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1m Introduction

The study of growth processes has always constituted, explicitly or implicitly ; an

integral part of solid state physics and materials science . Indeed, most properties

of real materials depend crucially on the presence of imperfections - bulk vacancies,

dislocations, surface roughness - that are remnants of the nonequilibrium condi-

tions under which the material has formed. Over the centuries the art and science

of crystal growth has progressed to ever more closely approximate the ideal of a

perfect, crystalline solid, as evidenced impressively by modern techniques such as

molecular beam epitaxy (MBE), which allow for the engineering of solid state de-

vices at the level of individual atomic planes . Nevertheless, the success of this and

other techniques depends crucially on the ability to control the disordering effects

of the nonequilibrium growth conditions, and to assess, at least empirically, the

relationship between the growth conditions and the resulting structure.

Apart from its eminent technological significance, the growth of solids is of

considerable fundamental interest, since it may provide us with important clues to

the way in which complex structures form in Nature, through the agglomeration of

simple, microscopic processes operating in a highly disordered, noisy environment.

This aspect was dramatically brought to the attention of the theoretical physics

community in 1981, with the invention of the diffusion-limited aggregation model

(DLA) by Witten and Sander [1], which has since been found to describe a wide

variety of naturally occurring patterns [2, 3] . To add to the excitement, it was found

that the structures generated by DLA and related models typically show spatial

scale invariance, thus requiring for their quantitative characterization the notions

of fractal geometry pioneered by Mandelbrot [4] . Mandelbrot has presented a vast

amount of empirical evidence in support of his thesis that fractal structures occur

quite commonly in Nature, as the outcome of many complex physical, geological,

biological and even social processes . As has been remarked by Kadanoff [5] and

others, Mandelbrots observation raises a fundamental scientific problem insofar as

not many mechanisms are known that . could account for the genericity of scale

invariant behavior.

The problem was posed in more pointed form in 1987 by Bak, Tang and Wiesen-

feld [6],who suggested the concept of self-organized criticality (SOC) as a framework

within which to formulate general principles that are responsible for scale invariance

in Nature . The term is motivated by viewing the ubiquity of scale invariant behavior

against the background of equilibrium statistical mechanics, where scale invariance

is associated, since the advent of the renormalization group, with critical point phe-

nomena . Given that in Nature no experimentators are available to tune systems

to their critical points, the argument goes, natural systems can show scale invari-
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ance only if they tune themselves, as it were, through some kind of self-organization

mechanism. While this line of reasoning is appealing and has stimulated a tremen-

dous amount of work on extended nonequilibrium systems, it should be kept in

mind that the association of scale invariance with critical point behavior has its

roots in a somewhat arbitrary historical development, in which equilibrium critical

phenomena happened to provide the first example of nontrivial scale invariance that

could be understood on a fundamental level . There is no guarantee that the analogy

with critical phenomena will serve as a reliable guide when venturing into the vast

unknown territory of scale invariance far from equilibrium.

With hindsight, it appears rather unlikely that principles of the generality orig-

inally envisioned by Bak and coworkers [6] will be found at the origin of all, or

even a significant fraction of instances where scale invariance is encountered in nat-

ural processes . Consequently, workers in the field now tend to reserve the term

SOC to describe a more specific class of mechanisms which produce scale invariance

through a separation of time scales between driving and relaxation (as, for example,

in earthquakes ; see [7]) . Nevertheless, growth processes such as DLA (and other,

less spectacular examples which will form the main part of these notes) come quite

close to fulfilling the requirements for a robust, ubiquitous mechanism for scale in-

variant behavior : Nonequilibrium growth processes are involved in the formation of

virtually any natural structure ; they can be classified according to some broad char-

acteristics such as the presence of a Laplacian field (as in DLA), the presence of a

well-defined growth interface with approximately local dynamics (in kinetic rough-

ening phenomena, see below), symmetries, conservation laws etc . ; and for many

such classes it is possible to formulate simple models and theories that can be used

to extract quantitative, sometimes universal information about the scale invariant

structures that form.

This article describes some recent progress in our understanding of how scale-

invariant structures emerge through far-from-equilibrium growth processes . Since

exhaustive reviews on various aspects of the subject are available [2, 3, 8, 9, 10],

the emphasis here will be on a few key concepts, which are developed as com-

prehensively as possible. Simplicity is favored over generality ; priority is given to

elementary arguments based on scaling ideas and dimensional analysis, which pro-

vide the maximum yield in terms of intuitive insights . For details and technicalities

the reader is referred to the extensive bibliography.
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~o 1 Outline
It is evident already from a very superficial look at a growth process like DLA that

the competition between different parts of the growing structure plays a central role

in developing long-ranged spatial correlations and scale invariance . Of course, it

is an altogether different matter to turn this qualitative insight into a quantitative

theory. Chapter 2 is devoted to a restricted class of needle models for competitive

growth which allow a detailed analysis of the relation between competition and

scale invariance. Competition mediated by a Laplacian field (as in DLA) as well

as through geometric shadowing will be considered, and special attention will be

paid to the role of fluctuations and the extent of universality of the resulting scaling

properties . Sections 2 .1 and 2 .2 mainly summarize results that have been presented

in detail elsewhere, while the discussion of the shadowing instability (Section 2 .3)

and Laplacian needle growth (Section 2 .4) considerably extends the brief published

accounts [11, 12].

The main part of the article - chapters 3, 4 and 5 - deals with growth processes

that can be reduced to the motion of a well-defined interface with approximately

local dynamics . This explicitly excludes diffusion-limited growth, but includes many

technologically relevant vapor deposition techniques . In this case scale-invariant

behavior appears in the form of kinetically induced surface roughness [8, 9, 10] . The

underlying mechanism is the interaction of microscopic fluctuations with the slow

dynamics of the long-wavelength interface degrees of freedom.

The basic concepts are introduced in Chapter 3, in a (hopefully!) pedagogical

manner. The starting point are macroscopic interface equations of motion, derived

from thermodynamic and kinetic considerations in the spirit of the classic work of

Mullins [13] . Special attention is paid to terms in the equations which originate

from the nonequilibrium character of the process . Two types of terms are generally

encountered - kinematic terms (such as the celebrated Kardar-Parisi-Zhang (KPZ)

nonlinearity [14]) that appear simply because the interface is moving, and dynamic

terms that reflect changes in the interface relaxation processes due to the nonequilib-

rium conditions . Terms of the latter type play an important role in the description

of crystal growth from atomic beams [15].

Given a macroscopic interface equation of motion, a continuum theory of kinetic

roughening is obtained by adding appropriate noise terms that describe the (equi-

librium or nonequilibrium) fluctuations in the problem . In Chapter 3, this program

will be carried out at the level of linear fluctuation theory. While mathematically

undemanding, the linear theory already contains most key features of kinetic rough-

ening phenomena ; moreover, as will be explained in Section 3 .4, physically relevant

situations exist in which the linear theory is exact.
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In Chapters 4 and 5, the discussion is specialized to two broad classes of kinetic

roughening phenomena, which can be distinguished according to whether or not

the surface relaxation processes conserve the volume of the growing structure . The

generic description for nonconserved dynamics is provided by the Kardar-Parisi-

Zhang equation introduced in 1986 [14] . In view of the excellent accounts that

have appeared during the last few years [8, 9, 101, only the most important prop-

erties of the equation - tilt invariance, the fluctuation-dissipation theorem, and the

mapping to directed polymers in random media - will be presented in Chapter 4.

The remainder of the chapter describes some recent developments which have not

been summarized previously, notably the topics of amplitude universality, finite size

effects, chaotic interfaces and inhomogeneous growth.

Conserved growth equations apply to MBE-type vapor deposition processes,

where desorption of material from the surface, as well as the formation of bulk

defects can be neglected . They represent a distinct class of kinetic roughening

phenomena, which has been the focus of much activity over the last four years.

Chapter 5 attempts to provide a unified picture of the current understanding of

these processes . The central goal will be to identify the microscopic mechanisms

underlying the relevant dynamic nonequilibrium terms in the large scale dynamics;

most of the material presented here has not been published previously. Since one

of the main motivations for these studies has been to more closely approximate the

conditions under which epitaxial growth is actually conducted in the laboratory,

Chapter 5 also contains, in Sections 5 .2 .4 and 5 .4 .2, a preliminary assessment of

pertinent experiments.

The chapters are written such as to be reasonably self-contained . Each chapter

contains a few introductory paragraphs that place it into the general context. In

particular, Chapter 2 is largely independent of the rest of the article . While Chapter

3 is a prerequisite for the discussions in Chapters 4 and 5, readers who have some

familiarity with kinetic roughening phenomena should be able to turn directly to

the last two chapters .
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~e Competitive growth

In this chapter a sequence of models is introduced, in which one-dimensional struc-

tures ('needles') grow from linear or planar substrates and interact through some

kind of screening or shadowing mechanism . We shall investigate in detail how the

competition gives rise to a scale-invariant, power law distribution of needle heights,

1V(h)

	

(2 .1)

and, correspondingly, a density profile

n(h)

	

f dh N(h) h- (N-1),

	

(2.2)
h

both relations being understood to hold for the frozen, stationary structure which

evolves after a long time; in some cases the power laws are modified by logarithmic

corrections . The models are discussed in the order of increasing complexity of the

competition mechanism, which ranges from unidirectional geometric shadowing to

Laplacian {that is, electrostatic) screening.

While the models are mainly motivated by their simplicity and should not be

expected to precisely describe any specific system, physical situations are conceivable

in which the competing structures are, to a good approximation, linear, and insights

gained from the study of needle models could prove useful . Examples are patterns

of linear cracks driven into a solid by thermal shock [16], and arrays of dendritic

side branches [17, 18].

2 . 1

	

deDosh,~~~~ ~~ ~~ 1 ; ~~~ incidence

Ballistic deposition is a simple model for the deposition of amorphous thin films.

at low temperatures [19] . In this model, particles are released at random positions

above the surface and move towards the deposit along straight line (`ballistic') tra-

jectories which form a fixed angle, 0, with the substrate normal . Corresponding

to the assumption of low temperature and, hence, negligible atomic mobility, the

particles stick permanently at the point of first contact with the deposit . It has long

been recognized [20] that the structures grown by this simple rule attain a charac-

teristic columnar morphology when the deposition angle 0 is increased towards the

limit of grazing incidence, 0 - p 90° (Figure 1) . The deposit breaks up into columns

which grow more or less independently of each other and interact only through ge-

ometric shadowing . The columns are needle-shaped in the case of growth from a
one-dimensional (linear) substrate, and have a sheet-like structure when grown from

a plane [21, 22] . Much experimental interest has focused on the growth angle of the

columns, which is distinct from the angle of deposition [20} . In fact this angle is



Figure 1 : Lattice simulation of ballistic deposition onto a one-dimensional substrate.

Particles enter from the right, following trajectories which form an angle of 85° with

respect to the surface normal . In this particular model the columns (black) grow at an

angle of about 52° relative to the normal . The picture shows part of a larger system.

Courtesy of Paul Meakin.

related to the angular dependence of the deposit density, and can be computed in . a

mean-field approximation [23].

A closer look at Figure 1 suggests the idealization depicted in Figure 2 : The

columns are replaced by needles which grow independently by the accretion of flux at

their tips . In this view, the competition is seen to be noise driven : While the average

growth rate is the same for all needles, the shot noise in the particle flux makes it

possible for some needles to temporarily grow ahead of their neighbors . Once a

needle . has been completely shaded, it is forever excluded from further growth : The

competition mechanism is exclusive in the sense that needles are either completely

unaffectedby the presence of others (the active state), or else completely shaded.

These qualitative considerations can be turned into precise predictions by ex-

ploiting the . mapping [24] to coalescing random walks indicated in Figure 2 . The

8
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Figure 2 : Schematic of the needle model for oblique incidence ballistic deposition . Active

(shaded) needles are identified by full (open) tips . The arrow shows the direction of the

beam incident at an angle B . The dotted lines indicate the mapping of the tip positions

onto coalescing particles.

positions of the active needle tips are projected onto a line perpendicular to the sub-

strate, and are interpreted as the positions of point particles . Due to the growth of

the needles, the particles have an (unessential) constant upward drift, superimposed

by independent random walks . The shading of one needle by another corresponds

to the. coalescence of the walkers . The crucial advantage of this mapping, then, is

that the nonlocal geometric shadowing interaction between needles is turned into a

local contact interaction among random walkers.

An elementary property of coalescing random walks is that their average distance

increases with time t as Vi. This is simply a consequence of the fact that, apart

from the contact interactions, the walkers are independent : After a time i, a free

walker has explored a region of size /; in the presence of other walkers, it can

survive up to time t only if it has depleted a region of that size around it . Similarly,

in . the needle model, the height fluctuations of an active needle grow with time

t or, equivalently, with height has bh . Through the geometric shadowing

mechanism this vertical length scale is translated into a horizontal shadowing length

(h) -6h over which a surviving needle of height h is expected to have shaded other

C)

0

	1

0
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needles. The density at height h can then be estimated as n(h) 1/(h) h- 112 , so

7=3/2 in (2.1).

More precisely. the mapping to coalescing random walks yields an expression for

the asymptotic fraction of surviving needles [24, 25],

p(t) cot 8/\/rt .

	

(2 .3)

Since shaded needles stop growing entirely, only those which are active at time t

contribute to the density profile for h > h a (t), where ha (t) denotes the average height

of active needles . We therefore have the identity

p(t) = n(h a (t))

	

(2.4)

and, since ha(t) =t in the present case (unit deposition rate),

do _ cot 8 1

	

(2.5)

Equation (2 .4) expresses a particularly simple relation between the dynamics of

competition - as described by the survivor density p - and the scaling of the frozen

structure; the relation is a consequence of the exclusive nature of shadowing in the

present model, and can only approximately be generalized to other situations . At

some finite time t the height distribution is a superposition of the distribution of

shaded needles, which follows (2 .5) up to h ha (t), and a Gaussian of width - -Ng

and total weight p(t), centered around ha (t), which contains the active part of the

population; of course in a finite system eventually a state is reached in which only

a single needle is growing [24].

Within the idealized needle model, the value y = 3/2 is evidently universal, i .e.

it is independent of deposition angle, growth rate and such [25] . The needle model

also seems to give an accurate description of several versions of the full ballistic

deposition problem, provided 8 is chosen sufficiently large to ensure the formation

of well-separated columns [23, 24] . In the full problem it is more natural to consider

the distribution of column masses, s, rather than heights h . The two are related

as follows [24] . The shape of individual columns is characterized by exponents V H ,

v1 which describe how their height h and width w scales with mass, 'h s i' iI and

w s'1 . The mass distribution is therefore given by

11rr(s)= dsN(h)

with r =1-; v li (y - 1) . For processes like ballistic deposition, where both the indi-

vidual columns and the deposit as a whole are compact, we also have the general

relation [26] v il = 2-T. Together these relations imply

T = 2-1/7,

	

(2.7)
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so T = 4/3 in the present case.

