoff is the scale of supersymmetry breaking. In this
case, the scale must be about 1000 GeV. If this hypoth-
esis is correct, the Large Hadron Collider under con-
struction at CERN should discover an array of new par-
ticles and interactions.’

The supersymmetry generators O, are fermionic op-
erators. Acting on bosons they produce fermions degen-
erate in energy; similarly, acting on fermions, they pro-
duce degenerate bosons. Their algebra involves the total
energy and momentum P#,

{Q4.0pt=P" vip. (33)

where y* are the Dirac matrices. Neglecting gravity, su-
persymmetry is a global symmetry. Because of the struc-
ture of the algebra, the symmetry is broken if and only if
the energy of the ground state is nonzero. If the symme-
try is unbroken, for every boson there is a degenerate
fermion, and conversely.

If we neglect gravity, there are two types of supermul-
tiplets which may describe light fields. These are the chi-
ral multiplets ®@;, containing a complex scalar ¢; and a
Weyl (two-component) fermion ;,

Q= (i, ), (34)

and the vector multiplets V“, containing a gauge boson
A¢, and a Weyl fermion (gaugino) A,

3Tt is possible that supersymmetry could be discovered at the
Tevatron beforehand.
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Ve=(A% \9). (35)

In global supersymmetry, the Lagrangian is specified by
the gauge symmetry and an analytic (more precisely ho-
lomorphic) function of the scalar fields, W(¢;), known
as the superpotential. For renormalizable theories, W
has the form

1
W)= zm[j¢i¢j+yijk¢i¢j¢ka (36)

where m is a mass matrix and y is a matrix of couplings.
Given the function W, the supersymmetric Lagrangian
includes the following:

(1) The usual covariant kinetic terms for all of the
fields, for example,

-1
NDN™, yDy*, = F7. |D,4f, (37)
where D and D, are the gauged derivative opera-
tors.
(2) Yukawa couplings with gauge strength:
V2g'N'd* T"y+c.c. (38)

(3) Mass terms and Yukawa couplings from W:

1 W

2 by iy (39)
3

=mylt §Yijk¢i¢j¢k~ (40)

(4) A scalar potential:

ow
U=2. \a?si

2 1 2
+2 5<g“>2(2 ¢?T“¢i) SIS
It is convenient to define two types of auxiliary fields,
the F and D fields:
P Iw
i_rﬁi,

In terms of these, the potential is simply

D'=g"S, 1 T'¢;. “2)

1
U=|FP+ 31D (43)

and, at the classical level, supersymmetry is unbroken if
and only if all of the D and F fields vanish at the mini-
mum of the potential.

It is useful to consider some examples. Take first a
model with a single chiral field ¢ and the superpotential

1
W=>m &°. (44)

In this case, the potential is

IW|?
90 =m?|¢|>. (45)

On the other hand, the fermion mass from Eq. (40)
comes out to be m, so the model describes two bosonic
and two fermionic degrees of freedom, degenerate in
mass.

U=
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A more interesting model is the supersymmetric ver-
sion of the Standard Model, mentioned earlier, known as
the minimal supersymmetric Standard Model (MSSM).
The gauge group is SU(3)XSU(2)XU(1) as in the
Standard Model and there is one vector multiplet for
each gauge generator. In addition, for each of the usual
fermions of the Standard Model, one has a chiral field
with the same quantum numbers:

0,325, Uuze(3.1) 45, dye(3,1)ys,
L,e(12)_y, ee(1,1),. (46)

Here a is a generation index, a=1,2,3. The representa-
tion of the gauge group is denoted by (n3,n,), where n3
and n, refer to SU(3) and SU(2), respectively, and Y
denotes the U(1) hypercharge. In addition, two Higgs
fields are needed to cancel anomalies and to give mass
to quarks and leptons,

H,e(12),, Hye(12)_,. (47)

The superpotential of the model is a generalization of
the Yukawa couplings of the Standard Model:

W=h"Q u,H,+h"Q,d,H+h*L,e,H,
+mudHqus (48)

where the i’s are couplings. We have used our freedom
to make field redefinitions to take the d quark and the
lepton Yukawa couplings diagonal. If one supposes that
the Higgs fields H,, and H,; have expectation values, this
gives, through Eq. (39), masses for the quarks and lep-
tons just as in the Standard Model. If supersymmetry is
unbroken, their scalar partners have identical masses.
The ratio of expectation values

(1)
(Hg)

is an important parameter concerning baryogenesis. The
last term in Eq. (48) is a supersymmetric mass term for
the Higgs fields. Supersymmetry breaking, essential to
obtain a realistic model, will be discussed momentarily.

The gauge symmetries actually permit many more
couplings than those written in Eq. (48). Couplings such

as HL, udd, and others would violate baryon or lepton
number if they appeared. Because these are dimension
4, they are unsuppressed, unless they have extremely
tiny dimensionless coefficients. They can be forbidden
by a symmetry under which ordinary fields are even
(quarks, leptons, and Higgs bosons) while their super-
symmetric partners are odd. This symmetry is called R
parity.

By itself, this model is not realistic, since supersymme-
try is unbroken and all ordinary fields (quarks, leptons,
gauge bosons, Higgs) are degenerate with their super-
partners (squarks, sleptons, gauginos). The simplest so-
lution to this is just to add soft breaking terms which
explicitly break the supersymmetry. Because they are
soft, they do not spoil the good features of these theo-
ries. These soft terms include mass terms for the squarks

tan = (49)
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and sleptons, Majorana mass terms for the gauginos, and
cubic couplings of the scalar fields,

’71,‘2,‘|¢i*¢i|2+mx7\)\+mAAijk¢i¢f¢k- (50)
In the MSSM, the couplings require 105 real parameters.
We will think of all of the mass parameters as being of
order the gravitino mass m3,~M ,. These parameters
are highly constrained, both by low-energy physics, par-
ticularly by the suppression of flavor-changing processes
in weak interactions, and by direct searches at LEP and
the Tevatron. Theoretical approaches to understanding
these soft breakings can be divided broadly into two
classes, gravity and gauge mediation. Both assume that
some dynamics gives rise to spontaneous breakdown of
supersymmetry. In “gravity mediation,” very high-
energy physics is responsible for generating the soft
terms; in gauge mediated models, lower-energy gauge
interactions communicate supersymmetry breaking to
ordinary fields.

R parity, if present, implies that the lightest of the new
particles, called the lightest supersymmetric particle
(LSP), is stable. Typically this is the partner of a neutral
gauge or Higgs boson; in this case the LSP is called a
neutralino. One can calculate the abundance of the neu-
tralinos as a function of the various supersymmetry-
breaking parameters. The assumption that the
supersymmetry-breaking masses are hundreds of GeV
in magnitude leads automatically to a neutralino density
of order the dark matter density of the universe, and this
particle is a leading candidate for the dark matter (see
Sec. IIL.ES).

3. Baryogenesis in the minimal and next-to-minimal
supersymmetric Standard Models

Supersymmetric extensions of the Standard Model
contain new sources of CP violation (Dine et al., 1991;
Dine, Huet, and Singleton, 1992; Huet and Nelson,
1996) and an enlarged set of parameters which allow a
greater possibility of a first-order transition (Espinosa,
Quirds, and Zwirner, 1993; Espinosa, 1996; Bodeker
et al., 1997; Carena, Quiros, and Wagner, 1998; Cline and
Moore, 1998). So it would seem possible that elec-
troweak baryogenesis could operate effectively in these
theories.

The new sources of CP violation may come, for ex-
ample, from the chargino mass matrix:

ny gHz(X))(VNV+)
gH(x) I 7zf L

+H.c,, (51)

ZRMXwL = (w_+9h?)R

where # and % are the superpartners of W boson and
the charged Higgs, and m, and u are mass parameters.
Other possible sources include phases in scalar masses.®
We will focus, however, on the terms in Eq. (51).

®By field redefinitions, some of these can be shifted from fer-
mion to scalar mass terms.
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As long as m, and u are complex, spatially varying
phases in the bubble wall provide a source of (spontane-
ous) CP violation (Lee, 1974; Weinberg, 1976; Cohen,
Kaplan, and Nelson, 1991). However, in light of the con-
straints on Higgs and superpartner masses, the present
window for electroweak baryogenesis in the MSSM is
very narrow if it exists at all (Cline, Joyce, and Kainu-
lainen, 1998, 2000; Carena, Quiros, Seco, and Wagner,
2003). As we discussed above, the lighter the Higgs the
easier it is to avoid the wash-out of baryon asymmetry
produced in the phase transition. A light right-handed
stop, the scalar partner of the top quark, allows for a
first-order phase transition even for Higgs as heavy as
115 GeV, which is barely consistent with the current
bounds. The predictions of the light Higgs and the light
stop will soon be tested in experiment.

However, even for the most optimistic choice of pa-
rameters, it is difficult to obtain a baryon asymmetry as
large as the observed value quoted in Eq. (1). Several
parameters must be adjusted to maximize the baryon
asymmetry. In particular, one must assume that the wall
is very thin and choose the “optimal” bubble wall veloc-
ity v,~0.02. The origin of these difficulties lies, once
again, in the strength of the electroweak phase transi-
tion. In the MSSM, the phase transition can be enhanced
if the right-handed stop is assumed to be very light,
while the left-handed stop is very heavy (Carena,
Quiros, and Wagner, 1998). Then two-loop effects (Es-
pinosa, 1996; Bodeker et al., 1997) change the scalar po-
tential sufficiently to allow for a first-order phase transi-
tion; lattice simulations support this perturbative result
(Laine and Rummukainen, 1998; Csikor et al., 2000).
However, severe constraints arise from the experimental
bounds on the chargino mass, as well as the chargino
contribution to the electric dipole moment of the neu-
tron (Chang, Chang, and Keung, 2002; Pilaftsis, 2002).

