
REVIEW

Origin, proliferation and differentiation of Leydig cells

H Lejeune, R Habert1 and J M Saez
INSERM-INRA U 418 and IFR d’Endocrinologie, Hôpital Debrousse, 29 Rue Soeur Bouvier,
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INTRODUCTION

Mammalian sex determination involves complex
interacting networks of cellular and hormonal
signals leading to the development of male or female
phenotypes. Three main sequential processes are
involved: first, the establishment of chromosomal
sex at fecundation (genetic sex); second, the
development of the undifferentiated gonad into
either testes or ovaries (gonadal sex); and third,
differentiation of male or female internal and
external genitalia (phenotypic sex). Male phenotype
is controlled by two testicular hormones, the
anti-Müllerian hormone (AMH) secreted by fetal
Sertoli cells which induces regression of the
Müllerian ducts, and testosterone produced by
Leydig cells which induces differentiation of the
Wolffian ducts into male reproductive organs,
although conversion of testosterone into dehy-
drotestosterone is required for masculinization of
the external genitalia. In the absence of testes, and
therefore in the absence of both AMH and
testosterone, the Wolffian ducts regress, creating a
permissive environment for the differentiation
of the Müllerian ducts and, thereby, female
reproductive organs.

MOLECULAR DETERMINATION OF
MAMMALIAN SEX

In mammals, the choice between male and female
development is controlled by the sex chromosomes;
the presence of a Y chromosome results in male
development, regardless of the number of X
chromosomes (Ford et al. 1959, Jacobs & Strong
1959). Experiments performed by Alfred Jost
and colleagues in the 1940s demonstrating that

castration of rabbit embryos of both chromosomal
sexes induced female development, indicate that the
presence of the testis is necessary for the develop-
ment of male characteristics (Jost 1947, Jost et al.
1973). It was postulated that there must be a
dominant gene or genes on the Y chromosome
required for testis development. This genetic entity
was named the testis determining factor (TDF). In
male meiosis, the X and Y chromosomes pair at the
tip of their short arms in a region known as the
pseudoautosomal region, and this pairing is essen-
tial for correct segregation of the X and Y
chromosomes (Ellis 1991). In every male meiotic
event, a single recombination occurs in the
pseudoautosomal region, and this event maintains
homology between the X and Y shared region.
Occasionally, recombination extends beyond the
pseudoautosomal region, so that Y-specific se-
quences are transferred to the X chromosome and
X-specific sequences are transferred to the Y
chromosome. Such aberrant recombinations pro-
duce XX males, who possess Y-specific sequences,
and XY females, who have lost TDF. The size of Y
DNA found in XX males varies but can be as small
as 35–40 kb (Palmer et al. 1989, Sinclair et al. 1990).
Of the many probes prepared from this region only
one recognized a Y-specific sequence conserved
among all eutherian DNA samples. This probe
derived from a fragment located 5 kb proximal to
the pseudoautosomal boundary. When this region
was cloned and sequenced only one candidate
sequence was identified, named SRY (sex-
determining region of Y gene), which contains a
669 bp open reading frame (Sinclair et al. 1990).
The evidence equating SRY with TDF was
afforded by three types of studies: (1) demonstration
that many XY females had point mutations or small
deletions of SRY (reviewed in Goodfellow &
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Lovell-Badge 1993); (2) production of XX
male mice in transgenic animals expressing SRY
(Koopman et al. 1991); and (3) expression of SRY
transcripts only in somatic cells of the embryonic
male gonadal ridge (Hacker et al. 1995).
Although biochemical studies have failed to

identify genes that regulate SRY and genes directly
regulated by SRY, at least three gene products
appear to play a crucial role in the development of
the undifferentiated gonad (Fig. 1), namely the
orphan nuclear receptor gene SF-1 (steroidogenic
factor-1) (Ikeda et al. 1993), Wilms’ tumor
suppressor gene (WT1) (Hastie 1994) and a high
mobility group (HMG) family member, which is
closely related to SRY and known as SOX9 (Foster
et al. 1994, Wagner et al. 1994).
In mice, gonadal expression of SF-1 begins from 9

days post-coitum (dpc) and is extinguished by 12·5
dpc in females, but in males expression persists
(Ikeda et al. 1994). The expression profile of SF-1 in
gonads is parallel to that of AMH, and SF-1 is
probably involved in the regulation of AMH expres-
sion (Shen et al. 1994). Moreover, SF-1 knockout
mice lack both gonads and adrenal glands (both the
gonadal ridge and the adrenal primordium arrest in
development and degenerate) (Luo et al. 1994).
The WT1 gene was originally isolated as an

oncogene involved in the childhood kidney cancer,

i.e. Wilms’ tumor (Call et al. 1990, Rose et al. 1990).
In addition to being expressed in the developing
renal tract, its transcripts are also found in the
mouse gonadal ridge from 9 dpc in both males and
females (Pelletier et al. 1991b). Further evidence
for a role in gonadal formation derives from the
discovery of a deletion in chromosome 11 in patients
with WAGR syndrome (Wilms’ tumor, aniridia,
genito-urinary abnormalities and mental retar-
dation) (Haber & Housman 1992) and heterozygous
mutations of WT1 in patients with Denys–Drash
syndrome (Wilms’ tumors, glomerular nephropathy
and varying degrees of abnormal gonadal and
genital development) (Pelletier et al. 1991a).
Moreover, WT1 knockout mice die during the
embryonic period, following failure of kidney
organogenesis and gonadal degeneration (Kreidberg
et al. 1993).
The third gene product implicated in testicular

development is SOX9. Mutations in the SOX9
gene, which is located in the long arm of human
chromosome 17, have been linked to a severe
dwarfism syndrome known as campomelic dysplasia
(Foster et al. 1994, Wagner et al. 1994). Patients
with this syndrome display a number of congenital
skeletal abnormalities and more than 75% of XY
patients show sex reversal with a gradation of
genital defects. In all patients studied so far, the

 1. Schematic representation of steps in mammalian sex
determination and the genes implicated in each step. SRY (sex-determining
region Y gene); SF-1 (steroidogenic factor-1); SOX-9 (SRY-related HMG-
box containing gene 9); WT-1 (Wilms’ tumor); DSS (dosage sensitive sex
reversal); AMH (anti-Müllerian hormone).
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patients with or without sex reversal are hetero-
zygous for the mutations. Recent studies have
shown that SOX9 is expressed in the genital ridge of
both XY and XX embryos at about 10·5 dpc.
However, after 11·5 dpc, its expression is very
abundant in genital ridges from XY embryos, but is
absent from those of XX embryos (Morais da Silva
et al. 1996).
Evidence that a fourth gene located in the X

chromosome might be involved in gonadal
differentiation comes from the finding that
duplication of Xp in association with a normal Y
chromosome containing an intact SRY, can result
in male to female sex reversal (Bardoni et al. 1993,
Am et al. 1994). This dosage-sensitive sex reversal
locus (DSS) was mapped to a region on Xp21
adjacent to the adrenal hypoplasia congenital locus
(AHC) (Bardoni et al. 1994). Although DSS can
interfere with testis determination when dupli-
cated, it is not essential for testis formation as
46XY individuals carrying deletions of Xp21
region have a male phenotype. Therefore, it was
proposed that DSS could be required for ovarian
development, by either promoting differentiation
of ovarian cell types, repressing differentiation of
testicular cells, or both (Bardoni et al. 1994). A
candidate gene isolated from DSS region, DAX1
(DSS–AHC critical region on the X, gene 1)
(Muscatelli et al. 1994, Zanaria et al. 1994), was
found to encode an orphan nuclear hormone
receptor. Deletion or point mutations of DAX1 are
responsible for AHC. DAX1 is expressed in
adrenal primordium, developing hypothalamus and
genital ridge of both male and female (11·5 dpc).
Moreover, after 12 dpc, DAX1 expression in the
male gonad decreases dramatically as testis cords
begin to appear, but persists in the developing
ovary (Swain et al. 1996). This pattern of
expression is consistent with DAX1 being
equivalent to DSS.

ORIGIN AND DEVELOPMENT OF FETAL
LEYDIG CELLS

In mammals, the ontogenesis of Leydig cell
function involves at least two generations of cells.
The first generation develops during fetal life and
these fetal Leydig cells are responsible for the
masculinization of the male urogenital system.
These cells regress thereafter, although in the rat
some of these cells may persist in adult life. The
second Leydig cell populations appear during
puberty and produce the testosterone required for
the onset of spermatogenesis and maintenance of
male reproductive function.