In conclusion, unidirectional geometric shadowing in conjunction with deposition

flux shot noise is an example of competitive growth which gives rise to scale-invariant

structures, eq. (2.1), with robust, universal scaling exponents . To a certain extent

these ideas also apply to deposition onto a plane, where the coalescing objects are

lines rather than point particles [21, 22].

2 .2 Noisy vs . deterministic competition

2.2 .1 Nagatani's forest formation model

Nagatani [27] proposed a modification of the needle model described above, in which

the growth rate v i of an active needle depends on its height h i as v i ha. One

particular realization of this idea is a model [25] in which all active needles are chosen

for growth with equal probability, but the height of the chosen needle is incremented

by an amount proportional to ha. The scaling approach of the preceding section

is directly applicable here : The height fluctuation of a surviving needle increases

with height as Sh - h(l+001 2 : estimating n(h) 1g(h) -1/6h, one obtains the height

distribution exponent

in good agreement with simulations [25].

A conceptually interesting feature of the Nagatani model is the possibility, for

a > 0, of purely deterministic competition. Let us consider the following determin-

istic growth model [25] : On each site i of the integer lattice we define a real positive

height variable hi(t) . Each height grows independently, according to

dhi - ha

	

dt

	

i '

as long as the needle is not shaded, i .e. as long as the condition

hi >h,-(j-i)cot0

	

(2.10)

is fulfilled for all j > i (Figure 2) ; shaded needles stop growing entirely . The initial

values hi(0) are drawn at random from some distribution P(h).

For a > 0 the initial height fluctuations are amplified by the growth process, and

needles of large initial heights are able to shade those who are less fortunate . Due

to the simplicity of eqs . (2.9) and (2 .10) it is possible to write down an explicit

expression [25] for the fraction of surviving needles in terms of P(h), for general a.

Here we sketch the special case a =1, in which the active needles grow exponentially,

hi(t) = hi (0)e t . From (2 .10) the surviving fraction can be written as

	

p(t) =J dh P(h)

	

J h+21 £
dh' P(h'),

	

(2 .11)
-x

3+a
'Y = - 2 -'
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where .e = ei tan 0.

Consider first a uniform distribution, P(h) =1 for 0 < h < 1 . In this case the

product in (2.11) only extends to ima,x = e(1- h) . We replace the product by the

exponential of a sum and approximate the sum by an integral . A change of variables

then yields

p J i
dh e-e(i-h)-F(h+i/e)(h+z/e)+

	

(2.12)
0

	

2e 5

in the last step a saddle point integration was performed . Not surprisingly, the

form of the integrand in (2 .12) shows that the survival probability is dominated,

for large .e, by the needles with the largest initial heights, around h =1 - 1/f. Since

the average height of active needles grows as h a (t) - (1/2)e t = (f/2) cot 8, we can use

(2.4) to conclude that

N(h) ti (V7-cot8/4) h --3/2 ,

	

(2 .13)

and thus y = 3/2 in (2.1).

It is instructive to repeat this calculation for an unbounded initial distribution,

such as P(h) = e- . Proceeding as before we obtain, in analogy with (2.12), the

expression

P 10 dh

	

(2 .14)

Here the integral is dominated by contributions around h - In e, and the saddle point

integration results in p

	

/2(ef) -1 . With ha (t) = et = f cot 9 we obtain, from (2 .4),

N(h)

	

, cot 8 h-2

	

(2 .15)
2 e

so in contrast to (2 .13), here the height distribution exponent is -y = 2.

The important lesson to be learned is that, in deterministic competition pro-

cesses, the properties of the emerging scale invariant structure depend not only

on the dynamical rule (encoded e .g. in the exponent a in (2 .9)), but also on the

statistics of the random initial conditions ; in that sense, there is less robustness (or

universality) than in noisy processes . The reason can be traced to the fact that,

in contrast to the noisy model discussed in Section 2 .1, the survivors in the deter-

ministie case are not typical ; instead, they are recruited from the needles of largest

initial height [25] . Consequently, the statistics of the active needle population at

some given time t, which determines the further evolution of the structure, is re-

lated to the extremal statistics [28] of the initial height distribution P(h), that is,

the probability distribution of the largest initial height among £(t) independent sam-

ples. The sensitivity of deterministic growth processes to the statistical properties

of initial conditions has been noted before in various contexts [8, 29, 30], and will

be a recurrent theme throughout this chapter.

12



2 .2 .2 Self-thinning in plant populations

Competition for sunlight is believed to play an important role in the dynamics of

plant populations . Through a process referred to as self-thinning, larger plants cause

increased mortality among smaller ones by depriving them of light . Empirically, this

process is observed to proceed according to a universal scaling law relating the mean

weight of survivors, m, to their number density per unit area p as [31]

9T2 r ., p
-3/2 . (2 .16)

If we plausibly assume that plant weight is related to plant height as ni h 3 , we see

that this implies the lateral distance between plants, = p -11i2 , increasing propor-

tional to h. In the traditional explanation of (2 .16), is identified with the crown

diameter which, on dimensional grounds, is also assumed to scale as m x '3 , and there-

fore h . The weakness of this argument lies in the complicated allometry of real

plants, i .e. in the fact that different linear size measures such as stem diameter,

crown diameter, or height, empirically scale with different powers of plant weight

[32] .

It is therefore of some interest to attempt a dynamical explanation based on

simple screening models of the kind discussed in the previous section . Following

Nagatani [27], we consider a one-dimensional geometry, as in Figure 2, with sunlight

streaming in from the right at a fixed angle 9 . We further assume that shadowing is

exclusive, i .e . fully shaded plants die instantaneously while those which still receive

some light grow as if there were no shading at all.

As a first step in the modeling procedure, the growth dynamics of individual

(non-interacting) plants has to be ascertained . There is empirical evidence [33] that

the increase in plant height can be characterized by a (possibly time-dependent)

relative growth rate r, such that

dhi =

dt

	

r(t)hi.

The essential point is that the growth rate is proportional to the height ; the time

dependence of r(t) can be eliminated through a redefinition of time, which reduces

(2 .17) to the deterministic Nagatani model, eq . (2 .9), with a = 1.

Next it has to be decided whether the competition process is noise-driven, i .e.

due to random fluctuations of the growth rate r, or whether it is primarily determin-

istic and merely expresses the exponential amplification of randomness in the initial

conditions (that is, the sizes of seedlings) . In the first case the stochastic version of

Nagatani's model described briefly in the previous section (model II of Nleakin and

Krug [25]) would provide an appropriate starting point . With a= 1, eq . (2.8) gives

y = 2, which implies that the lateral distance between survivors scales as = 1/n h,

(2.17)
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in agreement with the empirical law (2.16) . If, on the other hand, the competition

were mainly deterministic, the initial distribution of seedling heights would have to

be known . Heuristically, one expects the distribution to be unbounded but rapidly

decaying, such as a Gaussian or exponential distribution . For such distributions the

calculation sketched in the previous section shows that, again, h, possibly with

logarithmic corrections [25] . Thus, in this particular case, noisy and deterministic

competition leads to similar results.

The relative success of these simple, one-dimensional models should not be over-

interpreted; e.g. the relation h is equivalent to the empirical rule (2 .16) only if

the conventional, and questionable [32], allometric relation m h3 is used . However

they do show that the shadowing length need not be related, as is traditionally

done, to the allometry of individual plants (indeed, in the model no lateral length

scale is associated with individual needles), but rather can emerge from the com-

petitive interaction between individuals.

2 .3 The shadow instability

In the ballistic deposition model described in Section 2 .1, the deposition flux is as-

sumed to be collimated and unidirectional . While this is a reasonable approximation

in some situations, other growth processes such as sputter deposition are character-

ized by particle trajectories approaching the surface from a wide range of directions.

It was first pointed out by Karunasiri, Bruinsma and Rudnick [34] (KBR) that this

leads to a deterministic shadow instability in that valleys receive less flux than hills

and are therefore left behind. Subsequent studies [35, 36, 37, 38, 39] have explored

various aspects of the instability.

2 .3.1 The grass model

A needle model for the shadow instability is illustrated in Figure 3 . We focus on

the simplest nontrivial case, neglecting both roughening through shot noise and

smoothening by surface relaxation processes . The growth rate of the ith needle is

given by [11]
dh2_

dt _ V (OZ) '

where the exposure angle 8 , 0 < 0, <1r, describes the range of directions in which

straight lines can be drawn from the tip of needle i without intersecting any of

the other needles (Figure 3), and V is a monotonically increasing function with

V(0) = O. As in Section 2 .2, the initial values h,(0) are drawn independently from a

distribution P(h) .

(2.18)
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Figure 3 : The grass model for the shadow instability.

Some insight into the competition process is gained from the distribution 1't (8)

of exposure angles at time t (Figure 4) . As the growth progresses, the distribution

becomes increasingly bimodal . The peak close to 0 = 0 contains needles which are

essentially excluded from further growth, while the (diminishing) peak close to 0=7r

contains those which have not yet been subject to shadowing ; only a small fraction

of needles resides between the peaks. The structure of the distribution allows us

to extend the distinction between active and shaded needles, developed in the uni-

directional case, to the present, more involved situation in which no needle ever

entirely ceases to grow. We define a surviving (active) needle through the condi-

tion 8 2 (t) > Oth, for some arbitrary threshold angle 8th , say, 8th = it/2 . The surviving

fraction p(t) can then be written as

F'
p(t) = f d8 Pt (8).gt h

(2.19)

While the simple identity {2 .4) between the surviving fraction and the density

profile does not hold here, a similar, approximate relation can be derived as follows.

Note first that averaging the equations of motion (2 .18) over initial conditions yields

f d8 Pt(8)v(8) =
~t

(h) =
~t j° dh hNt (h),

	

(2 .20)

where a time index has been added to the height distribution N(h) to express that

we are considering the transient behavior . Using the definition (2 .2) of the density

profile and performing a partial integration, the right hand side of (2 .20) can be
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Figure 4 : Distribution of exposure angles at time t = 20, from simulations using V(0) = O.

The data constitute an average over 100 runs for a system of 500 needles . [11]

written as

d

	

_ d v€~) t

	

v(T)t

	

ant

dt (h)

	

dtJo

	

dhn t (h)=V(7r)n t (V(7r)t)dh . at

	

,

	

(2.21)

introducing explicitly the maximal height V(7t)t . On the other hand, from its defi-

nition (2 .19) the surviving fraction can be bounded by

p(t) f dB Pt(8)[V(8)IV(8th)] V(eh)d® P(e)V(e)	(2 .22 .)
t,

	

o

(recall that V(9) is monotonic!) . Inserting (2 .20) and (2.21) we see that p(t) is

bounded by [V(1r)/V(0th)]n(V(r)t) provided the term arising from the explicit time

dependence of n t in (2 .21) can be neglected; as we shall see below, this is not always

true. We will nevertheless assume a relation of the form

p(t ) ^' n(ha(t)),

	

(2.23)

with h a (t) V(r)t the typical height of active needles, to relate the dynamics of

competition to the frozen structure.

The analysis [11] focuses on the transfer of the . needle population from the `active '

to the `shaded' peak in Figure 4 . We consider a late stage in the process, when

the typical distance between active. needles is t'»1 . For the sake of simplicity we

use a periodic array of active needles (Figure 5), with spacing and alternating

heights hl = hxnax = V(r)t . and h2 h1- A, with .0 « ; any affect from the shaded

needles will be disregarded . In the course of time the shorter of the active needles
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Figure 5 : Periodic needle array used in the analysis of the shadowing model.

increasingly lag behind the longer ones and eventually join the shaded majority . For

a quantitative description one introduces an exponent v to characterize the behavior

of V(0) close to 0 =7r, V ('T) -V(0) es, (7r - 9)' for 0 - . Elementary geometry then

yields
v

(-
di

= v( 77) - V(0) N (7r - 0) v

	

(2.24)

The solution of this equation is

A(t) = [A(0) r-" + (1- v)t/e" ] 1I (1-L) (2.25)

for v 1 and o(t) = A(O)et/ for v I . As a measure for the time scale of shadowing

we introduce t' ` through v(t'°) = e ; in our simplified situation, the exposure angle

of the shorter needles has decrased to 8W) _ Oth =7r/2 at time t T . From (2.25) we

obtain

(2 .26)

for v 1, and

t' = eln[e/A(0)l

	

(2 .27)

for v =1 . In the relevant limit A(0)/e «1, eq .(2 .26) behaves as t"

	

for v < 1, and

t

	

e'/A(0) i-1 for v > 1.

The origin of scale invariance in this class of competitive growth processes lies

in the fact that the shadowing time t" increases with e : Further shadowing is slowed

down as active needles become scarce . This is . analogous to the coarsening of a one-

dimensional phase separating system, . where the interaction between domain walls,

providing the thermodynamic driving force for coarsening, decreases (exponentially)

with . increasing domain size; Langer's treatment of spinodal decomposition [40] is

	4.

=1

	

r(o) 1-v

V-

	

/11

L
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in fact similar to the present approach in that it is based upon an estimate of the

lifetime, t", of metastable periodic order parameter profiles, which decay via the

disappearance of every second domain.

The analogy with coarsening gives an important clue on how to proceed : Since,

in the simplified periodic configuration analyzed here, the active needle spacing

doubles when the shorter needles are shaded, we may interpret 1/t x as the growth

rate of the needle spacing , and write

(k-

-
ti	

(~)

	

(2 .28)
dt t*

In evaluating this relation we are faced with the problem that t" depends, for v >

1, on the initial height difference A(0) as well as on the needle spacing . In the

deterministic process considered here, A(0) generally acquires a -dependence due

to the fact that the active needles which survive up to a time t are those with the

largest initial height in a region of size (t), see Section 2 .2 . The estimate of 0(0) for

a given distribution of initial values is an exercise in extremal statistics [11, 25, 28].

The result is a relation of the type

tY {~) - 4'z (2.29)

where the dynamic exponent z > I depends, for v > 1, both on v and on the initial

distribution; e .g ., for uniform, bounded initial distributions z =2v -1, while for

unbounded, rapidly decaying distributions z = v [11] . This is another instance of the

lack of robust universality in deterministic growth processes alluded to previously.

For v = 1 we always have t ' ' ln and the initial distribution merely affects the

prefactor.

Integrating (2 .28) we obtain the coarsening law

{ t ) -
tP,

	

(2.30)

where p takes the universal value p= 1 for v < 1 and p= I/ z for v > 1 In the

borderline case v = 1 (2 .30) is replaced by

(t) -t/Int.

The density of survivors is p(t) .-s, 1/0) and, using (2.23), we have

1=1+P.

In particular, we obtain the universal result =.2 for v < 1, with . a logarithmic

correction,

N(h)
Ink

	

(2.33)

for v =1 . These predictions are in excellent agreement with simulations carried out

for a range of values of v, 1/2 < v < 5, and a variety of initial distributions [11].

