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Predictions of temperature rise over the twenty-first century are
necessarily uncertain, both because the sensitivity of the climate
system to changing atmospheric greenhouse-gas concentrations,
as well as the rate of ocean heat uptake, is poorly quantified1,2 and
because future influences on climate—of anthropogenic as well as
natural origin—are difficult to predict3. Past observations have
been used to help constrain the range of uncertainties in future
warming rates, but under the assumption of a particular scenario
of future emissions4. Here we investigate the relative importance
of the uncertainty in climate response to a particular emissions
scenario versus the uncertainty caused by the differences between
future emissions scenarios for our estimates of future change. We
present probabilistic forecasts of global-mean temperatures for
four representative scenarios for future emissions5, obtained
with a comprehensive climate model. We find that, in the absence
of policies to mitigate climate change, global-mean temperature
rise is insensitive to the differences in the emissions scenarios
over the next four decades. We also show that in the future, as the
signal of climate change emerges further, the predictions will
become better constrained.

An estimate of the uncertainty in a climate-model-based predic-
tion of twenty-first century global-mean temperature rise is a
potentially valuable tool for policy makers and planners3,6,7. Large
and difficult-to-quantify uncertainties surround predictions of
future demographic changes, economic development and techno-
logical change, which will determine future anthropogenic emis-

sions of greenhouse gases and other pollutants. Even with perfect
knowledge of emissions, uncertainties in the representation of
atmospheric and oceanic processes by climate models limit the
accuracy of any estimate of the climate response. Natural variability,
generated both internally and from external forcings such as
changes in solar output and explosive volcanic eruptions, also
contributes to the uncertainty in climate forecasts.

Recently a technique has been developed to quantify uncertainty
in predictions by comparing simulations of past temperature
changes with observations4. Under this approach, based on those
developed for the detection and attribution of climate change8,9, we
estimate the factors (with associated uncertainties) by which the
model’s simulated response to various external forcings over the
twentieth century can be scaled up or down while remaining in
agreement with the observations. The most important external
forcings are well-mixed greenhouse gases, other anthropogenic
pollutants such as sulphate aerosols (which are produced by
oxidation of sulphur dioxide), changes in tropospheric ozone
(which is controlled by photochemical reactions), stratospheric
ozone depletion, and natural external forcings such as variations
in solar irradiance and stratospheric aerosol from volcanic
eruptions.

Temperatures will fluctuate about their mean climatic state owing
to natural internal variability. We include decadal variability in our
uncertainty analysis, but we do not consider sub-decadal variations
that would be additional to the uncertainty in decadal temperatures
presented here. We also consider fluctuations due to potential
future changes in solar output and volcanic eruptions. As it is not
possible to predict deterministically changes in natural forcings, we
estimate natural external variability from simulations of the past
140 years that include these natural forcings.

The IPCC, in their Special Report on Emissions Scenarios
(SRES5), has developed a wide range of future emissions scenarios,
based on a variety of narrative ‘storylines’, each describing a possible
future development of population, economies and energy sources.
The range of scenarios includes interventions leading to reductions
in sulphur emissions and introduction of new energy technologies,
but does not include additional initiatives to mitigate climate
change. Any estimate of socio-economic trends over the course of
the twenty-first century is necessarily very uncertain and highly
subjective. Our interest here lies in determining the range of likely
future climates consistent with current observations under a repre-
sentative range of emissions scenarios, and investigating how this
uncertainty range will change as the signal of climate change
becomes stronger.

We can address these questions with predictions of a coupled
atmosphere–ocean general circulation model (AOGCM) using a
representative subset of emissions scenarios which span most of the
total SRES range, without assigning relative probabilities to the
different emissions scenarios. On the assumption that a model that
over- or under-estimates the climate response by a certain fraction
now will continue to over- or under-estimate it by a similar fraction
in the future, we can use a comparison between simulated and
observed changes over the past 100 years to calculate the uncertainty
in a prediction (according to a particular emissions scenario) over
the next 100 years. This assumption appears to be justified for
global-mean temperature by the AOGCM runs currently available,
all of which evolve similarly over time in response to a given forcing
despite differences in sensitivity and thus response amplitude10.
Even though climate sensitivity is not well constrained by the
observed temperature record4,11, perturbation analysis of simple4