Rat

The first fetal Leydig cells differentiate relatively
late in the course of testis formation. In the rat,
seminiferous cords begin to form at 13 days 9 h
(dpc) by the emergence of a new type of large ‘clear’
cells (Sertoli cell precursors), which aggregate and
surround the germ cells in the forming seminiferous
cord (Magre & Jost 1980, 1984, Jost et al. 1981).
Thereafter, the Leydig cells appear in the inter-
stitial region by differentiation from mesenchymal-
like stem cells (Byskow 1986). However, conclusive
data on the ultimate embryonic origin of Leydig
stem cells are lacking (Benton et al. 1995). Early
studies proposed that Leydig stem cells are
mesodermal, appearing first in the mesonephros,
and then migrating into the presumptive interstitial
tissue (Wartenberg 1978). A more recent hypothesis
is that Leydig stem cells derive from neural crest.
This hypothesis is based on evidence that Leydig
cells express several neural specific proteins such as
neural cell adhesion molecule, neurofilament pro-
tein 200, and microtubular-associated protein
(Mayerhofer et al. 1992a, 1996, Davidoff et al. 1993,
Middendorff et al. 1993). In the rat morphological
(Jost et al. 1981) and functional differentiation, the
ability to produce testosterone (Warren et al. 1973;
Habert & Picon 1984) of Leydig cells is first
observable on day 15·5 dpc (Fig. 2).
The signal(s) triggering the initial differentiation

of rat fetal Leydig cells is unknown. Although, as
indicated above, the Y chromosome containing an
intact SRY is absolutely required to induce the
differentiation of the gonadal ridge into testis, a
sexual genetic control of Leydig cell differentiation
is unlikely since in XX/XY chimeric mouse testes
XX cells contribute to the formation of Leydig cells
(Burgoyne et al. 1988). The initial differentiation of
fetal rat Leydig cells is also gonadotropin indepen-
dent, since pituitary luteinizing hormone (LH)
cannot be detected until day 16·5 (Aubert et al.
1985) (Table 1) and gonadal anlage removed at 12
days 16 h or 13 days 9 h (dpc), and cultured in
hormone-free medium, complete their morpho-
logical and endocrine differentiation within 3 days
(Agelopoulou et al. 1984, Gangnerau & Picon 1987,
Jost et al. 1988). Furthermore, although early
studies described the presence of biological and
immunological chorionic gonadotropin (CG)-like
activity in the rat placenta (Blank & Dufau 1983),
subsequent studies failed to detect such activity
(Wurzel et al. 1983, Habert & Picon 1990). Indeed,
with the exception of the primates and equine, there
is no CG gene in other mammalian species.
After the initial differentiation of fetal Leydig

cells, testicular steroidogenesis increases markedly
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at the same time as the number of Leydig cells
increases from 0·25#105 cells per testis on day 16·5
to 1·2#105 cells per testis on day 21 (Kerr & Knell
1988). This increase is due mainly to differentiation
of stem cells, since fetal Leydig cells have no mitotic
activity (Orth 1982). The results observed after
decapitation of rat fetuses at several days of ges-
tation, indicate that the development and function
of fetal Leydig cells is gonadotropin independent
until day 18 and comes under control of fetal LH
thereafter (Eguchi et al. 1978, Habert & Picon 1982)
(Table 1). Although there is some indication that
Sertoli cell-secreted factors (Byskow 1986) and the
extracellular matrix (Jost et al. 1988) might be
involved in the initial, gonadotropin-independent,
development of fetal Leydig cells, the nature of such
factors is unknown. Interestingly, despite the fact
that plasma LH levels remain high at the end of
gestation, and the number of Leydig cells increases,

both in vivo and in vitro studies have demonstrated a
functional regression of Leydig cells beginning
during late fetal life and remaining after birth
(Habert & Picon 1982, Tapanainen et al. 1984,
Habert & Brignaschi 1991, Habert et al. 1992,
Huhtaniemi & Pelliniemi 1992, Habert 1993). The
factors responsible for this regression are unknown
but transforming growth factor beta (TGFâ) might
be involved since its expression by fetal Leydig cells
appears on day 16·5, greatly increases during late
fetal life and persists until postnatal day 20 (Gautier
et al. 1994). Moreover, this factor is a strong
inhibitor of Leydig cell functions (see below).

Human

The differentiation of the human male gonads
begins in the sixth week of gestation with the
gradual development of gonadal blastema into

 2. Origin and differentiation of Leydig cells (LC) in the rat. p.c., post-coitum; p.n.,
post-natal.

 1. Developmental maturation of the rat fetal pituitary–testicular axis

Functions
Number of
Leydig cells LH dependence

Fetal age
(days)
13·5 Conversion of progesterone and

dehydroepiandrosterone]testosterone
—

15·5 Testosterone synthesis
LHR and LH responses

— Independent

16 Onset of LH synthesis 0·25#105

18 Maximal testosterone production 0·60#105

19 LH detectable in plasma
Onset of testosterone decline

—
Dependent

21 Maximum LH in plasma 1·20#105
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testicular cords and the interstitium (Gondos 1980).
The fetal Leydig precursors become identifiable
during the eighth week of gestation (Table 2).
Cytodifferentiation begins with an increase in
cytoplasmic volume, development of smooth endo-
plasmic reticulum, an increase in the number and
the size of the mitochondria, enlargement of the
nucleus, and accumulation of lipid droplets.
Cytodifferentiating Leydig cells can be observed
among fully differentiated ones until the 10th week
of fetal life (Rabinovici & Jaffe 1990, Huhtaniemi &
Pelliniemi 1992). The functional differentiation of
Leydig cells seems to begin before the first signs of
cytodifferentiation, since testosterone is detected in
the fetal human testis at 6 to 7 weeks of gestation
(Tapanainen et al. 1981). The ontogenesis of the
pituitary–testicular axis in humans is summarized in
Table 3. It is clear that in the human, as in all other

mammals studied, LH does not control initial
Leydig cell differentiation since the onset of steroid
production by the fetal testis precedes that of LH
secretion by the hypophysis (Reyes et al. 1989).
However, in humans, because human CG (hCG) is
produced by the placenta well before testicular
development, it was thought that this hormone
might be responsible for the initial development
of Leydig cells. Against this hypothesis is the fact
that one patient with an inactivating mutation
of LH/hCG receptor producing complete loss of
function had some development of vas deferens and
epididymis associated with female external genitalia
(Kremer et al. 1995). Since development of the
Wolffian ducts absolutely requires the presence of
testosterone, the above finding indicates that in
this patient the initial functional differentiation
of Leydig cells and therefore the secretion of

 2. Origin and differentiation of Leydig cells (LC) in human: stem
cells]precursor LC/mesenchymal cells/infantile LC]immature LC/pubertal
LC]mature LC

Age Number of LC

Fetal
Proliferation and differentiation 8–14 weeks —
Mature 14–18 weeks 48#106

Stationary 18–24 weeks 48#106

Involution 24–38 weeks 18#106

Postnatal
Neonatal 0–1 years —
Infantile 1–8 years —
Pubertal 8–15 years —
Adult >15 years 5#108

 3. Developmental maturation of the human fetal pituitary–testicular
axis

Functions Hormone dependence

Fetal age
(weeks)
2 hCG secretion

7–8 Onset of LC differentiation
LH/hCG independent

Onset of testosterone synthesis

10 Onset of LH synthesis
LHR in testis

11 LH in plasma hCG dependent
12–15 Maximum hCG in plasma

Maximum testosterone synthesis

22–24 Maximum LH in plasma
24–38 ` LH and hCG in plasma

` LC number
LH dependent

` Testosterone in plasma
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testosterone were hCG independent. Moreover,
they also indicate that after this initial phase, hCG is
required for Leydig cells to produce enough
testosterone for masculinization of the external
genitalia. Indeed, in vitro studies have shown that
hCG is able to stimulate testosterone production by
human and primate fetal Leydig cells (Rabinovici &
Jaffe 1990). During late fetal life, as in the rat,
testicular steroidogenic activity appears to be under
pituitary control since anencephalic human fetuses
have a reduced number of Leydig cells and a
subnormal testicular steroidogenesis (Rabinovici &
Jaffe 1990) and since gonadotropin insufficiency
is very often associated with micropenis (Migeon
et al. 1994). After birth, in both human (Forest et al.
1973) and non-human primates (Fouquet et al.
1984), there is a second testosterone surge and it is
associated with the development of a second wave of
Leydig cells (Fouquet et al. 1984, Codesal et al.
1990, Prince 1990). Thereafter, the number of
Leydig cells decreases, so that very few Leydig cells
remain by the end of the first year of life (Codesal
et al. 1990, Prince 1990). Including the pubertal
wave, there are thus three waves of Leydig cell
development in man. In the pig, Leydig cell
development also occurs in three waves (Van
Straaten & Wensing 1978).

