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Abstract

Background: Mutations arise in the human genome in two major settings: the

germline and the soma. These settings involve different inheritance patterns, time

scales, chromatin structures, and environmental exposures, all of which impact the

resulting distribution of substitutions. Nonetheless, many of the same single

nucleotide variants (SNVs) are shared between germline and somatic mutation

databases, such as between the gnomAD database of 120,000 germline exomes and

the TCGA database of 10,000 somatic exomes. Here, we sought to explain this

overlap.

Results: After strict filtering to exclude common germline polymorphisms and sites

with poor coverage or mappability, we found 336,987 variants shared between the

somatic and germline databases. A uniform statistical model explains 34% of these

shared variants; a model that incorporates the varying mutation rates of the basic

mutation types explains another 50% of shared variants; and a model that includes

extended nucleotide contexts (e.g. surrounding 3 bases on either side) explains an

additional 4% of shared variants. Analysis of read depth finds mixed evidence that up

to 4% of the shared variants may represent germline variants leaked into somatic call

sets. 9% of the shared variants are not explained by any model. Sequencing errors

and convergent evolution did not account for these. We surveyed other factors as

well: Cancers driven by endogenous mutational processes share a greater fraction of

variants with the germline, and recently derived germline variants were more likely

to be somatically shared than were ancient germline ones.

Conclusions: Overall, we find that shared variants largely represent bona fide

biological occurrences of the same variant in the germline and somatic setting and

arise primarily because DNA has some of the same basic chemical vulnerabilities in

either setting. Moreover, we find mixed evidence that somatic call-sets leak

appreciable numbers of germline variants, which is relevant to genomic privacy

regulations. In future studies, the similar chemical vulnerability of DNA between the

somatic and germline settings might be used to help identify disease-related genes

by guiding the development of background-mutation models that are informed by

both somatic and germline patterns of variation.
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Background

Human mutations arise in two major settings: the germline and soma. Germline muta-

tions occur in sperm, eggs, and their progenitor cells and are therefore heritable. Som-

atic mutations occur in other cell types and cannot be inherited by offspring. Somatic

and germline mutations matter in health and disease. Critical somatic mutations cause

cancer. Somatic mutations have also been known to contribute to autoimmunity [1]

and, rarely, seizure disorders [2]. Certain key germline variants cause heritable disease;

and many germline inherited variants with individually small effects can have a com-

bined [3] impact that becomes meaningful, and which may account for 30–70% [4] of

the risk for common diseases.

The genomics community has produced vast, high-quality, publicly accessible data-

bases of human variants for both the germline setting and the somatic setting. As prime

examples of each: the genome Aggregation Database (gnomAD) [5] list variants from

120,000 germline whole exomes and The Cancer Genome Atlas (TCGA) [6] lists vari-

ants from 10,000 somatic whole exomes from cancer patients. While for simplicity we

will refer to TCGA variants as somatic variants, it is important to emphasize that these

TCGA variants arise from cancerous somatic tissues, which have different mutational

processes than healthy somatic tissue, such that our results may not generalize to

healthy somatic tissues.

One well-known fact about these databases is that they share many variants in com-

mon; that is, a variant defined by its chromosome, position, reference allele, and alter-

nate allele is frequently separately listed in both gnomAD and TCGA. The latest

variant re-calling effort of TCGA somatic data even includes a separate column for the

germline allele frequency of somatic variants [7]. As to how these variants came to be

shared between gnomAD and TCGA, however, no thorough account has been reported

in the literature. Are these shared variants an expected consequence of statistically in-

dependent germline and somatic mutational processes? Or do the shared variants rep-

resent mutation hotspots common to the germline and cancerous somatic settings?

Examples of this second category include the fact that spontaneous deaminations and

other transitions occur at greater rates than do transversions in both the germline and

soma [8, 9]. Alternatively, might some shared variants arise from sequencing errors,

mislabeling of variants, or even convergent evolution?

The primary aim of this study is to investigate the origins of variants shared between

gnomAD and TCGA. At a minimum, understanding the origins of shared variants will

help the genomics community to better interpret these variants and use them correctly

in analyses. We also characterize shared variants in terms of their distribution across

subsets of germline and somatic variants to understand them in greater detail.

One lens through which we explore shared variants is in context of the similarities

and differences in somatic and germline mutational processes. Mutation is a chemical

reaction, and germline and somatic tissues contain DNA sequences that are virtually

chemically identical. Nonetheless, germline and somatic tissues differ from each other
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in various ways that may affect which mutations are most likely in each setting. For ex-

ample, they differ in their exposure to mutagens –with somatic skin cells being more

exposed to the mutagenizing effect of UV radiation than is germline tissue [10]. Dis-

tinct somatic tissues differ from each other and from the germline in the epigenetic

structure, regulation, and transcription of their genomes, which affects mutation pat-

terns [11]. The time course over which somatic and germline variants have endured is

another point of departure between these two settings: while all somatic variants from

living human subjects arose within the lifetime of the sample donor, germline variants

can be any age from one human generation (de novo alleles) to ancient inherited al-

leles. Our analysis explores shared variants in the context of these features that unite

and separate somatic and germline mutational processes.

Moreover, in the course identifying the origins of shared variants, our analysis will

necessarily touch on a number of questions of more general relevance in genomics.

One such topic is genomic privacy. Suppose a cancer patient donates a germline se-

quencing sample to a research repository. If a relative of that donor then posts his or

her own genetic information to an ancestry website along with his or her relationship

to that donor, then from that information, any observer with access to that germline se-

quence of the donor can deduce the identity of the donor. In contrast, if the same

donor instead donates a somatic sample consisting of de novo variants, a relative’s gen-

etic information cannot be used to identify the donor in the same way. For this reason,

it is common for somatic sequences to be open access whereas individual germline se-

quences are controlled access [12]. However, if enough putative somatic variants are in

fact mis-called germline variants, then this would elevate the risk of re-identification of

somatic samples, and could in principles affect the way the genomic community ought

to process or share somatic samples. Our setup will give us a perspective on this ques-

tion because in the course of identifying the probable origins of shared variants, we will

attempt to estimate the number of these shared variants that arise due to true germline

variants being inappropriately included in somatic call sets.

