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Origin of the open-circuit voltage in multilayer heterojunction organic solar
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From temperature dependent studies of pentacene/Cg, solar cells in the dark, the reverse saturation
current is found to be thermally activated with a barrier height that corresponds to the difference in
energy between the highest occupied molecular orbital of the donor and the lowest unoccupied
molecular orbital of the acceptor corrected for vacuum level misalignments and the presence of
charge-transfer states. From the reverse saturation current in the dark and the short-circuit current
under illumination, the open-circuit voltage can be predicted. Examination of several donor
materials supports the relationship between reverse saturation current, this barrier height, and
open-circuit voltage. © 2008 American Institute of Physics. [DOI: 10.1063/1.3027061 ]

Organic photovoltaic devices have been the subject of
intense research in recent years due to their potential to lead
to a new generation of low-cost portable power sources with
highly flexible form factors. Despite significant advances, the
power conversion efficiency of organic solar cells remains
rather small with maximum values in the range of 5%—6%.
In order to compete with other thin-film technologies, it is
critical that progress is made toward increasing the perfor-
mance of organic photovoltaic cells. A critical factor, which
remains the subject of active research, is the understanding
of the physical processes that determine the open-circuit
voltage in organic solar cells. Recent studies in small mol-
ecule multilayer heterOJunctlon devices'? and in polymeric
bulk heter0]unct10ns ¥ have confirmed that the magnitude of
the open-circuit voltage correlates with the energy difference
between the highest occupied molecular orbital (HOMO)
level (also approximated to the ionization potential) of the
donor and the lowest unoccupied molecular orbital (LUMO)
level (also approximated to the electron affinity) of the ac-
ceptor molecules that form the multilayer or bulk heterojunc-
tion, provided that good electrical contacts are formed be-
tween the electrodes and the organic layers.g’10

Here, we report on temperature dependent studies of the
reverse saturation current in multilayer organic solar cells
based on the well-known pentacene/Cy, heterojunction.”f13
We find that its magnitude is thermally activated with an
activation energy ¢p, which is related to the energy differ-
ence AEy; between the HOMO of the donor and the LUMO
of the acceptor before heterojunction formation. By combin-
ing this result with the expression of the open-circuit voltage
derived from the Shockley equivalent circuit of solar cells,
an analytical expression of the open-circuit voltage is pro-
posed. To test the predictive capabilities of the proposed
model, values of ¢y and open-circuit voltage are calculated
for different multilayer heterojunction devices, in which the
energy difference AEy; is varied by using donor molecules
with different HOMO energies [pentacene, copper phthalo-
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cyanine (CuPc), and titanyl phthalocyanine (TiOPc)] com-
bined with the acceptor molecule Cq,. Good agreement is
found between the measured and calculated values of the
open-circuit voltage and reverse saturation current densities.

All of the devices were fabricated by vacuum thermal
evaporation onto cleaned indium tin oxide (ITO) substrates.
The layer thicknesses of the three solar cells studied here
along with the HOMO levels of the donors are as follows:
ITO/pentacene (45 nm, 5.0 eV)/Cgy (50 nm)/BCP (8 nm)/Al,
ITO/CuPc (15 nm, 5.3 eV)/Cg, (50 nm)/BCP (8 nm)/Al, and
ITO/TiOPc (20 nm, 54 ¢eV)/Cq (40 nm)/BCP (10
nm)/AL'"*"'® Details of the fabrication and testing of the
TiOPc and pentacene devices can be found in Refs. 2 and 11,
respectively. The CuPc devices were produced and tested
with the same procedures as the pentacene devices. The
chemical structures and basic device geometry are shown in
Fig. 1. Temperature dependent measurements were made
by placing the pentacene device in a copper holder in contact
with a thermoelectric cooler/heater used to control the
temperature.