ORIGIN AND DIFFERENTIATION OF ADULT
LEYDIG CELLS

Rat

In the rat, adult Leydig cells are not derived from
pre-existing fetal Leydig cells, but from undifferen-
tiated precursor cells. Postnatal development of
Leydig cells begins at the stem cell stage (reviewed
in Ge et al. 1996). These cells proliferate neonatally,
doubling approximately every 7 days, to give a
population of spindle-shaped undifferentiated cells
named ‘mesenchymal-like’ cells (Hardy et al. 1989,
Vergowen et al. 1991). By day 14 postpartum these
cells become committed to the Leydig cell linkage
and transformed into progenitor Leydig cells (Fig.
2). Like the stem cells, they are spindle-shaped but
are recognizable as members of the Leydig cell
lineage, because they express some levels of Leydig
cell specific markers, including 3â-hydroxysteroid
dehydrogenase (3â-HSD) (Hardy et al. 1990), LH
receptor and androgen production (Shan & Hardy
1992). By day 28 the Leydig cell progenitors
transform from spindle-shape to round cells
containing numerous lipid droplets and abundant
smooth endoplasmic reticulum (Shan & Hardy
1992). Moreover, the activity of three steroidogenic
enzymes, namely P-450 scc, P-450c17 (Shan et al.

1993) and 3â-HSD (Dupont et al. 1993) sharply
increase in immature Leydig cells during days 28
through 56. However, the activity of 17â-HSD,
which catalyzes the synthesis of testosterone from
androstenedione, does not begin to increase until
after day 35 (Eckstein et al. 1987). Furthermore,
immature Leydig cells produce mostly 5á-reduced
androgens, mainly androstane-3á,17â-diol because
they express high levels of 5á-reductase and 3á-
hydroxysteroid dehydrogenase (3á-HSD) (Murono
1989, Shan et al. 1993). Immature Leydig cells
divide once between day 28 and day 56 before
differentiating into adult Leydig cells.
The transition between immature and adult

Leydig cells is characterized by an increase in cell
size, volume of smooth endoplasmic reticulum and
decline in cytoplasmic lipid droplets. Functionally,
mature Leydig cells have higher LH receptor
number and increased levels of testosterone biosyn-
thetic enzymes than immature Leydig cells (Shan
et al. 1993). In contrast, the expression and the
activity of the two testosterone metabolizing
enzymes, 5á-reductase and 3á-HSD, markedly
decline in adult Leydig cells when compared with
immature Leydig cells (Shan et al. 1993, Viger &
Robaire 1995) (Fig. 3).
Adult Leydig cells rarely proliferate (Moore et al.

1992) and studies of tritiated thymidine incorpor-
ation show that their labeling index is less than 0·1%
(Keeney et al. 1990). Moreover, the turnover of
adult Leydig cells ranges from 142 days to the
maximum life span of the animal (Teerds et al.
1989b). Since the adult Leydig cell population is
stable, cell death must be balanced by Leydig cell
renewal, probably through proliferation and differ-
entiation of stem cells. In favor of this hypothesis is
the fact that intermediate stages of Leydig cell
differentiation are observed in adult testes (Hardy
et al. 1989), and after selective destruction of all
adult Leydig cells following administration of the
alkylating agent ethane-1,2-dimethyl sulfonate
(EDS) the Leydig cell population completely
regenerates after 8 to 10 weeks (reviewed in Teerds
1996).
Postnatal proliferation of Leydig cells appears to

be controlled by multiple regulatory factors (Fig. 3)
(review by Benton et al. 1995, Ge et al. 1996,
Teerds 1996). Although an increased proliferation
of precursor Leydig cells has been observed after
treatment with exogenous LH or hCG (Christensen
& Peacock 1980, Hardy et al. 1989, Teerds et al.
1989a), LH appears to be not essential for
proliferation of mesenchymal cells. First, serum LH
levels do not rise with the onset of puberty in rats
(Dohler & Wuttke 1975). Second, transitory
neonatal hypothyroidism induced by treatment
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with goitrogen propylthiouracil, which permanently
suppresses serum LH, increases adult Leydig cell
number (Hardy et al. 1993, 1996). Third, the
mitogenic effect of LH on immature Leydig cells is
very small compared with that of several growth
factors including insulin-like growth factor-I
(IGF-I), TGFá and interleukin-1â (Khan et al.
1992a,b). Fourth, neither chemical suppression of
LH nor hypophysectomy inhibits the mesenchymal
cell proliferation observed after EDS treatment, but
LH is absolutely required for conversion of these
precursors into Leydig cells (Teerds et al. 1989a,
Teerds 1996). These latter studies indicate that
locally produced growth factors are involved in the
regulation of mesenchymal cells, but the nature of
these factors is largely unknown.
Some contradictory findings have been reported

concerning the effects of follicle-stimulating
hormone (FSH), through Sertoli cells, on rat
Leydig cell development. FSH treatment of
immature hypophysectomized rats not only stimu-
lates seminiferous tubule growth but also induces
the formation of adult-type Leydig cells (Kerr &

Sharpe 1985, Teerds et al. 1989b, Vihko et al. 1991).
Moreover, immature Sertoli cells in response to
FSH secrete at least two proteins of 30 kDa and
10 kDa that stimulate proliferation of Leydig cell
progenitors (Ojeifo et al. 1990, Lamb et al. 1991,
Wu & Murono 1994). In contrast, FSH treatment
of adult hypophysectomized EDS-treated rats did
not result in the formation of new Leydig cells
(Molenaar et al. 1986). One possible explanation for
these different observations is that FSH, through
Sertoli cells, might have two effects on Leydig cells,
namely stimulation of Leydig cell progenitor
proliferation and induction of immature Leydig cell
differentiation.
In the rat, testicular macrophages are necessary

for the development of Leydig cells. Depletion of
testicular macrophages in neonatal and immature
rats by dichloromethylene diphosphonate prevents
the development of adult Leydig cells (Gaytan et al.
1994a, 1995). Similarly, regeneration of adult
Leydig cells after EDS treatment is blocked by
depletion of testicular macrophages (Gaytan
et al. 1994b,c). These observations indicate that

 3. Hypothetical model for proliferation and differentiation of Leydig
cells in the rat. Anr (androgen receptor); LHr (LH/hCG receptor); E2
(estradiol); macroph. (macrophages); DHT (dihydrotestosterone); testo.
(testosterone). The model is a modification of that proposed by Teerds
(1996).
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macrophages are needed probably together with LH
for the initial phases of precursor proliferation as
well as for the proliferative activity of immature
Leydig cells. The nature of the factors secreted
by macrophages and responsible for the prolifer-
ation and differentiation of Leydig cell progenitors
is still largely unknown. Interleukin-1â may be
one of these factors since this is one of the major
cytokines secreted by activated macrophages
(Dinarello 1994) and in vitro this cytokine is a
potent mitogen for immature Leydig cells and
possibly also for Leydig cell progenitors (Khan
et al. 1992b).
In addition to interleukin 1â, other growth

factors, namely IGF-I, TGFá and TGFâ regulate
the proliferation of precursor and immature Leydig
cells (Khan et al. 1992a, 1994, Moore & Morris
1993). Both TGFá and IGF-I stimulate the
proliferation of precursor Leydig cells isolated from
21-day-old rats, and this effect is potentiated by low
concentrations of LH. In contrast, TGFâ inhibits
the mitogenic effects of these factors (Khan et al.
1994). In addition to their effects on Leydig cell
proliferation, two of these factors, IGF-I and
TGFâ, regulate in an opposite way, stimulatory and
inhibitory respectively, the differentiation of imma-
ture into mature Leydig cells. Further evidence of
the crucial role of IGF-I on Leydig cell prolifer-
ation and differentiation comes from studies of
IGF-I knockout mice, showing that Leydig cells
of 4-month-old mutants have only reached a stage
of morphological and functional differentiation
corresponding to days 10-14 postnatal development
(Baker et al. 1996).
There is some controversy concerning the role of

androgens in the development of precursor cells
into Leydig cells. One group has reported that
dihydrotestosterone in combination with LH can
stimulate the differentiation of precursor cells
isolated from 21-day-old rat testis (Hardy et al.
1990), whereas such an effect was not seen using
precursor cells isolated from testes of EDS-treated
adult rats (Teerds 1996). Further evidence that
androgens might regulate Leydig cell differentiation
comes from studies of luteinizing hormone-
releasing hormone (LHRH) antagonist in rats and
of testicular feminized mouse (Tfm). Admin-
istration of LHRH antagonist to 21-day-old rats for
3 weeks prevents the formation of adult Leydig
cells, but testosterone replacement restores Leydig
cell number and the mRNA levels of LH/hCG
receptor and of 3â-HSD (Misro et al. 1993, Shan
et al. 1995). Tfm lacks functional androgen receptor
due to a single base deletion in the gene encoding
the receptor (Charest et al. 1991). Leydig cells
of Tfm animals are deficient in P-450c17 and