Results

When a variant with identical chromosome, position, reference allele, and alternate al-

lele is listed in both a somatic variant database and a germline database, we call this

variant a shared variant. The goal of this work was to investigate the origins of single

nucleotide variants (SNVs) shared between the largest public variant databases of hu-

man somatic exomes (TCGA) and of human germline exomes (gnomAD) and to

characterize them.

Creating a clean set of variants for analysis

To emphasize biological sources of shared SNVs, we sought to reduce the confounding

influence of technical sources of shared variants. While the individual databases had

been subject to strict quality control, additional artifacts become relevant in the com-

parison of SNVs from different whole-exome sequencing projects. Specifically, the

quality of inter-project comparisons may suffer from differing exome target regions and

coverage, differing variant calling and filtering rules, differing annotations of called vari-

ants, shared sequencing and mapping errors, and from samples shared between the two
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projects. We sought to address each of these concerns as much as practical upfront by

creating a conservative whitelist of eligible exomic sites and germline and somatic vari-

ants. We restricted the whitelisted exome to the intersection of the exome target re-

gions of each project, removed regions of known poor coverage in one project,

removed sites subject to TCGA’s panel of normal filter, uniformly re-annotated all vari-

ants, removed sites known to have poor mappability, and used gnomAD’s non-cancer

subset to avoid shared samples. We also removed all common germline SNVs (allele

frequency > = 0.001) upfront as these sites have been subject to powerful selection

forces.

An exomic site is a genomic coordinate within the whole exome sequencing target

interval, which generally includes exons, untranslated 5′ or 3′ regions of mRNA, and

noncoding RNA. Since at each site, one of the four types of nucleotides serves as the

reference allele, there are three possible alternate alleles at each site. 24,505,884 exomic

sites pass our filter, implying a set of 73,517,652 potential SNVs eligible for analysis.

(Hereafter, we will use the term “sites” to refer to potential SNVs) Of these, 5,225,731

are observed in the germline database and 1,629,311 in the somatic database. We ob-

serve 336,987 shared variants in our clean variant list.

Origins of shared variants

In principle, shared variants may arise from any of several reasons, including mere stat-

istical chance, correlated mutational rates across substitution types between the germ-

line and soma, convergent evolution, the leakage of germline variants into somatic call-

sets, and shared sequencing false positives. Distinguishing the contributions of these

processes is important because they have different implications for the biology of the

relationship between somatic and germline exomes, the quality of sequencing, and the

completeness of the genomic community’s models of human mutation.

To interpret the significance of the number of SNVs observed shared between the

somatic and germline databases, it is useful to compare the number observed with the

number predicted by models. The simplest model assumes that the mutation probabil-

ity of a site in one data set is independent of its mutation probability in the second data

set. We also consider models that assign mutation probabilities to sites based on their

nucleotide context, which introduces correlations in the mutation probabilities between

germline and somatic sites. When the number of observed shared SNVs differs from a

model’s expectations, this excess or shortage of shared SNVs relative to the model’s

predictions indicates that some additional process not included in the model is at play,

and is a starting point for exploring what processes those might be.

Shared variants are enriched nearly three-fold over expectations from statistical

independence

A certain number of variants are expected to be shared between two databases by

chance even if –counterfactually- the mutational processes in these databases were sta-

tistically independent from each other. The number of shared variants expected under

independence, e|independence, is given by the equation

e j independence ¼
g

n
�
s

n
�n
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where n is the number of potential SNVs eligible for analysis, g is the number of unique

eligible sites mutated in the germline database, and s is the number of unique eligible

sites mutated in the somatic database. Using this equation, we expect 115,814 shared

variants by independence. Thus, the observed number of shared variants, b is nearly

three-fold expectations from independence, with a Forbes coefficient of association, F

[13], of 2.910 where

F ¼ b
.

e j independence

This enrichment of shared variants over expectations from independence is a perva-

sive phenomenon, not confined to a few outlier samples (Fig. 1a).

A new statistical framework flexibly incorporates the distinct mutation rates of different

mutation types into the expected number of shared variants

The fact that there is an excess of shared SNVs over independence is not surprising be-

cause it is known that DNA has intrinsic chemical instabilities at particular contexts.

The most widely studied and prevalent chemical predispositions of DNA is that transi-

tions occur more frequently than transversions, and that CpG sites are susceptible to

spontaneous deamination to TpG [14]. These properties are true in both the germline

and somatic settings. For example, in our data sets, we calculated that somatic and

germline transitions, respectively, are 3.4 and 3.8 times more likely than transversions

and that somatic and germline deaminations are, respectively, 19.8 and 17.2 times more

likely than transversions. Therefore, our next goal was to calculate the excess of shared

SNVs that cannot be explained by the greater mutation rates of deaminations and

transitions over transversions. For this analysis, we introduce a new statistic, the

Fig. 1 Similarities in the distribution of somatic and germline variants. a Histogram of Forbes coefficients

across somatic samples. Virtually all somatic samples in TCGA have several-fold more variants shared with

the germline database than expected by independence. b Mutation rates across nucleotide contexts are

correlated between the somatic and germline settings. The set of all heptamers has been split by GC

content and color-coded by alternate allele to show correlation structure. Heptamers involving a CpG- > T

mutation are omitted from this plot for better visualization of all other heptamers
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partition-conditioned Forbes coefficient of association, P(v), which generalizes the For-

bes coefficient to allow subparts of a data set to have different rates, given by

P vð Þ ¼
b

Pm
i¼1ei

where b is the number of shared SNVs, m is the number of factor levels of categorical

variable v and

ei ¼
g i
�

ni
�si

�

ni
�ni

and where gi, si, and ni are the number of G events, S events, and total elements of the

ith partition of the full domain.