Different calculations of the baryon asymmetry in the
MSSM vyield somewhat different results (Cline, Joyce,
and Kainulainen, 1998, 2000; Carena, Quiros, Seco, and
Wagner, 2003), as can be seen from Fig. 4. According to
Carena, Quiros, Seco, and Wagner (2003), it is possible
to produce enough baryons if the Higgs boson and the
right-handed stop are both very light, near the present
experimental limits. In any case, electroweak baryogen-
esis in the MSSM is on the verge of being confirmed or
ruled out by improving experimental constraints (Cline,
2000).

The strength of the phase transition can be further
enhanced by adding a singlet Higgs to the model. In the
next-to-minimal supersymmetric model (NMSM), the
phase transition can be more strongly first-order
(Davies, Froggatt, and Moorhouse, 1996; Huber et al.,
2001; Kainulainen et al., 2001). The singlet also provides
additional sources of CP violation which increase the
baryon asymmetry (Huber and Schmidt, 2001).

4. Nonthermal electroweak baryogenesis at preheating

In light of these difficulties, various proposals have
been put forth to obtain a viable picture of electroweak
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FIG. 4. (Color in online edition) Results of two independent calculations of baryon asymmetry in the MSSM. On the left, contours
of constant baryon asymmetry in units 10”'* calculated by Cline, Joyce, and Kainulainen (1998, 2000) as a function of the two
masses w and m, [see Eq. (51)], where mass units are GeV. The bubble wall velocity is taken as v,,=0.03 and tan B=<3 [see Eq.
(49)]. To maximize the baryon asymmetry, they assume that the bubble wall is very narrow, ¢,=6/T. The shaded region is
excluded by the LEP2 limit on the chargino mass, m,+>104 GeV. The plot on the right represents the results of Carena, Quiros,
Seco, and Wagner (2003) for tan =10 and a maximal CP violating phase of the u parameter. m 4 is the mass of the pseudoscalar
Higgs particle. Also shown is the observed value of the baryon asymmetry reported by WMAP (Bennett ef al., 2003), 7

=6.1703x10710,

baryogenesis. These typically involve more drastic de-
partures from thermal equilibrium than the weakly first-
order phase transitions described above. The more ex-
treme proposals suppose that inflation occurred at the
electroweak scale and kicked the universe out of equi-
librium, setting the stage for baryogenesis. It is generally
believed that the natural scale for inflation is much
higher than 100 GeV. Although models with weak (Ran-
dall and Thomas, 1995; German, Ross, and Sarkar, 2001)
or intermediate (Randall, Soljacic, and Guth, 1996) scale
inflation have been constructed, a lower scale of infla-
tion is generally difficult to reconcile with the observed
density perturbations (8p/p)~107>. As a rule, the
smaller the scale of inflation, the flatter the inflaton po-
tential must be to produce the same density fluctuations.
A weak-scale inflation would require the inflaton poten-
tial to be extremely flat, perhaps flatter than can plausi-
bly be obtained in any physical theory.

Of course, one does not have to assume that the same
inflation is responsible for (8p/p) and for baryogenesis.
One could imagine that the universe has undergone
more than one inflationary period. The primary inflation
at a high scale could be responsible for the flatness of
the universe and for the observed density perturbations.
A secondary inflation at the weak scale need not pro-
duce an enormous expansion of the universe, and could
create fertile soil for baryogenesis. One can debate the
plausibility of invoking a second stage of inflation just
for this purpose. In favor of such a possibility, it has been
argued that a low-scale inflation might ameliorate the
cosmological moduli problem common to many super-
symmetric theories (Randall and Thomas, 1995; Ger-
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man, Ross, and Sarkar, 2001). Nevertheless, inflationary
models at the electroweak scale, which would help gen-
erate baryon asymmetry, usually suffer from naturalness
problems (Lyth, 1999), which may be less severe in some
cases (Copeland et al., 2001).

What inhibits electroweak baryogenesis in the Stan-
dard Model is too much equilibration and too little CP
violation. Both of these problems might be rectified if
inflation is followed by reheating to a temperature just
below the electroweak scale (Garcia-Bellido et al., 1999;
Krauss and Trodden, 1999). Reheating, especially its
variant dubbed preheating, involves a radical departure
from thermal equilibrium,” and proceeds as follows.

During inflation, all matter and radiation are inflated
away. When inflation is over, the energy stored in the
inflaton is converted to thermal plasma. There are sev-
eral possibilities for this reheating process. One possibil-
ity is that the inflaton may decay perturbatively into
light particles, which eventually thermalize. However, in
a class of models, a parametric resonance may greatly
enhance the production of particles in some specific en-
ergy bands (Kofman, Linde, and Starobinsky, 1996).
This process, caused by coherent oscillations of the in-
flaton, is known as preheating. Alternatively, the motion
of the condensate may become spatially inhomogeneous
on scales smaller than the horizon. This kind of transi-

"For references on the reheating scenario, see Khlebnikov
and Shaposhnikov (1988); Kofman, Linde, and Starobinsky
(1994, 1996, 1997); Kolda and March-Russell (1999).
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tion in the motion of the inflaton, called a spinodal de-
composition, may lead to a very rapid tachyonic preheat-
ing (Felder et al., 2001).

All of these variants of reheating force the universe
into a nonequilibrium state after the end of inflation and
before thermalization takes place. This is, obviously, an
opportune time for baryogenesis. The usual consider-
ations of sphaleron transitions do not apply to a non-
equilibrium system. But it turns out that baryon-
number-violating processes similar to sphaleron
transitions do take place at ordinary preheating (Garcia-
Bellido et al., 1999; Cornwall and Kusenko, 2000), as
well as at tachyonic preheating (Smit and Tranberg,
2002; Garcia-Bellido et al., 2003). This has been demon-
strated by a combination of numerical and analytical ar-
guments. In addition, preheating allows the coherent
motions of some condensates to serve as sources of CP
violation (Cornwall et al., 2001). Such sources are poorly
constrained by experiment and could have significant
impact on baryogenesis. It is conceivable therefore that
the electroweak-scale inflation could facilitate genera-
tion of the baryon asymmetry.

F. Leptogenesis

Of the five scenarios for baryogenesis which we have
listed in the Introduction, we have discussed two which
are connected to very-high-energy physics: gravitational
and GUT baryogenesis. We have given cosmological ar-
guments why they are not likely. These arguments de-
pend on assumptions which we cannot now reliably es-
tablish, so it is still possible that these mechanisms were
operative. But if we tentatively accept these arguments
we can significantly narrow our focus. Similarly we have
seen that electroweak baryogenesis, while a beautiful
idea, cannot be implemented in the Standard Model,
and probably not in its minimal supersymmetric exten-
sion. So again, while we cannot rule out the possibility
that electroweak baryogenesis in some extension of the
Standard Model is relevant, it is tempting, for the mo-
ment, to view this possibility as unlikely. Adopting this
point of view leaves leptogenesis and Affleck-Dine
baryogenesis as the two most promising possibilities.
These mechanisms are exciting because they have con-
sequences for experiments which will be performed at
accelerators over the next few years.

While there is no experimental evidence for super-
symmetry apart from the unification of couplings, evi-
dence for neutrino masses has become more and more
compelling in the last few years (Gonzalez-Garcia and
Nir, 2002). This comes from several sources: the fact that
the flux of solar neutrinos does not match theoretical
expectations, in the absence of masses and mixings
(Fukuda et al., 2001; Ahmad et al., 2002); the apparent
observation of neutrino oscillations among atmospheric
neutrinos (Fukuda ef al., 1998); and direct measure-
ments of neutrino mixing (Eguchi, 2003).

We will not review all of these phenomena here, but
just mention that the atmospheric neutrino anomaly sug-
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gests oscillations between the second and third genera-
tion of neutrinos (i.e., between muon and tau neutrinos):

Am?=10"2-10"% eV? (52)

with mixing of order 1, while the solar neutrino deficit
suggests smaller masses (Am’~10"° eV?). There is
other evidence for neutrino oscillation from accelerator
experiments. The SNO experiment has recently pro-
vided persuasive evidence in support of the hypothesis
of mixing, as opposed to modifications of the standard
solar model. The results from Super-Kamiokande, SNO,
and KamLAND are in good agreement. There is also
evidence of mixing from an experiment at Los Alamos
(LSND). This result should be confirmed, or not, by the
MiniBoone experiment at Fermilab. The mixing sug-
gested by atmospheric neutrinos is currently being
sought directly by accelerators. The data so far support
the mixing interpretation, but are not yet decisive.