17â-HSD activities, have low LH/hCG receptor
number, low capacity for testosterone production
and are unresponsive to LH (O’Shaughnessy &
Murphy 1993, Murphy et al. 1994). These
observations lead to the hypothesis that androgens,
directly or indirectly, are required for normal
differentiation of adult Leydig cells (Murphy et al.
1994). Against this hypothesis is the fact that when
testicular slices of Tfm were cultured for 45 h, most
Leydig cells became strongly positive for P-450c17
(Le Goascogne et al. 1993). This may suggest that
local factors rather than the lack of androgen action
are responsible for the failure of P-450c17 expres-
sion in the adult Tfm mouse. If, in rodents,
androgens may play a role in the differentiation of
Leydig cell precursors into adult mature Leydig
cells, this is not the case in humans, since patients
with complete androgen insensitivity have normal
levels of plasma testosterone and Leydig cells tend
to be hyperplastic (Migeon et al. 1994), and
mesenchymal cells isolated from patients with
androgen insensitivity cultured in the presence of
hCG differentiate and produce testosterone
(Chemes et al. 1992).
In contrast to androgens, estrogens are potent

inhibitors of Leydig cell development. A single
injection of estradiol to 5-day-old rats inhibits the
development of Leydig cells (Dhar & Setty 1976)
and administration of estradiol to immature rats
inhibits proliferation of Leydig cell progenitors
(Abney & Carswell 1986). Similarly, estradiol also
prevents regeneration of Leydig cells after EDS
treatment (Abney & Myers 1991). These effects of
estradiol appear to be direct and not through
suppression of gonadotropin secretion, since simul-
taneous hCG administration was unable to reverse
the inhibitory action of estradiol.
There is some indication that gonadal specific

peptides may regulate Leydig cell proliferation
and differentiation. Thus, AMH-deficient mice
(Behringer et al. 1994), as well as those in which
AMH receptor type II had been inactivated
(Mishina et al. 1996), developed Leydig cell
hyperplasia and in one instance Leydig cell tumor
(Behringer et al. 1994), suggesting that AMH may
inhibit Leydig cell proliferation. Inhibin has been
shown to be a tumor suppressor, since 99% of
mice of both sexes with deletion of inhibin á
subunit gene developed gonadal sex cord-stromal
tumors (Sertoli-granulosa tumors) (Matzuk et al.
1992, 1996) but Leydig cell number in male
mice with gonadal tumor was reduced. Whether
this decrease in Leydig cell number is due to
tumor development or the absence of inhibin is
not quite clear. However, the first hypothesis is
more likely since, before tumor development,
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spermatogenesis and Leydig cell function appear
to be normal.
Figure 3 summarizes the effects of several factors

on Leydig cell proliferation and differentiation, as
well as the expression of specific genes on precursor,
immature and mature Leydig cells.

Human

In humans, the stages in the postnatal development
of Leydig cells are less well known than in rodent.
Three main periods have been defined: neonatal,
infantile or prepubertal, and pubertal (reviewed in
Chemes 1996). The neonatal period extends
through the first year of life. Just after birth, Leydig
cell numbers start to increase to reach a peak at
about 3 months of age, which is associated with a
peak of plasma testosterone (Forest et al. 1973,
Fouquet et al. 1984). Thereafter, there is a rapid
regression of fetal Leydig cells reaching the nadir at
the end of the first year (Nistal et al. 1986). The
infantile period starts at about 1 year of age and
extends until the first signs of pubertal development
appear. The interstitial space is populated by
fusiform or stellate mesenchymal cells. These cells
are smaller than adult Leydig cells, have convoluted
nuclei and a small amount of smooth endoplasmic
reticulum. These features are considered typical of
undifferentiated cells (Prince 1984, Chemes et al.
1985, 1992, Nistal et al. 1986, Chemes 1996). At the
beginning of the pubertal period, or following hCG
administration during childhood, these mesenchy-
mal cells proliferate and start to differentiate into
adult-type Leydig cells. This process of differen-
tiation involves the onset and marked increase of the
smooth endoplasmic reticulum and steroid-type
mitochondria, and appearance of crystals of Reinke
as well as typical changes in nuclear morphology
(Prince 1984, Chemes 1996).
If, as indicated above, the functional differen-

tiation of Leydig cells at the very beginning of
fetal life appears to be LH/hCG independent, the
proliferation and differentiation of Leydig cell
precursors after the 10th week of gestation and
postnatally are LH/hCG dependent. The evidence
for this is fourfold: first, absence of Leydig cells in
one patient with male hypogonadism due to a point
mutation in the coding sequence of LHâ gene that
eliminates the ability of the hormone to bind to its
receptor (Weiss et al. 1992); second, Leydig cell
agenesis in patients having inactivating mutations of
LH receptor (Kremer et al. 1995, Laue et al. 1995,
1996, Latronico et al. 1996); third, proliferation and
differentiation of Leydig cells during childhood
following hCG administration (Chemes et al. 1985,
Chemes 1996); and fourth, marked morphological

and functional differentiation of Leydig cells in the
syndrome of familial male precocious puberty
due to activating mutation of LH/hCG receptor
(reviewed in Shenker 1995).

REGULATION OF LEYDIG CELL FUNCTION

Normal function of the testis has long been
recognized to be dependent on the pituitary-
synthesized gonadotropins. Notwithstanding these
requirements for gonadotropins, the anatomical
arrangement of the testis with two compartments,
the interstitial tissue and the avascular seminiferous
tubules, separated by the blood–testis barrier,
points to an active interaction between different
testicular cells. Indeed, many data over the past few
years clearly indicate that a subtle regulation of
testicular function can be locally controlled. How-
ever, it should be emphasized that the local
regulation acts in conjunction with gonadotropins
and very often depends upon these hormones. Four
recent articles (Skinner 1991, Ackland et al. 1992,
Sharpe 1993, Saez 1994) and several chapters of a
book (Payne et al. 1996) have extensively reviewed
this aspect. Therefore, in the present review, only
some aspects concerning the regulation of Leydig
cell function will be discussed.

Endocrine regulation

LH/hCG is the main hormone which, under
physiological conditions, controls Leydig cell func-
tion via its specific receptor which is coupled to both
adenylate cyclase and phospholipase C pathways
(Gudermann et al. 1992, Segaloff & Ascoli 1993,
Cooke 1996). However, under physiological con-
ditions, most of the effects of LH/hCG on Leydig
cells are exerted predominantly through cAMP-
mediated events (Saez 1994). Exposure of Leydig
cells to LH/hCG causes two types of response. The
first, observed within the first minute, is a sharp
increase in cAMP and steroid production. This
acute steroidogenic effect, which is mainly or
exclusively mediated by cAMP, involves trans-
location of cholesterol from the cytosol to the inner
mitochondrial membrane, is sensitive to protein
synthesis inhibitors, but does not require RNA
synthesis. Several protein candidates have been
postulated to be involved in this first and
rate-limiting step of steroidogenesis: sterol carrier
protein 2, steroidogenesis activating polypeptide,
peripheral benzotrazepine receptor and steroido-
genic acute regulatory (StAR) protein (reviewed in
Papadopoulos 1993, Saez 1994, Stocco 1996).
Although the role of each of these proteins, as well
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as their mechanisms of action, is still unclear, StAR
represents the more attractive candidate from the
transfer of cholesterol from cytosol to inner
mitochondrial membrane, induced in most ster-
oidogenic tissues (except placenta and brain) by
steroidogenic hormones. In favor of this crucial role
of StAR, is the fact that in lipoid congenital adrenal
hyperplasia, a lethal disease which results from
a complete inability to synthesize any steroid
(reviewed in New et al. 1989), a nonsense mutation
of StAR gene has been identified (Lin et al. 1995).
The second type of response is the long-term

trophic effect of the hormone on Leydig cell
structure and function. In addition, LH/hCG can
induce an immediate early response, in particular
the expression of nuclear proto-oncogenes of the fos
and jun family (Czerwiec et al. 1989, Hall et al.
1991). Although the role of these transcriptional
factors in the long-term effect of LH/hCG is
unclear, it has been postulated that they might be
the link between the hormone–membrane receptor
interaction and the long-term trophic effects (Angel
& Karin 1991). The crucial role of LH/hCG on
Leydig cell structure and function has been
demonstrated by both in vivo and in vitro studies
(reviewed in Saez 1994, Payne & O’Shaughnessy
1996). Thus, in rats, hypophysectomy, suppression
of gonadotropins by steroid administration, or
neutralization of LH or LHRH by specific
antibodies causes Leydig cell atrophy and loss of
cytoplasmic smooth endoplasmic reticulum, ster-
oidogenic enzyme activity (in particular P-450c17
and P-450 scc), LH/hCG receptor per Leydig cell,
and the ability to secrete testosterone in response to
LH/hCG. Treatment of LH-deprived rats with LH
or hCG restores, at least partially, the structure and
function of Leydig cells (Wing et al. 1985, Keeney
et al. 1988, Teerds et al. 1989a,b, Russell et al.
1992). Similarly, treatment of the hypogonadal
(hpg) mouse with daily injections of LH produces a
marked increase in most of the steroidogenic
enzyme activity (O’Shaughnessy 1991). In the intact
rat, daily administration of low doses of hCG caused
an increase in both 3â-HSD and P-450c17 activities
and an increase in in vitro basal and hCG-
stimulated testosterone production (O’Shaughnessy
& Payne 1982). In contrast, a single high dose of
hCG or LH resulted in a decrease in LH receptor
number and mRNA, a decrease in hCG-induced
testosterone production as well as a marked decrease
in P-450c17 activity (Cigorraga et al. 1978, Saez
et al. 1978, Chasalow et al. 1979, O’Shaughnessy &
Payne 1982, LaPolt et al. 1991). However, after
several days, the number of LH receptors, the
P-450c17 activity and the steroidogenic capacity of
Leydig cells from both intact and hypophysect-