(2.31)

(2 .32)
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2 .3 .2 Shaded needles

Two examples of numerically determined height distributions are shown in Figure

6 . The graphs nicely illustrate the decomposition into a time-independent ('frozen')

power law part and a peak at h ha (t) which contains the active needles . However,

Figure 6b indicates that this is not the whole story : A second peak is seen to develop

and to move towards increasing height at a sublinear rate . This peak is associated

with the dynamics of the shaded needles.

8 .00 -
7 .00 -
6 .00 -
5 .00
4.00 -
3.vnv

A -
2.00 -
1 .00 -
0.00 -

-LOU -
-2.00

Z -3 .00
-4 .00
-5 .00
-6 .00 1-

-7.001-
-8 .00 ~
-9 .00 H

-10.00H
-11 .00!-
-12.00
-13 .00
-14 .00
-15 .00 -

6 .00 8 .00 10.00 12 .00 14 .00 16 .00 18 .00

	

0 .00

	

5 .00

Ln(h)

Figure 6 : Height distributions of the needle model for shadowing, with growth rate func-

tion (a) V(0) = '73/2 - (T - 8)3/2 and (b) V(8) = (1- cos 8)3I8 . In both cases the initial

heights were drawn from a uniform distribution . The dashed lines indicate the theoretical

predictions for the height distribution exponent 7 .

Suppose that the growth rate behaves as V (O) O n for 0 --) O . We need to esti-

mate the typical exposure angle, 8s, characteristic of the shaded needles . An upper

bound on Os is obtained by taking into account only the shadowing due to the high-

est, active needles ; their spacing being 6, we have Os < /ha (t.) /t, and hence the

typical height hs (t) of the shaded needles evolves as

0.7

"2" -2 .O0-

-4 .00-

-6 .00-

-8 .00k-

-10 .00 -

-12 .00

-14.00 ~

dh s /dt = V(gs) <
(Or ,a t-70 -P) (2.34)

The height of the shaded needles remains bounded for all times if 77 > 1/(1 -p) ; in
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general, however, we may only conclude that It s N to with

(2.35)

Numerically, it appears [1I] that this bound overestimates the value of jt, in particu-

lar in the case p= 1 where the bound becomes trivial ; this implies that considerable

shadowing must go on also within the population of shaded needles . Nevertheless,

in most cases it is found to be positive, e .g . t 0.3 when V(0) = 0 . Consequently,

the t -+ oo limit of the height distribution N(h) is trivial for any fixed h, since for

sufficiently long times all needles have grown beyond height h . Instead, the scaling

behavior (2 .1) is encountered in the scaling range h s (t) < h < h a, (t), as is clearly seen

in Figure 6b . In other words, the typical form of the density profile is

r =1 :

	

0<h<hs(t)--,t"

.nt (h)i

	

h-P

=0

hs (t) < h < h a (t)

:

	

h> ha (t)

(2.36)

Note that there is a sharp drop in n(h) at h hs , corresponding to the peak seen in

N(h) (Figure 6b).

To delineate the limits of consistency of our approach, we now use the approxi-

mate form (2 .36) of the density profile to evaluate the right hand side of (2 .21). We

find two contributions to the averaged growth rate, one of the order dh 3 (t)/dt ti t'z-1

from the shaded needles and one of the order t-p from the active ones . The funda-

mental assumption of our approach has been that the dynamics is dominated by the

active needles . This requires it < 1 - p ; using the bound (2 .35), a sufficient condition

is

17 > PA ? - p)• (2.37)

One can also derive this condition by evaluating the left hand side of (2.20) with

the following simple Ansatz for the exposure angle distribution P (9),

Pt(O ) = (1 - p( t ))6 ( e - ss( t )) + p(t)8(0 - ,r) .

	

(2 .38)

Again, this gives rise to two competing contributions to the average growth rate, and

with the bound 0, < /t the peak at 0 -=-It is found to dominate if (2 .37) is fulfilled.

Surely, the condition (2 .37) is too restrictive to be useful ; e .g. it is only marginally

satisfied in the case depicted in Figure 6a (p = 1/2 and r, = I), although in this case

the shaded needles are seen to play no significant role.
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2.3 .3 The effect of noise

Consider adding random forces fi (t) on the right hand side of (2.18) . The shadowing

dynamical equation (2 .24) then becomes

dA =

	

f(t)

	

(2.39)
(it

	

6

where we take f to be Gaussian with zero mean and covariance

( f (t)f (t')) = Db(t t') .

	

(2 .40)

The solution of this equation is straightforward in the linear case v = I (compare to

Section 3 .2.2) . In a situation where initially all active needles have the same height,

A(0) = 0, the height difference grows according to

(p(t)2) = Pi (e 2tl _ 1),

	

(2.41)

and the shadowing time, obtained by equating (2 .41) to 62, is

t' (6) = (6/ 2) In (1
+ 26/D) .

	

(2 .42)

For large 6 - this is of the form (2 .27), with an effective initial height difference

o(o)eff' D.

The comparison indicates how (2.39) may be approximately solved for arbitrary

values of v . Eq.(2 .41) describes two distinct regimes . For t <C/2, the process is

noise dominated and (L\(t) 2 ) Dt, while for t6/2 the deterministic term in (2 .39)

takes over . It is plausible that the succession of a noise-dominated early time regime

and a late time regime dominated by deterministic shadowing should be a general

feature of (2.39) . We can therefore match the early time behavior, A(t) =.\/Dt,

to the deterministic solution (2 .25), requiring continuity of L1 and d0/dt at the

crossover time t,; such an approach was first suggested by Rossi [411 in the context

of : Laplacian needle growth, see Section 2 .4. The two conditions serve to fix t c , as

well as the initial condition A(0) = L\(0)ef in (2 .25), thereby selecting a particular

trajectory from the one-parameter family of deterministic solutions . The result is

t =(1%2)(D/2)i+v~i~v

	

(2.43)

A (0)eff [(1 +v )/21 II (1- v) (D/2) rAI+U ) eut (1+ U ) . (2.44)

and

The first important observation is that A(0)eff/ -> 0 for 6 -> co, for any value of

v . This implies that the prediction p=1 in the universal regime v < 1 is unaffected
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by the noise . since

	

v) for large as before (eq .(2.26)) . On the other

hand, for v > 1, insertion of (2 .44) into (2 .26) yields the shadowing time

v +1

	

2,

- v-l t, - '-F

for large e . The coarsening exponent is

(2.45)

P -
l+v

<1.
2v ( 2.46)

Somewhat remarkably, the shadowing time in (2 .45) is of the same order (though

always greater than) the crossover time t~ from the noise-dominated regime, which

might raise doubts concerning the consistency of the approach . Nevertheless, Rossi

[41) found good agreement with (2 .46) from an exact enumeration analysis of a

discrete version of (2 .39).

2 .3.4 Beyond the needle model

We conclude this section by commenting on numerical work on the shadowing in-

stability that includes fluctuations (due to the shot noise in the deposition flux)

and surface tension effects . These studies have considered either discretized contin-

uum equations, or lattice models in which particles are deposited ballistically from

a range of directions. The most general continuum equation is of the form

at h(x , t)=o-o2h-nV4 h+-(Vh) 2 +9[h(x,t)]+f(x,t),

	

(2 .47)

where h(x,t) is the continuous version of the height variables h,(t), and the exposure

angle 9 is defined as before, in Figure 3, as a functional of the instantaneous surface

configuration; it is assumed that the vertical local growth rate is proportional to

the exposure angle, with a factor of proportionality (the deposition flux) that has

been set to unity. The coefficients o-, ic > 0 are related to the surface tension ; the a--

term describes surface relaxation due to evaporation-condensation processes, while

the ic-term captures smoothening through surface diffusion, see Chapter 3 . The

(7h) 2-nonlinearity was first proposed in the celebrated work of Kardar, Parisi and

Zhang [14) (KPZ), and will be thoroughly discussed in Chapter 4 . Finally, f (x, t)

is a Gaussian random force with short range correlations in space and time, and

variance D (see egs .(2 .40) and (3 .16)) . The needle model discussed in the bulk of

this section corresponds to the simplest case where a = ic = a = D = 0, and the linear

appeareance of 9 in (2 .47) implies that one is dealing with the 'borderline' situation

v=1.

A serious deficiency of (2 .47) lies in the fact that all coupling terms appearing in

the equation are the result of a small gradient expansion (see Chapter 3), which is
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clearly inappropriate in view of the large modulations caused by the shadow insta-

bility. A more satisfactory continuum description, in which the local normal growth

rate is proportional to the normal projection of the incident flux, integrated over the

exposure angle, was proposed by Bales and Zangwill [36] . The surface morphology

generated by this model is quite different from that obtained with needle models

and continuum equations of the type (2 .47), which assume a single-valued height

function at all times ; in fact, the surface develops a structure of domed columns,

separated by deep narrow grooves that occasionally close, due to the formation

of overhangs, and leave chains of vacancies in the bulk . However, because of the

high computational cost associated with the Bales-Zangwill model, it has not been

possible so far to quantitatively study its scaling and coarsening properties.

In their original paper [34] on the shadow instability, KBR studied (2 .47) with

o- = % = D = 0, i .e. the deterministic problem with surface diffusion relaxation . For

small values of rc, i < 10 -4 , they found a power law density profile with an exponent

p = - 1 increasing from p 1 for c = 0 to p 1 .5 for a =10-4 ; for larger values

of is an abrupt transition, from compact growth with a flat interface to a spiky

morphology, is observed at a critical height h' ti K h13 , but the spikes do not appear

to have a power law height distribution. The result p > 1 is very surprising in view

of our interpretation of p as a coarsening exponent, as in (2 .30) ; indeed, p > l would

correspond to superlinear coarsening, and it is hard to see how such a behavior could

arise from a local coupling as in (2 .47) (it is not due to the shadowing interaction

because then it should appear also in the needle model) . It is possible that KBR in

fact observed the steep transition region between the constant plateau and the power

law decay in the density profile (2 .36), which may give rise to large, spurious values

of p; another possibility is that the coupling by the n-term enhances the growth of

the shaded background of needles to such an extent that, at least for larger values

of ic, the power law regime disappears altogether . Clearly this ease requires further

investigation.

Yao, Roland and Guo [37] considered (2 .47) with rc =0, 6 > 0 and A 0 . They

found linear coarsening, p= 1, both in the presence and absence of noise . Apart

from the logarithmic correction in (2.31), which may have been too weak to detect,

this result agrees with our analysis of the needle model . On the other hand, a

subsequent study of the case A = 0, o> 0, reported by Yao and Guo [38], resulted

in a smaller coarsening exponent p 0 .7 . The main contribution of Yao and Guo

[38] was an extension of (2 .47), with A = 0 and a > 0, to two-dimensional surfaces,

where the coarsening was found to progress surprisingly slowly, with p 0 .33.

Lattice models for the shadow instability were introduced by Roland and Guo

[37, 42] and by Tang and Liang [39] . The model of Roland and Guo is subject to the
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solid-on-solid (SOS) constraint, i .e. overhangs and bulk vacancies are not allowed

to form ; surface sites are selected for deposition by launching particles towards

the surface along randomly directed ballistic trajectories . but the success of the

deposition attempt is decided by energetic considerations, thereby bringing surface

tension and temperature into play. In contrast, the model of Tang and Liang is

very close in spirit to standard ballistic deposition (Section 2 .1), i .e. particles stick

permanently at the site of first impact, and the deposit is highly defective . In

both models the maximal exposure angle &max is treated as a control parameter,

and both models show evidence of a phase transition from a . `flat' phase at small

8max ; in which the surface roughens as predicted by KPZ-theory (see Chapter 4),

to a grooved, columnar phase dominated by shadowing at large &max• However the

scaling in the grooved phase is quite different in the two models . While Tang and

Liang [39] find a column mass distribution exponent r ti 1 .47, consistent, via the

relation (2 .7), with the needle model prediction y = 2, Roland and Guo [37, 421

report a coarsening exponent p ti 0 .56. These results suggest that the Tang/Liang

model might be appropriately described by the continuum equation (2 .47) with

a > 0 and A 0, while the Roland/Guo model corresponds, roughly, to the case

A = O. It is obvious, however, that we are still far from a coherent picture of the

various approaches to modeling the shadow instability, let alone an understanding

of universality classes of possible asymptotic behaviors.

random walker is absorbed at the sides of needles, while in model R it is reflected.

2e4 Laplacian needles

Diffusion-limited needle growth was considered independently by Meakin [43] and

Rossi [41, 44] as a simplification of the notoriously difficult DLA problem . In this

	 I	I	

I Figure 7: Illustration of the two versions of Laplacian needle growth . In model A, the
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model, needles grow perpendicular to a d-dimensional substrate plane by the ac-

cretion of individual random walkers . The walkers are released, one by one, from

randomly chosen lateral positions at the height of the highest needle (Figure 7).

Growth occurs only if the walker hits the tip of a needle . In the original version

[41, 43, 44] of the model, walkers that hit the side of a needle are reflected . Here we

shall also discuss a version [12] referred to as model A , in which walkers are absorbed

at the sides of needles, this boundary condition being, as will be argued below, some-

what more faithful to DLA ; the original version with reflecting boundary conditions

then constitutes model R . A typical configuration generated by model A is shown in

Figure 8 . Since the positional probability distribution of the random walker satisfies

the Laplace equation, with appropriate (absorbing or reflecting) boundary condi-

tions at the sides of the needles, this model is a simple example of Laplacian growth

[2, 3] .

- 64 particle diameters

	,LIIt .i . ,LLL, ,,	L,.~~ .

2048 particle diameters

Figure 8 : Needle forest generated in a two-dimensional off-lattice simulation of Laplacian

growth, with absorbing boundary conditions at the sides of the needles . The forest consists

of 20000 particles . The inset shows a magnification of the lower left corner . Courtesy of

Thomas Rage .
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Rossi [41] proposed to analyze the problem within a two-absorber approximation,

which is closely analogous to the approach applied to the shadow instability in

Section 2 .3 . He considered the initial stage of screening for a configuration of two

needles in the plane (i .e . growth occurs from a line, d=1) with lateral spacing

6 and heights hi and h2 = h i - A , with .A/6 < 1, and supplemented with periodic

boundary conditions (see Figure 5) . The quantity of interest is the probability

P(6, A) that the next walker to be launched onto this configuration is absorbed by

the tallest needle, h i . Rossi observes that, in the continuum limit where 6 and A

are large compared to the lattice spacing (or particle size), the scale invariance of

the Laplace equation implies that P should depend only on the ratio A/6 and, since

P(6,0) = 1/2, one expects an expansion of the form

v

P(iA ) H
k +C(-Ae ~
L

for A/6 « 1 . The rate at which the height difference A increases due to screening

is proportional to 2P-1, and hence A satisfies an equation of the form (2 .24),

or rather, since the process is manifestly noisy, its stochastic counterpart (2 .39).