The most economical explanation of these facts is that
neutrinos have Majorana masses arising from lepton-
number-violating dimension-5 operators.® We have
stressed that the leading operators permitted by the
symmetries of the Standard Model which violate lepton
number are nonrenormalizable  operators  of
dimension-5, i.e., suppressed by one power of some
large mass. Explicitly, these have the form

1
Li,=7; LHLH. (53)

Replacing the Higgs field by its expectation value v
gives a mass for the neutrino of order v’ /M. If M
=M, , this mass is too small to account for either set of
experimental results. So one expects that some lower
scale is relevant. The “see-saw” mechanism provides a
simple picture of how this scale might arise. One sup-
poses that in addition to the neutrinos of the Standard
Model, there are some SU(2)X U(1)-singlet neutrinos,
N. Nothing forbids these from obtaining a large mass.
This could be of order Mgyt, for example, or a bit
smaller. These neutrinos could also couple to the left-
handed doublets v, , just like right-handed charged lep-
tons. These couplings take the form

Assuming, for the moment, that these couplings are not
particularly small, one would obtain a mass matrix, in
the {N,v,} basis, of the form

My m
M= . 55
Here m, is a matrix whose entries are of the order of the
lepton masses inside. Then M, has an eigenvalue of or-
der m,z/M ~ - The latter number is of the order of mag-
nitude needed to explain the neutrino anomaly for My

8A Majorana mass is a mass for a two-component fermion,
which is permitted if the fermion carries no conserved charges.
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~10" or so, i.e., not wildly different from the GUT scale
and other scales which have been proposed for new
physics.

The fact that couplings of N violate lepton number in
this model is important for leptogenesis (Fukugita and
Yanagida, 1986). N is a heavy particle; it can decay both
to H+v and H+v, for example. The partial widths for
each of these final states need not be the same. CP vio-
lation can enter through phases in the Yukawa couplings
and mass matrices of the N’s. At tree level, however,
these phases will cancel out between decays to the vari-
ous states and their (would-be) CP conjugates, as in the
case of GUT’s we discussed earlier. So it is necessary to
consider interference between tree and one loop dia-
grams with discontinuities, as in Fig. 1. In a model with
three N’s, there are CP-violating phases in the Yukawa
couplings of the N’s to the light Higgs. The heaviest of
the right-handed neutrinos, say N, can decay to a lep-

ton € and a Higgs, or to £ and a Higgs. At tree level, as
in the case of GUT baryogenesis, the rates for produc-
tion of leptons and antileptons are equal, even though
there are CP violating phases in the couplings. It is nec-
essary, again, to look at quantum corrections, in which
dynamical phases can appear in the amplitudes. At one
loop, the decay amplitude for N has a discontinuity as-
sociated with the fact that the intermediate N, and N,
can be on shell. So one obtains an asymmetry propor-
tional to the imaginary parts of the Yukawa couplings of
the N’s to the Higgs:

['(N,—¢H,)—T(N,—tH,)
€= — (56)
[(N,—€H,)+T(N,—{H,)

1 1 M3
= Im[ (A, k1) 1P —5 |, 57
8 hh'lrig,3 m[( v ]/)11] f( M%) ( )

where I is the decay width and # is the coupling in Eq.
(54). Also, f is a function that represents radiative cor-
rections. For example, in the Standard Model f= x[(x
=2)/(x—1)+(x+1)In(1+1/x)], while in the MSSM f
=Jx[2/(x—1)+In(1+1/x)]. Here we have allowed for
the possibility of multiple Higgs fields, with H, coupling
to the leptons. The rough order of magnitude here is
readily understood by simply counting loop factors. It
need not be terribly small.

Now, as the universe cools through temperatures of
order of the masses of the N’s, they drop out of equi-
librium, and their decays can lead to an excess of neu-
trinos over antineutrinos. Detailed predictions can be
obtained by integrating a suitable set of Boltzmann
equations. Alternatively, these particles can be produced
out of equilibrium, at preheating following inflation
(Garcia-Bellido and Morales, 2002).

These decays produce a net lepton number but not
baryon number, and hence a net B— L. The resulting
lepton number will be further modified by sphaleron in-
teractions, yielding a net lepton and baryon number (re-
call that sphaleron interactions preserve B — L, but vio-
late B and L separately). One can determine the
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resulting asymmetry by an elementary thermodynamics
exercise as follows (Harvey and Turner, 1990). The cal-
culation is particularly simple because at these high tem-
peratures the masses are negligible. One introduces
chemical potentials for each neutrino, quark, and
charged lepton species. One then considers the various
interactions between the species at equilibrium. For any
allowed chemical reaction, the sum of the chemical u;
potentials on each side of the reaction must be equal.
For neutrinos, the relations come from the following:

(1) the sphaleron interactions themselves:

> Bag, 1) =0; (58)
(2) a similar relation for QCD sphalerons:

> g, pu,= ma)=0; (59)
(3) vanishing of the total hypercharge of the universe:

2

2 (g, 2t prg — e i)+ ~NH=0; (60)
(4) the quark and lepton Yukawa couplings give rela-

tions:

g~ Mg~ Ha =00 pg, = e =0,
;= g™ e, =0. (61)

The number of equations here is the same as the num-
ber of unknowns. Combining these, one can solve for
the chemical potentials in terms of the lepton chemical
potential, and finally in terms of the initial (B—L),.
With N, generations,

B 8N, +4 B
22N+ 3¢
Reasonable values of the neutrino parameters give

asymmetries of the order we seek to explain. Note
sources of small numbers:

L)y. (62)

(1) the phases in the couplings;

(2) the loop factor;

(3) the small density of the N particles when they drop
out of equilibrium. Parametrically, the production
rate is

[~eMDAT, (63)

This is much less than the Hubble rate H~ T*/M P
once the density is suppressed by 7/M, . This factor
of order 107° for a 10'*-GeV particle.

It is interesting to ask, assuming that these processes
are the source of the observed asymmetry, how many
parameters which enter into the computation can be
measured? In other words, can we relate the observed
number to microphysics? It is likely that, over time,
many of the parameters of the light neutrino mass ma-
trices, including possible CP-violating effects, will be
measured (Gonzalez-Garcia and Nir, 2002). But while
these measurements determine some of the N; couplings
and masses, they are not, in general, enough. In order to
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make a precise calculation of the baryon number density
analogous to calculations of nucleosynthesis, one needs
additional information about the masses of the fields N;
(Pascoli et al., 2003). One requires either some other ex-
perimental access to this higher-scale physics, or a com-
pelling theory of neutrino mass in which the number of
parameters is reduced, perhaps by symmetries.

G. Baryogenesis through coherent scalar fields

We have seen that supersymmetry introduces new
possibilities for electroweak baryogenesis. But the most
striking feature of supersymmetric models, from the
point of view of baryogenesis, is the appearance of sca-
lar fields carrying baryon and lepton number. These sca-
lars offer the possibility of coherent production of bary-
ons. In the limit that supersymmetry is unbroken, many
of these scalars have flat or nearly flat potentials. They
are thus easily displaced from their minima in the highly
energetic environment of the early universe. We will of-
ten refer to such configurations as “excited.” Simple pro-
cesses can produce substantial amounts of baryons. This
coherent production of baryons, known as Affleck-Dine
baryogenesis, is the focus of the rest of this review.

lll. AFFLECK-DINE BARYOGENESIS
A. Arguments for coherent production of baryon number

In the previous section, we have reviewed several pro-
posals for baryogenesis. None can be firmly ruled out.
However, all but two seem unlikely: leptogenesis and
Affleck-Dine baryogenesis. While the discovery of neu-
trino mass gives support to the possibility of leptogen-
esis, there are a number of reasons to consider coherent
production:

e The Standard Model alone cannot explain the baryon
asymmetry of the universe, the main obstacle being
the large mass of the Higgs. One needs new physics
for baryogenesis. The requisite new physics may re-
side at a very high scale or at a lower scale. An in-
creasing body of evidence implies that inflation prob-
ably took place in the early universe. Hence
baryogenesis must have happened at or after reheat-
ing. To avoid overproducing weakly interacting light
particles, for example, gravitinos and other new states
predicted in theory, one would like the reheat tem-
perature not to exceed 10° GeV. This poses a prob-
lem for GUT baryogenesis. This also limits possibili-
ties for leptogenesis. Affleck-Dine baryogenesis, on
the other hand, is consistent with the low-energy and
temperature scales required by inflation.

e Supersymmetry is widely regarded as a plausible, el-
egant, and natural candidate for physics beyond the
Standard Model. Of the two simple scenarios for
baryogenesis in the MSSM, the electroweak scenario
is on the verge of being confirmed or ruled out by
constraints on supersymmetric particles imposed by
accelerator experiments.
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e The remaining low-reheat SUSY scenario, Affleck-
Dine baryogenesis, can naturally reproduce the ob-
served baryon asymmetry of the universe. The forma-
tion of an Affleck-Dine condensate can occur quite
generically in cosmological models.

e The Affleck-Dine scenario potentially can give rise si-
multaneously to the ordinary matter and the dark
matter in the universe. This can explain why the
amounts of luminous and dark matter are surprisingly
close to each other, within one order of magnitude. If
the two entities formed in completely unrelated pro-
cesses (for example, the baryon asymmetry from lep-
togenesis, while the dark matter from freezeout of
neutralinos), the observed relation Qpark~Qmatter 15
fortuitous.’

e Many particle physics models lead to significant pro-
duction of entropy at relatively late times (Cohen, Ka-
plan, and Nelson, 1993). This dilutes whatever baryon
number existed previously. Coherent production can
be extremely efficient, and in many models, it is pre-
cisely this late dilution which yields the small baryon
density observed today.

In the rest of this section, we discuss Affleck-Dine
baryogenesis in some detail.

B. Baryogenesis through a coherent scalar field

In supersymmetric theories, the ordinary quarks and
leptons are accompanied by scalar fields. These scalar
fields carry baryon and lepton number. A coherent field,
1.e., a field which has a large vacuum expectation value
(VEV), can in principle carry a large baryon number. As
we will see, it is quite plausible that such fields, also
called condensates, were excited in the early universe.