Most excess shared variants can be accounted for by the greater mutation rates of

deaminations and other transitions over transversions

We next applied the partition-conditioned Forbes model to identify the enrichment of

shared variants relative to expectations that incorporate the distinct mutation rates of

the basic substitution types. Here we set m = 3 to correspond to the three most basic

types of substitution: deamination, other transition, and transversion. The calculated

Forbes coefficient conditioned on a partition of sites by basic substitution type, was

1.144, indicating that 14% of variants shared between the somatic and germline data-

bases cannot be accounted for by the database-specific relative mutation rates of deam-

inations, other transitions, and transversions.

Extended nucleotide contexts exhibit mutation rates that are correlated between the

germline and soma

Beyond the basic types of nucleotide substitutions (deamination, other transitions, and

transversions), it has been demonstrated in the literature that more refined nucleotide

contexts are also associated with distinct mutation rates. These more refined nucleotide

contexts include an extended basic type [15], trinucleotide context [16], pentanucleo-

tide context [16], and heptanucleotide context [17]. For the most part, the influence of

these nucleotide contexts has been demonstrated separately in somatic and germline

contexts, and what is required for these extended nucleotide contexts to influence the

rate of shared variants is that the mutation rates of distinct nucleotide contexts are cor-

related between the germline and soma (and that these correlations are not merely

driven by the more basic type of nucleotide substitutions contained within them).

As an initial step, we calculated the correlation in the mutation rate of each nucleo-

tide context between the somatic and germline settings, finding them correlated at each

Table 1 Correlation between somatic and germline mutation rates by nucleotide context

Nucleotide Context Somatic-Germline Spearman correlation coefficient P-Value

Trimer 0.71 < 2.2e-16

Trimer, excluding NCG sites 0.65 < 2.2e-16

Pentamer 0.70 < 2.2e-16

Pentamer, controlling for central 3 bases 0.33 < 2.2e-16

Heptamer 0.64 < 2.2e-16

Heptamer, controlling for central 5 bases 0.16 < 2.2e-16
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level of analysis (Table 1). We find that the correlation between the somatic and germ-

line mutation rates of different heptamers holds even when the heptamers share the

same central pentamer; that is, if in the germline, TCCCCCG mutates to TCCACCG at

a greater rate than ACCCCCG mutates to TCCACCG, the same will tend to hold in

the soma. In Fig. 1b we graphically represent these results by plotting the mutation rate

of each k-mer in the soma against the mutation rate of that k-mer in the germline.

Extended nucleotide contexts explain a marginally greater proportion of excess shared

variants

We hypothesized that incorporating these extended nucleotide contexts into our expec-

tations for the number of shared variants would bring expectations closer to observa-

tions (i.e. partitional Forbes coefficients closer to 1). To test this hypothesis, we

recalculated the partitional Forbes coefficient of association between somatic and germ-

line variants by partitioning genomic sites into successively finer (longer) nucleotide

contexts. We found that extended nucleotide contexts marginally explain greater frac-

tions of the shared mutation rate (Table 2).

Convergent evolution does not account for the excess of shared variants

In principle, convergent evolution can result in an excess of shared variants between

the soma and germline in two ways: directly and indirectly. In the direct case, conver-

gent positive selection on the same few variants in the germline and soma would make

those variants tend to be shared. In the indirect case, convergent negative selection on

the same many variants in the germline and soma would make all other variants seem

more shared than otherwise expected. Our analysis of the exome, in which selection

forces are particularly strong, theoretically increased the risk of confounding from con-

vergent evolution. Nonetheless, we did not expect convergent evolution to be a major

explanation of the rates of shared variants we observed, because negative selection has

been shown to be a much weaker force in the soma than in the germline [18], and in

general the variants that are positively selected in somatic tissues are negatively selected

in the germline.

To empirically test the role of convergent evolution in the observed rates of shared

variants, we recalculated the shared variant rate using only synonymous variants, which

are only rarely under meaningful selection pressure in humans [19]. Because of the

Table 2 Conditioned Forbes scores after partitioning the exome into successively finer nucleotide

contexts

Model class Partitions into
which nucleotide
context

Number
of
partitions

Number of
expected shared
variants

Partition-
conditioned
Forbes coef

Total shared
SNVs
explained

Incremental
explanatory
value

Statistical
Independence

Unpartitioned 1 115,814 2.910 34.4% 34.4%

Basic
mutation type

Deamination vs
transition vs
transversion

3 294,619 1.144 87.4% 53.0%

Extended
nucleotide
context

Trinucleotide 96 301,728 1.117 89.5% 2.1%

Pentanucleotide 1536 305,511 1.103 90.7% 1.2%

Heptanucleotide 24,576 307,393 1.096 91.2% 0.5%
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codon code, only certain nucleotide contexts can serve as sites of synonymous variants,

and these nucleotide contexts are chemically associated with distinct mutation gener-

ation rates. Therefore, for a fair comparison, we compared the shared variant rate of

synonymous variants with the shared variant rate of nonsynonymous variants at sites

that were matched by nucleotide context with the synonymous sites. If synonymous

variants were found to have a lower shared variant rate than were nucleotide-matched

nonsynonymous variants, this would be evidence in favor of convergent evolution in-

flating the shared variant rate at nonsynonymous sites. Instead, we observed that the

synonymous shared variant rate was virtually indistinguishable from the shared variant

rate of trinucleotide-matched nonsynonymous variants: Forbes coefficient of 2.649 for

the synonymous subset and 2.641 for the nonsynonymous subset. These results argue

against the hypothesis that convergent evolution explains a meaningful portion of the

overall shared variant rate.

Mixed evidence that a small proportion of shared variants represent germline leakage

The raw variants of a somatic sample with respect to the reference genome include

both germline variants present in every cell in a given subject and somatic variants

which may be unique the somatic sample obtained from that subject. In cancer sequen-

cing projects, variants from a tumor sample are classified as somatic in origin only if

they are present in the tumor sample but absent from a sample of noncancerous cells

from the same subject. This digital subtraction step of somatic sequencing may not

completely remove germline variants from somatic call-sets because sequencing of the

normal sample is incompletely sensitive and tends to be performed at lower depth than

tumor sequencing [20]. The read depth of a matched normal sample at a site is a meas-

ure of the power to exclude a leaked germline variant in that site in a somatic sample.

