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Origins of Cell-to-Cell 

Bioprocessing Diversity and 

Implications of the Extracellular 

Environment Revealed at the 

Single-Cell Level
A. E. Vasdekis1,2, A. M. Silverman3 & G. Stephanopoulos3

Bioprocess limitations imposed by microbial cell-to-cell phenotypic diversity remain poorly 

understood. To address this, we investigated the origins of such culture diversity during lipid 

production and assessed the impact of the fermentation microenvironment. We measured the 

single-cell lipid production dynamics in a time-invariant microfluidic environment and discovered 
that production is not monotonic, but rather sporadic with time. To characterize this, we introduce 

bioprocessing noise and identify its epigenetic origins. We linked such intracellular production 

fluctuations with cell-to-cell productivity diversity in culture. This unmasked the phenotypic diversity 
amplification by the culture microenvironment, a critical parameter in strain engineering as well as 
metabolic disease treatment.

�e emerging paradigm of constructing target phenotypes for the production of chemical products 
and biofuels is attracting considerable interest and has met with signi�cant success in recent years1–4. 
Despite substantial progress, however, engineered strains in culture do not typically reach the theo-
retical maximum, questioning thus the strain’s phenotypic robustness. Additionally, single cell analysis 
reveals a considerable productivity variance within a clonal population. Whereas few individual cells 
greatly outperform the median productivity, others lag in productivity and are even less e�cient than 
non-engineered strains. �is in essence limits our ability to register the true phenotype of a construct 
and, as such, it limits its bioprocessing reliability.

Here we investigate the aforementioned limitations in bioprocesses at the single cell level with a spe-
ci�c focus on the de-novo lipid biogenesis of Yarrowia lipolytica, a promising candidate in the produc-
tion of oleochemicals5–7. First, we determined the phenotypic diversity in culture during batch growth 
of an over-producing and an under-producing strain. Subsequently, the lipid production dynamics of 
both strains were analyzed at the single cell level using micro�uidics, primarily for two reasons. �e 
�rst was to perform longitudinal investigations by tracking the lipid content at the single cell level over 
time. �e second was to deterministically control the extracellular hydrodynamics, thus generating a 
quasi-time-invariance through ultra-fast nutrient supply and byproduct removal. Under such conditions, 
the inherent intracellular �uctuations of lipid abundance within an ideal extracellular environment were 
unmasked. We identi�ed the epigenetic origins of such �uctuations and then compared them to the lipid 
content diversity between individuals in culture, similar to recent gene expression noise investigations8–12. 
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�is revealed that extracellular microheterogeneities during fermentation amplify intracellular �uctua-
tions, thereby placing an upper limit in the culture’s productivity and bioprocessing reliability.

Results
Phenotypic Diversity in Culture: �e Po1g and MTYL053 strains of Yarrowia lipolytica were investi-
gated, as previously developed and extensively characterized5. Po1g and MTYL053 are identical except for 
leucine auxotrophy in Po1g and an intron-containing translation elongation factor-1α  (TEF) promoter 
for over overexpressing diacylglycerol acyltransferase (DGA1) in MTYL053. As a result, the expression 
levels of DGA1 in MTYL053 are 17-fold enhanced compared to the intronless TEF promoter, as previ-
ously measured in detail5 (also qualitatively shown in Fig. S1). DGA1 is the �nal step of the triglyceride 
synthesis pathway thereby enabling MTYL053 with enhanced lipid production5. To evaluate the pheno-
typic diversity in culture, image cytometry13 was employed (Supplementary Information) to de�ne the 
size and number/size of lipid droplets (LDs) in individual cells. As shown in Fig. 1a, the median lipid 
content (Si—normalized over the cell size) during early stationary phase (Fig. S2) was 4.1% for Po1g and 
– as expected – considerably higher for MTYL053 (14.2%).

Despite their di�erent productivities, both strains su�ered from a considerable lipid content diver-
sity. �is is best depicted by the distributions in (Fig. 1b), denoting the co-existence of individuals with 
lipid content lower or higher than the median for both strains. �e phenotypic diversity was deter-
mined through the robust coe�cient of variation (rCV—Supplementary Information), de�ned as the 
ratio of the robust standard deviation over the median. �e rCV was employed to de�ne the deviation 

Figure 1. (a) A scatter plot illustrating the neutral lipid content normalized over the cell area for individual 

Po1g (red) and MTYL053 (blue) cells; the median lipid content for each strain is represented with a 

solid line. (b) �e frequency distribution of the lipid content per cell for the two strains, (c) Micro�uidic 

immobilization of single Po1g cells under continuous laminar �ow at a 1 µ L/min rate (top). In the lower 

snapshot series at 20′ time-steps, composite images of the cell (bright-�eld) and its neutral lipid load (green) 

illustrate the �uctuation of the cell’s lipid content (Si). (d) Longitudinal traces of the lipid content per cell 

for Po1g (upper) and MTYL053 (lower); the lineage of an individual cell is highlighted in blue. (e) Boxcharts 