omized hCG-treated rats were higher than those of
the corresponding controls. Taken together, all the
available data indicate that, at low physiological
doses, LH/hCG have a positive action on the
expression of genes encoding for several Leydig cell
specific functions, whereas at high doses, the
long-term trophic effects are preceded by a
desensitization period. These double and opposite
effects of hCG are also present in humans (Saez &
Forest 1979).
Many in vitro studies using several Leydig cell

types have confirmed and extended the above
results (reviewed in Payne et al. 1992, Saez 1994,
Payne & O’Shaughnessy 1996). The main con-
clusions from both in vivo and in vitro studies are
the following. (1) LH/hCG down regulates its
own receptors through at least three mechan-
isms: internalization–degradation of the hormone–
receptor complex (Lloyd & Ascoli 1983,
Habberfield et al. 1986, Bernier et al. 1987),
inhibition of LH/hCG gene transcription (Wang
et al. 1991, Chuzel et al. 1995) and increased
degradation of LH/hCG mRNA (Lu et al. 1993,
Chuzel et al. 1995). The relative importance of each
of these processes in the regulation of LH/hCG
receptor depends on the receptor itself and on the
type of Leydig cells, which may in turn have
species-specific properties. (2) LH/hCG increases
the mRNA, protein and activity of P-450 scc,
3â-HSD and P-450c17. However, whereas LH/
hCG is absolutely required for P-450c17, the
expression of both P-450 scc and 3â-HSD con-
tinues in the absence of the hormone (Hales &
Payne 1989, Payne & Sha 1991, Keeney & Mason
1992, Clark et al. 1996). Although far less studied, it
appears that LH/hCG also regulates the other two
enzymes of the steroidogenic pathway, namely,
17â-HSD (O’Shaughnessy 1991) and P-450 aro-
matase (Canick et al. 1979, Valladares & Payne
1981, Saez et al. 1989). The effects of LH/hCG in
the two testosterone metabolizing hormones, 5á-
reductase and 3á-HSD, appear more complex. The
immature rat testis, between the ages of 20 and
40 days postpartum, secretes mainly 5á-reduced
androgens, primarily in the form of 5á-androstan-
3á,17â-diol. This pattern of secretion results from
low 17â-HSD activity and, more importantly, high
activity levels of 5á-reductase activity and 3á-HSD.
Recent studies have shown that in the rat testis only
type 1 5á-reductase is expressed, and that the peak
of expression of both mRNA and protein is between
days 21 and 28. Thereafter, both decline rapidly and
remain low at least until day 90 (Viger & Robaire
1995). This decline corresponds to the period of
transformation of immature to mature Leydig cells.
Previous studies have also shown that 5á-reductase
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activity markedly decreases following hypophysec-
tomy of 21-day-old rats, and that a twice daily
injection of LH caused a sharp increase in
5á-reductase activity (Murono & Payne 1976).
Similarly, LH increases 5á-reductase activity in hpg
mice (O’Shaughnessy 1991). Thus, LH appears to
be required for the expression of 5á-reductase in
immature Leydig cells. However, since the conver-
sion of immature to mature Leydig cells is LH
dependent and, as indicated above, this conversion
is associated with a decrease of 5á-reductase
expression, LH directly or indirectly appears to
reduce the expression of 5á-reductase in adult rat
Leydig cells. These double and opposite effects of
LH are also probably effective on the regulation of
3á-HSD, since its mRNA levels and activity are
higher in precursor and immature than in adult
Leydig cells (Shan et al. 1993) and since in
LH-suppressed immature rats, LH administration
significantly increases 3á-HSD mRNA levels in the
testis (Shan et al. 1995).
In addition to LH and FSH (see below) other

endocrine factors have been reported to be able to
regulate Leydig cell function. Their effects have
been reviewed recently (Saez & Lejeune 1996) and
are summarized in Table 4. It must be emphasized
that for most of them, the effects have been
demonstrated using in vitro systems, and that the
effects reported are moderate. Thus, except for
prolactin and androgens in rodents and for
glucocorticoids in all species studied, the physio-
logical role of the other factors on Leydig cell
function is of doubtful significance.

Sertoli–Leydig cell interaction

There is a substantial body of evidence to show that
Sertoli cells exert a paracrine role on Leydig cell

number and function (reviewed in Sharpe 1993,
Saez 1994). This evidence derives from several
experimental approaches which are summarized
here.
Historically, the first evidence that FSH through

Sertoli cells modulates Leydig cell function was
afforded by Johnson & Ewing (1971), who reported
that FSH enhanced testosterone production signifi-
cantly by perfused rabbit testes exposed to maximal
concentrations of LH, but had no effect alone. In
support of the involvement of FSH on Leydig cell
functions, is also the close correlation between serum
FSH levels and the steroidogenic response of Leydig
cells to LH/hCG during sexual maturation in
both the human (Sizonenko et al. 1973) and rat
(Odell & Swerdloff 1976). Thereafter, numerous
experimental results, obtained using both in vivo and
in vitro models, have confirmed that indeed FSH,
indirectly through Sertoli cells, modulates Leydig
cell function.
Two in vivo models have been used to investigate

the effects of FSH on Leydig cells, the hypophysec-
tomized immature rat (Odell & Swerdloff 1976) and
the hpg mouse which has undetectable plasma
levels of both LH and FSH due to a deletion in the
gene encoding for gonadotropin-releasing hormone
(GnRH) (Mason et al. 1986). Treatment of im-
mature hypophysectomized rats with highly
purified pituitary FSH (Teerds et al. 1989a,b, Vihko
et al. 1991) or recombinant human FSH (hFSH)
(Vihko et al. 1991, Russell et al. 1993, Matikainen
et al. 1994) not only stimulates seminiferous tubule
growth but also induces Leydig hypertrophy and
hyperplasia and increases LH receptor number and
mRNA and the in vitro steroidogenic response to
hCG. Similarly, FSH treatment of adult hpg mice
for 10 days markedly enhanced the steroidogenic
responsiveness both in vivo and in vitro to hCG,

 4. Endocrine regulation of Leydig cells

LH/hCGR P-450scc P-450 C17 3â-HSD 17â-HSD
hCG-induced
testosterone Reference

Hormone
LH/hCG a_ b` _ _ _ _ _ See text
FSH _ _ _ _ _ _ See text
Prolactin _ c_ — — — c_ Saez & Lejeune 1996
Glucocorticoids ` ` ` ` — ` Gao et al. 1996,

Saez & Lejeune 1996
Androgens d_ — d_ d_ — d_ Shan et al. 1995

e` — e` e` — e` Payne & O’Shaughnessy 1996,
Saez & LeJeune 1996

Calcitonin — — — — — f_ or g` Nakhla et al. 1989,
Wang et al. 1994

a, at low pulsatile concentrations; b, at high continuous concentrations; c, only in immature hypophysectomized rats; d, rat precursor Leydig cells;
e, Leydig cells from hypophysectomized adult rat or adult mouse; f, in vitro; g, in vivo.
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and this was associated with an enhanced activity
of cholesterol side-chain cleavage, P-450c17, 17â-
HSD and, to a lesser extent, of 3â-HSD
(O’Shaughnessy et al. 1992). Similar results have
been obtained using hypophysectomized Golden
hamsters (Klemcke et al. 1986).
Second, experimental disruption of spermatogen-

esis, induced by X-irradiation, cryptorchidism,
vitamin A deficiency, efferent ligation or heat
treatment, resulted in morphological and functional
changes of Leydig cells (reviewed in Sharpe 1993,
Saez 1994). In most of these experimental condi-
tions, there was an increase in the plasma levels of
LH and FSH, but the Leydig cell changes were not
due to these increments, since local implantation of
anti-androgens in the testis produced local areas
of damage of the seminiferous epithelium and,
adjacent to these areas but not in unaffected areas of
the same testis, there were the morphological
modifications of the interstitial cells described above
(Aoki & Fawcett 1978). These results clearly
indicate the existence of a local mechanism of
controlling Leydig cell function.
Third, possibly more convincing are the many