Leaked germline variants, when present in a somatic call set, are especially likely to be

shared with a germline call set. Even though we excluded TCGA subjects from our

gnomAD call set, gnomAD undoubtedly contains close cousins and necessarily con-

tains distant cousins of TCGA subjects, who inherited some of the same variants by

common descent.

To test whether possible leakage of germline variants in the TCGA somatic call

set could explain some of the shared SNVs we observed, we performed a matched

normal read depth analysis. If germline leakage is common in TCGA and leads to

spurious shared variants, we would expect that the shared variant rate would be

higher at sites where there was low matched normal read depth, because at such

sites there is less power to exclude truly germline variants from the somatic call-

set. This is indeed what we observed, with 15% more shared variants at sites with

a matched-normal read depth less than 15 vs sites with a matched-normal read

depth greater than 60 (Fig. 2a). If all of the enrichment of shared variants at sites

of low matched normal read depth is due to leaked germline variants, we estimate

that there are 2.3 leaked variants per somatic exome, higher than previous [20]

estimates.

However, other lines of evidence suggest an alternative explanation of the declin-

ing shared variant rate with increasing matched normal read depth: sites of low

matched normal read depth are particularly likely to be CpG sites, which have
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higher rates of mutation in both the soma and germline and therefore higher

shared variant rates (Fig. 2a). The reason for the association of CpG sites with low

read depth in turn appears to relate to the tendency of CpG sites to occur in gen-

omic regions with high GC content, (Fig. 2b) which is a known determinant of se-

quencing read depth [21].

.Because of the association of GC content and thus CpG contexts with low read

depth, we treat our estimate of the number of leaked germline events as an upper

bound. For visualization purposes in Fig. 3, we arbitrarily assign half of this upper

bound to “basic mutation types” and half to “potentially leaked germline variants.”

False positive sequencing errors do not account for the excess of shared variants

We next tested whether sequencing errors explained the cSNV rate. Some kinds of se-

quencing errors consistently affect the same genomic sites, such as in repetitive regions.

We had removed repetitive regions from the analysis. We also excluded sites of com-

mon germline polymorphisms, which will remove any sequencing errors that consist-

ently affect the same genomics sites. Therefore, we focused on testing for sequencing

errors that arise inconsistently. TCGA includes a validation set [22] of 24,366 somatic

variants from 222 uterine corpus endometrial carcinoma samples that underwent tar-

geted resequencing and met our filters. If shared variants result from stochastic sequen-

cing errors, we would expect that the validation rate of shared variants would be lower

than of non-shared somatic variants. Instead, we find that the validation rate of shared

and non-shared re-sequenced somatic variants are indistinguishable (99.01% vs

99.03%), indicating that false-positive stochastic sequencing errors do not explain an

important fraction of shared SNVs.

Insufficient data to test association of sequencing platform with shared variant rates

We next investigated whether sequencing platform was associated with shared variant

rates. All sequencing platforms have some biases, which affects the site distribution of

recovered variants. We hypothesized that systematic biases in sequencing platforms

leads to elevated shared variant rates when the platform of the somatic database is the

same platform as for the germline database – the “shared biases: shared variants” hy-

pothesis. Our ability to address this hypothesis was limited by the dominance of Illu-

mina data in our databases.

We compared the shared variant rate of 53 legacy TCGA somatic colorectal samples

sequenced using the ABI SOLiD platform against the shared variant rate with 380 som-

atic colorectal samples sequenced using an Illumina platform. This analysis was strati-

fied by GC content, which is known to be related to sequencing efficiency. No

adequate public cohort of ABI SOLiD germline samples was available for analysis. We

observed that Illumina-sequenced somatic variants tended to be shared with Illumina-

sequenced germline variants more so than did SOLiD-sequenced somatic variants tend

to be shared with Illumina-sequenced germline variants, particular in genomic regions

with high GC content. (Supplemental Figure 4) The “shared biases: shared variants hy-

pothesis” is one potential explanation for these findings. However, because of the ab-

sence of non-Illumina platforms in our germline database and because of possible

confounders, this interpretation cannot be confirmed with the available data.
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Fig. 2 Ambiguous evidence for whether germline leakage explains some shared variants. Putative somatic

variants are more likely to be shared with germline variants at sites with lower matched-normal read depth

– which are just the sites with the lowest power to exclude germline leakage (a, black points). Alternatively,

sites with lower matched-normal read-depth also happen to be sites with a high proportion of CpG

dinucleotides, whose chemical instability could explain high rates of shared variants without appealing to

germline leakage (a, gray points). In turn, the association between low read depth and high proportion of

CpG dinucleotides may be related to the fact that CpG dinucleotides occur more frequently within GC-rich

regions, and extreme GC content associates with low read depth (b)

Fig. 3 Origins of shared variants. Our best estimate of the origins of the 336,987 observed shared variants is

depicted in a pie chart. Here, basic nucleotide types excludes the effects of statistical independence and

the effects of the arbitrary point estimate for the number of leaked germline variants that may be

correlated with basic nucleotide context
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Characterization of shared variants

In the first part of our study, we showed that the main reason why somatic and germ-

line variants are frequently shared is because certain simple types of substitutions occur

at greater rates in both the germline and soma. In the second part of our study, we

characterize shared variants in more detail by observing how rates of shared variants

differ across biologically meaningful subsets of somatic and germline variants, and at-

tempt to explain why the shared variant rates of these subsets differ. In this second

part, we first explore subsets of somatic variants and then explore subsets of germline

variants.

Characterization of germline-shared somatic variants across distinct cancer types

Somatic variants from certain cancer types are especially likely to be shared with the

germline database

To better characterize shared variants, we separately calculated shared variant rates by

cancer type. In this analysis, we restricted the somatic call-set to a single cancer type at

a time, while maintaining the full germline call-set. We observed that the rate of shared

variants varies widely across cancer types from 0.11 in Lung Adenocarcinoma to 0.39

in Uveal Melanoma. (Supplemental Table 1) This observation served as a starting point

for follow-up analyses aimed at explaining why somatic variants from particular cancer

types are more likely to be shared with germline variants than are somatic variants

from other cancer types.