and intermediate-complexity11 models indicates that there is a
generally linear relationship between past and future global tem-
perature change as we vary the sensitivity of a climate model that
continues to hold for unmitigated forcing until the end of the
century12, provided the climate sensitivity and sulphate aerosol
forcing are not outside the likely range estimated by the IPCC
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Third Assessment Report13. This relationship depends on the
absence of such possible feedbacks as a shutdown of the thermo-
haline circulation14 or the land biosphere switching from being a
weak sink for carbon to a strong source15, and is therefore more
likely to hold early on in the century when forcing changes are
smallest.

For scenarios in which forcing increases are not sustained, such as
stabilization scenarios, an alternative is to calculate probability
density functions (PDFs) of key properties of the climate system
by varying uncertain model properties and forcings in a simplified
climate model1,2. This complementary approach produces observa-
tional constraints on climate sensitivity and net aerosol forcing but
relies on an idealized model.

The model we use in this analysis is HadCM316,17, an AOGCM
that does not use flux adjustment. To constrain the effects of model
uncertainty on future predictions, we have made three ensembles,
each of four simulations, of the period 1860–2000. All four
simulations in each ensemble are identical except for their initial
conditions, which were taken from model states 100 years apart in a
1,820-year control run of HadCM3 in which external forcings have
no year-to-year variations. The simulations in the first ensemble
incorporate changes in individual well-mixed greenhouse gases
including carbon dioxide and methane. Simulations in the second
ensemble include, in addition to changes in well-mixed greenhouse
gases, changes in tropospheric and stratospheric ozone, and changes
in sulphur emissions. The direct effect of sulphate aerosols on
planetary albedo is simulated using a fully interactive sulphur
cycle scheme that models the emission, transport, oxidation and
removal of sulphur species. The indirect effect of tropospheric
aerosol, by way of cloud reflectivity18, is also represented in the
model. The simulations in the third ensemble include only natural
forcings due to changes in the amount of stratospheric aerosols
following volcanic eruptions19 and spectrally resolved changes in
solar irradiance20.

We have also made a series of model predictions for the twenty-
first century21. For these predictions, we have chosen four repre-
sentative SRES marker scenarios (A1FI, A2, B1 and B2), one
each from the four SRES storylines and scenario families, and
each of which assumes a distinctly different direction for future
developments5. For each marker scenario we have made two sets of
runs starting in 1989. In the first, all anthropogenic forcings are
included, whereas the second includes only well-mixed greenhouse
gases. As the climate response to greenhouse gases is subject to

different sources of uncertainty from those due to sulphate aerosols,
we have included the two effects separately in our analysis to reflect
the fact that they may be subject to different errors. We have
available three predictions, including all anthropogenic forcings
according to the A2 scenario, which we average, and two simu-
lations according to the B2 scenario, which we also average. For the
other two scenarios we have only a single simulation including all
anthropogenic forcings, and for each of the four scenarios we have
a single simulation which includes changes in greenhouse gases
only.

Uncertainty ranges of global-mean temperature rise for our four
representative emissions scenarios are shown in Fig. 1. (Further
details of the methodology are given in the Methods section.) In the
first three decades of the twenty-first century, they overlap con-
siderably and indicate that the 5 to 95 percentiles of the forecast
temperature distribution are 0.9 to 1.9 K relative to pre-industrial
(control) climate by the 2020–30 decade. Only after 2050 is the best
estimate of the scenario prediction that warms the greatest over the
century (the fossil fuel intensive scenario A1FI) outside the 90%
confidence interval of the prediction that warms the least, B1. In
the latter half of the century, all SRES scenarios have much reduced
SO2 emissions increasing the uncertainty range consistent with
past observations4. By the end of the century temperatures are
predicted to rise from pre-industrial values by 1.9 to 4.0 K
according to the B1 scenarios and by 3.6 to 7.5 K according to the
A1FI scenario.