The analysis of Section 2 .3 can then be taken over, and a prediction for the height

distribution exponent t' (equivalently, the coarsening exponent p) follows in terms of

the (unknown) exponent v in (2 .48) . For example, under the plausible assumption

that a walker launched at a random lateral position and height h l will invariably be

absorbed at the needle tip that is closer to its starting point one has

P= 1/2 +A2 /262 ,

	

(2 .49)

so v = 2 and (2 .46) would predict that p= 3/4, which is close to (but smaller than)

the early numerical estimate [41, 43] p 0 .83. It is interesting to note that the value

p= 0.78 + 0 .02 was obtained numerically in a model of `shortest-path' aggregation,

for which (2.49) is exact [45[.

Krug, Kassner, Meakin and Family [12] extended Rossi's analysis in two direc-

tions. First, they pointed out that, for model A in d=1, the probability P(6,A)

can be computed using the conformal mapping technique . The calculation, which

will be sketched shortly, shows that in fact v =1, and therefore the density profile

is found (from (2.2) and (2.33)) to decay as

( 2.48)

n(h)
In h

h (2 .50)

see Figure 9 ; while the conformal mapping calculation applies only to model A,

scaling arguments and numerical simulations [12] indicate that (2 .50) holds for model

R as well . Second, the breakdown of the two-absorber picture in high dimensions -
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Figure 9 : Density profiles obtained by averaging .50 independent off-lattice simulations

of model A, in d= 1 . The figure shows a series of curves obtained at different stages of

growth. At the latest stage, when 20000 particles (per run) have been deposited, the

plateau in the density indicates that only a single needle remains . The bold line is the

prediction (2 .50) . Courtesy of Thomas Rage.

more precisely, above an upper critical dimension dc. - was predicted . This breakdown

is expected to occur because, in high dimensionalities, the needle deposit becomes

increasingly transparent to the random walkers and the screening capacity of an

individual needle becomes small . For d > d, screening is a collective effect involving

many needles . This regime can be described by a . continuum theory of mean field

type [46, 47], which will be discussed' in Section 2 .4.3 . Presently we focus on d =1,

which. is below dc both for model R and A.

2 .4 .1 Caveats and preliminaries

Before taking a closer look at the conformal mapping approach, we should issue

one word of caution . Even in the regime d < dc, in which screening is dominated by

10° 10 1 102 103 10`

n(h)
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individual needles, it is far from clear that the two-absorber approximation captures

the essence of the full problem . The tacit assumption of the approximation is that

the screening interaction between the dominant, tallest needles can be isolated from

the influence of the background of shorter needles that have been screened previously.

In the shadowing model of Section 2 .3 this assumption was, to some extent, justified

by the observation that the needle population naturally decomposes into a group of

`shaded' and a group of `active' individuals, as evidenced by the two peaks in the

exposure angle distribution (Figure 4) . In the Laplacian case there is no evidence

that the distribution of growth probabilities has a similar, bimodal structure.

An impression of the dynamic significance of the background of `screened' needles

is gained by comparing the time evolution of the height distribution Nt (h), as shown

for model R e .g. in Figure 2 of Ref .[43], with the corresponding behavior in the

shadowing model, Figure 6a . While in the latter case a clear distinction between

the frozen bulk of the deposit, and a small subpopulation of active needles is seen to

evolve, in the Laplacian model growth appears to occur simultaneously at all levels

(all values of h), indicating that a considerable flux of random walkers penetrates

the deposit far below the height of the tallest, `active' needles . Model A seems to

be better behaved in this respect - the time evolution of the density profile shown

in Figure 9 indicates that the bulk of the deposit is essentially frozen once several

particles per site have been deposited.

For a preliminary assessment of screening effects in the two versions of the

Laplacian needle model, we consider the penetration of a random walker into a

periodic needle array in d = 1 lateral dimensions . Let the needle spacing be , and

denote by P(r) the probability that a walker released at the height of the needle

tips penetrates at least a distance r into the deposit before being absorbed . For

model A, we can invoke the well-known electrostatic analogy [48], which replaces

the needles with grounded conductors and relates the density of random walkers

to the electrostatic potential, to conclude that the penetration probability (and

therefore the growth rate of a screened needle) decays exponentially,

P (r)

	

(model A) .

	

(2 .51)

For model R absorption can occur only when the walker returns to the plane r = 0

(the height of the needle tips) . We can analyze the vertical motion using standard

results for (discrete) one-dimensional random walks in the presence of a single weak

absorber at the origin . The tail of Pc(r) is dominated by walkers that return to the

origin many times . Asymptotically for long walks the lateral positions of the walker

at subsequent returns are uncorrelated, hence the absorption probability per return

is pa 1g (pa ee l/ed in d lateral dimensions) . The probability for a walk of length t

to return exactly n times is [49] 2'ß-t (t - n)!/[(t/2)!(t/2 - n)!], and consequently the
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survival probability in the presence of an absorber of strength pa can be estimated

as

(1- Pa)n2n-t_	(t - n)'	.
(t/2)!(i/2 - n)l ,,-,

\/2/;7t-I/2f dn(1-pa n e-n2l2t

	

(2.52)

Since the maximal vertical displacement of a walk of length t is r , 1/2
, we can

rewrite this as

Pc(r) - 6/r (model R)

	

(2.53)

in d =1, and P'-(r) 6d /r in general.

We see that the screening capacity of a periodic array of needles is dramatically

different in the two models . In particular, only model A features exponentially small

growth probabilities in deep fjords, which presumably is an important property of

DLA. This is why we expect the needle model A to be more closely related to the

full DLA problem; we will return to this point in Section 2 .4 .4.

Using (2.51) together with the predicted density profile (2 .50), we can also give

a rough estimate of the growth probabilities in the screened bulk of the model

A needle forest . Let us assume, in the spirit of the two-absorber approach, that

we can identify a set of `active' needles of reasonably uniform height h a (t) and

spacing ct(h a )=1./n(ha) = ch a /lnha, with some constant c . Suppose now that we

want to probe the growth probability at some height h= aha , 0 < a < 1. Under

the (admittedly questionable) hypothesis that the screening is dominated by active

needles at any height h, we can estimate the growth probability PG(h) from (2.51),

with r = h a - h . The result is of the form

t/2

PG(h) ha T( I -a )l c
. (2 .54)

The growth probability decays as a power law with the `deposit thickness' ha , but

with a height-dependent exponent. In DLA, the dependence of the smallest growth

probability on the cluster size has been a hotly debated issue for some time, and

functional relations ranging from stretched exponentials to power laws have been

proposed [50, 51] . Here, we have a simple but nontrivial prediction, which should

be accessible to numerical verification.

For a comparison with the shadowing model we may identify .Q(r) with the

growth rate V (O), and 6/r (or, in d dimensions, 6 d /r) with the exposure angle

B. Our considerations then show that model A corresponds to a shadowing model

with V(0) ee e-'118 for B --} 0 (ri = co in the notation of Section 2 .3 .2), while model R

corresponds to the standard case V(0) B, 0 -es 0 (it = 1) . We have seen in Section

2.3.2 that the two-absorber approximation - equivalently, in the shadowing model,

29



the sharp distinction between active and shaded needles - becomes more accurate

for large values of T7 (see e .g. eq.(2.37)) . Thus, it is no surprise that the assumption

of a frozen background of shaded needles is more closely realized for model A, as

displayed in Figure 9, than for model R.

2 .4 .2 Conformal mappings

Figure 10 : Sketch of the complex z-plane . The bold lines indicate the image of the real

axis of the (-plane under the mapping (2 .55).

The analytic transformation [52]

2

z (() = -Tk
(C2 ± (1 - k)C- kLogC k+

	

(2 .55)

z,( E C, maps the real axis of the (-plane onto a pair of semiinfinite needles that lie

parallel to the real axis of the z-plane (Figure 10) . To see this, we evaluate (2 .55)

for real (, noting that Log( = InC for C > 0 and Log( -1n ~C( + ill- for C < O. With

z = x + iy it follows that y = IrnC = 0 for C > 0 and y = for c < O . Thus, the positive

real axis maps onto a needle that lies on the real axis of the z-plane, and the negative

real axis maps onto a needle that runs parallel to the real axis, at a distance y =

The real part x(() has two maxima, at C = -1 and C.= k, where x(-1) = 0 and

(+1nk_)A x(k) (2 .56)

respectively . The maxima correspond to the needle tips, and the parameter k de-

termines the height difference 0 or, rather, the ratio A/' . In the relevant limit

s 1, (2.56) can be inverted as

+ (z/2)4g•

	

(2 .57)
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To compute the electrostatic potential close to the tips, we expand (2 .55) to second

order around (= -1 and (= k, obtaining

z(()

	

-

	

k(1+k)(C+)2,

z(C) = A - 2 k2 (1 + k )(C - k)2, ß' -4 k .

	

(2 .58)

In the (-plane, the electrostatic potential is simply d = ImC . Setting C = (o +0 ö in

(2 .58), with Co = - 1 and k, respectively, and solving for ¢ we find

( 2~, k x
1 - .~-->0

/2._ßk2v x-G
0(x, y = 0) P \

~I+k) 6
	, x A .

	

(2.59)

The behavior of the potential near the tips gives rise to the familiar square root

divergence of the electric field . Here we are interested in the ratio of the fields at

the two tips, which equals the ratio of the fluxes of random walkers onto the two

needles . From (2.59) we have the simple result

~ l+k

P(A,e)

_ k

	

1 (1

Ez/E2 = (2.60)

with E l (E2) denoting the field at the taller (shorter) needle, and hence the funda-

mental quantity P(A,6) of the two-absorber approximation is given by

E1 _ 'VT _1I

	

,~`
P~( ,

)_ El+E2 1+~ti_
2 1+

	

(2.61
8~

	

t

	

)

which confirms the expansion (2 .48) and proves that v =1, at least for this particular

configuration of absorbers.

It is also of interest to consider variants of model A in which all walkers that

are absorbed on the sides of the needles contribute to the growth [18] . In that case

the electrostatic quantity that determines P(A,6) is the normal electric field - that

is, the flux of random walkers - integrated over the sides of the needles . For the

two-needle configuration considered here, it only makes sense to integrate over the

inner sides of the needles, since the outer sides are not subject to screening . It is

immediately clear from the definition of the mapping that the ratio of the integrated

fluxes is simply ;c, so

(2.62)
1+k2 46

and v =1 as before .
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While the mapping (2 .55) has the virtue of being simple to analyze, the col-

lective screening effects of the full needle forest are more faithfully represented by

a periodic needle array, with spacing e and alternating heights h 1 and h2 = h 1 -

(see Figure 5) . A conformal mapping that allows one to compute the electrostatic

potential around such an array was presented and analyzed in Ref .[12] . The results

are equivalent to those derived here : P(A,e) behaves as in (2 .48), with v =1, and

C -- it/4 when only the flux onto the needle tips is considered, and C = 1 in the case

of the integrated flux.

2 .4.3 High dimensionality behavior and mean field theory

Figure 11 : A `ghost' walker released into a periodic needle array.

We now generalize the discussion of a single random walker penetrating into a pe-

riodic needle array to d-dimensional substrates . Our objective is to estimate the

distance, Ra, that the walker is able to venture into the forest before being ab-

sorbed, in terms of the needle spacing e . We have already seen that Ra for

both models in d = 1 (eqs .(2.51) and (2 .53)) . Moreover, the estimate of the penetra-

tion probability Pc(r) e d/r for the d-dimensional model R, derived after eq .(2 .53),

allows us to determine R a from (say) 1'(Ra) = 1/2, hence

Ra -,e (model R) . (2 .63 )

For model A we employ an opacity argument [12] . In the d +1-dimensional space,

the sites visited by a random walk of length t form a cloud of radius R t 1 /2 and

density pw ti t/RdN1 ti R1-d (Figure 11) . When this cloud is placed inside the needle

forest, the number of absorbing sites Na within the cloud is Na R(R/e)d . In order

to have at least one absorption event we require pw Na 1, or R Ra with

Ra ti ßd/2 (model A, d > 1) .

	

(2.64)
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These estimates immediately provide us with bounds on the height distribution

exponent ry . Note first that a density profile n(h) h-0-1} implies that the spacing

between needles increases with h as 5 -- hp with

P-(-Y- 1 )/d (2.65)

(this is the d-dimensional version of (2 .32)) . The absorption length for a needle

forest of height h therefore scales as Ra ti h~-1 for model R, and as Ra h ( "'-1)12 for

model A . Consistency clearly requires that Ra < h : Otherwise, the walkers would be

able to reach the substrate and fill up the deposit until the inequality is restored.

We conclude

y < 2 (model R)

-y< 3 (model A) .

	

(2.66)

Next, we observe that the estimates (2 .63) and (2 .64) imply a qualitative change

in the screening behavior at an upper critical dimensionality dG = 2 for model R, and

dc = 3 for model A, in the sense that Ra >4- for d > dc. In this high dimensionality

regime the random walker effectively averages over many needles before being ab-

sorbed, and the two-absorber approximation is clearly inappropriate . Instead, one

may attempt a continuum description, in which the lateral structure is ignored and

the needle forest is represented by a continuous density function n(h,t) . Likewise,

the density of walkers is given by a function u(h,t), and the two are coupled through

the equations of motion

au _ a2u r

	

anl

at ah2 -
0- A n -

~Rah
U.

Equation (2.67) describes the growth by accretion of walkers at the needle tips, and

we have used the fact that the tip density is p t ,p = -On/Oh [44] ; 6R is an absorption

coefficient . Equation (2 .68) is a balance equation for the walker density . The ab-

sorption term has two parts, one describing the absorption at the sides of needles,

which occurs only in model A (model R has rrA = 0), and the other accounting for

the loss of walkers due to needle growth (this part is the negative of the right hand

side of (2 .67)) . These `mean field' equations, with 6A = 0, were first written down

by Cates [46], and further analyzed by Kassner [47].

To extract the essence of these equations, we make a scaling ansatz for the needle

density as

n(h,t) = h-e7-1) f(h/t') .

	

(2.69)

an

	

an

at
-o'Rpt2pu -ffR

ah u ( 2.67)

(2.68)
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Inserting this into (2.67) we find that the walker density must be of the form

u(h,t) =t-(1-") g(h/t')•

	

(2 .70)

The exponent -y- can now be determined by inserting (2 .69) and (2 .70) into (2 .68)

and balancing the diffusion and the absorption terms on the right hand side . With

o-A = 0, this results in [46, 47]

7tIF = 2 (model R) .

	

(2 .71)

Clearly if 0 A > 0, the absorption on the sides of the needles dominates that at the

tips, and the 0n/8h-term on the right hand side of (2 .68) can be neglected . Therefore

'7mF = 3 (nnodel A) .

	

(2 .72)

me mean field exponents saturate the bounds (2 .66), as was already noted by Cates

[46] for model R.