Germline-shared variants are more common in cancer types driven by endogenous

mutational processes

Different cancer types are known to have different mutational exposures, which in

turn lead to nucleotide contexts having different predispositions to mutation de-

pending on the cancer type. In the cancer genomics literature, distinct mutational

exposures, such as cigarette smoke, are identified on the basis of their signatures:

characteristic mutation profiles across nucleotide contexts [23]. Signatures 1 and 5

are thought to be endogenous signatures representing chemical instabilities present

in any cell [24]. Because the endogenous mutational processes are believed to be

active in both the germline and soma, whereas exogenous mutational processes will

have distinct effects in different somatic tissues with only a very limited role in the

germline, we hypothesized that cancer types with a higher proportion of variants

attributed to endogenous mutational signatures would have a higher proportion of

variants shared with the germline.

To test this hypothesis, we correlated the fraction of mutations in each cancer type

attributable to each mutational signature with the fraction of somatic variants from that

cancer that are shared with the germline [25] used non-negative matrix factorization to

decompose the mutation profiles of each TCGA somatic sample into 30 recognized

mutational signatures. In our analysis, using these signature contributions from [25],

we found that the degree of Signature 1 is strongly related to a cancer type’s rate of

shared variants (Fig. 4d). No other signature had as clear an association with the shared

variant rate as did Signature 1 (Supplemental Figure 1).
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No evidence that epigenetic features explain the differences in rates of germline-shared

variants across cancer types

Another key way in which somatic tissue types differ from each other is in their epigenetic

architecture. It is well-established that certain epigenetic features –include DNA replication

timing, chromatin accessibility, and RNA transcription- are associated with mutation rates

[11]. Therefore, we hypothesized that somatic tissues with an epigenetic architecture similar

to that of the human germline would have higher rates of variants shared with the germline.

To test this hypothesis, we correlated the distribution of DNA replication timing,

DNAse hypersensitivity (as a marker for chromatic accessibility), and RNA transcription

between each somatic tissue and a proxy for the germline. DNA replication timing values

and DNAse hypersensitivity scores per megabase were obtained from ROADMAP Epige-

nome [26]. RNA transcription values per gene were obtained from GTEX [27]. As a proxy

for the germline, we used the human embryonic stem cell line H1. Cancer types were

matched to corresponding Roadmap or GTEX tissues according to Supplemental Table 1.

Contrary to our hypothesis, somatic tissues whose epigenetic features were better

correlated with the features in the germline proxy did not have higher rates of

germline-shared variants (Fig. 4a, b, c). Notably, the epigenetic features of most somatic

tissues had a similar correlation coefficient with the germline proxy, which limited the

sensitivity of this approach. A further limitation of our approach is that we used aggre-

gate data from approximately-matched somatic tissues.

No evidence that replicative capacity by cell-of-origin explains the differences in rates of

germline-shared variants across cancer types

A further way in which somatic tissues differ from each other is that the stem cells of some

somatic tissues divide more quickly than those of others. All things being equal, more rap-

idly dividing tissues might be expected to have a higher ratio of endogenous mutations

from DNA replication errors to exogenous mutations. As these somatic endogenous muta-

tions may tend to arise at similar genomic sites as germline endogenous mutations, it could

be hypothesized that somatic variants from faster-dividing somatic tissues would be more

likely to be shared with the germline than those from slower-dividing somatic tissues.

To test this hypothesis, we obtained estimates of the rate of division of stem cells for

various tissues from [28] and matched them to TCGA cancer types (Supplemental

Table 1). We found a positive trend for faster-dividing somatic tissues to have higher

rates of germline-shared variants, but this trend was not statistically significant (p =

0.09 by Pearson significance test) (Fig. 4e). A limitation of this approach is that the

cell-of-origin for some cancer types, such as Glioblastoma Multiforme is uncertain [29].

.Characterization of somatically-shared germline variants across germline allele

frequencies, allele ages, and ancestries

Recent germline alleles, including de novo germline variants, are more likely to be

somatically-shared

One major difference between somatic and germline variants is that, while all somatic

variants from living humans arose recently -within years to decades of sequencing-,

some ancient germline variants have been passed on for hundreds of millennia. Not all

germline variants are so ancient: de novo variants, for example -which pervade an
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organism’s cells but are present in only a gamete lineage in a parent- are practically as

recently-derived as are somatic variants. Between these two extremes of de novo vari-

ants and ancient variants, germline variants comprise a whole spectrum of allele ages.

Alleles that have withstood the test of time might be expected to collect around a different

set of genomic sites than do newer alleles because of the accumulated influence of long-term

mutational forces, including biased gene conversion (in which greater hydrogen bonding be-

tween G and C leads to G and C alleles being preferentially passed on at AT/GC heterozy-

gous sites) [30] and evolutionary selection pressure (noting that, although we observed that

evolutionary selection pressure does not explain the rate of shared variants overall, it may still

affect the small subset of ancient variants). Therefore, we hypothesized that recently-derived

germline variants are more likely to occur at the same sites of necessarily-recent somatic vari-

ants –i.e. have a higher somatically-shared rate– than do ancient germline variants.

To test this hypothesis, we analyzed the relationships between a germline variant’s al-

lele age and its probability of being somatically-shared. We annotated germline variants

with their allele ages taken from the Atlas of Variant Age, which uses coalescent

Fig. 4 Candidate correlates of shared variant rate across somatic tissues. The similarity of three different

epigenetic marks (RNA transcription, chromatin accessibility via DNase I hypersensitivity, and replication timing)

between somatic tissues and a germline-like stem cell do not correlate with the rates of variants that the

somatic tissues share with the germline database. a, b, c Somatic tissues with a higher proportion of variants

attributed to the “clock-like” endogenous mutational signature 1 have higher Forbes coefficients. d The

associations of stem cell division rate with shared variant rates and if median mutation load and shared variant

rates across somatic tissues does not reach significance (e, f). For TCGA project code abbreviations, see Table 3
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models to estimate ages of germline variants in public variant databases [31]. For this

analysis, we also incorporated 8447 variants from denovo-DB which were confirmed

through parent-offspring trio sequencing to be de novo in origin, representing an allele

age of <= 1 generation [32]. We find that germline alleles < 500 generations old have

substantially higher somatically-shared rates than do germline alleles > 500 generations

old, (p-value 8.7e-09 by proportion test) (Fig. 5a).