studies which have shown that co-culture of Sertoli
cells with Leydig cells modulates the steroidogenic
responsiveness of Leydig cells. Co-culture of
Leydig cells with Sertoli cells isolated from
immature pig testis, enhances hCG-stimulated
testosterone production when compared with the
response of Leydig cells cultured alone. Pretreat-
ment of co-cultures with FSH further enhances the
steroidogenic capacity of Leydig cells and induces a
significant increase in the number of hCG receptors
(Tabone et al. 1984, Benahmed et al. 1985,
Reventos et al. 1989, Saez et al. 1989). These
functional changes of Leydig cells were associated
with a hypertrophy of the smooth endoplasmic
reticulum and an increase in the number of
cytoplasmic lipid droplets, which correlated with
the increased steroidogenic activity. Similarly,
co-culture of immature rat Sertoli cells with
immature rat Leydig cells (Verhoeven & Cailleau
1990) or with rat Leydig cell tumor H-540 cells
(Verhoeven & Cailleau 1991), either in the same
dish or in a two-chamber system, enhances basal
and LH- or dibutyryl cAMP-stimulated steroid
production and these effects are significantly
augmented by pretreating the co-culture with FSH.
More recently (Lejeune et al. 1993), it has also been
shown that co-culture of adult human Leydig cells
with human Sertoli cells, not only prevents the
decline in the steroidogenic capacity observed when
Leydig cells are cultured alone, but greatly
enhances their capacity to produce testosterone.
This increased steroidogenic capacity of the Leydig

cells co-cultured with Sertoli cells is associated with
an increase in the mRNA levels of P-450 scc,
P-450c17 and 3â-HSD (H Lejeune and J M Saez,
unpublished observations).
Finally, the stimulatory effect of FSH on Leydig

cells has also been demonstrated using rat fetal testis
explants (Lecerf et al. 1993). In this in vitro system
an hFSH preparation contaminated with small
amounts of LH induced basal and acute LH-
stimulated testosterone production. The specificity
of the FSH effects was demonstrated by the fact
that specific anti-hFSHâ antibodies, but not
anti-hLHâ antibodies, blocked the effect of hFSH,
and by the fact that recombinant hFSH produced
similar effects.
Since the current consensus is that Sertoli cells

are the major target for FSH in the testis (Griswold
1993), it is likely that most of the in vivo and
in vitro effects of FSH are mediated through
Sertoli cell secreted production. In favor of this
hypothesis is the fact that conditioned medium
from rat (Verhoeven & Cailleau 1985, Carreau
et al. 1988, Ojeifo et al. 1990), human (Verhoeven
& Cailleau 1987) and pig (Perrard-Sapori et al.
1987) Sertoli cells modulates Leydig cell functions,
and the acute stimulatory effect on testosterone
production was enhanced when Sertoli cells were
pretreated with FSH (Verhoeven & Cailleau 1985,
1987, Perrard-Sapori et al. 1987). Interestingly,
when rat Sertoli cells were cultured in a two-
chamber system, more than 80% of the steroido-
genic factor(s) were found in the basal compartment,
indicating that the factor(s) was secreted in a polar-
ized manner (Onoda et al. 1991). Moreover, the
addition of pachytene spermatocytes or pachytene
spermatocyte proteins to the apical compartment of
the chambers, inhibited by 85% the basally directed
Sertoli cell secretion of the steroidogenic factor(s).
Recently, the FSH-induced factor responsible for
the acute stimulation of Leydig cell steroidogenesis
(steroidogenesis-stimulating protein) has been
purified and isolated and identified as an inhibitor
of metalloproteinase-1 (Boujrad et al. 1995). In
addition to these acute steroidogenic effects, condi-
tioned medium from Sertoli cells also has a long-
term effect on Leydig cells, the nature and the
intensity of which depend upon the conditions in
which Sertoli cells are cultured. Thus, conditioned
medium from Sertoli cells of several species cultured
in the absence of FSH (Papadopoulos et al. 1987,
Perrard-Sapori et al. 1987), had an inhibitory action
on several parameters of Leydig cell function,
whereas medium from Sertoli cells treated with FSH
(Perrard-Sapori et al. 1987) had the opposite effect.
Moreover, as indicated before, immature Sertoli
cells in response to FSH secrete at least two proteins
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of 30 kDa and 10 kDa that stimulate proliferation
of Leydig cells, effects that were more pronounced
on Leydig cell progenitors (Ojeifo et al. 1990, Lamb
et al. 1991, Wu & Murono 1994).
Further evidence in favor of the positive effects of

FSH on Leydig cell function was afforded by the
study of a hypophysectomized man who, despite
undetectable levels of serum gonadotropins, had
normal testis volume, almost normal spermato-
genesis and low but detectable levels of serum
testosterone. These surprising clinical data were
due to a heterozygous activating mutation of FSH
receptor (Gromoll et al. 1996). These findings
therefore indicate that FSH is not only important
for Sertoli cell function, but that the hormone in the
absence of LH might be able to maintain some
Leydig cell function.
Although all the above in vivo and in vitro

findings strongly suggest an important role of FSH
on Leydig cell development and function, two
recent studies question this hypothesis. Thus,
inactivation of FSHâ subunit gene produces fertile
male mice with apparent normal development and
function of Leydig cells, although with moder-
ate reduction of testicular volume. In contrast,
homozygous females were infertile with complete
arrest of follicular maturation (Kumar et al. 1997).
Similarly, men homozygous for an inactivating
mutation of FSH receptor had small testes, normal
plasma testosterone levels and variable degrees of
spermatogenesis failure, but two out of five had
children (Tapanainen et al. 1997). In contrast,
homozygous females for the same mutation
were infertile with arrest of follicular maturation
(Aittomöki et al. 1995, 1996). Both results clearly
indicate that whereas FSH is absolutely required for
normal ovarian function, it is not required for
normal development and function of Leydig cells.

Interaction of Leydig cells with other
testicular cells

Theoretically, Leydig cell function can be regulated
by the other cells present in the interstitial
compartment, namely peritubular myoid cells and
macrophages. Although there is strong evidence
indicating an active cooperation between Sertoli
cells and peritubular cells (reviewed in Skinner
1991), there are few data concerning the interaction
between Leydig cells and peritubular cells. There is
no evidence for a direct effect of peritubular cells or
their secreted proteins on Leydig cell function
(Risbridger & Skinner 1992). However, peritubular
cell secreted proteins, in particular P-Mod-S,
regulate Sertoli cell function (Norton & Skinner
1989). Thus, peritubular cells might regulate

Leydig cell function, indirectly, through Sertoli
cells.
The interaction between Leydig cells and macro-

phages as well as the factors involved in this
interaction have been recently reviewed (Hales
1996). As indicated above, in the rat testicular
macrophages are needed for the initial phases of
precursor proliferation as well as for the prolifer-
ative activity of immature Leydig cells, but not for
the maintenance of mature Leydig cell functions
(Gaytan et al. 1994a, 1995). Further evidence for
the role of testicular macrophages on testicular
development and function came from studies of
the osteopetrotic (op/op) mouse characterized by
an autosomal mutation in colony stimulating factor
1 resulting in a deficiency of both macrophages
and osteoclasts (Pollard & Stanley 1996). These
mice had low plasma testosterone levels, and
in vitro LH- and 22(R)-hydroxycholesterol-
stimulated testosterone productions were reduced
compared with Leydig cells isolated from op/+
mice (Cohen et al. 1996). In addition, there are
some findings indicating that testicular macro-
phages may be involved in the effect of FSH on
Leydig cells. First, unilateral depletion of testicu-
lar macrophages in hypophysectomized 28-day-old
rats abolishes the stimulatory effect of FSH on
Leydig cell number only in macrophage-depleted
testis (Gaytan et al. 1995). Second, testicular
macrophages bind specifically 125I-FSH and FSH
stimulation induces increased lactate and cAMP
production by these cells (Yee & Hutson 1985a,b).
More importantly, conditioned medium from
testicular macrophages was able to stimulate
both basal and LH-stimulated testosterone pro-
duction by isolated rat Leydig cells (Yee & Hutson
1985c). Conditioned medium from macrophages
previously treated with FSH was twice as potent
as conditioned medium from untreated macro-
phages. In contrast, another group (Lombard-
Vignon et al. 1991) reported that macrophage-
conditioned medium from control or FSH-treated
rats inhibited Leydig cell testosterone production.
More recently (Mayerhofer et al. 1992b), it has
been shown that macrophages from active but
not from regressed testes of the Siberian ham-
ster responded to FSH by an increased lactate
production, suggesting the presence of functional
FSH on macrophages. However, whereas con-
ditioned medium from testicular macrophages
cultured without FSH had no effect on testoster-
one production by slides of testicular tissue, an
inhibitory effect was observed with conditioned
medium from macrophages pretreated with FSH.
Whether these discrepancies are due to differences
in the species or in the in vitro system used
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remains to be elucidated. The only certainty is that
further studies are needed to clarify the potential
role of testicular macrophages on mature Leydig
cell functions.