Expressed relative to 1990–2000 (Fig. 2), temperatures are pre-
dicted to rise between 0.3 and 1.3 K (5–95%) by 2020–30 whichever
scenario we take, and by the end of the century by 1.2 to 3.3 K
according to the B1 scenario and by 3.0 and 6.9 K according to the
A1FI scenario. The upper uncertainty limits for temperature change
by 2100 of less than 5 K (1.7–4.9 K, ref. 6; 1.1–4.5 K, ref. 7) depend
on assigning a low probability to the A1FI scenario in the absence of
climate mitigation policies. The relative contributions to the total
forecast uncertainty from externally generated natural variability
are greatest early in the century. If we consider anthropogenic
warming alone4, temperatures are predicted to rise from their
1990–2000 values between 0.4 and 1.2 K by 2020–30. The dominant
contributor to uncertainty in this decade is that due to response
uncertainty.

As the signal of climate change becomes stronger, future predic-
tions of climate change become better constrained. We estimate that
by 2020, uncertainties in late twenty-first century global warming

Figure 1 Uncertainty in predicted global-mean near-surface temperatures. Shown are

predictions according to the SRES A1FI (blue), A2 (green), B1 (light blue) and B2 (red)

scenarios, with their uncertainties (5 to 95 percentiles) shown as grey regions bounded by

lines of the appropriate colour. Also shown are the observed temperatures in black, and a

HadCM3 simulation including both anthropogenic (greenhouse gases, sulphate aerosols

and tropospheric and stratospheric ozone) and natural (solar and volcanic) forcings in

yellow.
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could potentially reduce to half their values today (Fig. 2). By taking
a prediction that follows the B2 scenario to represent a possible
future world over the next 20 years and using temperature change
observed over the 1920–2019 period to constrain predictions from
2020, we find that global-mean temperatures would be predicted to
rise by the end of the century by 2.3 to 3.3 K (5–95%) according to
the B1 scenario and by 4.5 to 6.3 K according to the A1FI scenario,
relative to pre-industrial values. This calculation assumes a perfect
knowledge, to within natural internal variability, of the climatic
effects of external forcings from 2000 to 2019, which provides an
optimistic estimate of the potential reduction in uncertainty,
although diagnostics other than surface temperature might help
to reduce uncertainty more rapidly. Also, the spread between the
PDFs is likely to change as more information becomes available over
the next 20 years about the likely range of emissions paths over the
remainder of the twenty-first century.

Our global-mean temperature forecasts, with their associated
uncertainty ranges, are based on an objective comparison of the
model’s simulation of past temperatures with observations and do
not depend on a subjective estimate of the model’s climate sensi-
tivity based on “expert elicitation”6. They are also based on a
comprehensive climate model that accurately simulates multi-
decadal variations in global-mean near-surface temperatures over
the twentieth century when it includes the most important anthro-
pogenic and natural forcings22. They show that by the 2020–30
decade, global-mean near-surface temperatures are likely to be 0.3
to 1.3 K warmer than they were three decades earlier, regardless of
whether CO2 emissions increase only by 1 Gt C yr21 from their
1990 levels, as the B1 scenario predicts, or by 8 Gt C yr21 as A1FI
predicts13. This lack of sensitivity to increases in CO2 emissions
arises partly because the climate system’s inertia dictates that much
of the rise is already committed by pre-2000 emissions, and partly
because differences in CO2 emissions are offset to some extent in
most scenarios by differences in SO2 emissions.

In our analysis, we account for errors in the magnitude of forecast
patterns of temperature change but do not account for errors in the
patterns themselves; consequently our approach may not be valid
for regional or non-temperature indicators of climate change. To
explore fully the influence of model error requires a systematic

evaluation of the sensitivity of coupled AOGCM predictions to
varying the many model parameters across their ranges of plausible
values23. Until such an experiment is performed, a linear analysis
represents the most objective approach available for predicting
future global-mean temperatures using comprehensive models.