(range: 25–75%) illustrating the single-cell bioprocessing noise for Po1g (upper) and MTYL053 (lower); the 

whisker lines denote the outliers.
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of individual cells from the population’s median, instead of conventional estimates of central tendencies 
(mean) and dispersion (standard deviation). �e latter assume the data form a random sample from a 
normal distribution. �is is not the case in our experiments due to the presence of outliers as typically 
observed in single-cell analyses, such as the recent lipid content heterogeneity investigations using �ow 
cytometry14. Under the aforementioned conditions, the rCV is similar to phenotypic robustness and thus 
linked to strain reliability (R) through the relationship: R =  1 – rCV15,16. �e reliability factors for Po1g 
was 0.31 and moderately improved for MTYL053 (0.5). Indicative of the similar reliability factors is the 
considerable phenotypic overlap of MTYL053 with the non-engineered Po1g (Fig. 1b). �is questions our 
ability to register the true phenotype of the engineered strain, as well as the reliability of the pathway 
engineering strategy17.

Single-Cell Lipid Production Dynamics: To investigate this phenotypic overlap, we performed a 
time-dependent analysis of lipid production at the single cell level. Both single Po1g and MTYL053 
cells were immobilized using micro�uidics (Fig. 1c) and their lipid content was measured every 20 min 
using confocal microscopy and vesicle photonics18 (Supplementary Information). �e protein content 
was not simultaneously monitored in this instance, in order to avoid perturbations to cell physiology 
(e.g. cell lysis for single-cell qRT-PCR), or temporal resolution limitations in wavelength-multiplexed 
confocal imaging due to the high variability in maturation times of �uorescent proteins19. During imag-
ing, laminar micro�ows (1 µ L/min rates) were applied, enabling rapid replenishment of the extracellular 
environment at frequencies greater than 10 cell volumes/msec. �is generated a quasi-time invariant 
extracellular microenvironment, a critical aspect in our study given the rapid metabolome dynamics with 
perturbation response times as low as 1 sec or less20. �e employed �ow rates also applied mechanical 
forces on the cells; however, these are in the 10 pN range, therefore exerting insigni�cant mechanical 
stress given the enhanced surface modulus of yeast21. Prior to micro�uidic immobilization, cells were 
harvested at early stationary phase, thus enabling direct comparison with the aforementioned phenotypic 
diversity analysis, as well as prolonged viability, enhanced lipid content and low budding probability 
(Supplementary Information and Fig. S3, S4).

Under such conditions, lipid accumulation in either strain was not monotonic, but rather �uctu-
ated with time through continuous cycles of replication and degradation (Fig.  1d). �is unmasks an 
inherent form of noise in biosynthesis, termed bioprocessing noise (bp). Similar forms of noise have 
been previously de�ned in gene expression8,22–28 and recently in cell growth29 and metabolic pathway 
use30. We attribute the observed noise during biosynthesis to the sporadic nature of both gene expres-
sion and metabolic reactions. In essence both types of reactions exhibit an e�ciency that depends on 
the abundance, activity and locations of all involved reactants, namely regulatory elements during gene 
expression, as well as metabolites, enzymes and co-factors during metabolic synthesis or degradation. 
Such copy-number and state �uctuations give rise in turn to a probability distribution of the reaction 
product itself. Similar to the nomenclature of gene expression noise8,22–28, the ‘extrinsic’ and ‘intrinsic’ 
contributions to bioprocessing noise emanate from variability in enzyme production and variability at 
the metabolic reaction level respectively. �e single-cell bioprocessing noise was quanti�ed through the 
robust coe�cient of variation of the lipid content longitudinal trace (Fig. 1d). �e median noise for Po1g 
was bpPo1g =  0.35, while the transformed strain MTYL053 exhibited substantially less noise by approxi-
mately 6-fold (bpMTYL053 =  0.06) (Fig. 1e).

Discussion
It becomes apparent that enzyme over-expression in MTYL053 not only induces enhanced lipid produc-
tion but also reduces bioprocessing noise. �is is better visualized in Fig. 2a that plots the median lipid 
content and bioprocessing noise between the two strains (cross points). An analogous dependence also 
persists within individual cells in each strain (Fig.  2a – scatter plot), with bioprocessing noise scaling 
inversely with the square root of lipid content in both strains. Interestingly, bioprocessing noise was inde-
pendent of cell size for both strains, eliminating thus growth rate or stage variations as possible sources 
of the observed noise di�erences between individuals (Fig. 2a-inset).