To fix the dynamic exponent ~c we need to invoke the left hand side of (2.68).

Not surprisingly, one obtains n = 1/2, corresponding to the diffusive advancement of

the deposit thickness, h a (t) ti t ~ 2 . Of course, these values for '7 and only provide

necessary conditions for scaling solutions of the form (2 .69) and (2 .70) ; to actually

establish their existence, it must be shown that the resulting equations for the scaling

functions f and g admit solutions with physically reasonable behavior . Kassner ' s

detailed analysis [47] shows that all scaling solutions have the property that the

walker density a vanishes for h co . Indeed, Cates [46] had noted that the scaling

forms (2 .69,2 .70) do not admit constant flux boundary conditions, au/äh = const.

for h - co; such a boundary condition requires that the sealing variable h/t be

replaced by h/eat , i .e . the deposit thickness grows exponentially with time . as is

obvious from mass balance considerations.

In summary, we have arrived at the following picture for Laplacian needle growth

from d-dimensional substrates. In low dimensionalities, d <da , screening is domi-

nated by individual needles and a two-absorber approximation in the spirit of Rossi

[41, 44] should be applicable . For model A in d = 1, the two-absorber approach was

put on a firm basis using the conformal mapping technique ; thus we showed that

v =1 in (2.48), and hence the density profile behaves as (2 .50) . There is consider-

able numerical, and some analytic evidence [12] that these results extend to model

R in d = 1 . In high dimensionalities, e l> dc , we expect the mean field equations

(2 .67,2.68) to provide a reasonable description . This is confirmed by simulations of

Rossi [41], who found that % _ ";'MF = 2 for model R, both in d = 2 and d = 3. For

model A, d = 3, so the case d = 2 (growth from a plane) should still be in the low di-

mensionality regime covered by the two-absorber approach . It has been conjectured
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[12] that v = 2 in this case, which would imply, according to (2 .46), a coarsening

exponent p = 3/4 and hence, from (2 .65), f = 5/2 . This prediction, as well as the

prediction 7 = -(mF = 3 for model A in d > 3, still has to be verified by numerical

simulations . Here, we merely remark an interesting consequence if indeed ; > 2 in

d> 1 : The fact that the average needle height remains bounded (the density profile

(2.2) being integrable) even if an infinite amount of mass is added to the deposit ; al-

most all the mass is absorbed on the sides of the needles where it does not contribute

to the growth. This scenario is not possible for model R, where all absorbed walkers

eventually contribute to the mass of the deposit, as is reflected in the bound (2 .66)

as well as in the mean field exponent (2 .71) which corresponds to a (marginally)

nonintegrable density profile.

2 .4.4 The relation to DLA

Graff and Sander [18] recently put forward an interesting suggestion on how to

relate the behavior of needle models to the full DLA problem, more precisely, to

the problem of diffusion-limited deposition onto a d-dimensional substrate . They

consider the following modification of the Laplacian model A : In addition to its

height h,, a mass rn is associated with each needle . While the mass increases in

proportion to the total flux of random walkers absorbed on the sides as well as on

the tip of the needle, the height grows as

dh i h_(ß6-I) dm,

	

(2.73)
dt

	

z

	

dt

This relation is motivated by viewing each needle as a DLA-branch of fractal di-

mension D b > 1, such that its mass scales with its height as m, hDb

From simulations of this model Graff and Sander estimate that the height distri-

bution exponent 1 .7 in d= 1 (choosing the DLA-value Db = 1 .7 [3]), however they

remark that, if the needle model were to correctly represent the branch distribution

of diffusion limited deposition, one should have

-y = 1 + d

	

(2.74)

asymptotically for d-dimensional substrates . Indeed, under the assumption of the

diffusion-limited deposit being an isotropic fractal, it follows that the typical distance

(h) of branches increases proportional to h, hence their number density. decays as

n(h) -h'.

A bound on -y can be obtained from mass balance considerations . Assuming a

power law needle density profile (2 .2) which is cut off at some maximal needle height

h o, , we. can estimate the average mass of a needle as
h a

(m) =1 dhhßbN(h) , hß6-ry/l .

	

(2.75)
c
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Since (m) grows in proportion to the number of walkers added to the structure, h a

has to be an increasing function of (m) . This gives the bound

-y<D b -,1 .

	

(2 .76)

When combined with the relation (2 .74) appropriate for an isotropic fractal, (2 .76)

reduces to the celebrated `causality bound' D b > d for the fractal dimension of DLA

[53] (recall that d is the substrate dimension, so the space dimension is d+1).

We will now argue that the conjectured relation (2 .74) cannot hold beyond the

upper critical dimensionality d, = 3 of model A . Indeed, in our estimates of da we

used only the capability of a periodic needle array to absorb random walkers ; the

growth mechanism did not enter . Since the absorption properties of the Graff-Sander

model are indistinguishable from those of model A, we conclude that d~ = 3 also for

the former . Similarly, the bound (2 .66) for model A must hold for the Graff-Sander

model as well, which rules out (2 .74) for d> 3. This is not hard to understand:

In high dimensions, the opacity of the needle forest is insufficient to mimick the

properties of a full DLA deposit.

The close similarity between the Graff-Sander model and model A is highlighted

by considering the case d = 1, where we can invoke the two-absorber approach . Let

F1 , 2 = dm 1,2/dt denote the total fluxes onto the two needles, which have heights

h12 , h2 = h l - A, and lateral spacing 4' (Figure 5) . From the conformal mapping

calculations we know that (F1 F2)/(F1 + F2 ) ^ A/ for A/ «1 . Keeping the total

flux Fl + F2 fixed, we have

dA/dt Fi hi (Db-1)
- F2h(Db-1)

	

(2.77)

which becomes, in the relevant limit A K < hl ,

dA/dt hl (Da-I)
(A /C) .

	

(2 .78)

At constant flux (2 .73) implies that clh/dt ti h -(Db -1) , so that (2 .78) can be rewritten

as

dA/dh ti 0/

	

(2.79)

which is the precise equivalent of (2 .24), with v = 1 . Adding noise, as in (2 .39), then

leads to the same density profile (2 .50) as before.

To discuss the high dimensionality regime we adapt the mean field equations

for model A to the Graff-Sander growth rule through a simple modification of the

growth term in (2 .67) . The increase in density at height h is due to the growth of

needles of height h, whose number is proportional to the tip density -än/öh ; the

flux onto these needles is proportional to the random walker density u, integrated
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up to height h . Thus

an
=- ~

GSh-~~s )
c3h 0 dy u ( y , t )ät

replaces (2 .67) . Assuming a scaling form (2 .69) for n(h,t), it follows that the walker

density satisfies

(2.80)

n(h, t) = t"(Db-i)-1g(h/t) (2 .81)

instead of (2 .70) . However since the height distribution exponent 1 is determined

only by the balance between the absorption and diffusion terms on the right hand

side of (2 .68), which are the same as in model A, the mean field value of 1 is still

given by (2.72), = 3. This violates, for D b < 2, the mass balance bound (2 .76),

indicating that the present formulation of the mean field theory is, in some way,

deficient .

order to at least includeand under [18] have argued that, in cru ..~ de density

correlations along an individual needle, the 6A -absorption term in (2.68) should be

replaced by a term of the form

00

- 2Ln efi =uf dy (anlay )a ( h; y )

where a represents the absorption strength that a needle of height y > h contributes

at height h . Due to self-screening along a needle, tall needles contribute less to

the total absorption . More precisely, a simple conformal mapping calculation shows

that the flux of random walkers that hits a needle of height y at the vertical position

h < y is

F„ h/y - h2 .

	

(2 .83)

For h< y this behaves as F h/y . Since obviously o-= aGS = const . at y = h, it is

plausible to set a = aGS (h/y) . Inserting the scaling from (2.69) for the density, we

find that n eff -n h -("-1) , and hence the effective absorption strength is of the same

order as in the conventional mean field ansatz (2 .68) for model A, indicating that the

modification (2.82) does not alter the result IMF = 3 . Here we differ from Graff and

Sander, who claim that 'YMF = 2 for their model ; at any rate, these considerations

are somewhat academic, since they only apply in d = 1 (remember that (2 .83) is

the result of a conformal mapping calculation':) where the mean field approach is

inappropriate anyway.

While several aspects of the Graff-Sander model require further clarification, it

appears safe to conclude that a straightforward, quantitative relationship between

the Laplacian needle models and DLA, as envisioned by Graff and Sander [18], is

unlikely to exist . The two problems are fundamentally different in that the needle

models possess, due to the effective transparency of needle forests in high dimen-

sionalities, an upper critical dimension, while DLA . does not [48] . On the other

(2.82)
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hand, the two-absorber approach with its emphasis on the binary competition be-

tween branches of comparable height (or mass) provides an appealing picture of

the elementary screening process, which should be applicable to DLA as well . We

may note in this context that Halsey and Leibig [54] and Halsey [55] have recently

presented a quantitative, predictive theory of DLA built precisely on an analysis of

the elementary process of binary branch competition.
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~ . Fundamentals of kinetic roughening

Kinetic roughening phenomena are encountered whenever an interface is set into

motion in the presence of fluctuations, be it of thermal, kinetic, or chaotic origin, or

due to quenched disorder . The earliest theoretical investigations of surface roughness

in growth processes [56, 57, .58] were concerned with the Eden model [59], originally

proposed to describe the shape of cell colonies, and [60] with the ballistic deposition

model introduced in the previous chapter . Following the progress in understanding

the universal aspects of these processes which was achieved through the seminal work

of Kardar, Parisi and Zhang [14] (KPZ) in 1986, a wide variety of more or less exotic

instances of kinetic roughening have been suggested and experimentally investigated.

Vicsek, Cserzö and Horvath [61], realizing the original intent of Eden's work, studied

the roughening edge of a growing bacterial colony; several groups investigated the

roughening of a stable two-fluid interface in a porous medium [62, 63] ; and Zhang,

Zhang, Alstrom and Levinsen [64] considered the roughening edge of a sheet of paper

as it is consumed by fire . Curiously, while all of these experiments were motivated

by the KPZ theory, none of them was able to quantitatively confirm its predictions.

The discrepancy between theory and experiment has spurred considerable theoretical

activity involving modifications of the KPZ theory through the introduction of e .g.

correlated [65], non-Gaussian [66, 67] and quenched noise [68, 69] ; a review of these

developments has been given by Halpin-Healy and Zhang [10].

Here, we shall adopt a somewhat conservative point of view, and introduce the

basic concepts of kinetic roughening within the `classic' context of a moving interface

separating two isotropic thermodynamic phases . The reader with some background

in statistical mechanics may visualize, for concreteness, an Ising model below its

critical temperature, with an interface separating domains of positive and negative

magnetization, and subject to an external magnetic field that favors one of the

phases, thereby setting the interface into motion (strictly speaking, the permanence

of a well-defined interface in such a situation requires a careful tuning of temper-

ature . and magnetic field to avoid bulk nucleation of the favored phase [70]) . We

are going to derive effective, nonlinear equations of motion for the interface, appro-

priate for different types of interfacial relaxation mechanisms . and then proceed to

analyze the roughening process within the linear approximation. While not always

quantitatively correct, the linear theory already contains the essential ingredients

of kinetic roughening phenomena, and provides us with a firm foundation for ex-

plorations into the realm of nonlinear theories . As a first step towards a nonlinear

theory, the effect of nonlinearities on large scales is estimated using power counting

arguments . Retaining only nonlinear terms which are relevant in this sense, one

arrives, for a particular but broad class of conditions to be specified below, at the
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KPZ equation, some aspects of which will be treated Chapter 4.

301 Interface equations of motion

Consider an interface oriented on average parallel to a d-dimensional `substrate' hy-

perplane in el+ 1-dimensional space . On a somewhat coarse-grained level we may de-

scribe the interface position by a height function x d+1 = h(x, t), where x = (x i , . . ., x d )

is the substrate coordinate . In the presence of an external field jto > 0 which favors

the phase occupying the half space x d+1 < h over the phase in xd+1 > h (Figure 12),

the free energy of the system can be written as

.F [h (x , t )] = o- f ddx V 1 + (Vh)2 - yo Jd dx h

	

(3 .1)

where the interfacial tension a is assumed, for simplicity, to be independent of

orientation . The interfacial free energy in (3 .1) corresponds to the `drumhead ' model

[71] which neglects the intrinsic interface width (expected to be of the order of the

bulk correlation length) .

=0
A

h

<

A.

Figure 12 : Interface between a favored ( . = -j < 0) and an unstable (g =0) phase . The

chemical potential is increased (reduced) at local maxima (minima) . The arrow. indicates

the. direction of interface motion.

The driving force for morphological changes is the interface chemical potential

(3 .2)

A conventional relaxation ansatz for the dynamics then yields the normal interface

velocity as

ah/at = v n ~1 + (V h) 2 .

	

(3 .4)

v„
-=

-T

	

-FP'
(3 .3)

where F > 0 is the interface mobility [72] ; to arrive at an equation of motion for

h(x,t) we merely note that, from an obvious geometric construction,
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In the interest of keeping the notation transparent, we give explicit expressions only

for the case d= 1, where h(x,t) is a curve . Performing the functional derivative of

(3.1) we arrive at
aV 2h

[1 +
(vh)2]3I2

	

(3 .5)

the term multiplying the interfacial tension a is the local curvature (see Figure 12).

Thus the full equation of motion reads

kt_

+ (Vh) 2
aV 2 h

f2 o

	

[1 + (4h)2]312

	

(3.6)
ah

at

It is interesting to note that, besides the trivial flat solution h = Ppot, (3 .6)

admits (semi-) circular `droplet' solutions of the form

h(x, t) = tiJR2 (t) - x2} x2 < R2,

	

(3.7)

where the radius R(t) satisfies

dR/dt = I'({zo - a/R) .

	

(3.8)

From this we infer the existence of a critical droplet radius R~ _ a/ito such that

droplets with R > R, grow while those with R < R, shrink under surface tension;

R=R C is an unstable equilibrium . Eq.(3 .8) (as, indeed, eq .(3 .6)) is an expression

of the familiar Gibbs-Thomson relation which states that a larger thermodynamic

driving force is required to move a curved interface.

Let us now specifically apply these considerations to a solid growing from a

vapor phase . The Gibbs-Thomson effect is then microscopically realized through

an increased (decreased) evaporation rate at negatively (positively) curved portions

of the surface. It turns out, however, that many technologically relevant vapor

deposition processes are operated under conditions of negligible evaporation [15, 73].