To understand the basics of the mechanism, we con-
sider first a model with a single complex scalar field. We
take the Lagrangian to be

L=19,¢>—m? $]*. (64)

This Lagrangian has a phase symmetry, ¢—e'®¢, and a
corresponding conserved current, which we will refer to
as baryon number:

JE=i(* I p—pi*¢*). (65)
It also possesses a “CP” symmetry:
P p*. (66)

With supersymmetry in mind, we will think of m as of
order My, .

If we focus on the behavior of spatially constant fields,
¢(x,t)= (1), this system is equivalent to an isotropic
harmonic oscillator in two dimensions. This remains the
case if we add higher-order terms which respect the
phase symmetry. In supersymmetric models, however,

An additional ad hoc symmetry can also help relate the
amounts of ordinary matter and dark matter (Kaplan, 1992).
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we expect that higher-order terms will break the symme-
try. In the isotropic oscillator analogy, this corresponds
to anharmonic terms breaking the rotational invariance.
With a general initial condition, the system will develop
some nonzero angular momentum. If the motion is
damped, so that the amplitude of the oscillations de-
creases, these rotationally noninvariant terms will be-
come less important with time.

Let us add interactions in the following way, which
will closely parallel what happens in the supersymmetric
case. We include a set of quartic couplings in the La-
grangian

Li=\|@|*+ ed>p* + 5¢* +c.c. (67)

These interactions clearly violate baryon number. For
general complex € and &, they also violate CP. In super-
symmetric theories, as we will shortly see, the couplings
Ned,... will be extremely small, O(M %V/Mi) or
O(M3, /M2 ).
GUT
In order that these tiny couplings lead to an appre-
ciable baryon number, it is necessary that the fields were
very large at some stage. To see how the cosmic evolu-
tion of this system can lead to a nonzero baryon number,
we first note that at very early times, when the Hubble
rate satisfies H>m, the mass of the field is irrelevant. It
is thus reasonable to suppose that at this early time ¢
has an expectation value ¢,>0; later we will describe
some specific suggestions as to how this might come
about. How does the field then evolve? First we ignore
the quartic interactions. In a gravitational background,
the equation of motion for the field is

(—lgh™"a,( =0, (68)

U
(—lgh g und b+ — o
where g, is the metric. For a spatially homogeneous
field ¢(7), in a Robertson-Walker background, this be-
comes

+3Hp+ — v =0 69
d+3HG+ =0, (69)
At very early times, H>m, and the system is highly
overdamped and essentially frozen at ¢=¢,. At this
point, B=0. However, once the universe has aged
enough that H<m, ¢ begins to oscillate. Substituting
H=1/2t or H=?2/3t for the radiation- and matter-
dominated eras, respectively, one finds that

%,7 sin(mt) (radiation)
¢= (70)

P
(mt)

In either case, the energy behaves as

sin(mt) (matter).

3
E~m2¢i(%) : (71)

where R(¢) is the scale factor in the Robertson-Walker
metric Eq. (2). This decreases like R>, as would the en-
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ergy of pressureless dust. One can think of this oscillat-
ing field as a coherent state of ¢ particles with momen-
tum p=0.

Now let us consider the effects of the quartic cou-
plings. Since the field amplitude damps with time, their
significance will decrease with time. Suppose, initially,
that ¢, is real. Then at early times the imaginary part ¢,
satisfies

Gi+3Hp,+m>p;~Im(e+ 6) >, (72)

in the approximation that € and & are small. Asymptoti-
cally, the right hand falls as ¢~ 2, whereas ¢, falls off
only as ¢~ 3. As a result, just as in our mechanical anal-
ogy, baryon-number (angular momentum) violation be-
comes negligible. The equation goes over to the free
equation, with a solution of the form

Im(e+ 5)¢
b= ,—2(—)m—sm(mt+5) (radiation),

Im(e+ &) ¢

b= mﬁt—sm(mt—i- 5,,) (matter), (73)

in the radiation- and matter-dominated cases, respec-
tively. The constants é,,, 6,, a,,, and a, can easily be
obtained numerically, and are of order unity:

a,=085, a,=085 &=-091, &,=154. (74)

But now we have a nonzero baryon number. Substi-
tuting Eq. (73) in the expression for the current, Eq.
(65), we find

¢ . -
ng=2a,Im(e+ 6) ———sin(S,+ w/8) (radiation),

m(mt)
2

%o ins 75
m(mn? sin(§,,,) (matter). (75)

Two features of these results should be noted. First, if
€ and 6 vanish or are real, np vanishes. It is remarkable
that the Lagrangian parameters can be real, and yet ¢,
can be complex, still giving rise to a net baryon number.
We will discuss plausible initial values for the fields later,
after we have discussed supersymmetry breaking in the
early universe. Finally, we should point out that, as ex-
pected, np is conserved at late times.

This mechanism for generating baryon number could
be considered without supersymmetry. In that case, it
begs several questions:

ng=2a,, Im(e+ 5)

e What are the scalar fields carrying baryon number?

e Why are the ¢* terms so small?

e How are the scalars in the condensate converted to
more familiar particles?

Supersymmetry provides a natural answer to each of
these questions. First, as we have stressed, there are sca-
lar fields carrying baryon and lepton number. As we will
see, in the limit that supersymmetry is unbroken, there
are typically directions in the field space in which the
quartic terms in the potential vanish. Finally, the scalar
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quarks and leptons will be able to decay (in a baryon-
and lepton-number conserving fashion) to ordinary
quarks.

C. Flat directions and baryogenesis

To discuss the problem of baryon-number generation,
we first want to examine the theory in a limit in which
we ignore the soft SUSY-breaking terms. After all, at
very early times, H>My,, and these terms are irrel-
evant. We want to ask whether in a model like the
MSSM, some fields can have large VEV’s. This requires
that there are directions in the field space for which the
potential is flat. Before considering the full MSSM, it is
again helpful to consider a simpler model, in this case a
theory with gauge group U(1), and two chiral fields, ¢*
and ¢~ with opposite charge. We assume the superpo-
tential simply vanishes. In this case the potential is

1
U=§(Dy)2, D¥=g(¢p™ "= *¢). (76)

But D”, and the potential, vanish if ¢*=¢ =a. It is
not difficult to work out the spectrum in a vacuum of
nonzero a. One finds that there is one massless chiral
field, and a massive vector field containing a massive
gauge boson, a massive Dirac field, and a massive scalar.

We now consider a somewhat more elaborate ex-
ample. Let us take the MSSM and give expectation val-
ues to the Higgs and the slepton fields of Egs. (46) and
(47):

Hu=( , le(g>. (77)

The F field of Eq. (42) vanishes in this direction, since
the potentially problematic H,L term in the superpo-
tential is absent by R parity. The other possible contri-
butions vanish because Q = H;;=0. It is easy to see that
the D term for hypercharge in Eq. (43) vanishes,

DY=g"*(|H,>=|L]>)=0. (78)

To see that the D term for SU(2) vanishes, one can work
directly with the Pauli matrices, or use instead the fol-
lowing device which works for a general SU(N) group.
Just as one defines a matrix-valued gauge field,

a

(A,)i=A%(T), (79)
one defines
(D);=D“(T");. (80)
Then, using the SU(N) identity,
) . 1 .
(TOHT)[ =867~ %41 - (81)

the contribution to (D)j’ from a field ¢ in the fundamen-
tal representation is simply

. . 1 .
(D)= ¢ ;= |4l (82)

In the present case, this becomes
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D)! jal” 0 12200 83
What is particularly interesting about this direction is
that the field carries a lepton number. As we have seen,
producing a lepton number is for all intents and pur-
poses like producing a baryon number.
Nonrenormalizable, higher-dimension terms with

more fields can lift the flat direction. For example, a
quartic term in the superpotential,

— ! 2
W= 37 (H,L)?, (84)

respects all of the gauge symmetries and is invariant un-
der R parity. It gives rise to a potential

CI)6

Unft=—Mz >

(85)
where @ is the superfield whose VEV parametrizes the
flat direction.

There are many more flat directions, and many of
these carry baryon or lepton number.!” An example of a
flat direction with both baryon and lepton number ex-
cited is the following:

First generation: Q%:b, u,=a, L,=b;
second: d,=\|b|*+al% third: d;=a. (86)

Here a and b are parameters, Q carries an upper color
index and a lower SU(2) index, and we have suppressed
the generation indices. It is straightforward to check that
this is indeed a flat direction. That the D terms vanish
for SU(2), SU(3), and U(1) follows from a calculation
similar to that in Eq. (83). The F terms also vanish:

ow 24
—Tabpya;p—
o, r*°Q“u”=0 and ot

The first follows since the u fields have their expectation
values in different “color slots” than the Q fields. The

second is automatically satisfied since the d and Q fields
have expectation values in different generations, and
these Yukawa couplings do not mix generations.

Higher-dimension operators again can lift this flat di-
rection. In this case the leading term is

=97Q%"=0. (87)

W= %[QlﬁLl][T?Eﬂ (88)

Here the superscripts denote flavor. We have suppressed
color and SU(2) indices, but the braces indicate sets of
fields which are contracted in SU(3)- and SU(2)-
invariant ways. In addition to being completely gauge
invariant, this operator is invariant under ordinary R
parity. Lower-dimension operators including operators
of dimension 4, can lift the flat direction but violate R
parity. It gives rise to a term in the potential

10The flat directions in the MSSM have been cataloged by
Gherghetta, Kolda, and Martin (1996).
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(I)IO

Uliftzm'

(89)
Here ® refers in a generic way to the fields whose VEV’s
parametrize the flat directions (a,b).