These results are consistent with a model in which long-term mutational

forces over time shift the genomic distribution of germline variants from sites

Table 3 TCGA project codes

LAML Acute Myeloid Leukemia

ACC Adrenocortical carcinoma

BLCA Bladder Urothelial Carcinoma

LGG Brain Lower Grade Glioma

BRCA Breast invasive carcinoma

CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma

CHOL Cholangiocarcinoma

LCML Chronic Myelogenous Leukemia

COAD Colon adenocarcinoma

CNTL Controls

ESCA Esophageal carcinoma

FPPP FFPE Pilot Phase II

GBM Glioblastoma multiforme

HNSC Head and Neck squamous cell carcinoma

KICH Kidney Chromophobe

KIRC Kidney renal clear cell carcinoma

KIRP Kidney renal papillary cell carcinoma

LIHC Liver hepatocellular carcinoma

LUAD Lung adenocarcinoma

LUSC Lung squamous cell carcinoma

DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma

MESO Mesothelioma

MISC Miscellaneous

OV Ovarian serous cystadenocarcinoma

PAAD Pancreatic adenocarcinoma

PCPG Pheochromocytoma and Paraganglioma

PRAD Prostate adenocarcinoma

READ Rectum adenocarcinoma

SARC Sarcoma

SKCM Skin Cutaneous Melanoma

STAD Stomach adenocarcinoma

TGCT Testicular Germ Cell Tumors

THYM Thymoma

THCA Thyroid carcinoma

UCS Uterine Carcinosarcoma
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prone to mutation-generation in both the germline and soma, to genomic sites

at which mutations endure. These results also predict that rare examples of an-

cient somatic variants, such as the 11,000-year-old somatic variants from the

canine venereal transmissible tumor [33], might have a higher rate of being

shared with older canine germline variants than with recent canine germline

variants.

Ultra-rare germline variants present on multiple continents are especially likely to be

somatically-shared

Our larger hypothesis is that the key reason that germline and somatic variants tend to

fall on the same sites is that some of the same sites are mutation-prone in both the

germline and somatic settings. One way we tested this larger hypothesis was through

an analysis of the role of nucleotide context in shared germline and somatic variants.

This approach was successful because nucleotide context is well-established as a feature

associated with mutation rates. We also pursued a completely different approach, in

Fig. 5 The shared variant rate of germline variants by allele age and ancestry. More recently-derived

germline variants, including de novo variants, have higher rates of being somatically-shared. Points are

labeled according to the number of variants within the age bin corresponding to each set of variants. a

Ultra-rare germline variants present on multiple continents have higher rates of being somatically-shared. b

Among germline variants unique to one continental ancestry in our data set, variants from donors of

European ancestry have higher rates of being shared with the somatic database than do variants from any

other continental ancestry. c Exclusively European germline variants have elevated rates of being shared

with somatic samples of any continental ancestry, and no other germline continental ancestry has a

markedly higher shared variant rate when comparing with somatic variants of each continental ancestry. (D)

NFE = Non-Finnish European; AMR = Admixed American; EAS = East Asian; AFR = African or African American
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which sites are identified as mutation-prone within the germline not in virtue of the

sites’ genomic features but by evidence of mutational recurrence within that setting at

the site. Put another way: one sign that a genomic site is mutation-prone in the germ-

line is if it has arisen independently in the germline multiple times.

Merely observing that a variant is present in the germline of two or more indi-

viduals does not suffice to show that the variant has independently arisen multiple

times, because such cases often reflect the inheritance from a common ancestor of

a variant that arose once. Moreover, while oceans and mountains reduce the extent

of shared inheritance of alleles among individuals from different continents, high-

frequency alleles have many opportunities to spread from continent to continent

through human migrations. However, for multi-continental germline alleles with

low frequency in the human population, opportunities for trans-continental migra-

tions are more limited, so we reasoned that these variants would be enriched in

variants that have independently arisen and therefore be mutation-prone and more

likely to also be present in somatic samples.

To test this hypothesis, we calculated the rate that germline variants are

somatically-shared across germline allele frequencies, after stratifying by the

number of continents on which the germline variants are found. Consistent with

this hypothesis, we found that for ultra-rare germline variants, the somatically-

shared rate rises with the number of continents on which the variants are found

(Fig. 5b). The intended interpretation of this finding is that the most mutation-

prone germline sites are also prone to mutation in the soma. An alternative in-

terpretation of this observation is that ultra-rare variants present on multiple

continents represent sequencing errors that are shared with errors in the som-

atic sequencing project.

Ultra-rare germline variants of European ancestry are more frequently somatically-shared

We next wished to test whether the rate that a germline variant is somatically

shared varies by continental ancestry. We calculated the somatically-shared rate of

germline variants across a range of ancestries and allele counts. Among ultra-rare

germline variants, those of European ancestry were more frequently somatically-

shared (Fig. 5c). Because most somatic samples were from European donors, we

initially hypothesized that the greater degree of somatically-shared variants of Euro-

pean germline variants could be related to the leakage of Europe germline variants

into European somatic samples. To test this hypothesis, we separately calculated

the shared variant rate between each combination of germline continental ancestry

and somatic continental ancestry. Under the germline contamination hypothesis,

we expected to see a higher rate of shared variants when germline variants of one

ancestry were compared to somatic variants from donors of the same ancestry.