In such cases the 'evaporation-condensation'-dynamical ansatz (3 .3) is inappropriate

and has to be replaced by an equation describing relaxation through mass transport

along the surface [13] . To arrive at such a description, first note that the quantity

defined in (3.2) may be interpreted, in the present situation, as the chemical potential

of adatoms; indeed, S .F/bh is precisely the change in surface free energy associated

with removing or adding a small amount of mass to the surface . When desorption is

kinetically suppressed, chemical potential differences that arise due to modulations

of the surface profile (as in Figure 12) relax through surface diffusion currents, viz .,

the migration of adatoms in the direction of chemical potential gradients . Thus, the

normal. velocity of the surface is given by

	

.

v n, = -aJ/as

	

(3 .9)
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where J is (in the one-dimensional situation considered here) the mass current along

the arc length

s=j dxO + (Vh) 2 .

	

(3 .10)

The current being driven by chemical potential gradients, we have

Ta

	

a~
= -F,.-,s - -

	

(3 .11)
ax\/1+(Vh)2

with an adatom mobility F a > O. Putting everything together, we arrive at the

equation
ah

	

a

	

Fa	ä

	

crV 2h

at

	

ax .\/1+ (Vh)2 8x [1± (Vh)21312

	

(3 .2)

The explicit form of the two-dimensional generalization of this equation has been

derived in several recent papers [74, 75, 76].

The reader will have noticed at this point that the external field uo, introduced in

(3.1) to set the surface into motion, has effectively disappeared from the description;

in fact the surface governed by (3 .12) does not move . We can of course cure this

deficiency by adding a constant deposition flux F to the right hand side of (3 .12),

however this implies only a trivial change that can be undone by going to a frame

moving at speed F. The physical reason behind this surprising result is clear : Within

the framework of the classical theory, as expressed in eqs .(3 .9) and (3 .11), the surface

diffusion processes, being sensitive only to spatial gradients in the chemical potential

y, are not affected by an overall constant shift /.to . It is also clear that this is unlikely

to be the whole truth . A more careful consideration of the microscopic kinetics

reveals that the mass transport on the surface can be rather drastically altered by

the presence of a deposition flux F . On the level of effective interface equations of

motion this implies the appearance of additional dynamic nonequilibrium terms in

(3.12), the coefficients of which are proportional to F . We postpone to Chapter 5

the detailed discussion of the microscopic origins of these terms, and present here

only the main results.

As was first suggested by Villain [15], two types of terms are expected to be

present generically. The first set of terms arises because under nonequilibrium con-

ditions the local chemical potential (or, rather, its appropriate nonequilibrium gen-

eralization, see Section 5 .3) acquires a dependence on the local surface orientation;

in equilibrium it is clear from the definition (3 .2) of tC as a functional derivative, and

from the fact that the free energy T should be invariant under vertical translations

h h+const ., that the leading dependence of i is on the local curvature . From

symmetry considerations one expects the nonequilibrium contribution to be an even

function of Vh, and thus to admit an expansion

	

1t ,E=Az(Vh)2+a4(Vh)4-1- . . .

	

(3.13)
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The second type of nonequilibrium effects leads to a contribution to the current J

in (3 .9) which, rather than being proportional to the gradient of some (equilibrium or

nonequilibrium) chemical potential, is itself a function of the local surface orientation

[77] . General symmetry arguments and detailed calculations, to be presented in

Section 5.2, show that the nonequilibrium current is an odd function of Vh, such

that, in a gradient expansion,

J1vE =-( v i + v3 (Vh) 2 + . . . .) 9h .

	

(3 .14)

Here the leading term vl Vh is of special importance in that it changes the character

of the equation of motion already on the level of the linearization around the flat

state, which will be the focus of the next section . In particular, if vi C 9 (`uphill'

current) the surface can be destabilized by (nonequilibrium) surface diffusion (see

Section 5 .2 .4).

Including the nonequilibrium contributions (3 .13) and (3 .14), through (3 .9) and

(3 .11), in the interface equation of motion leads to a problem of rather formidable

complexity . Schematically, the final result reads

ah a

	

Fa

	

a

	

a_

	

+

	

(3.15)
at axl11+(oh)2axI~NE) -

ax JrrE + ',

and it should be remembered that ILNE, J,v E = 0(F) . Equation (3 .15) provides

the most general macroscopic description of growth under conditions of volume-

conserving surface relaxation . Correspondingly, (3 .6) is the general equation of

motion for nonconserved interface dynamics.

3 .2 Linearized fluctuation theory

The theory of kinetic roughening is concerned with the question of how microscopic

fluctuations, which are present in virtually any interface displacement process, are

transformed, through effective interface equations of the kind derived in the previous

section, into large-scale behavior with universal properties . This transformation be-

comes transparent and easily tractable when the equations of motion are linearized

about the flat solution h(x,t) = vot . One may hope that the linearization is appro-

priate when the interface is flat on average, or when one considers length scales on

which macroscopic modulations of the interface orientation are negligible . We shall

see later that this hope is not quite warranted, due to the possibility of relevant

nonlinearities which dominate the large scale . properties of an interface even in the

absence of macroscopic modulations ; however in order to appreciate the role of non-

linearities we first need to acquire a thorough understanding of the linear fluctuation

theory.
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3.2 .1 Langevin equations

Fluctuations are commonly modeled by adding a stochastic noise term 77(x,t) to

the right hand side of the interface equation of motion . The noise is assumed to be

Gaussian and uncorrelated, with zero mean and covariance

(n(x, t)rl(x ' , t ')) = Db d (x - x ')b(t - t ' ) ;

	

(3 .16)

here and in the following the angular brackets imply an average over noise histories.

Since we aim at a theory that is as general as possible, we will not, at this point,

specify the physical origin of the noise . In processes that operate at or close to

equilibrium, the fluctuations are mainly of thermal nature ; far from equilibrium

additional sources of noise appear, such as shot noise in deposition processes or

the frozen disorder in interface displacements in porous media (in the latter case the

fluctuations can be modeled by a time-dependent noise

	

iy is

	

tterm ~m only if the displacementmlen~

is sufficiently rapid [781).

However, one remark is in order, regarding the different roles of the noise in the

two classes of processes described by eqs .(3.6) and (3.15), respectively. In the case

of nonconserved dynamics, eq .(3 .6), as exemplified by a moving Ising interface, the

noise term rj(x,t) is present even in equilibrium, when it0 = 0; the coefficient D in

(3.16) is then proportional to temperature T . In contrast, with mass conserving sur-

face diffusion dynamics as in eq .(3 .15), the deposition flux is the sole source of noise

that can change the total amount of mass on the surface ; the thermal fluctuations

which arise due to the particulate nature of the surface transport, and which survive

in equilibrium, when F = 0, conserve the volume of the solid . Mathematically, this

is expressed through a conserved noise term n, which can be written as the diver-

gence of a stochastic current, n,(x, t) = -V • js(x, t), and hence has a covariance of

the form

(7Ic(x,t)iic(x',t')) = -DV 2bd(xx ')b(t -t ' )

	

(3 .17)

with D, N T, whereas the coefficient of the nonconserved noise term, D, is propor-

tional to the flux F . In growth processes where surface relaxation occurs mainly

through surface diffusion, the noise itself is a nonequilibrium effect ; we shall see

that this implies very pronounced fluctuations in these systems . The `mismatch'

between nonconserved noise and conserved relaxation dynamics provides a general

mechanism for power laws and generic scale invariance also in systems that do not

possess the translational symmetry of interfaces [79, 80] . It is intuitively plausible

that a nonconserved noise term, when present, dominates the conserved noise Ti c on

large length and time scales, and that the latter can therefore be neglected ; a more

precise argument will be given below .
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We now linearize the equations of motion (3 .6) and (3.15) around a flat, uni-

formly moving front ho(t) = vot, with vo = f 'ko for (3 .6) and vo = F for (3 .15) . Adding

the noise term one has, in the moving frame,

ah
= -(-vV2)'nh+%].

at

The case m = 1 includes the linearization of eq .(3.6), where v = Fa, as well as that

of (3.15) in the presence of a stabilizing nonequilibrium current (3 .14), such that

v = v1 > 0 (the linearization is clearly useless in the unstable ease vx < 0, which will

be treated in Section 5 .2 .4) ; the fourth order derivative V4h that arises from the

linearization of the equilibrium equation (3 .12) can then be neglected . This leads to

an important general conclusion : A nonequilibrium current, provided it is directed

downhill so that vx > 0, may effectively mimic evaporation-condensation dynamics

(in the sense that m= 1 in (3 .18)) even if evaporation is kinetically suppressed . If,

on the other hand, JNE is absent or negligible, the linearization of (3 .15) results

in (3.18) with m=2 and v = fah . Note that while the explicit forms of the full

nonlinear equations were given in (3 .6) and (3.15) only for d= 1, the linearization

(3 .18) holds in arbitrary dimensionality.

Equation (3.18) with m = 1 has been employed to describe the equilibrium dy-

namics of interfaces e .g. in the contexts of thermal roughening and wetting [81, 82].

In the kinetic roughening literature it is commonly referred to as the Edwards-

Wilkinson equation . Edwards and Wilkinson [83] were the first to derive this equa-

tion for a nonequilibrium situation, specifically, as a description of the sedimentation

of granular particles . In that case the relaxation term vV 2 h arises from the expan-

sion (3.14) of a nonequilibrium mass current driven downhill by gravity, and the

coefficient vl is proportional to the par ticle flux . While gravity obviously plays no

role on the atomic level, microscopic mechanisms associated e .g . with the transient

kinetic energy of the deposited atoms exist [84] which can give rise to downhill

currents in vapor deposition processes.

Equation (3.18) with m = 2 was first written down and discussed by Golubovic

and Bruinsma [85] and by Wolf and Villain [86] ; since its deterministic form (n = 0)

originates in the work of Muffins [13], we refer to it as . the (noisy) Mullins equation.

3 .2 .2 General solution

To solve (3.18) we introduce the Fourier decomposition

h(x,t)

	

/t~ eaq•x
'

	

1 ~qt~
q

n(~, t ) -Enq(t)
e2qX

q

(3 .18)

(3.19)

45



where the sums run over the allowed reciprocal vectors of a lattice of linear size

L, periodic boundary conditions and a lattice constant a . From (3 .16) we find the

covariance of the Gaussian noise components

(NI(*Ic'(t')) = L -dDbq+q,8(t- t'),

	

(3.20)

while for the conserved noise defined by (3 .17) one has

( 77q( t )iIcce ( t' )) = L -dDeg2sq+q,S( t - t') .

	

(3.21)

This shows why 27, can be neglected on large scales (small q), if a nonconserved noise

source is present . The Fourier components of h evolve independently according to

~t hq
= -v 1 g j zhq + qq

	

(3 .22)

where we have set z = 2m. Odd values of z canr appear when,.:hen the relaxation dynamics

is nonloeal, e .g. z = 1 applies to diffusion-limited erosion [87] and z = 3 describes a

surface relaxing to equilibrium through volume diffusion [13] . Since there is no

difficulty in solving (3 .22) for general z, we can treat all these cases on the same

footing.

According to (3 .22), each mode behaves as a randomly perturbed harmonic

oscillator with restoring force vlgl z . The general solution is

hq ( t ) = e-vlglzthq(0)+ jdr e""vlglz(t-r) nq(r) .

	

(3 .23)

Here we will mostly be concerned with the transient roughening of an initially flat

interface, so we set hq(0) = 0 for all q . Multiplying (3 .23) with hq,(t) and averaging

over the noise according to (3 .20) we obtain

(hq(t)hq'(t)) =s(q,t)Sgtg'

	

(3.24)

with q = 1q and

	

S(q,t)=L-d2Dz(1 e-2vgzt)

	

(3.25)

Since hq(t) derives from the Gaussian random variable qq(t) through a linear trans-

formation, the height modes themselved are Gaussian and higher order correlation

functions are simply related to the covariance (3 .24) ; thus (3.25) completely speci-

fies the statistics of interfacial fluctuations . Two features of (3 .25) are noteworthy.

First, the relaxation time of a mode with wavenumber q is proportional to q 2 , i .e.

long wavelength modes relax slowly. Second, the prefactor in (3 .25) diverges for

q - 0, thus giving large statistical weight to long wavelength modes . Together these

two observations bring out the central mechanism of kinetic roughening ; note also

that both effects are more pronounced the larger the value of z.
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To proceed, we translate (3.25) into more conventional measures of interface

roughness. Of particular interest are the interface width W, defined through

W 2 = ((h - h(t)) 2 ) = E S(q,t)

	

(3 .26)
q~Q

and the (second order) height difference correlation function

G2 = ((h(x ` r, t) - h(x , t )) 2 ) =E S(q , t)(1- cosq • r) .

	

(3 .27)
q

In (3 .26) the instantaneous spatial average h(t) = hq_o(t) has been subtracted ; since

the noise operates also at q = 0, h(t) performs a random walk with diffusion constant

D/L d .

For a first estimate of the width we approximate the sum in (3 .26) by an integral

and obtain, up to factors of order unity,

2 D jia gdl_z(I -

v 7/L

	

(3 .28)

The integral is governed by the interplay of three length scales: The lattice constant

a, the substrate size L, and the dynamical correlation length

~(t) = (2vt) llz (3 .29)

The lattice constant is irrelevant, in the sense that the integral converges for a 0,

below the upper characteristic dimensionality

4' ) = z .

	

(3.30)

For d > 4' ) we may let L, t - ac to obtain a finite limiting interface width W 2

(D/v)a'd . This implies that the noise is able to roughen the interface, in the sense

of a proliferation of long wavelength fluctuations leading to a divergent width for

L, t ---3 cc, only in sufficiently low dimensionalities.

In the rough regime d < 41) the power law prefactor of the integrand in (3 .28)

implies a divergence at small q which is limited by the smaller of the lengths L and

. We may let a -* 0 and summarize the dependence on the remaining two length

scales in the scaling form [58, 60]

W 2(L,t) L2<.f(O)lL)

	

(3 .31)

with the roughness exponent

-d)/2>0

	

(3.32)

and the scaling function

.f ( x ) =

	

2n-
dy

yd-r-z(1 c (") ') .

	

(3.33)
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The scaling form (3 .31) brings out the significance of the correlation length c : The

width saturates, that is, it becomes time-independent, when L, at a time of the

order

t, s L z /v .

	

(3 .34)

This time scale marks the transition from the transient to the stationary regime

where the memory of the flat initial condition is lost . At early times when < L,

expanding (3 .33) shows that the width increases as

W2 (Dlvg2C r t 2C/z . (3.35)

In the borderline dimensionality d= d (,' ) all three length scales have to be taken into

account, and one finds

w , _ (D/v)ln(vt/a)

	

eL

(D/v)ln(L/a) :

	

L.

For future reference we record some exact expressions for one-dimensional inter-

faces, d = 1, in the rough regime, i .e . for z > 1 . Consider first the stationary limit,

t - co. With a - 0 the sum (3.26) can be written as

tim W 2 (L,t) = (21r)-z("R(z)(D/v)L2

	

(3 .37)

where

(R(z) E z

	

(3 .38)
k=1 ~

denotes the Riemann zeta function ; for even integer values of z, (R(z) = 2x-1 T z Bz/2 /z!

with the Bernoulli numbers Bm , and (3.37) simplifies to

Bz/2 D 2tim W2(L,t)- z2vL ('

	

(3 .39)

of primary interest are the cases z = 2, where B1 /2! = 1/12, and z = 4 with B 2 /4! =

1/720.