D. Evolution of the condensate

For the cosmologies we wish to consider, higher-
dimension operators are quite important despite the
powers of 1/M. During inflation, for example, such op-
erators can determine the initial value of the field, ®,.
Here again ® denotes in a generic way the fields which
parametrize the flat directions.

1. Supersymmetry breaking in the early universe

We have indicated that higher-dimension supersym-
metric operators give rise to potentials in the flat direc-
tions. To fully understand the behavior of the fields in
the early universe, we need to consider supersymmetry
breaking, which gives rise to additional potential terms.

We have indicated in Eq. (50) the sorts of
supersymmetry-breaking terms which we expect in su-
persymmetric theories. In the early universe, we expect
supersymmetry is much more badly broken. For ex-
ample, during inflation, the nonzero energy density as-
sociated with the cosmological constant breaks super-
symmetry. Suppose that / is the inflaton field, and that
the inflaton potential arises because of a nonzero value
of the auxiliary field for I, F;=dW/dl [see Eq. (42)]. F;
is an order parameter for supersymmetry breaking as
are the auxiliary fields for any field; this quantity is
roughly constant during inflation. So, during inflation,
supersymmetry is broken by a large amount (Dine, Ran-
dall, and Thomas, 1995). As a result, not surprisingly,
there can be an appreciable supersymmetry-breaking
potential of ®. These contributions to the potential have
the form!!

Uy=H*O*f(P*IM)), (90)

where H here is the Hubble rate. It is perfectly possible
for the second derivative of the potential near the origin
to be negative. In this case, we write our higher-
dimension term as

1
Wn:Mn

q)n+3, (91)

where n is some integer and M is the scale of new phys-
ics. The potential takes the form

1
M2n

U=—H?*®|>+ | |2 +4, (92)

'When supersymmetric theories are coupled to gravity, there
are corrections to Eq. (41). It also makes no sense to restrict
the Lagrangian to be renormalizable. The assumption that
nonrenormalizable couplings scale with M, leads to Eq. (90),
as explained in Dine, Randall, and Thomas (1995).
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The minimum of the potential then lies at

H /(n+1)
q)()%M )

i (93)

More generally, one can see that the higher the dimen-
sion of the operator which raises the flat direction, the
larger the starting value of the field—and the larger the
ultimate value of the baryon number. Typically, there is
plenty of time for the field to find its minimum during
inflation. After inflation, H decreases, and the field ®
evolves adiabatically, oscillating slowly about the local
minimum for some time.

Our examples illustrate that in models with R parity,
the value of n, and hence the size of the initial field, can
vary appreciably. With further symmetries, it is possible
that n is larger, and even that all operators which might
lift the flat direction are forbidden (Dine, Randall, and
Thomas, 1996). For the rest of this section we will con-
tinue to assume that the flat directions are lifted by
terms in the superpotential. If they are not, the required
analysis is different, since the lifting of the flat direction
is entirely associated with supersymmetry breaking.

2. Appearance of baryon number

The | 9W/o® |* term in the potential does not break
either baryon number or CP symmetry. In most models,
it turns out that the leading sources of B and CP viola-
tion come from supersymmetry-breaking terms associ-
ated with F,. These have the form'?

am3/2W+ bHW. (94)

Here a and b are complex, dimensionless constants. The
relative phase in these two terms, =tan '(ab*/|ab|),
violates CP. This is crucial; if the two terms carry the
same phase, then the phase can be eliminated by a field
redefinition, and we have to look elsewhere for possible
C P-violating effects. Examining Eqgs. (84) and (88), one
sees that these terms violate baryon and/or lepton num-
ber. In following the evolution of the field ®, the impor-
tant era occurs when H~ms,. At this point, the phase
misalignment of the two terms, along with the baryon-
number-violating coupling, leads to the appearance of a
baryon number. From the equations of motion, the time
rate of change of the baryon number is

dnB _ Sin(5)m3/2q)n+
a  M"

3, (95)

Assuming that the relevant time is H !, one is led to the
estimate (Dine, Randall, and Thomas, 1996)

——sin(8)P" "3, (96)
which is also supported by numerical studies. Here, ®,,

. . ,-\, . 2n+2_ 2 2n
is determined by H~m3,, ie., @) “=m3,M".

12Again, these arise from nonrenormalizable terms in the ef-
fective action (Dine, Randall, and Thomas, 1995).
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E. The fate of the condensate

Of course, we do not live in a universe dominated by
a coherent scalar field. In this section, we consider the
fate of a homogeneous condensate. The following sec-
tions will deal with inhomogeneities, and the interesting
array of phenomena to which they might give rise.

We have seen that a coherent field can be thought of
as a collection of zero-momentum particles. These par-
ticles are long lived, since the particles to which they
couple gain large mass in the flat direction. If there were
no ambient plasma or other fields, the condensate would
eventually decay. However, there are a number of ef-
fects which cause the condensate to disappear more rap-
idly, or to produce stable remnants. Precisely which is
most important depends on a number of factors. Among
the most important are the expansion rate, the dominant
form of energy during this epoch, and the amplitude of
oscillations.

It is impossible to survey all possibilities; indeed, it is
likely that all of the possibilities have not yet been imag-
ined. Instead, we will adopt the picture for inflation de-
scribed in the previous section. The features of this pic-
ture are true of many models of inflation, but by no
means all. We will suppose that the energy scale of in-
flation is E~10' GeV. We assume that inflation is due
to a field, the inflaton /. The amplitude of the inflaton,
just after inflation, we will take to be of order M,
~10'"® GeV, the so-called reduced Planck mass. Corre-
spondingly, we will take the mass of the inflaton to be
m;=10"2 GeV [so that m%(MI’,)sz“]. Correspond-
ingly, the Hubble rate during inflation is of order H;
~E*IM,~10" GeV.

After inflation ends, the inflaton oscillates about the
minimum of its potential, much like the field ®, until it
decays. We will suppose that the inflaton couples to or-
dinary particles with a rate suppressed by a single power
of the Planck mass. Dimensional analysis then gives for
the rough value of the inflaton lifetime:

m;

(M)’
The reheating temperature Ty can then be obtained by
equating the energy density at the time when H~1"; to

the energy density of the final plasma (Kolb and Turner,
1990):

Tr=T(t=T;")~(T;M})"*~10° GeV. (98)

The decay of the inflaton is actually not sudden, but
leads to a gradual reheating of the universe, as de-
scribed, for example, by Kolb and Turner (1990). The
temperature varies as a function of time as

T~[TRH ()M, ™. (99)

As for the field ®, our basic assumption is that it at-
tains a large value during inflation, in accord with Eq.
(93). When inflation ends, we assume that the inflaton
still dominates the energy density for a time, oscillating
about its minimum; the universe is matter dominated

r, ~1 GeV. (97)
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during this period. The field ® now oscillates about a
time-dependent minimum given by Eq. (93). The mini-
mum decreases in value with time. During this evolu-
tion, a baryon number develops classically. At H
~mj3p, the minimum of @ drops to zero and the baryon
number freezes.

Eventually the condensate will decay, through a vari-
ety of processes. As we have indicated, the condensate
can be thought of as a coherent state of ® particles.
These particles—linear combinations of the squark and
slepton fields—are unstable and will decay. However, for
H=m;;,, the lifetimes of these particles are much
longer than in the absence of the condensate. The rea-
son is that the fields to which ® couples have mass of
order @, and @ is large. In most cases, the most impor-
tant process which destroys the condensate is what we
might call evaporation: particles in the ambient thermal
bath can scatter off of the particles in the condensate,
leaving final states with only ordinary particles.

We can make a crude estimate for the reaction rate I,
as follows. Because the particles which couple directly to
® are heavy, interactions of ® with light particles must
involve loops. So we include a loop factor in the ampli-
tude, of order a3, the square of the running weak cou-
pling, equal to a3, at low mass scales. Because of the
large masses, the amplitude is suppressed by ®. Finally,
we need to square and multiply by the thermal density
of scattered particles. This gives

Fp~a§7ré(T§eHM)3/4. (100)
The condensate will evaporate when this quantity is of
order H. Since we know the time dependence of @, we
can solve for this time. One finds that equality occurs for
H;~10>—10° GeV, if n=1. In other words, for the case
n=1, the condensate evaporates shortly after the baryon
number is created. For n in the range 4>n>1, the
evaporation occurs significantly later but before the de-
cay of the inflaton. For n=4, a slightly different analysis
is required than that which follows.

The expansion of the universe is unaffected by the
condensate as long as the energy density in the conden-
sate, p¢~mé¢2, is much smaller than that of the infla-
ton, p;~H>M?. Assuming that the ® mass satisfies m4
~m3p~0.1-1TeV, a typical supersymmetry breaking
scale, one can estimate the ratio of the two densities at
the time when H~ms), as

p_‘I)N m3/2) 2/(n+1)

Pr Mp

We are now in a position to calculate the baryon-to-
photon ratio in this model. Given our estimate of the
inflaton lifetime, the coherent motion of the inflaton still
dominates the energy density when the condensate
evaporates. The baryon number is the ® energy density
just before evaporation divided by m 4, (assumed to be of
order msp,), while the inflaton number is p;/M;. So the
baryon-to-inflaton ratio follows from Eq. (101). With the

(101)
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assumption that the inflaton energy density is converted
to radiation at the reheating temperature 7y, we obtain

mp__na maTrpe

n, (pi/Tr) ne me p;
10_10 TR )( M]/))(n—l)/(n+1)
- 10° GeV/\ms, '

(102)

Clearly the precise result depends on factors beyond
those indicated here explicitly, such as the precise mass
of the ® particle(s). But as a rough estimate, it is rather
robust. For n=1, it is in precisely the right range to ex-
plain the observed baryon asymmetry. For larger n, it
can be significantly larger. While this may seem disturb-
ing, it is potentially a significant virtue. Many supersym-
metric models lead to creation of entropy at late times.
For example, in string theory one expects the existence
of other light fields (m~m3p,), known as moduli. These
fields cause cosmological difficulties (Coughlan et al.,
1983), unless they reheat the universe to temperatures of
order 10 MeV when they decay. Afterward nucleosyn-
thesis can occur. These decays produce a huge amount
of entropy, typically increasing the thermal energy of the
universe by a factor of 10”. The baryon density is diluted
by a corresponding factor. So in such a picture, it is nec-
essary that the baryon number, prior to the moduli de-
cay, should be of order 103, This is not the only cosmo-
logical model which requires such a large baryon
number density.