As with conventional p-n solar cells, an organic photo-
voltaic device can be described by a Shockley equivalent
circuit, and the current-voltage characteristic can be approxi-
mated by

1 V-JRA
=——Jopyexp|l ——— | -1
1 +Ry/Rp nkTle
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(Jﬂﬂ W

where e denotes the elementary charge, kT the thermal en-

CCCC il
Pentacene BCP
Qe Qe 2
Ny 0T Donor
&\J\b SPe @ ITO
CuPc TIOPC Glass

FIG. 1. Chemical structures of the materials used in the devices with a basic
schematic of the device geometry.

© 2008 American Institute of Physics
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FIG. 2. Experimental J-V characteristics of solar cells with an acceptor layer
of Cg, and a donor layer of either pentacene (circles), CuPc (squares), or
TiOPc (triangles) both in the dark (empty shapes) and under illumination
(filled shapes). Solid lines are fits to the experimental data in the dark using
the equivalent circuit model and the parameters in Table I.

ergy, A the area of the cell, n the ideality factor of the diode,
Jo the reverse saturation current density, J;, the photocurrent,
and Rg and Rp the series and shunt resistance,
respectively.'”'® From Eq. (1), the following simplified ex-
pressions can be derived for the open-circuit voltage V!

kT J. Vi
Voczl’l_ln l+lh<l—i>
e ‘]O JthPA

kT J
~n—In{ 1+ =5
e JO

kT, | Jsc
~ n—In| =
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Figure 2 shows the measured current-voltage character-
istics of three different devices based on pentacene/Cg,
CuPc/Cgy, and TiOPc/Cg, heterojunctions and fits in the
dark using the equivalent circuit model. The fitting param-
eters are summarized in Table I. It is apparent from the
curves shown in Fig. 2 that the open circuit is improved as
the HOMO of the donor molecule is increased as predicted
from previous studies on a large class of donor materials."*¢
Also evident from Fig. 2 is that the reverse saturation current
is reduced as the HOMO energy of the donor molecule is
increased. Turning back to Eq. (2), the open-circuit voltage
can be computed with the knowledge of the ideality factor n,
the short-circuit current density Jgc, and the reverse satura-
tion current density J,. This observation motivated us to
study in greater detail the origin of the reverse saturation
current in a device with selected materials.
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FIG. 3. (a) Experimental J-V characteristics of pentacene/Cg, devices in the

dark at various temperatures between 2.2 °C and 62.7 °C. Current density
can be seen to increase with temperature. (b) J, calculated at different tem-
peratures by fitting the equivalent circuit model to the experimental data
plotted as a function of 1000/T (symbols) and fit to the data according to
Eq. (3) with Jyp=3090 A/cm? and ¢5z=0.55 eV (solid line).

Figure 3(a) shows the temperature dependence of the
electrical characteristic of a pentacene/Cg device in the dark.
Analysis of the data showed that it could be best fitted with
a thermally activated injection expression of the form

A
ﬂ) 3)

- g _
Jo=Jyo exp(—kT =Jy exp .

where ¢ is the activation energy and Jy is a prefactor. The
effective barrier ¢y can also be written as AEyy; adjusted by
an ideality factor n’, the reasons for which are described
later. As shown by the solid lines in Fig. 3(b), the reverse
saturation current density of the dark characteristics can be
well fitted within the temperature range studied (275-336 K)

TABLE 1. Open-circuit voltage (Voc), short-circuit current density (Jgc), fill factor (FF), and power conversion
efficiency under broadband illumination () of solar cells with the geometry ITO/donor/Cg,/ BCP/Al, in which
the donor material was varied. Shockley parameters derived from fitting the electrical characteristics in the dark
with the equivalent circuit model: diode ideality factor (n), reverse saturation current density (J,), series
resistance (R¢A), and shunt resistance (RpA).