To evaluate the width in the transient case, «L, we let L--> cc as well as

a -+ 0 at fixed t . The sum (3 .26) then converges to an integral, which yields, after

some simple manipulations,

1 D F(1 Ix
Jim W 2 (L, t) - -- - `(2vi)2S(z ,

	

(3 .40)
L- .

	

27r v z -1

with r denoting the gamma function . From (3.37) and (3.40) we can derive a

more precise estimate of the crossover time t c introduced in eq.(3 .34) . Matching the

(3.36)
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two expressions we conclude that the crossover from the transient to the stationary

regime occurs when the ratio of the correlation length (3 .29) to the system size is

(3 .41)

The numerical value of the right hand side is , /12 0 .148 for z = 2, and ti 0.153

for z = 4.

3 .2 .3 Anomalous scaling

In the height difference correlation function (3 .27) the distance r between the two

substrate points introduces a further length scale . In approximation,

['dG2 -•,
D

	

q q
d-1-z (1 - e"2vq .t )(1- cosqr) .

	

(3.42)
v J2,r/L

Again, the limit a -~ 0 exists for d < 41) . However we see that the r-dependent factor

in the integrand leads to the appearance of a second characteristic dimensionality

[85]

d~2) = z - 2L (3.43)

such that for d> d{2) the limit L, t -r co of G2 at fixed r exists, while for d < di2)

the divergence of the integrand at q = 0 is too strong to be cured by the factor

1- cosqr g 2r2/2 . This implies, for a --~ 0, two different types of scaling forms for

G2 : Above d? ) one has `conventional' scaling,

I r2Sg(T)(rlO

	

:

	

~ <G L
(3.44)

while for d < d? ) the scaling is

rg9(S)
(rlL )

`anomalous' [88, 89,

L ,

90],

e2ar2g(T) (rl )

	

: S GG L
(3 .45)

L2ar2S ( s) (r /L)

	

: >L .

The superscripts on the scaling functions refer to the transient (T) and stationary

(S) regimes, respectively. All scaling functions tend to constants of order. D/v for

small arguments (small r), and the transient scaling functions behave as g (T) (x)

x-2S , g (T) (x) x- 2 for large arguments, consistent with the fact that G 2 becomes

independent of r for r > : At any finite. time t, the roughness has only developed

up to scale (t) . .. In the stationary case the fact that G2(r) =. G2 (L - r) implies the

relation

g(s)(x)lg(S)(1-- x) = (1/x -1)2c	(3 .46)
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and analogously for g (s) . The anomalous scaling exponents in (3 .45) take the values

a=(-1, (=1.

In general, we observe that since

lim lim G2 = 2W 2 ,r--- oo L--.oc

consistency between (3 .45) and (3 .35) requires

(3.49)

which is of course satisfied here.

Comparing (3.32) and (3 .43) we recognize that the dimensionality 4 2) is char-

acterized by

((d(2) ) = 1 .

	

(3.50)

The value ( = 1 of the roughness exponent is special because it signals, in a certain

sense, that the assumption of a well-defined average orientation of the interface

(parallel to the substrate plane) becomes inconsistent : The orientational fluctuations

at scale r, estimated e .g. as G 2 /r2 , decrease with r only if ( < 1 [85] . The conclusions

that can be drawn if it is found that ( =1 for a particular dimensionality depend on

the physical context . For equilibrium interfaces (=1 is commonly associated with

the breakdown of two-phase coexistence at the lower critical dimensionality of the

hulk system [ 91 ] ; e.g . for the pure Ising model ( = (2 - d)/2 =1 in bulk dimension

d + 1 = 1, while for the Ising model with random fields [92] the Imry-Via expression

C = (4 d)/3 shows that the disorder shifts the (bulk) lower critical dimensionality

to d + 1 = 2 . Fluid membranes governed by bending elasiticity rather than surface

tension have ( = (4 - d)/2, and hence (=1 in the physical dimension d = 2 ; this

reflects the tendency of membranes to crumple on scales larger than the (possibly

astronomical) persistence length [93].

In the present context the anomalous scaling regime described by (3 .45) ap-

pears only in the case of surface diffusion dynamics without nonequilibrium currents,

where z = 4 so > 1 in dimensionalities d < 2 . Physically, the anomalous behavior is

a consequence of the `mismatch' between mass conserving relaxation dynamics and

nonconserving shot noise previously alluded to . Relaxation through surface diffusion

is insufficient to counteract the disordering influence of the shot noise even locally;

thus local roughness measures such as the slope fluctuation ((Vh) 2) become enslaved

by the long wavelength modes and diverge with increasing correlation length (or sys-

tem size) as ((Oh) 2 ) N
(2a with a > 0 (cf . (3.45)) . While nonlinearities are expected

to significantly alter this picture, there is numerical evidence [89, 90, 94] that the

(3 .47)

(3 .48)
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anomalous scaling form (3.45) (possibly with nonuniversal values of the exponents

a and ) is generic for deposition processes with conserved surface relaxation in low

dimensionalities . We will return to the possible origins of this behavior in Section

5.4.1.

3.3 Relevant nonlinearities

To what extent can the linearized fluctuation theory be trusted when it comes to

describing real interfaces? The short answer is that the qualitative behavior derived

above is expected to remain valid. That is, any kinetic roughening process entails a

dynamic correlation length
t i/z (3 .51)

which enters the scaling forms (3.31), (3.44) and, possibly, (3 .45) for the width and

the height-difference correlation function, but the values of the dynamic exponent

z and the roughness exponent (, as well as the detailed shapes of the scaling func-

tions may differ from the expressions of the linear theory ; in particular, the height

fluctuations may become non-Gaussian, involving, in extreme cases [94], separate

roughness exponents for different moments of h.

The `stability' of the large scale behavior of the linear theory against the inclu-

sion of nonlinear terms can be probed by a simple technique referred to as power

counting, which we illustrate here for the leading growth-induced kinematic non-

linearity of the nonconserved interface equation (3 .6) . Expanding the square root

in front of the square bracket and adding the noise we have, in a frame moving at

velocity vo = I`tio,

(3.52)

h(x, t) = b-yh(bx, bzt)

	

(3.53)

with a scaling factor b> 1 . The transformation of the noise is dictated by . the

invariance . of the covariance (3 .16) ; this yields

71(x , t ) = b(d+z) 12r1(bx,bzt) .

	

(3 .54)

Inserting (3 .53) and (3 .54) into (3 .52) we find that satisfies (3.52) with the resealed

coefficients

at
=uö2h+2(Vh)2+

where we have set a = rho = vo . We now perform a resealing transformation

v_ bz -2 v,

	

bz-d-2c D, a= bz+s-2 A . (3 - 5). 0

It is easily checked that (3 .53) constitutes, for b > 1, a coarse graining operation.

Thus . (3 .55) provides, for b -e> oo, a measure of the relative importance of the various
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terms in (3 .52) on large scales . In order to evaluate the large scale effects of the

nonlinear term we now set and z in (3 .55) equal to the values ( = (2 -- d)/2, z = 2

characteristic of the linear theory. Not surprisingly, the coefficients v and D that

appear already in the linear equation then remain invariant, however the coefficient

A of the nonlinearity increases, for d < 2, as b c . We conclude that this term is

relevant and presumably alters the scaling behavior of the linear theory . The same

kind of analysis applied to higher order terms appearing in the gradient expansion of

(3 .6), such as
:
(Vh) 2 ] 2 and (Vh) 2V 2 h, shows that these are irrelevant, that is, their

coefficients decrease under rescaling . Thus the nonlinear equation (3 .52), which was

first derived by Kardar, Parisi and Zhang [14] in 1986, gives a complete description of

the large scale properties of interfaces moving locally in the direction of the driving

force, as in (3 .3) . Some properties of this equation will be discussed in Chapter 4.

In the case of conserved surface relaxation, as described by (3 .15), the situation

is much more complicated . First, since the linear theory (without nonequilibrium

currents) shows anomalous scaling with c > 1 for d < 2, all nonlinearities that arise

from expanding the geometric factors in (3 .12) are relevant [74, 75] in dimensions

d < 2 . Similarly the terms A2m, (Vh)2m in the expansion (3 .13) of the nonequilibrium

chemical potential are relevant for d< 4m/(2m -1) ; in d= 2 all these terms are

relevant . Existing renormalization-group treatments of the nonlinearities [75, 95, 96]

(see also Section 5 .3.3) have taken into account only the lowest order terms, however

it is not clear that such a procedure can be justified for infinite sequences of relevant

terms.

On the other hand, matters simplify drastically in the presence of a stabilizing

(downhill) nonequilibrium current, eq .(3.14) with v1 > O. As already mentioned, the

linear theory is then given by the Edwards-Wilkinson equation, (3 .18) with m = 1,

and power counting shows that all conceivable nonlinearities (which are consistent

with the conserved nature of the dynamics) are irrelevant [95, 96] . Thus in this

instance the linear theory provides the exact description of the large scale properties.

Below in Section 3 .4 we explore some further examples of microscopic models for

which the linear theory becomes exact.

Golubovic and Bruinsma [85] have investigated the effect of adding the KPZ

nonlinearity (A/2)(Dh)2 to the fourth order surface diffusion equation, (3 .18) with

m = 2. In that case power counting shows that the nonlinearity is relevant below 8

interface dimensions . It should however be clear from the derivation in Section 3 .1

that the Golubovic-Bruinsma equation

Oh/at = -vV 4h + (A/2)(Vh)2 +

	

(3 .56)

does not constitute a consistent description of interface dynamics : Since the KPZ-

term does not conserve volume, it should always be accompanied by an evaporation-
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condensation term proportional to V 2 h. Indeed, the renormalization group analysis

of Golubovic and Bruinsma does demonstrate the generation of such a term on large

length scales, but its sign turns out to be negative (i .e ., destabilizing) to leading

order in e = 8- d. In view of recent work on the related ; deterministic Kuramoto-

Sivashinsky equation, to be described in Section 4.4 .1, it seems unlikely that this

result has any consequences in physical dimensionalities.

The reader should not be left with the impression that power counting always

gives fully reliable answers . There are, at least, two kinds of situations where it may

fail . The first case is the appearance of a strong coupling regime in which a nonlinear

term with a small (in some dimensionless sense) coefficient is irrelevant, as predicted

by power counting, but the same term becomes relevant when the coefficient exceeds

some critical value . So far this scenario has been found to apply only to the KPZ-

equation and some of its variants (see Chapter 4), but our understanding of the

phenomenon is insufficient at present to be able to decide how commonly it occurs

in the context of general, nonlinear interface models.

A second case in which linear analysis, including power counting, gives mislead-

ing results is growth with conserved relaxation on a one-dimensional vicinal surface

stabilized by step edge barriers (see Section 5 .2 .1) . These barriers give rise to a

nonequilibrium current JNE(Vh) which, when expanded around the average ori-

entation of the vicinal surface, is of the form (3 .14) with vl > O. Thus, following

the above line of reasoning, such a surface should be exactly described by the lin-

ear (Edwards-Wilkinson) theory. Simulations of a microscopic model (to be briefly

described in Section 5 .2 .1) reveal, however, that the state in which the linear the-

ory applies is metastable : At long times fluctuations nucleate large local deviations

from the average orientation which bring the surface into a regime where v l < 0,

eventually leading to a global instability not anticipated by the linear analysis.

3 .4 Microscopic realizations of the linear theory

The large scale behavior of a given microscopic model conforms exactly to the linear

theory if (i) all nonlinearities permitted by the physics of the problem turn out to be

irrelevant, or (ii) if the model possesses additional (possibly artificial) symmetries

that suppress relevant nonlinearities.

An example of the first kind is provided by the process of diffusion-limited

erosion (DLE), which was studied numerically by Meakin and Detach [97] and an-

alytically . by Krug and Meakin [87] . DLE is the time-reversed process of DLA : As

in DLA ; individual diffusing particles are launched far away to wander towards the

interface, however instead of accreting to the growing deposit, upon contact they

annihilate with a deposit particle, thus eroding the surface . The model applies
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Figure 13: Simulation results (symbols) compared to the theoretical scaling function

(3 .57) (solid curve) for the surface width in diffusion-limited erosion on the square lattice.

The numerical data were averaged over a number of independent runs ranging from 4000

for L = 32 to 20 for L = 4096 . [87]

to diverse processes such as electrolytic polishing and stable fluid invasion in the

regime of high capillary numbers [87] . The reversal of the interface motion with

respect to the gradient of the diffusion field implies that the destabilizing effect of

the latter, as expressed in the conventional stability analysis for solidification fronts

[98], is turned into a rather efficient stabilizing force, since local protrusions are

preferentially eroded.

Krug and Meakin [87] showed that the appropriate linear fluctuation theory

for this problem is given by (3 .22) with z = 1, and the coefficient v equal to the

average interface velocity v; this makes is plain that the relaxation term is of purely

nonequilibrium origin. Moreover, all nonlinearities are found to be irrelevant by

power counting . The agreement with the linear theory is illustrated in Figure 13,

where simulation data for d =1 (the marginal dimensionality d( i) for this model)

are compared to the analytic expression for the interface width . For z =1, d = 1 the
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series (3 .26) defining WZ can in fact be summed exactly, with the result

w2

	

D
[ln L `a)+ln(l _ e-4-t/4,

	

(3.57)

In the figure, the non-universal short range cutoff a has been removed by subtracting

the stationary limit of the width ; also, the interface velocity v = I by definition of

the time scale, so that the noise strength D 1 .2 remains as the only fit parameter.

A class of microscopic models tailored to represent the linear continuum theory

was recently introduced by Kim and Dais Sarma [99], building on earlier work of

Family [100] . These models are solid-on-solid (SOS) models [1011 in which the

position of the surface is specified by an integer-valued height variable hx defined on

the d-dimensional substrate lattice . Deposition occurs by randomly chosing a lattice

site x i) , however rather than simply increasing the height at x i) (which would lead

to a trivial model) the depositing particle is allowed to relax in a local neighborhood

typically including xß and its nearest neighbors . The relaxation is governed by

a function Kx of the heights and their discrete derivatives, which is assigned to

each lattice site and can be viewed as a representation of the local surface chemical

potential. The. final deposition site is the site in the neighborhood that has the

smallest value of K prior to deposition ; if the minimum is not unique, a random

choice is made.