There are many issues in the evolution of the conden-
sate which we have not touched upon. One of the most
serious is related to interactions with the thermal bath
(Allahverdi, Campbell, and Ellis, 2000; Anisimov and
Dine, 2001). In the case n=1, the potential minimum ®,,
is not so large. The particles which ® couples acquire a
mass of order @, and they may be in chemical equilib-
rium. In this case, the ® particles decay much earlier.
This typically leads to significant suppression of the
asymmetry, and the viability of the Affleck-Dine mecha-
nism depends on the precise values of the parameters.

Overall, then, there is a broad range of parameters for
which the Affleck-Dine mechanism can generate a value
for ng/n, equal to or larger than that observed. This
baryon number is generated long after inflation, so infla-
tionary reheating does not provide any significant con-
straint. It can be large, allowing for processes which
might generate entropy rather late.

F. Inhomogeneities and the condensate

We have so far assumed that the condensate is homo-
geneous. But, as we will now show, under some circum-
stances the condensate is unstable to fragmentation.
This appears to be related to another feature of theories
with scalars: the possible existence of nontopological
solitons. These can alter the picture of baryon-number
generation, and could conceivably be dark matter candi-
dates.
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1. Stability and fragmentation

To analyze the stability of the condensate (Kusenko
and Shaposhnikov, 1998), we write its field ¢=pe’® in
terms of its radial component p and a phase (), both real
functions of space-time. We are interested in the evolu-
tion of the scalar field in the small-VEV domain, where
the baryon-number-violating processes are suppressed.
We will also assume that the scalar potential preserves
U(1) symmetry, depending only on the modulus of ¢,
U(¢)=U(p). We determine the classical equations of
motion in the time-dependent spherically symmetric
metric ds*=dt*—a®(t)dr?, where a(t) is the scale fac-
tor. From Eq. (68) we obtain the following dynamic
equations for ) and p:

. Sl 25, 2
O+3HO— 5 V20+=0- —5-VQ-Vp=0, (103)
a p ap

I, . 1 , U
p+3Hp— —Vp—Q%p+ —|VQ|?p+ —=0. (104)
a a ap
The Hubble rate, again, is H=d/a; it is equal to 2B or
t~12 for a matter- or radiation-dominated universe, re-
spectively.
From the equations of motion (103) and (104), one
can derive the equations for small perturbations &) and
op:

) . 2
50+3H50 - ——V250+ -2 50
a“(1) p
20 . 2pQ
+75p——pz—5p:0, (105)

. 1 o .
5p+3H5p—mV25p—2p950+ U"sp—Q%8p=0.
(106)

To examine the stability of a homogeneous solution
o(x,t)= @(I)Ep(t)e’m‘), let us consider a perturbation
8p, 8QoceS = and look for growing modes, Re a0,
where a=dS/dt. The value of k is the spectral index in
the comoving frame and is redshifted with respect to the

physical wave number k =k/a(¢) in the expanding back-
ground. Of course, if an instability develops, the linear
approximation is no longer valid. However, we assume
that the wavelength of the fastest-growing mode sets the
scale for the high and low density domains that eventu-
ally evolve into Q balls (defined below). This assump-
tion can be verified a posteriori by comparison with a
numerical solution of the corresponding partial differen-
tial equations (103) and (104), where both large and
small perturbations are taken into account.

The dispersion relation follows from the equations of
motion:
k2

2p :
a2+3Ha+—2+—pa
a p

k .
a’>+3Ha+ ?—Qz—i- U"(p)

+402 a—2]a=0. (107)
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FIG. 5. (Color in online edition) The charge density per co-
moving unit volume in (1+1) dimensions for a sample poten-
tial analyzed numerically during the period when the spatially
homogeneous condensate breaks up into high- and low-density
domains. Two domains with high charge density are expected
to form Q balls.

If [A2—U"(p)]>0, there is a band of growing modes
that lies between the two zeros of a(k), 0<k<k
where

max »

kmax(t):a(t) \/Qz_ U”(p),

(108)

This simple linear analysis shows that when the con-
densate is “overloaded” with charge, that is, when

w(t)=Q is larger than the second derivative of the po-
tential, an instability develops. Depending on how
k max(?) varies with time, the modes in the bands of in-
stability may or may not have time to develop fully.

Numerical analyses (Kasuya and Kawasaki, 2000a,
2000b, 2001; Enqvist et al., 2001), which can trace the
evolution of unstable modes beyond the linear regime,
have shown that fragmentation of the condensate is a
generic phenomenon (see Fig. 5). Numerically one can
also study the stability of rapidly changing solutions,
hence relaxing the adiabatic assumption made above.
This aspect is relevant to the cases where the baryon
number density is small and the radial component of the
condensate p(t) exhibits an oscillatory behavior, chang-
ing significantly on small time scales. An interesting fea-
ture of this nonadiabatic regime is that both baryon and
antibaryon lumps may form as a result of fragmentation
(Engqvist et al., 2001).

2. Lumps of scalar condensate: Q balls

The most familiar soliton solutions of nonlinear field
theories, such as magnetic monopoles and vortices, can
be uncovered by topological arguments. However, field
theories with scalar fields often admit nontopological
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solitons,'® called Q balls, which may be stable or may
decay into fermions (Cohen, Coleman, Georgi, and
Manohar, 1986). Q balls appear when a complex scalar
field ¢ carries a conserved charge with respect to some
global U(1) symmetry. In supersymmetric extensions of
the Standard Model, squarks and sleptons carry the con-
served baryon and lepton numbers, and can form Q
balls.

Let us consider a field theory with a scalar potential
U(¢) which has a global minimum U(0)=0 at ¢=0. Let
U(¢) have an unbroken global U(1) symmetry at the
global minimum, depending only on the modulus of .
We will look for solutions of the classical equations by
minimizing the energy

Ezf d*x

subject to the constraint that the configuration has a
definite charge Q,

1 .12 1 2
el + 5 [Vel*+ Ule) (109)

1 -«
Q:Ei[¢W¢—ag¢d%. (110)
To describe the essential features of Q balls in a
simple way, we will follow Coleman (1985) and use a
thin-wall ansatz for the Q ball,

o(x,1)=e"P(x),

where ¢ is the step function of height ¢, extending out
to a radius R,

0, |X|>R
bo. |¥[<R.

For the real solution, the field varies rapidly between the
two regions, changing on a scale of order the Compton
wavelength of the ¢ particle.

Assuming that Q is large, let us neglect the gradient
terms which are relevant only for the wall energy. Then
the global charge and the energy of the field configura-
tion (111) and (112) are given by

(111)

(%)= (112)

Q=wgV, (113)
where V is the volume V= (4/3)7R>, and
E=lﬁ¢%u4ﬂ¢)vzlfzfﬂaﬂ¢y (114)
y 0, V=3V 0

We now minimize E with respect to V, obtaining

2U(¢,)
SN

o

(115)

BFor general references, see Rosen (1968a, 1968b); Fried-
berg, Lee, and Sirlin (1976); Coleman (1985); Lee and Pang
(1992). For additional references on Q balls, see Kusenko
(1997b); Dvali, Kusenko, and Shaposhnikov (1998); Multa-
maki and Vilja (2000, 2002); Correia and Schmidt (2001);
Hisano et al. (2001); Multamaki (2001); Allahverdi et al.
(2002).
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It remains to minimize the energy with respect to varia-
tions of ¢,. A nontrivial minimum exists as long as

(116)

If this condition is satisfied, a Q-ball solution exists.

We made a number of assumptions above. These as-
sumptions can be avoided in a slightly more involved
derivation using the method of Lagrange multipliers
(Kusenko, 1997a). We want to minimize

U(g)/ ¢*=min, for ¢=¢,>0.

1 ..
Eo=E+w Q—Zf ©*(d,—d) e d’x|, (117)

where w is a Lagrange multiplier. We will see below that

w={). Variations of ¢(x,t) and those of w can now be
treated independently, the usual advantage of the
Lagrange method.