Regulation of Leydig cells by locally
produced factors

An approach used to identify locally produced
factors able to regulate Leydig function has been to
study the effects of known factors on Leydig cell
function and to determine whether these factors
are produced within the testis. By using these
approaches many potential regulatory molecules
have been demonstrated to be present in the testis
and/or to act on Leydig cells. However, relatively
few of these molecules have fulfilled the criteria
needed to establish that a molecule found in any
tissue might play a local regulatory role (Table 5).
It is pointless to review all the data concerning

the testicular production of a large number of these
factors and their potential effects on Leydig cell
function. Some of these data are summarized in
Table 6 and the reader is referred to other recent
reviews in which this topic has been covered in
more detail (Skinner 1991, Ackland et al. 1992,
Sharpe 1993, Saez 1994, Hales 1996, Lin 1996, Saez
& Lejeune 1996). This review will emphasize
factors for which the three criteria, defined above, to
be considered as paracrine/autocrine factor(s) have
been fulfilled.

IGF-I
There is strong evidence derived from both in vivo
and in vitro studies that both circulating and
testicular produced IGF-I may be involved in the
proliferation, differentiation and function of Leydig
cells. The evidence from in vivo studies is the
following. (1) In humans, isolated GH deficiency
(Kulin et al. 1981) or GH resistance, as in the case
of Laron syndrome (Laron 1984), is associated with
micropenis, suggesting a decreased fetal Leydig
function during the second half of pregnancy,

delayed puberty and poor response to exogenous
hCG (Kulin et al. 1981) which, in the case of GH
deficiency, is very often improved following
treatment with GH (Rivarola et al. 1972, Kulin
et al. 1981). (2) Administration of GH but also
of IGF-I to Snell dwarf mice for 7 days increases
the number of testicular LH receptors and the
steroidogenic response to hCG (Chatelain et al.
1991). (3) The most strong evidence that IGF-I is
crucial in the development and function of Leydig
cells came from studies of IGF-I gene knockout
mice (Baker et al. 1996). In these animals, the testes
were reduced in size more than expected from the
degree of dwarfism, the number and the volume of
Leydig cells were markedly reduced, as well as
plasma testosterone levels and the in vitro basal
and LH-stimulated testosterone production by
testicular slices were impaired.
In vitro studies have shown that IGF-I fulfilled

the first three criteria to be considered as a
paracrine/autocrine factor. This topic has been
extensively reviewed (Saez 1994, Lin 1996) and we
emphasize here the main data: (1) presence of IGF
type I receptors in Leydig cells of several species,
and stimulatory effect of the peptide in the
transcription rate of LH/hCG receptor and sev-
eral steroidogenic enzymes (Chuzel et al. 1996);
(2) expression of IGF-I mRNA and protein by
somatic testicular cells; and (3) inhibition of rat
(Verhoeven & Cailleau 1990) and pig (Fig. 4)
Leydig cell steroidogenic response to LH/hCG

 5. Criteria required to establish a paracrine/
autocrine role for any factor

1. Presence of receptors and biological action on local cells
2. Local secretion regulated by physiological signals
3. Blockade of the factor or its receptor by antibody,

antagonist or antisense oligodeoxynucleotides, must
modify the function of local cells

4. Systemic supply of the factor does not explain
the regulation

 4. Effect of increasing concentrations of IgG
prepared from IGF-I antiserum (/) or non-immune
serum (.) on Leydig cells. Cells were cultured for
2 days with the indicated concentrations of IgG. At the
end of this period, cells were incubated for 24 h with
hCG (10"9 M) and the testosterone in the medium
measured. The results, expressed as a percent of control
values, are means&... of three experiments, each in
triplicate.
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when they are cultured in the presence of an IGF-I
antiserum.
Taking together the in vivo and in vitro results, it

appears that IGF-I is one of the factors for which
there is convincing evidence to postulate that, in
addition to its endocrine role, this factor plays
a paracrine/autocrine role in the regulation of
testicular functions.

TGFâ
Many in vitro studies have demonstrated that
TGFâ fulfills the first two criteria to be considered
as a paracrine/autocrine factor of Leydig cells
(reviewed in Saez 1994, Saez & Lejeune 1996):
(1) presence of TGFâ receptors in testicular cells
and potent inhibitory effects of this peptide on the
expression of LH/hCG receptor and P-450c17 gene
(Chuzel et al. 1996); and (2) expression of TGFâ
mRNAs and proteins by testicular cells. Recently
we have demonstrated that TGFâ1 fulfilled the third
criterion to be considered as a paracrine/autocrine
factor in Leydig cells by using an antisense approach.
Transfection of these cells with an antisense oligo-
deoxynucleotide completely blocked TGFâ1 syn-
thesis, and this was associated with an increase
of LH/hCG receptors and P-450c17 mRNAs (C
Le Roy, P Leduque, Y Li, J M Saez & D Langlois,
unpublished observations). This antisense approach
has already been used in other models to demon-
strate the paracrine/autocrine role of TGFâ1 (Wang
et al. 1995, Jachimczak et al. 1996, Le Roy et al.
1996, Turley et al. 1996).
Despite the above findings clearly demonstrating

the autocrine/paracrine role of TGFâ1 in vitro,
recent targeting inactivation of TGFâ1 and one of
its receptors has not allowed confirmation of the role
of these peptides in Leydig cell development. Thus,
normal male phenotype at birth has been reported
in mice in which TGFâ1 (Shull et al. 1992,
Kulkarni et al. 1993, Dickson et al. 1995) or TGFâ3
(Kaartinen et al. 1995, Proetzel et al. 1995) were
inactivated. Moreover, inactivation of TGFâ type
II, obligatory mediator of all isoforms of TGFâs,
resulted in embryonic lethality around 10·5 dpc
before testicular organogenesis (Oshima et al. 1996).

Other potential paracrine/autocrine factors
Table 6 enumerates other factors which have been
reported either to be produced within the testis
and/or to act in vitro on Leydig cells. However, for
none of them, except IGF-I and TGFâ, has the
third criterion to be considered as a paracrine/
autocrine factor been demonstrated. Moreover, very
often their secretion and their action on Leydig cells
have only been shown in the rat, but some of the
results observed in this species cannot be extra-

polated to others, i.e. rat Leydig cells contain
GnRH specific receptor and this peptide acutely
stimulates testosterone production, but mouse, pig
and human Leydig cells lack GnRH receptors. In
addition, it remains to be proven that all the in vitro
data can be extrapolated to the in vivo situation. In
this respect, recent findings observed in transgenic
animals or in humans with mutations affecting some
factors or their receptors, are of great interest.
There are many data in vitro which can be inter-

preted as evidence for modulation of Leydig cells by
arginine vasopressin (AVP), but the in vivo findings
in both rat and the human do not support such
hypotheses. In the Brattleboro rat in which AVP is
mutated (Ivell et al. 1986), plasma testosterone
levels, as well as the steroidogenic responsiveness to
hCG of isolated Leydig cells, were similar to those of
control rats (Collu et al. 1984). Similarly, in humans
with familial autosomal neurogenic diabetes insipi-
dus due to mutation of the vasopressin–neurophysin
gene (Ito et al. 1991) or with X-linked nephrogenic
diabetes insipidus due to mutation of vasopressin
type V2 receptor (Bichet et al. 1993), a dysfunction of
Leydig cells has not been reported.
Also, in both rodents and humans, angiotensin II

(AngII) appears to have no role in the regulation
of Leydig cell function in vivo. No change in
testosterone levels has been reported in patients or
rodents with high plasma AngII levels, either before
or after treatment with converting enzyme inhibitor
or angiotensin-1 (AT1) receptor antagonist. More-
over, in transgenic mouse carrying both human
renin and human angiotensinogen genes leading to
overproduction of AngII, no change in Leydig cell
function was reported (Fukamizu et al. 1993).
Similarly, in mice, inactivation by homologous
recombination of angiotensinogen (Tanimoto et al.
1994, Smithies & Maeda 1995), AT1 receptor (Ito
et al. 1995) or AT2 receptor (Hein et al. 1995, Ichiki
et al. 1995), no abnormality of testicular function
has been reported.
Similarly, although activin and inhibin are

specific testicular-produced peptides, and these
peptides have been shown to regulate Leydig cell
function in vitro (reviewed in Risbridger 1996),
targeting inactivation of these genes is against a role
of these peptides on Leydig cell development and
function in vivo. Thus, knockout of activin âB
subunit, giving mice deficient in activin B, activin
AB and inhibin B, results in males with normal
reproductive capacity (Vassalli et al. 1994). Activin
âA-deficient mice develop to term but die within
24 h secondary to multiple craniofacial abnor-
malities, but without apparent abnormalities of
the external or internal genitalia. Similarly, mice
deficient in both activins âA and âB, display the
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defects of both activins âA and âB mutant mice, but
no additional defects (Matzuk et al. 1995b). Only
inactivation of one of the two activin type II
receptors caused a marked reduction in testicular
weight associated with a delay in fertility of about 3
weeks compared with heterozygous mice for such
mutation (Matzuk et al. 1995a). However, this
abnormality is probably secondary to the very low

plasma FSH levels. Finally, homozygous á-inhibin-
deficient mice were initially healthy and had normal
external genitalia, but were infertile (Matzuk et al.
1992). This was due to the development of gonadal
sex cord-stromal tumors (granulosa/Sertoli cell
tumors) in both sexes as early as 4 weeks of age.
However, spermatogenesis, as well as the number of
Leydig cells, was normal in male from 5–7 weeks,