It is relevant to compare the aforementioned inverse scaling with a similar one frequently encountered 
in gene expression noise8,22. �erein, gene expression noise also scales inversely with the square root of 
protein abundance, especially for proteins of low and medium abundances. �is is associated with the 
spontaneous rate �uctuations in gene expression, emanating from micro- heterogeneities and crowding 
of the cytosol and cell-cycle dependent protein copy numbers8. Our interpretation of the above in bio-
processes is that in addition to gene expression, metabolic reactions are also subject to spontaneous rate 
�uctuations. Consequently, a continuous probability distribution within individual cells for both enzyme 
and metabolite copy numbers is enforced, contributing thus to the overall bioprocessing noise.

To compare the bioprocessing noise contributions of gene expression and metabolic reaction �uctua-
tions, we added cycloheximide (CHX) to the YPD media (33 µ g/ml) and repeated the dynamic analysis 
on the noisiest strain (Po1g). CHX terminates eukaryotic protein synthesis (and inhibits growth Fig. 
S2), thus diminishing noise contributions during transcription or translation31. Indeed, the addition of 
CHX reduced bioprocessing noise by approximately 15% in Po1g (Fig. 2b – inset). �is evidences that 
gene expression �uctuations do contribute to bioprocessing noise. Bioprocessing noise however is not 
completely diminished under CHX admission, demonstrating that contributions from metabolic reaction 
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�uctuations are also present and likely more dominant. It is worth noting that the randomness of gene 
expression and metabolic reactions are known to follow an epigenetic/non-Mendelian heredity pattern8. 
�is indicates that bioprocessing noise is an intrinsic characteristic of a culture, bounded largely by 
enzyme expression levels as evidenced by the Po1g—MTYL053 comparison.

�e question however persists: if bioprocessing noise is lower in MTYL053 than Po1g in micro�uidics, 
then why do the two strains exhibit comparable reliability in culture during batch growth? To answer 
this, we plotted the reliability factor (R) of all three cases (Po1g, Po1g-CHX and MTYL053) against bio-
processing noise (bp) in the same graph (Fig. 2b). �e plot indicates that ‘R’ and ‘bp’ are inversely related, 
namely noisier strains are also less reliable and exhibit higher phenotypic diversity (right y-axis). �e plot 
reveals two additional characteristics. �e �rst is that phenotypic diversity is persistently higher (> 0.5) 
than bioprocessing noise (< 0.5) for all cases. We attribute this to the di�erent extracellular microenviron-
ment between batch growth and micro�uidics. During fermentation, the extracellular time invariance in 
micro�uidics is replaced by limited mixing that induces microheterogeneities such as chemical gradients 
of key nutrients or waste products. �ese amplify intracellular bioprocessing noise during fermentation, 
enhancing population diversity in culture. Speci�cally for Yarrowia lipolytica at early exponential phase 
(Fig. 2b), the upper reliability (or diversity) limit set by the fermentation microenvironment was Ro ~ 0.5 
at zero-amplitude intracellular �uctuations (bp =  0). �e second feature is the non-linear dependence 
of reliability on bioprocessing noise as indicated by the exponential decay curve �tting in Fig. 2b. �is 
nonlinear ampli�cation of intracellular noise is likely due to low autoregulation between extracellular 
events with intracellular reactions, in contrast to the established feedback stabilizing mechanisms in 
gene networks32.

In conclusion, we employed micro�uidics for comparing bioprocessing dynamics at the single-cell 
level in a controlled microenvironment with cell-to-cell bioprocessing diversity in culture during batch 
growth. Within a time-invariant micro�uidic environment, we observed that lipogenesis is sporadic with 
time, rather than monotonic. Such an observation can only be achieved through the longitudinal analysis 
of single cells, otherwise impossible at the culture level, or through alternative single cell methods such 
as �ow cytometry. In light of this, we introduced bioprocessing noise and identi�ed its epigenetic origins. 
Subsequently, we compared the time-dependent single cell behavior in micro�uidics with the persistent 
cell-to-cell variability during batch growth. �e use of micro�uidics was also critical here, by enabling 
deterministic control of the extracellular environment. �rough this, we discovered that intracellular 
lipid production �uctuations are non-linearly linked with extracellular events, a critical insight to bio-
fuels production, as well as medical implications of fatty acids, such as in liver disease14, adipogenesis33 
and cancer34. Micro�uidics has been crucial in screening gene and protein interactions and resulting 
complex phenotypes at the single cell level35,36. Our results expand the possibilities of such microsystems 
to identifying the true phenotype of a strain, which is otherwise masked by microheterogeneities within 
the extracellular environment. Additionally, such microsystems enable the accurate control or assessment 
of the extracellular microenvironment on the e�ciency of metabolic processes, thus enabling enhanced 
bioprocess investigations and potentially optimized bioreactor designs.