One can rewrite Eq. (117) as

g =f d3xl igo—iaxp 2+J d3x l|V<,o|2+U ((p)}
© 2 |ot 2 @
twQ, (118)
where
. 1
Uu(@)=Ule)~ 5 0” ¢*. (119)

We are looking for a solution that extremizes &, , while
all the physical quantities, including the energy E are
time independent. Only the first term in Eq. (118) ap-
pears to depend on time explicitly, but it is positive defi-
nite and hence it should vanish at the minimum. To
minimize this contribution to the energy, one must
therefore require

e(x,0)=e""¢(x), (120)
where ¢(x) is real and independent of time. We have
thus derived Eq. (111). For this solution, Eq. (110) yields

Q=wf o*(x)d’x. (121)

It remains to find an extremum of the functional

5w:f d>x

with respect to w and the variations of ¢(x) indepen-
dently. We can first minimize &, for a fixed w, while
varying the shape of ¢(x). If this were an actual poten-
tial for a scalar field in three dimensions, one would
have the possibility of tunneling between the zero-
energy configuration at the origin and possible lower en-
ergy configurations at nonzero ¢. Tunneling, in the semi-
classical approximation, is described by the bounce
¢,(x), the solution of the classical equations which as-
ymptotically approaches the “false vacuum” at the ori-
gin (Callan and Coleman, 1977; Coleman, 1977). The
first term in Eq. (122) is nothing but the three-
dimensional Euclidean action S5[¢,(x)] of this bounce
solution. This is a very useful correspondence. In par-
ticular, the condition for the existence of a solution is

1 X
FIVe@)P+ULe(0)]|+00,  (122)
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simply a corollary: as long as U,(¢) has a minimum
below zero, the bounce exists, and so does the Q ball,
o (x,0)=e g (x).

The bounce, and hence the Q ball, exist if there exists
a value of o for which the potential U,(¢) has both a
local minimum at ¢=0 and a global minimum at some
other value of ¢. This condition can be rephrased with-
out reference to w and is identical to the condition (116)
found in the thin-wall approximation. The correspond-

ing effective potential is Uwo(go), where  w

=\/2U(goo)/g002. The potential has two degenerate
minima, at ¢=0 and ¢=¢,. The existence of the

bounce solution ¢, (x) for wy<w<U"(0) follows from

the fact that U,(¢) has a negative global minimum in
addition to the local minimum at the origin (Coleman,
1977; Coleman et al., 1978). Coleman et al. (1978) also
showed that the solution is spherically symmetric: ¢(X)
=o(r). r=3l.

The soliton we want to construct is precisely this
bounce at the value of w that minimizes £,. The last
step is to find an extremum of

Eo=83[0u(X) ]+ 00 (123)

with respect to w, which can be proven to exist
(Kusenko, 1997a). Finally, the soliton is of the form
(120), with o that minimizes &, in Eq. (123).

Having obtained the solution, one can compute its en-
ergy or mass. For a finite ¢, in Eq. (116), in the limit of
large O, the Q ball has a thin wall, and its mass is given
by

M(Q)=wQ. (124)

As discussed earlier, supersymmetric extensions of the
Standard Model have scalar potentials with flat direc-
tions lifted only by supersymmetry breaking terms. Q
balls may form with a light scalar field ¢ that corre-
sponds to that flat direction. If the potential is constant
for large ¢, U(¢) = Uy=const, the minimum in Eq. (116)
is achieved for ¢y=0. In this case,

M(Q)=Uy*0*. (125)

More generally, if the potential grows slower than ¢?,
ie., U(g)x¢P, p<2, condition (116) is not satisfied at
any finite value of ¢,, and

M(Q)~Uy* QB PPI4=p), (126)

It is important in what follows that the mass per unit
charge is not a constant, but is a decreasing function of
the total global charge Q. There is a simple reason why
the soliton mass is not proportional to Q. Since
U(¢)/¢* has no minimum in the supersymmetric theo-
ries, the scalar VEV can grow as far as the derivative
terms allow it. When the next unit of charge is added,
the Q ball increases in size, which allows the scalar VEV
to increase as well. Hence the larger the charge, the
greater is the VEV, and the smaller is energy per unit
charge.
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3. Affleck-Dine Q balls

The condition (116) suggests that slowly growing po-
tentials, of the sort that arise in the flat directions of the
MSSM, are likely sources of Q balls. Q balls can de-
velop along flat directions that carry nonzero baryon
number, lepton number, or both. Each flat direction can
be parametrized by a gauge-invariant field carrying
these global quantum numbers. So the discussion of
gauge singlet fields of the previous section also applies
to baryonic and leptonic Q balls in the MSSM. This
statement may seem surprising, since all scalar baryons
in the MSSM transform nontrivially under the gauge
group. Although scalars with gauge interactions can also
make Q balls (Lee et al., 1989), in the case of the MSSM
the color structure of large Q balls is rather simple
(Kusenko, Shaposhnikov, and Tinyakov, 1998). If a
Q-ball VEV points along a flat direction, its scalar con-
stituents form a colorless combination (otherwise, that
direction would not be flat because of nonvanishing D
terms).

In one proposal for the origin of supersymmetry
breaking, “gauge-mediated” supersymmetry breaking,
the flat directions are lifted by potentials which grow
quadratically for small values of the fields, and then
level off to a logarithmic plateau at larger ¢ (Guidice
and Rattazzi, 1999). Q balls in such a potential have
masses given by Eq. (125). In another proposal,
“gravity-mediated” SUSY breaking, the potentials
which arise from supersymmetry breaking grow roughly
quadratically even for very large VEV (Nilles, 1984).
See the review by Dine, Randall, and Thomas (1996) for
further details. Whether Q balls exist is thus a detailed,
model-dependent question. Q balls in these potentials
have masses proportional to the first power of Q.

By construction, Q balls are stable with respect to de-
cay into scalars. However, they can decay by emitting
fermions (Cohen, Coleman, Georgi, and Manohar,
1986). If the Q ball has zero baryon number, it can decay
by emitting light neutrinos (Cohen, Coleman, Georgi,
and Manohar, 1986). However, if a baryonic Q ball,
called a B ball, develops along a flat direction, it can also
be stable with respect to decay into fermions. Stability
requires that the baryon number be large enough that
the mass of the Q ball My is below the mass of B sepa-
rated baryons. For a Q ball in a flat potential of height
M, the mass per unit baryon number has the order of
magnitude

(127)

Models of gauge-mediated supersymmetry breaking
produce flat potentials with M ¢~1—10 TeV. If the mass
per baryon number is less than the proton mass m,,
then the Q ball is entirely stable because it does not
have enough energy to decay into a collection of nucle-
ons with the same baryon number. This condition trans-
lates into a lower bound on Qp:

M(Qp)

B

4
<1 GeV=Qg> ) =101, (128)

S
1 GeV
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To make contact with observational bounds, we will
also need the radius of the Q ball (Arafune et al., 2000),

1
R= s o (129)

4. Dark matter in the form of stable B balls

Stable Q balls that form from an Affleck-Dine con-
densate are a viable candidate for dark matter. Even if
they are unstable, their decay can produce neutralinos at
late times, when these neutralinos are out of equilib-
rium. One way or another, some dark matter can arise
from Affleck-Dine baryogenesis. Moreover, since both
the ordinary matter and the dark matter have the same
origin in the Affleck-Dine scenario, one can try to ex-
plain why their amounts in the universe are comparable
(Laine and Shaposhnikov, 1998; Enqvist and McDonald,
1999; Banerjee and Jedamzik, 2000; Fujii and Yanagida,
2002). Of the other dark-matter candidates that have
been considered, most were weakly interacting particles,
and for good reason. If dark-matter particles have strong
(relative to their mass) interactions with matter, these
interactions might facilitate their loss of momentum and
angular momentum, forcing them into the galactic disks,
along with ordinary matter. But astronomical observa-
tions show that the dark matter forms spherical halos
about galaxies, not disks.

These Q balls are made of squarks and interact
strongly with ordinary matter via QCD. However, if they
are as heavy as the calculations show they are, the strong
interactions are not enough to force dark-matter Q balls
to settle into the galactic disks. Analyses of Q-ball for-
mation and partial evaporation allow one to relate the
amounts of ordinary matter and dark matter. The ob-
served ratio corresponds to Q balls with baryon number
of about 10%°*2 which is in agreement with the expected
Q-ball size from numerical simulations (Kasuya and Ka-
wasaki, 2000a, 2001), as well as with the current experi-
mental bounds summarized by Arafune et al. (2000) (see
Fig. 6). A B ball with baryon number 10 is so heavy
that it could pass through ordinary stars with only a
small change in its velocity [(Sv/v)~10"°]. Hence de-
spite the strong interactions, B balls make a good dark-
matter candidate.

Since B balls have lower mass-to-baryon ratio than
ordinary nuclear matter, interactions of B balls with or-
dinary matter result in numerous events with energy re-
leases similar to proton decays (Kusenko, Kuzmin,
Shaposhnikov, and Tinyakov, 1998). Hence a Q ball
passing through a detector would produce a spectacular
signature. However, the flux is very low, and the stron-
gest limits come from the largest detectors, e.g., Super-
Kamiokande (see Fig. 6). Some astrophysical bounds
have been considered (Kusenko, Shaposhnikov, Tinya-
kov, and Tkachev, 1998) but they do not yield very
strong constraints. In addition to the existing limits dis-
cussed in Arafune et al. (2000), future experiments, such
as ANTARES, Ice Cube, etc., may be able to detect
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FIG. 6. Limits on neutral dark-matter Q balls from large detector searches (Arafune et al., 2000). The excluded parameter space
is shown in dark as a function of the Q-ball charge and the supersymmetry-breaking scale M g. The authors assume an interaction
cross section o~ R? [see Eq. (129)], and a flux consistent with the observed dark-matter density. The experiments shown are OA
(Niessen et al., 1999), TA (Scari, 1999), and Super-Kamiokande. The older experiments BAKSAN (Alexeyev et al., 1982) and
Kamiokande (Kajita et al., 1985) give limits that are inside the Super-Kamiokande boundaries.

dark-matter B balls, or rule out the values of Q that
correspond to the observed amount of dark matter.