Contrary to this hypothesis, European germline variants had a higher rate of being

shared with somatic samples from donors of any ancestry, and African, East Asian,

and Admixed American variants did not have elevated rates of being shared with

somatic samples from donors of those respective ancestries (Fig. 5d). At present,

the higher rate of shared variants among ultra-rare germline variants from donors

of European ancestry is an unexplained observation.
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Comparison of shared variants to variants unique to one database

We next sought to characterize how variants shared between the somatic and germline

call-sets compare with variants unique to one call-set along a range of dimensions. In

one analysis, we compared the variant allele frequency (VAF) distribution of shared

somatic variants vs that of unique somatic variants. In general, high VAF variants (VAF

0.3–0.5) are variants supported by many reads in the tumor and represent variants that

arose during the earlier stages of a tumor’s evolution, whereas low VAF variants are

supported by fewer reads and arose later in a tumor’s history. We found that shared

variants tend to have higher VAFs than do unshared somatic variants. (Supplemental

Figure 2) The reason for this association is unknown. One possible technical explan-

ation is that shared variants have a higher rate of being leaked germline variants, which

will tend to have high VAFs close to 0.5, which is the expected VAF of a heterozygous

germline mutation. A possible biological interpretation is that, because low VAF vari-

ants arise later in a tumor’s course, they arise in the cancer cell at a time of greater gen-

omic instability, which leads to divergent mutation distributions compared with those

of the germline setting.

We also compared shared variants with germline-unique and somatic-unique variants

along the dimensions of regional GC content, regional CpG content, background selec-

tion from [39], RNA expression from [40], and germline pathogenicity (CADD) scores

from [19]. Prior to performing these calculations, we down-sampled the variant lists

such that each variant category (shared, germline-unique, and somatic-unique) had

identical trinucleotide context distributions to reduce confounding. We found that the

regional GC content and RNA expression levels of shared variants was closer to that of

somatic variants than of germline variants. Alternatively, the germline pathogenicity

score (CADD) of shared variants was closer to that of germline variants than of somatic

variants. Meanwhile the background selection score of shared variants was appreciably

larger than those of both somatic and germline variants and the regional CpG content

of shared variants was appreciably lower than those of both somatic and germline vari-

ants (Supplemental Figure 3).

Discussion

Our primary aim was to identify the origins of variants shared between the germline

database gnomAD and the cancerous somatic database TCGA. We focused on single

nucleotide variants because of the greater density of single nucleotide data. A simple

model that assumes statistical independence between germline and somatic mutational

processes can explain only one third of the observed share variants. A model that in-

corporates basic nucleotide context in additition can explain 87% of shared variants,

and a model that incorporates extended nucleotide context can explain 91% of shared

variants. Leaked germline variants present a mixed picture and could have contributed

to as much as 7% of germline variants, but this requires strong assumptions. Neither

stochastic sequencing false positives nor convergent evolution explain a large portion

of shared variants. The remaining shared variants that cannot be accounted for by ex-

tended nucleotide context could possibly result from shared epigenetic features, but

our limited explorations did not find evidence of this. Other technical factors such as

broad patterns in coverage, or biological factors such as periodicity in the histone code

could potentially explain this small unexplained excess, but were not tested.
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Further characterizing shared variants revealed a number of patterns. Cancer

types different in their rate of germline-shared variants, with cancer types driven

by endogenous mutational processes having higher rates of germline-shared vari-

ants. Recently-derived germline alleles are more likely to be somatically-shared than

are ancient germline alleles, which may relate to long-term forces of selection and

drift acting to a greater cumulative extent on ancient germline alleles than on re-

cent germline alleles and necessarily recent somatic alleles. Germline variants from

donors of various ancestries were just as likely to be somatically-shared, with the

exception of ultra-rare European variants which had higher rates of being

somatically-shared for unknown reasons.

Despite major differences, there are substantial similarities in the mutational forces

that influence somatic and germline variants. Future studies could potentially capitalize

on these similarities by, for example, using germline SNV density as one feature for

calibration expectation for somatic mutation rates by genomic segment.

Neutral models that rely only on nucleotide context capture a large but incomplete

fraction of all forces affecting mutation rates. This provides some support for the no-

tion that nucleotide context is a sufficient model feature when coarse mutation rate ex-

pectation are all that are required while additional genomic and epigenetic features

should be employed when fine models of mutation rate are desired.

A possible conclusion at the outset of this study, were it to turn out that many shared

variants represent true germline variants mis-called as somatic, would be that TCGA

somatic call-sets may require further measures to ensure the privacy of somatic donors,

either through deindividuation or further filtering. However, we did not find any com-

pelling evidence that shared variants are often misclassified germline variants. Instead,

we found mixed evidence that some shared variants might be misclassified germline

variants, but that technical artifacts due to extreme GC content could similarly account

for our observations.

One key limitation of this study, like many genomic studies, is that it is observational

in nature and therefore not well-suited to isolating causation. In attempting to find the

origins or shared variants, we are able to uncover associated features but cannot verify

that these features are fundamentally causal and in some cases, the identified biological

features be only spuriously associated with shared variants through correlation with

technical features. Nonetheless, the basic types of nucleotide context in particular have

been shown to have a causal role in mutation rates.

One choice in this study that limits the generalizability of findings is the confine-

ment of analysis to exomic regions. This decision was made because of the greater

density of SNVs in public exome databases over public. An implication of this

choice is that it was not practical to test the role of genomic region on shared

SNV rates. The focus on exonic regions also increases the theoretical potential of

confounding influence of evolutionary selection pressure, but our results did not

suggest an important role of evolutionary selection pressure in explaining shared

variants.

Another choice we have mentioned previously is the use of somatic variants primarily

from cancerous tissues. This choice reflects the far greater availability of cancerous over

non-cancerous somatic data, which in part reflects clinical priorities and in part tech-

nical feasibility. As a result, some findings that relate germline variants to cancerous
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somatic variants may not apply in full to relating germline variants to non-cancerous

somatic variants.

Conclusion

The 336,987 filtered variants that are shared between gnomAD and TCGA likely

mostly represent true biological variants that arose independently in the human germ-

line and human soma. 87% of these variants came to be shared because of the greater

rate at which deaminations and other transitions occur over transversions in both the

germline and soma. Our evidence indicates that these variants are usually appropriate

to use in ways similar to non-shared variants in downstream applications.