In the first four decades of this century, Fig. 1 shows that
predictions for a representative ranges of SRES scenarios differ
remarkably little. Until 2040, uncertainty is dominated not by
uncertainties in emissions scenarios but by uncertainties in climate
response. Later in the century, the effect of different emissions
matter much more, although even at the end of the century climate
response uncertainty remains as great as emissions uncertainty.
Relatively modest increases in global temperature by 2100 are
possible under some emissions scenarios, but extremely rapid
warming rates over the century cannot be excluded under fossil
fuel intensive scenarios. A

Methods
The method we use to determine the uncertainty range for each forecast scenario is as
follows. First we compare the observed evolution of the surface temperature over the
twentieth century with the modelled response to greenhouse gases, sulphate aerosols and
natural forcing. This generates a distribution of factors by which the model response to each
forcing can be scaled up or down while still matching the observations. Second, we account
for uncertainty in the model forecasts, which would be present even if we were certain about
the past response to forcing. Third, we combine the distributions of the scaling factors
with the distributions of the model forecast to generate a distribution of the forecast
temperature response to the combined forcing. Each of these stages is outlined below.

Calculation of scaling factors
To compare model simulations with observations and calculate the scaling factors to be
applied to model predictions of temperature changes due to greenhouse gases and other
anthropogenic forcings, we follow the procedure of ref. 24. Decadal-mean data from
models and observations are smoothed spatially to retain only scales greater than 5,000 km
(ref. 25). Scaling factors on the greenhouse gases, and other anthropogenic and natural
contributions are estimated using standard optimal fingerprinting26, modified to take
account of sampling noise in model-simulated signals27. Intra-ensemble differences are
used to define the optimization space, and a 1,820-year control run of HadCM3 is used for
uncertainty analysis. The optimal fingerprinting gives a distribution of scaling factors for
the forced response. The uncertainty implied by the distributions results from interdecadal
internal variability, which prevents us determining with certainty how much of twentieth-
century temperature variation was externally forced and how much can be accounted for
by internal variability.

Uncertainty in model forecasts
Even if there was no uncertainty in the past response of the climate system to external
forcing, there are sources of uncertainty in the forecast made by a model. The first source
of uncertainty is due to uncertainty in future natural forcing. Here we take this into
account by assuming there is no deterministic knowledge of natural forcings over future
decades. We calculate the variance in global-mean temperatures due to changes in solar
output and volcanic eruptions from the natural ensemble of four simulations described
earlier, adjusting the variance to take account of the finite ensemble size by subtracting
one-quarter of the variance due to internal variability of the control run. A distribution of
possible forecasts of natural climate change is then generated by selecting random
members of a normal distribution whose variance is that of this estimate of natural
externally forced variability. Note that the use of a normal distribution will probably
underestimate the contribution of low-probability, high-impact natural events, but we are
focusing here on the central 5–95% uncertainty ranges.

The second source of uncertainty in the model forecast results from internal variability
and from having only a small number of predictions from forecast ensembles. We take
account of this uncertainty by selecting random perturbations from a normal distribution
and adding these to the anthropogenic predictions. The variance of the normally
distributed perturbations is calculated from the control run, and adjusted to account for
the size of the forecast ensemble.

Combination of scaling factors with model forecasts
Having obtained distributions of future anthropogenic and naturally forced responses, we
combine these with the distribution of factors by which the modelled response must be
scaled to match observations of 1900–2000 and additionally include a sample of the
internal variability on the top of the forced response. The result is a probability
distribution of forecast temperature for each scenario, from which the median
temperature forecast and confidence intervals can be determined. In the calculation of
temperature changes relative to 1990–2000, we additionally take account of the extra
uncertainty arising from taking the difference between two uncertainly known decadal-
mean temperatures by doubling the variance due to internal variability about the mean
state.

Our uncertainty limits depend on model-based estimates of both internally generated
and externally generated natural variability. Reconstructions of past temperature change
based on palaeodata indicate that coupled models’ internal variability is generally