Figure 2. (a) Bioprocessing noise as a function of the inverse square root of lipid content; each data point 

denotes the median per cell for Po1g (red) and MTYL053 (blue) with the larger cross-points indicating 

the median per strain interconnected through a linear �t. Inset histogram plots the correlation coe�cients 

between bioprocessing noise with cell size for both Po1g and MTYL053. (b) �e non-linear dependence of 

population level reliability (R) and phenotypic diversity on bioprocessing noise (bp) for Po1g, Po1g +  CHX 

and MTYL053; the red line represents the exponential decay �t of the form: R =  Ro +  A∙eα∙bp, where Ro =  0.5, 

A =  − 0.003 and α  =  12. Inset compares the bioprocessing noise box-charts for Po1g and Po1g +  CHX.
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Materials and Methods
�e experiments were performed using the two derivatives Po1g and MTYL053 of the oleaginous yeast 
Yarrowia lipolytica. More detailed information on the auxotrophic wild type strain (Po1g – Leu-) and the 
engineered one (MTYL053) are included in reference5. �e cells were grown at room temperature (regu-
lated at 25 °C ±  1 °C) until early stationary phase in YPD media, with glucose as the carbon source (10 g/L 
Yeast Extract – Difco Laboratories, 20 g/L Bacto-Peptone – Difco and 20 g/L glucose – Sigma Aldrich). 
To visualize the lipid droplets, the bodipy dye (BODIPY®  493/503 (4,4-Di�uoro-1,3,5,7,8-Pentamethyl-
4-Bora-3a,4a-Diaza-s-Indacene – Molecular Probes) solution in DMSO (Molecular Probes) was added in 
YPD media at a concentration of 250 ng/ml, followed by a 4 hour long incubation under the same tem-
perature and shaking conditions as those maintained during batch growth. Speci�c to the micro�uidic 
experiments, following the 4 hour long staining period, the cells were transferred to a gastight syringe at 
a 10x dilution in YPD media containing a lower concentration of the bodipy dye (100 ng/ml) and 0.02% 
DMSO and loaded to the micro�uidics through one inlet (Fig. S5a). Following immobilization, the same 
solution (YPD-Bodipy concentration 100 ng/ml, 0.02% DMSO) was continuously supplied through a 
second inlet at a rate of 1 µ L/min to enable stable immobilization. On average ~n =  90 individual cells 
per strain and growth condition were studied.

�e micro�uidics were fabricated with conventional so� lithography by molding polydimethilsilox-
ane (PDMS, Sylgrad 184, Dow Corning) and bonding on a glass coverslip37. Brie�y, a 10:1 monomer 
to catalyst ratio was manually mixed and degassed for 2 hour in a vacuum desiccator. �e mixture was 
subsequently poured over a mask (SU8 photoresist on a silicon substrate) and baked for 2 hours at 70 °C, 
followed by cutting using a razor blade, plasma assisted bonding to glass coverslips and overnight baking 
at 70 °C. Two inlets were integrated, one for cell loading and one for media delivery; one outlet enabled 
waste collection (Fig. S5a). Media and cell �ow were enabled by two syringe pumps (Harvard Apparatus) 
and Tygon tubing (inner diameter 0.02″ ).

�e cell trapping design was based on the Tan and Takeuchi axial percolation �ltration method and 
the principle of path of minimal hydrodynamic resistance38; brie�y, 16 trapping sites were arrayed con-
nected to a cell-loading and a media-delivering channel (50 µ m wide – 10 µ m thick). �e traps comprised 
of a dwell chamber and a narrow indentation with approximate widths 6 µ m and 2.5 µ m respectively (Fig. 
S5b)39. Given the channel’s height being almost double than the cell’s, we anticipate that �uid �ow also 
occurs through the narrow indentation even when it is in�lled with an individual cell. On average, 6–8 
cells were trapped per experiment, resulting in an approximately 50% trapping e�ciency; however, such 
a reduced trapping e�ciency did not limit our experimental throughput, due to temporal limitations 
placed by optical sampling. �e latter necessitated approximately 1–1.5 min dwell time to complete the 
confocal imaging at three wavelength channels, namely green excitation for lipid detection, red excitation 
for viability detection and bright�eld for cell size determination. Such dwell times imposed the upper 
limit to the temporal resolution of the lipid expression �uctuation analysis, which we accommodated by 
selecting a time step of 20 min for the whole cell array (more information is included in the Supplementary 
Information). �e cells at late stationary phase remained viable for more than 9 hours. �is was deter-
mined by adding the propidium iodide dye (Sigma Aldrich) in the media (Fig. S3). Confocal �uorescent 
imaging was employed to determine the lipid content in individual cells. �is imaging modality, contrary 
to higher resolution and speci�city approaches, such as Electron Microscopy, enabled long term longi-
tudinal imaging of individual cells under minimal perturbations to cell physiology. Further information 
on cell growth, staining, imaging and data analysis, as well as supplementary images are available within 
the online Supplementary Information.
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