Donor Voc Jsc FF n n Jo RgA RpA
(V) (mA/cm?) (%) (uA/cm?) (Q cm?) (kQ cm?)
Pentacene 0.35 11.0 0.53 2.1 1.68 1.37 0.480 110
CuPc 0.47 6.45 0.62 1.9 2.00 0.33 1.98 43.9
TiOPc 0.60 3.99 0.51 1.2 2.02 0.023 0.413 1970
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TABLE II. For each donor/Cg, combination, effective barrier height (¢p),
calculated reverse saturation current density (Jy4), and calculated open-
circuit voltage (Vocy)- Experimental J, and Ve can be found in Table L.
The value of the prefactor Ji, was 3090 A/cm? and the temperatures for the
calculations of Jy, in the dark and of V¢, under illumination were set to
300 and 323 K, respectively.

Donor (o Jom Voci
(eV) (uA/cm?) V)
Pentacene 0.55 1.55 0.34
CuPc 0.60 0.26 0.47
TiOPc 0.67 0.02 0.59

with this model using Jy,=3090 A/cm? and with ¢,
=0.55 eV. Combining now the simplest expression of V¢
given by Eq. (2) with the expression of the reverse saturation
current density given by Eq. (3), the following equation can
be derived:

_ Joo
eVoc=n¢p—nkT In
SC
J
= AEgy - nkT 1} “2 ¢ ()
n

SC

Table II shows calculated values of open-circuit voltages and
reverse saturation current densities using Eq. (4) obtained in
devices with heterojunctions of pentacene/Cgy, CuPc/Cyg,
and TiOPc/Cg,, which can be compared with the experimen-
tal values in Table I. Good agreement between experiment
and calculation is found between the reverse saturation cur-
rent density and Vo for devices with different effective bar-
rier heights ¢. Note that the second term in the right hand
side of Eq. (4), based on the values of the reverse saturation
current densities measured in the devices used for this study,
is in the range of 0.4-0.7 eV and can partially explain the
empirical expression of Vo derived by Scharber et al.® The
effective barrier height ¢ is related to AEy; but renormal-
ized by the ideality factor n' to include effects such as
vacuum level misalignments at the heterojunction caused by
energy level bending and interface dipoles and the formation
of charge-transfer states.'” These changes at heterojunction
interfaces have been discussed for CuPc/Cg, with measured
values of ~0.7 eV in line with the ¢3=0.6 eV used in our
calculations.****! Since comparison of the calculated ¢p
with measured AFEy; suggests that n’ is in the range of
1.5-2, the n/n’ term in Eq. (4) will be close to one, reinforc-
ing the importance of AFEy; for open-circuit voltage. The
exact nature of n” will be the subject of future studies.

To relate the values of the prefactor J, to corresponding
physical processes, we now turn back to Eq. (3) and discuss
the possible origin of the thermal activation of the reverse
saturation current density with an effective barrier height ¢p.
By analogy with the origin of current in a conventional in-
organic p-n diode that is assigned to the thermal generation
of minority carriers on either side of the junction within a
minority carrier diffusion length, we tentatively assign the
origin of reverse saturation current in organic heterojunctions

Appl. Phys. Lett. 93, 193308 (2008)

to the thermal generation of carriers through the cross reac-
tion A+D— A~+D™, in which an electron is excited from the
HOMO level of neutral donor molecules to the lowest energy
charge-transfer state formed with the acceptor molecules at
the heterojunction over the effective barrier ¢p.

In conclusion, a parametrized analytical expression of
the open-circuit voltage in organic solar cells is proposed. Its
derivation was enabled by the observation that the reverse
saturation current can be modeled by a thermally activated
injection with an effective barrier height ¢, related to the
difference in energy between the HOMO level of the donor
and the LUMO level of the acceptor molecules that form the
heterojunction, but corrected for vacuum level misalign-
ments and for the formation of charge-transfer states. Ther-
mal excitation of charge carriers is tentatively assigned to
thermally activated electron transfer reactions between the
donor and the acceptor molecules at the heterojunction.
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