Methods

All statistics were computed using R (version 3.5.1, R Development Core Team, 2018).

Data and processing

We used the largest public databases of somatic and germline variants, and applied

conservative filters to reduce the impact of technical bias. For the somatic database, we

used the public whole exome somatic call-set from The Cancer Genome Atlas (TCGA)

of 10,221 cancer patients [7]. For the germline database, we used the public whole ex-

ome germline call-set from the Genome Aggregation Database (gnomAD) of 125,748

human subjects [5]. The GATK VariantsToTable tool was used to extract the non_can-

cer subset of gnomAD, which was used in all analyses involving gnomAD [34].

Some parts of the analysis were also attempted on smaller but conceptually cleaner

databases. For example, Denovo-db served as an additional germline database. More-

over [22, 32], supplied additional technical replicates of somatic samples.

Analysis was restricted to potential SNVs that are free from known technical liabil-

ities. To accomplish this, we started with a set of all possible SNVs of the reference

genome hg19 and filtered down to a conservative universe of potential SNVs. Only au-

tosomes were included because of possible sex imbalances between data sets. To

minimize artifacts due to mapping errors, we excluded sites that overlapped the Enco-

deDac or EncodeDuke mappability blacklists [35], that are predicted to be not uniquely

alignable with 24 base pair reads. Similarly, we removed sites that fall in repetitive re-

gions such as genomic super duplications, simple repeats, and microsatellites, or that

are otherwise flagged by RepeatMasker [36].

To minimize artifacts due to non-uniform exome capture and coverage, we restricted

sites to the intersection of the exome interval lists of gnomAD and TCGA, required

sites to have 20 or more reads in 50% of gnomAD samples, and excluded sites in which

fewer than 30% or more than 70% of the surrounding 100 bases are a G or C. To

minimize artifacts related to germline contamination and sequencing error hot-spots,

we removed sites with a gnomAD allele frequency of 0.1% or greater. Removing sites of

common human polymorphisms also had the advantage of effectively reducing discrep-

ancies between hg19 and the human ancestral genome.

Additionally, we only included SNVs from gnomAD graded “PASS.” For TCGA, we

excluded any SNV with the filter “nonpreferredpair” or “oxog.” For denovo-db, we only

included variants that were obtained through whole exome sequencing.
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In the main analysis, we mark filtered SNVs as being present or absent in a database,

initially ignoring allele count. When characterizing germline variants in greater detail,

we did make use of ancestry-specific allele counts and allele frequencies.

Application of partitional Forbes statistic

To apply the partitional dependence metric on genomic data, it was necessary to divide

the genome into partitions defined by a shared level of a categorical variable. We re-

peated the analysis for various different partitions of interest, using a partitioning

scheme based on nucleotide context. For example, every possible SNV can be grouped

into one of 12 basic types of nucleotide context: A- > C, A- > G, …, T- > C, and T- > G,

which defines a complete partition of the genome eligible for analysis through the par-

titional dependence framework. Extended nucleotide contexts, which includes 1 or

more flanking bases, formed finer partitions of the genome and were also analyzed up

to 3 flanking bases on either side. We used the Rsamtools [37] and GenomicRanges

[38] R packages to extract the adjacent nucleotides for each potential variant, which

were concatenated around the reference and alternate allele. When defining nucleotide

context-based partitions, reverse complements were collapsed onto a central pyrimi-

dine; for example A [G- > T]C was considered an instance of G [C- > A] T since wher-

ever one of these trimers is present on the positive strand of the genome, the other

trimer occurs on the negative strand of the genome.

Estimating germline contamination

To estimate the number of germline contaminants among shared SNVs, we took the

baseline shared variant rate to be the shared variant rate among somatic variants with

at least 200 reads in the matched normal, which visually approaches the asymptotic be-

havior of shared variant rate with read depth. For read depth less than 98, each read

depth was found to be associated with a higher shared variant rate than at a read depth

of 200, which for purposes of this estimate we assumed was due to leaked germline var-

iants. Then for each matched normal read depth less than 98, we calculated the num-

ber of variants that would be expected to be shared using the baseline shared variant

rate. We subtracted the number of baseline-expected shared variants from the observed

number of shared variants for these variants with low read depth to estimate the total

number of extra shared variants that may result from germline contamination.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s12859-020-3508-8.

Additional file 1: Supplemental Figure 1. Association between the loading of each mutational signature and

the shared variant rate across somatic tissues. Each panel represents a distinct mutational signature; 1–30 from [25].

Each point represents a different somatic tissue. The shared variant rate of somatic samples are plotted on the y-

axis against the proportion of variants in that sample that can be attributed to the given signature. At the top of

each panel is listed Pearson’s Rho for the association between the signature’s loading and the shared variant rate

across samples. Signature 1 has the greatest in magnitude association with shared variant rates

Additional file 2: Supplemental Figure 2. The somatic variant allele frequency (VAF) distribution of somatically-

unique and germline-shared somatic variants.

Additional file 3: Supplemental Figure 3. Comparison of shared variants with somatically-unique and

germline-unique variants along a range of genomic dimensions. Depending on the genomic dimension studied,

shared variants better resemble either somatic values or germline values – or behave their own way. Units for each

variable are scaled to make the set of all variants that are either somatic-unique or germline-unique have mean 0

and standard deviation 1.
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Additional file 4: Supplemental Figure 4. Somatic sequencing platform and germline-shared variant rates. The

rates at which somatic variants from 52 ABI-SOLiD sequenced colorectal tumors and 380 Illumina sequenced colo-

rectal tumors are shared with an Illumina sequenced germline database, stratified by GC content bin. The size of

each point is proportional to the logarithm of the number of variants that fall within each GC content bin.

Additional file 5: Supplemental Table 1. Manual matching of TCGA cancer types to tissue samples from GTEX,

ROADMAP, ENCODE, and Tomasetti et al.
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SNV: Single nucleotide variant; TCGA: The Cancer Genome Atlas of somatic variants from cancer patients;

gnomAD: The genome Aggregation Database of germline variants from a range of healthy subjects and patients
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