We note that, although Q balls are always present in
the spectrum of any SUSY extension of the Standard
Model, their production in the early universe requires
the formation of an Affleck-Dine condensate followed
by its fragmentation. Stable Q balls are too large to
form in thermal plasma by accretion (Griest and Kolb,
1989; Postma, 2002). In this sense, an observation of
stable dark-matter Q balls would be evidence of the
Affleck-Dine process.

5. Dark matter from unstable B balls

If supersymmetry breaking is mediated by gravity, Q
balls are not stable since they can decay into fermions.
However, Q-ball decay into fermions is a slow process
because the fermions quickly fill up the Fermi sea inside
the Q ball, and further decays are limited by the rate of
fermion evaporation through the surface. The rate of
Q-ball decay is therefore suppressed compared to that
of free scalar particles by the surface-to-volume ratio
(Cohen, Coleman, Georgi, and Manohar, 1986). In a
typical model, unstable baryonic Q balls from the
Affleck-Dine condensate decay when the temperature is
as low as a GeV.

The lightest supersymmetric particles (LSP) are
among the decay products of Q balls. B balls can decay
and produce dark matter in the form of neutralinos at a
time when they are out of equilibrium (Enqvist and Mc-
Donald, 1998a, 1998b, 1999; Fujii and Hamaguchi,
2002a). This presents another possibility for producing
dark matter from the Affleck-Dine condensate and re-
lating its abundance to that of ordinary matter. The re-
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quirement that neutralinos not overly close the universe
constrains the parameter space of the MSSM (Fujii and
Hamaguchi, 2002a, 2002b).

If the LSP’s do not annihilate, the ratio of ordinary
matter to dark matter is simply (Enqvist and McDonald,
1999)

mp

Qmatter/QLSPMf_l(_) (n_B) > (130)

myj\ 1y

where m, and n, are the mass and number density of
the LSP, and f is the fraction of the condensate trapped
in Q balls. If f~1073, this ratio is acceptable.
However, numerical simulations (Kasuya and Ka-
wasaki, 2000a) and some analytical calculations (Mc-
Donald, 2001) indicate that, in a wide class of Affleck-
Dine models, practically all the baryon number would
be trapped in Q balls, that is f~1. If that is the case, the
LSP would overly close the universe, according to Eq.
(130). A solution, proposed by Fujii and Hamaguchi
(2002a, 2002b), is to eliminate the unwanted excess of
neutralinos by using an LSP with a higher annihilation
cross section. The LSP in the MSSM is an admixture of
several neutral fermions. Depending on the parameters
in the mass matrix, determined largely by the soft SUSY
breaking terms, the LSP can be closely aligned with the
bino [one of the SUSY partners of the SU(2)XU(1)
gauge bosons], the Higgsino (the fermion counterpart of
the Higgs boson), or with one of the other weak eigen-
states. The traditional freezeout scenario for LSP pro-
duction favors the binolike LSP (Jungman, Kamion-
kowski, and Griest, 1996). However, according to Fujii
and Hamaguchi (2002a, 2002b), SUSY dark matter pro-
duced from the Affleck-Dine process has to be in the
form of a Higgsino-like LSP (see Fig. 7). In this case, the
ratio of matter densities is (Fujii and Yanagida, 2002)
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FIG. 7. (Color in online edition) The allowed range of param-
eters for nonthermal LSP dark matter from the Affleck-Dine
process is very different from that in the standard freezeout
case. The shaded region above the solid lines represents al-
lowed parameters for nonthermal LSP dark matter in the mini-
mal supergravity model with tan f=40; m,,, is the gaugino
mass (Fujii and Hamaguchi, 2002a, 2002b).
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Scp, (131)

2
m
Qmatter/ Qrsp= 1034( (D—1)
(ov),

where 6cp~0.1 is the effective CP violating phase of the
Affleck-Dine condensate. For a Higgsino-like LSP,
which has an annihilation rate constant (ov),
~10" -8 GeV~2, this yields an acceptable result.

There are important implications for both direct dark
matter searches and the collider searches for SUSY.
First, the parameter space of the MSSM consistent with
LSP dark matter is very different, depending on whether
the LSP’s froze out of equilibrium (Arnowitt and Dutta,
2002) or were produced from the evaporation of
Affleck-Dine B balls (Fujii and Yanagida, 2002). Sec-
ond, Higgsino and bino LSP’ interact differently with
matter, so the sensitivity of direct dark-matter searches
also depends on the type of the LSP.

If supersymmetry is discovered, one will be able to
determine the properties of the LSP experimentally.
This will in turn provide some information on the how
the dark-matter SUSY particles could be produced. The
discovery of a Higgsino-like LSP would be evidence in
favor of Affleck-Dine baryogenesis.

IV. CONCLUSIONS

The origin of the matter-antimatter asymmetry is one
of the great questions in cosmology. Yet we can obtain
only limited information about the events which gave
rise to the baryon asymmetry by looking at the sky. Fill-
ing out the picture requires a deeper understanding of
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FIG. 8. (Color in online edition) Fate of the Affleck-Dine con-
densate. The Affleck-Dine condensate may decay perturba-
tively and produce baryons. Depending on the mode of super-
symmetry breaking, the condensate may fragment into Q balls.
If the O balls are stable, they contribute to the present dark
matter. If they are unstable, they produce additional baryons,
as well as dark matter in the form of LSP’.

fundamental physical law. One elegant possibility, that
the Standard Model produced the baryon number near
the electroweak scale, is ruled out decisively by the LEP
bounds on the Higgs mass. This is a bittersweet conclu-
sion: while one has to give up an elegant scenario, it
would be perhaps the strongest evidence yet for physics
beyond the Standard Model—a precursor of future dis-
coveries.

Supersymmetry is widely regarded as a prime candi-
date for such new physics. Theoretical arguments in fa-
vor of supersymmetry are based on the naturalness of
the scale hierarchy, the success of coupling unification in
supersymmetric theories, and the nearly ubiquitous role
of supersymmetry in string theory. The upcoming LHC
experiments will put this hypothesis to a definitive test.
If low-energy supersymmetry exists, there are several
ways in which it might play the crucial role in baryogen-
esis. It could conceivably revive the electroweak baryo-
genesis scenario. However, the phase transition in the
MSSM is only slightly stronger than that in the Standard
Model; a noticeable improvement forces one into a nar-
row corner of the MSSM parameter space, which may
soon be ruled out.

But supersymmetry opens a completely new and natu-
ral avenue for baryogenesis (see Fig. 8). If inflation took
place in the early universe, for which we have an in-
creasing body of evidence, then formation of an Affleck-
Dine condensate and subsequent generation of some
baryon asymmetry is natural. In a wide class of models
this process produces the observed baryon asymmetry.
Perhaps more striking is that the process can lead to
very large baryon asymmetries. This may be important
in many cosmological proposals where one produces
substantial entropy at late times.

Finally, the Affleck-Dine process can produce dark
matter, either in the form of stable SUSY Q balls, or in
the form of a thermally or nonthermally produced LSP’s.
There are hints that the comparable magnitudes of mat-
ter and dark-matter densities may find its explanation in
the same process as well. If supersymmetry is discov-
ered, given the success of inflation theory, the Affleck-
Dine scenario will appear quite plausible.
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Other indications that the Affleck-Dine process took
place in the early universe may come from detection of
dark matter. One of the great attractions of supersym-
metry is that it can naturally account for the dark matter.
The lightest supersymmetric particle (LSP) is typically
stable, and is produced with an abundance in the needed
range if the supersymmetry-breaking scale is of order of
hundreds of GeV. Its precise contribution to the energy
density of the universe depends on its annihilation cross
section and mass. A combination of accelerator limits
and cosmology presently permits LSP dark matter for a
range of parameters. In this range, the LSP, which is an
admixture of several states, must be principally bino if it
is produced in the standard freezeout scenario. How-
ever, if experiments determine that the LSP is primarily
a Higgsino, this kind of dark matter could only arise
from nonthermal production of the LSP from a frag-
mented Affleck-Dine condensate (Fujii and Hamaguchi,
2002a, 2002b; Fujii and Yanagida, 2002). Therefore, al-
though a standard binolike LSP is not inconsistent with
the Affleck-Dine scenario, a Higgsino-like LSP would
provide a strong evidence in its favor. Likewise, a detec-
tion of stable baryonic Q balls would be a definitive
confirmation that an Affleck-Dine condensate formed in
the early universe and fragmented into B balls. Since
stable SUSY Q balls must be large, we know of no other
cosmological scenario that could lead to their formation.

Among other possibilities for baryogenesis, leptogen-
esis is also quite plausible. The discovery of neutrino
mass, perhaps associated with a rather low scale of new
physics, certainly gives strong support to this possibility.
The questions of what scales for this physics might be
compatible with inflation, and what implications this
might have for the origin of neutrino mass are extremely
important. Some pieces of the picture will be accessible
to experiment, but many of the relevant parameters, in-
cluding the relevant CP violation, reside at a very high
scale. Perhaps, in a compelling theory of neutrino flavor,
some of these questions can be answered.

Future experimental searches for supersymmetry,
combined with the improving cosmological data on
CMBR and dark matter, will undoubtedly shed further
light on the origin of baryon asymmetry and will provide
insight into both particle physics and cosmology. The
study of the baryon asymmetry has already provided a
compelling argument for new physics, and holds great
promise of new and exciting discoveries in the future.
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