Figure 2 Probability density functions (PDFs) of temperature change. Shown are PDFs for

four SRES scenarios (A1FI, A2, B1 and B2) for 2020–30, 2050–2060 and 2090–2100

decades relative to the 1990–2000 decade, calculated by constraining HadCM3

simulations to the observed temperature change over the 1900–99 period. The PDFs at

the far right are for the 2090–2100 decade calculated by constraining HadCM3

simulations to be consistent with the observed temperature change over the 1920–2019

period, where the observations are assumed to follow a B2 scenario prediction after 1999.
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consistent with that observed28, and HadCM3, when it includes both anthropogenic and
natural forcings, simulates many features of observed twentieth-century temperature
change22, indicating some success in incorporating external forcings including those due
to solar changes and volcanic aerosol. Nevertheless, the current dependence on model-
based rather than observationally based estimates of natural variability needs to be tested
further against observational evidence. We do not include the effect of observational error
in our analysis. The effect of observational sampling error on detection and attribution
results has been shown to be small29, but we do not as yet have an estimate of the effects
of systematic instrumental errors, such as changes in measurement practices or
urbanization.
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Divergence times estimated from molecular data often consider-
ably predate the earliest known fossil representatives of the
groups studied. For the order Primates, molecular data calibrated
with various external fossil dates uniformly suggest a mid-
Cretaceous divergence from other placental mammals, some 90
million years (Myr) ago1–9, whereas the oldest known fossil
primates are from the basal Eocene epoch (54–55 Myr ago). The
common ancestor of primates should be earlier than the oldest
known fossils10,11, but adequate quantification is needed to
interpret possible discrepancies between molecular and palaeon-
tological estimates. Here we present a new statistical method,
based on an estimate of species preservation derived from a
model of the diversification pattern, that suggests a Cretaceous
last common ancestor of primates, approximately 81.5 Myr ago,
close to the initial divergence time inferred from molecular data.
It also suggests that no more than 7% of all primate species that
have ever existed are known from fossils. The approach unites all
the available palaeontological methods of timing evolutionary
events: the fossil record, extant species and clade diversification
models.

Although several molecular studies indicate that the lineage
leading to primates diverged from other eutherian mammals
about 90 Myr ago, diagnostic morphological features of primates
possibly emerged later, potentially explaining why recognizable

Table 1 Relative sampling intensities for the primate fossil record

Epoch k Tk Observed number
of species, Dk

Relative sampling
intensity, pk

Scheme 1 Scheme 2
.............................................................................................................................................................................

Late Pleistocene 1 0.15 19 1.0 1.0
Middle Pleistocene 2 0.9 28 1.0 1.0
Early Pleistocene 3 1.8 22 1.0 1.0
Late Pliocene 4 3.6 47 1.0 1.0
Early Pliocene 5 5.3 11 1.0 0.5
Late Miocene 6 11.2 38 1.0 0.5
Middle Miocene 7 16.4 46 1.0 1.0
Early Miocene 8 23.8 36 1.0 0.5
Late Oligocene 9 28.5 4 1.0 0.1
Early Oligocene 10 33.7 20 1.0 0.5
Late Eocene 11 37.0 32 1.0 1.0
Middle Eocene 12 49.0 103 1.0 1.0
Early Eocene 13 54.8 68 1.0 1.0
Pre-Eocene 14 0 0.1 0.1
.............................................................................................................................................................................

Data are shown for a total of 235 modern species. References for the data can be found in the
Supplementary Information.
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assembled with various bilins as described15. Spectra were obtained after saturating red
(660 nm) and far-red (740 nm) irradiations. In vitro kinase assays for the active BrBphPs
were performed as described5.

Construction of BrbphP and ppsR mutant strains
To create Brbph and ppsR null mutants, the lacZ-kan r cassette19 was inserted respectively in
the XhoI site of BrbphP and the BglII site of ppsR.The constructions were introduced in the
pJQ200 suicide vector22 and delivered by conjugation into the ORS278 strain as previously
described8. Double recombinants were selected on sucrose and confirmed by PCR.
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membrane-associated guanylate
kinase CASK/LIN-2
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In this Letter, we numbered some nucleotides for the upstream
region of the reelin gene incorrectly. The Reelin-luc construct
contains an upstream region of the reelin gene corresponding to
nucleotides 157700–158620 of human BAC clone AC002067,
instead of nucleotides 3700–4620. This does not affect any of
the results or conclusions of the paper. We thank A. M. Goffinet,
D. Grayson, K. Mendra and T. Curran for alerting us to this
mistake. A
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On page 725 of this Letter, the words ‘predicts13 fThur lglk al
seasitevier’ were corrupted. They should read ‘predicts13. This lack
of sensitivity’. A
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