 6. Main factors produced within the testis and acting in Leydig cells

Site of
production Evidence Regulation

Leydig cells

Receptor Effects

Factor
Steroidogenic stimulatory
factor

SC Protein _ FSH ND _ Steroidogenesis

Steroidogenic
inhibitory factor(s)

SC Protein ND ` Differentiated functions

Mitogenic factor(s) SC Protein FSH _ " _ Leydig cell progenitor
proliferation

IGF-I LC, SC mRNA, protein FSH _ in SC
hCG _ in LC

+ _ differentiated functions

TGFâs LC, SC, PC mRNA, protein FSH ` in SC + ` Differentiated functions
EGF/TGFá LC, SC, GC, PC mRNA, protein ? + _ Steroidogenesis

` Differentiated functions
FGF LC, SC, GC, PC mRNA, protein FSH _ in SC + ` Differentiated functions
PDGF LC Protein _ hCG in LC + ` Differentiated functions
Inhibin/activin LC, SC mRNA, protein FSH _ in SC

hCG _ in LC
ND Inhibin _ steroidogenesis

Activin ` steroidogenesis
Interleukin-1 LC, SC, M mRNA, protein LPS _ in SC

hCG and LPS _ in LC
+ ` Differentiated functions

Interleukin-2 L mRNA, protein ? + ` Differentiated functions
Interferon (á, ã) L mRNA, protein ? ? ` Differentiated functions
TNF-á GC mRNA ? ND Stimulatory: rat

Inhibitory: pig, mouse
LHRH SC LHRH-like

protein
? + Acute _ steroidogenesis

only in rat
GHRH LC, GC mRNA, protein hCG _ in LC ND Stimulatory or no effect
CRF LC mRNA, protein hCG _ in LC + ` LH-stimulated

steroidogenesis in rat
_ LH-stimulated
steroidogenesis in mouse

AVP LC, SC mRNA, protein — + Acute _ steroidogenesis
` Differentiated functions

Oxytocin LC, SC mRNA, protein LH _ LC + ` Differentiated functions
ANF Testis mRNA, protein ? + Stimulatory mouse,

inhibitory MA-10 cells
No effect rat, human

CNF LC mRNA, protein ? + ?
A-II LC Protein + ` Inhibitory
Endothelin SC mRNA, protein FSH ` in SC + _ Steroidogenesis
NO M — — " ` LH-stimulated

steroidogenesis
NRY LC, SC mRNA, protein FSH _ SC, LH _ LC ? ?

ANF: atrial natriuretic factor; AVP: vasopressin; CNF: C-type natriuretic factor; CRF: corticotropin-releasing factor; EGF: epidermal growth factor;
FGF: fibroblast growth factor; GC: germ cell; GHRH: growth hormone releasing factor; IGF-I: insulin-like growth factor I; L: lymphocyte; LC:
Leydig cell; M: macrophage; ND: not determined; NO: nitric oxide; PC: peritubular cell; PDGF: platelet-derived growth factor; SC: Sertoli cell;
TGFâ or á: transforming growth factor â or á; TNF-á: tumor necrosis factor á; NRY: neuropeptide Y.
References for Table 6: References before 1994 can be found in Ackland et al. 1992, Hales 1996, Lin 1996, Saez 1994, Saez & Lejeune 1996. More
recent references concern the effects of nitric oxide (Del Punta et al. 1996), C-type natriuretic factor (Middendorff et al. 1996), CRF (Huang et al.
1995) expression and regulation of neuropeptide Y (Kanzaki et al. 1996) and expression of EGF, TGFá and their receptors during testicular
development (Caussanel et al. 1996).
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but a regression of both parameters occurred in
parallel with the enlargement of the tumor mass.
Interestingly, inhibin deficient mice have very high
plasma levels of both activin A and activin B
(Matzuk et al. 1994), but these high levels of
activins are not responsible for the gonadal sex
cord-stromal tumor development (Coerver et al.
1996, Matzuk et al. 1996). Thus, the clear-cut
conclusion for all the above studies is that inhibins
function as tumor suppressors in both gonads and
adrenal cortex (Matzuk et al. 1994, 1996), but that
inhibins and activins are not important for Leydig
cell development and function.
Although many in vitro studies have suggested a

paracrine/autocrine regulation of Leydig cells by
epidermal growth factor (EGF)/TGFá (reviewed in
Ackland et al. 1992, Saez 1994, Saez & Lejeune
1996), targeted disruption of TGFá (Luetteke et al.
1993, Mann et al. 1993) or of the EGF receptor
(Sibilia & Wagner 1995, Threadgill et al. 1995) has
not allowed confirmation of such a hypothesis.
Thus, mice homozygous for a disrupted TGFá
gene are healthy and fertile, the only abnormality
was a pronounced waviness of the coat. The pheno-
type of EGF receptor inactivation was dependent
on genetic background, causing either peri-
implantation death, death at mid-gestation due to
placental defects, or normality at birth followed by
progressive reduction in weight and wasting. The
latter group lived for up to 3 weeks and showed
abnormalities in skin, kidney, brain, liver and
gastrointestinal tract (Threadgill et al. 1995).
However, because of the early death, the fertility of
these mutants is unknown.
Also many in vitro studies have suggested that

fibroblast growth factors (FGFs) regulate Leydig
cell function (reviewed in Saez 1994, Saez &
Lejeune 1996), but their physiological role in vivo
has not yet been demonstrated. Since in vitro
studies have shown that the long-term effects of
FGF on Leydig cells are inhibitory, one would
expect that activating mutations of FGF receptors
would cause inhibition of Leydig cell function. This
prediction has not been confirmed, at least in
humans, since no apparent abnormalities in testicu-
lar function have been reported in patients with
Pfeiffer syndrome (Muenke et al. 1994), Crouzon
syndrome (Reardon et al. 1994) and achondroplasia
(Shiang et al. 1994) who had an activating mutation
of FGF receptors 1, 2 and 3 respectively.
Oxytocin has been reported to be either in-

hibitory (Adashi et al. 1987) or stimulatory
(Tahri-Joutei & Pointis 1989, Frayne & Nicholson
1995) on isolated Leydig cell testosterone produc-
tion. In contrast, in vivo supraphysiological levels of
oxytocin released from oxytocin-filled testicular

implants reduced both serum and testicular testos-
terone levels (Nicholson et al. 1991). This inhi-
bitory effect was confirmed recently in a transgenic
mouse model overexpressing oxytocin in the testis
(Ang et al. 1994).

CONCLUDING REMARKS

This review provides evidence of the great progress
made in the last two decades in our understanding of
the origin, development and regulation of Leydig
cells owing to progress in cellular and molecular
biology. Most of the data concerning the multi-
factorial regulation of Leydig cells have been
generated by in vitro studies using isolated cells or
co-culture. The advantage of these models is that
they have allowed a better definition at the cellular
and molecular levels of the secretion and action of
many factors. Their weakness is that they destroy the
complex and highly organized testicular structure
and therefore the multiple cell–cell interactions.
Thus, the extrapolation of the in vitro findings to the
in vivo situation requires some controls before some
physiological relevance can be assigned to them.
To improve our understanding of Leydig cell

development and function, future research needs
more sophisticated in vivo studies, including:
(1) production of transgenic animals overexpressing
a factor or its receptor driven by tissue-specific
promotor; (2) overexpression of the corresponding
antisense mRNA driven by tissue-specific or
inducible promotor; and (3) targeted disruption of
such factors or receptors.
Finally, since Leydig cells form part of a complex

tissue, in which the cross-talk between different
testicular cell types appears to be required to allow
the testis to fulfill both its endocrine and exocrine
functions, the regulation of Leydig cells must be
integrated with that of the other somatic cells and
germ cells via a short-loop feedback system. Thus,
the above approach, overexpression, and knockout
should also be used for the other testicular cells.
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