In the model of Family [100], the chemical potential' K is simply the height

itself, fix = h,, . The model may therefore be regarded as a lattice version of the

sedimentation process envisioned by Edwards and Wilkinson [83], in which granu-

lar particles settle in local surface minima under the influence of gravity. As was

pointed out by Krug [102], in the context of sedimentation the assumption of a

regular lattice is too strong a simplification : The fact that real sediments are disor-

dered provides a mechanism for the generation of the quadratic KPZ nonlinearity,

which invalidates the predictions of the linear theory on large scales (see Chapter

5). On the other hand, a regular lattice appears naturally if one intends to describe

epitaxial growth with conserved surface relaxation . In that case the postdeposition

relaxation in Family's model could arise from the transient kinetic energy of the de-

positing particles, which allows them to `funnel' downhill before being incorporated

into the lattice [841 . In the continuum language this causes a downhill current with

a stabilizing linear coefficient v l > 0 in (3 .14) which, as we have repeatedly argued,

supersedes all allowed nonlinearities (the metastability scenario sketched at the end

of the previous section cannot alter this conclusion, since the current in Family's

model is a . monotonic function of inclination, so that vI > 0 for all surface orien-

tations) . Thus, this model (including variants with longer ranged, gravity driven

relaxation [103]) is an exact realization of the Edwards-Wilkinson equation, as was

confirmed by numerical work in one [100] and two [104] dimensions.
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For the curvature model defined by Kx = .--(V2 h)x (the right hand side denoting

the lattice Laplacian) the corresponding argument [94] requires somewhat greater

care. Here, the crucial observation is that, since the dynamics can be formulated

solely in terms of the local curvatures, the model is invariant under arbitrary tilts,

hx --a. h, + u -x. Consequently, any nonlinear contributions to the coarse-grained

surface chemical potential have to be powers of second and higher derivatives of h,

which are all irrelevant by power counting . Related symmetries are discussed in

Section 5 .2 .2.

Of course, the extra symmetry of the curvature model is due to the somewhat

artificial relaxation rule - if the local curvature is replaced e .g. by the coordination

number of the deposited atom, as a more realistic representation of the actual atomic

kinetics [86, 105, 106] the tilt-invariance is lost and the scaling properties of the

model become considerably more complex [89, 90, 94] . Such models are described

in Section 5 .1 .1.

Figure 14: Simulation results for the surface width W 2 and the local height gradient

((Vh) 2 ) of the curvature model [94] . The dashed lines are power law fits with the predicted

exponents .
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Since we expect the large scale behavior of the curvature model to be governed

by the linear, noisy Mullins equation (eq .(3.18) with m = 2), we may utilize the

exact expressions derived in Section 3 .2 .2 both to ascertain our expectation, and

to determine the coefficient v in the continuum equation . The noise strength D is

fixed from the outset : In the whole class of models introduced by Kim and Das

Sarnia [99], particles are deposited at random and relax only locally, within a region

of a few lattice spacings ; therefore the coarse grained noise has Poisson (shot noise)

statistics and D = 1 in units where time is counted in deposited monolayers . In

Figure 14 we show simulation data for the width and the mean squared step height

((ß'h)2) ((h.+1 -- h .)2 ) for a large (L =10 5 ) one-dimensional system (the precise

relaxation rule implemented here is described in Ref .[941) . The predictions of the

linear continuum theory for the infinite system can be written as

Lim w 2/t3 / 4 = (D/v)(2v) 314 F(1/4)*

t1~((Vh)2) 1tl'4 = ( DIv )(2v ) I
~4r(3/ 4)127t.

From the fits indicated in the figure we estimate v 0.140 and Div 7.0, in accor-

dance with the argument that D = 1 for this general class of models . The example

illustrates how numerical measurements of correlation functions, such as the inter-

face width, can be used to extract the model-dependent parameters that enter the

large scale continuum theory. This procedure will recur in the nonlinear context in

Sections 4.2 and 5 .3 .3 .

(3.58)
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40 Aspects of KPZ theory

The Kardar-Parisi-Zhang equation [14]

h
=vV 2 h+2(Vh) 2

ah

at

with

	

= v(Vh) + curvature

`

corrections

	

(4.2)
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local orientation ; in the isotropic case of eq .(3.6), v(Vh) = Fico \/l + (Vh) 2 . The

characteristic quadratic nonlinearity of (4 .1) then results from a gradient expansion

of v, [8, 102, 107]

d

	

ah
v(Vh) „v(0)+Eaiv(0)ax

+ 2
~az

ax +
. .

	

(4 .3)
~ ~

where the substrate plane coordinates have been chosen such that the matrix of

second derivatives (?v(0) is diagonal with eigenvalues A i. To arrive at the usual form

(A/2)(V h)2 of the nonlinearity one further has to transform to a tilted, comoving

frame in which the constant and linear terms in (4 .3) vanish, and to assume in-plane

isotropy so that A i - A for all i . This is achieved trivially by a spatial resealing if all

A i have the same sign ; otherwise novel physics can arise, as will be discussed shortly.

The curvature corrections in (4 .2) involve second and higher derivatives of h, such

as the Gibbs-Thomson term in (3.6) . In the presence of a nontrivial inclination-

dependent growth rate these terms do not affect the evolution of macroscopic shapes,

since they become arbitrarily small under a coarse-graining operation that rescales

h- and x-coordinates in the same manner (this should not be confused with the

coarse-graining of fluctuations in Section 3 .3 ; there, h and x are treated differently

when ( 1).

Equation (4 .2) is useful in clarifying what kind of physical growth processes

would be expected not to fall into the KPZ universality class . First, the dynamics

of h is assumed to be local . This rules out all situations in which the interface mo-

tion couples to some nontrivial bulk dynamics, such as the diffusion limited erosion

process described in Section 3.4, the competitive growth models of Chapter 2 and

the classical continuum theories of solidification [98] . Second, growth with volume

is the most thoroughly studied continuum theory of kinetic roughening. While the

derivation in Chapter 3 was based on the macroscopic equation (3 .6) for an interface

that moves locally normal to itself, it should be recognized that (4 .1) is a valid

description of large scale interface fluctuations under much more general conditions:

The KFZ equation applies whenever the macroscopic interface equation of motion

has the form
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conserving surface relaxation is not covered by the KPZ theory, since in that case

the growth rate is controlled entirely by the external deposition flux, v = F, and

is therefore independent of inclination [1021 . We may remark in this context that

the orientation-independence of the growth rate is a well-established experimental

feature in the molecular beam epitaxy (MBE) of silicon [73], lending support to the

application of the conserved growth equation (3 .15) to this system ; a detailed dis-

cussion is found in Chapter 5 . Finally, the KPZ theory assumes that the fluctuations

in the growth process can be reasonably modeled by a noise term that is a random

function of x and t . This assumption fails for interface motion in a random medium

close to the depinning threshold, where the quenched nature of the fluctuations, i .e.

their dependence on the interface position h, becomes essential [68, 69, 78].

For practical purposes, the mechanisms neglected in the KPZ equation typically

define some crossover length scales which limit the applicability of the theory . For

example, while desorption may well be negligible in most MBE processes, it is never

entirely absent and should in principle lead to a reappearance of KPZ behavior

on sufficiently large length scales ; defect formation would have the same effect, see

Chapter 5 . Similarly, an interface moving through a random medium should be

describable by the KPZ theory on scales that much exceed the correlation length

associated with the depinning transition . Thus, the fact that in many cases the

physics on relevant length scales is governed by effects not included in the KPZ

equation should not obscure the status of this equation as the generic description

of the asymptotic fluctuation behavior of a broad class of interface displacement

processes though is must be said that non-KPZ physics seems to dominate all

experimental situations considered so far, to the extent that no clean experimental

confirmation of KPZ behavior has yet emerged!

Strong coupling. From a theoretical perspective, the most intriguing feature of

the KPZ equation is the occurrence of a nonequilibrium phase transition for dimen-

sionalities d > 2, from a weak coupling phase for small .! where the nonlinearity is

irrelevant (as expected on the basis of power counting, see Section 3 .3), to a strong

coupling phase characterized by nontrivial scaling exponents not accessible to per-

turbative methods. The physical case d= 2 is at the lower critical dimensionality of

the transition, which has important implications for the length and time scales re-

quired to observe the asymptotic behavior [108] . Most of the work published in the

five years following the seminal paper [14] of Kardar, Parisi and Zhang attempted to

elucidate the nature of the transition, and to obtain accurate numerical estimates of

the strong coupling scaling exponents . These efforts have been reviewed elsewhere

[8] ; for a representative sample of current numerical work see Ref .[109].

Recent analytic approaches have yielded promising but not quite conclusive
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results . Two-loop renorma.lization group (RG) calculations were presented by Sun

and Plischke [110] and by Frey and Täuber [111] . Whereas Sun and Plischke claim to

identify the strong coupling fixed point in d = 2 and derive estimates for the scaling

exponents, the analysis of Frey and Täuber indicates a scenario that is similar to the

earlier one-loop results [14, 65] - only the critical fixed point governing the phase

transition is accessible in an expansion around d= 2 dimensions, but the strong

coupling regime remains elusive.

The non-perturbative nature of this regime suggests that self-consistent mode-

coupling approaches [112] may be more appropriate than perturbative RG schemes.

Mode-coupling equations were written down earlier in related contexts [113, 114,

115, 116], but only recently have approximate solutions been attempted [117, 118]

in order to extract the dimensionality dependence of the strong coupling exponents.

Moore, Blum, Doherty, Bouchaud and Claudin [119] have found an analytic solution

of the mode-coupling equations for d > 4, which indicates that d = 4 may play the role

of an upper critical dimensionality, in the sense that the dynamic scaling exponent

in the strong coupling phase takes on its weak coupling value z = 2 for d > 4 . Such

a scenario was suggested earlier by Halpin-Healy on the basis of a functional RG

calculation [120, 121], but so far the numerical evidence [109] does not seem to

support it.

A third analytic approach that holds considerable promise with regard to an

improved understanding of the strong coupling regime is the study of anisotropic

generalizations of the KPZ equation . Building upon the observation of Villain [15]

that growth on vicinal crystal surfaces (in the presence of desorption) may display

a regime in which the two coefficients A I , a 2 in (4 .3) have different signs, Wolf [122]

showed that in such a situation the non1inearities are in fact (marginally) irrelevant,

i .e . the strong coupling regime disappears and the surface is described by the linear

theory (up to logarithmic corrections), Subsequently, Fisher and Grinstein [123]

and Hwa [124] considered, in the contexts of electrical transport in insulators and

driven flux line liquids, respectively, higher dimensional anisotropic variants of the

KPZ equation . Depending on the number of nonzero coefficients Ai in (4.3) and on

their . relative signs, strong coupling behavior may or may not be present . Therefore

the anisotropic equation can be used to systematically interpolate [124] between

the (isotropic) KPZ equation and the problem of driven diffusive systems, DDS

[114], which corresponds, roughly speaking, to a situation where only one of the

A i is nonzero. The DDS problem does not possess a strong coupling regime and is

therefore amenable to standard perturbative analysis [125].

Outline of chapter . In the remainder of the chapter we shall be concerned almost

exclusively with the one-dimensional KPZ equation. The one-dimensional prob-
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lem is special due to the validity of a fluctuation-dissipation theorem Which fixes

the values of the scaling exponents (Section 4.1) . This allows one to pose more re-

fined questions regarding scaling functions, universal amplitudes and the probability

distribution of height fluctuations [126] (Sections 4 .2 and 4.3) . Section 4.4 briefly

reviews recent work on interface displacement processes in which the fluctuations

are of chaotic origin [127], while Section 4 .5 introduces the well-known 'directed

polymer' representation of the KPZ equation . Finally, Section 4.6 addresses the

problem of KPZ-type growth in the presence of defects [128] or open boundaries

[129], which break the translational symmetry in the substrate (x-) direction. In

such situations the nontrivial dynamic scaling properties of the KPZ equation reap-

pear in the spatial domain in the form of power law height profiles and correlations,

which in some cases can be computed exactly [130, 1311 . Moreover, morphological

phase transitions can be induced by the defects, which have a particularly appealing

interpretation in the directed polymer representation [132].

4.1 Exact invariants

The one-dimensional KPZ equation has two important invariance properties, the

first of which applies in arbitrary dimensionalities d . To derive it, consider the tilt

transformation

h'(x,t)=h(x-uot,t)--ua x±
2a

uo 2 t

	

(4.4)

parametrized by some d-dimensional vector ua . It is easily checked that h' satisfies

the same KPZ equation (4 .1) as h, with a shifted noise term

n f (x , t ) - i (x - uot, t) .

	

(4.5)

Provided the temporal correlations of 7? are sufficiently short ranged, the shift does

not affect the statistical properties of the noise [65], and we may conclude that the

statistics of the height fluctuations are invariant under the transformation (4 .4).

In the literature this property is often referred to as Galilean invariance, since it

was first discussed by Forster, Nelson and Stephen [133] in the context of randomly

stirred fluids governed by the noisy Burgers equation

au .

at + u - Vu = vo2u - aVrt

which follows from (4 .1) with the identification u= -\Vh ; the tilt transformation

(4.4) is precisely a Galilean transformation for the fluid velocity u . In the context

of interface motion the tilt invariance appears as a residue of the full rotational

symmetry of the isotropic equation (3 .6) .

(4.6)
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The significance of the tilt invariance lies in the fact that the transformation (4 .4)

contains explicitly the coefficient A . Thus, if the invariance is to be preserved under

coarse graining . it is clear that the resealing operation (3 .53) should not change the

value of A . From the last of eqs .(3.55) we read off that this enforces the exponent

identity [19, 65, 115]

z = 2

	

(4.7)

between the roughness exponent and the dynamic exponent.

In order to determine the values of C and z individually, we would require a

second identity derived from some invariant combination of the coefficients v, D and

A . No such invariant is known for d > 1 ; in the one-dimensional case the appropriate

combination is the ratio D/v . In fact a much stronger statement holds [8, 133, 134]:

The Gaussian stationary probability distribution of the (z = 2) linear theory

bh f dx
2 (Vh)2 P[h] [ids A(Vh) 2 DV 2h] P[h]

	

(4.9)

which vanishes by partial integration (assuming periodic boundary conditions in

x) . Similar results can be proved for certain microscopic realizations of the KPZ

equation [8].

The remarkable conclusion is that all stationary correlations of the nonlinear

KPZ equation in one dimension are given exactly by the linear theory. Specifically,

for the transient roughening of an intially fiat interface considered in Section 3 .2,

we know that the two-point function S(q,t) defined by (3 .24) satisfies

lim S(q,t) Lwl 2q2

	

(4.10)

corresponding relations for higher order correlations follow immediately from the

Gaussian nature of the probability density (4 .8) . A particular consequence is that

the roughness exponent S =1/2 as in the linear case, and the dynamic exponent

z=3/2 from the scaling relation (4,7) . It is much harder to demonstrate directly

that z = 3/2; for a particular microscopic model this has been achieved by Gwa and

Spohn [135].

We now exploit the invariance of A and D/v to determine the full scaling form

of S(q,t) . First, we derive an expression for the dynamic correlation length (t)

v

	

,1

	

2[h]
exp L- f dx (Vh)`]

	

(4 .8)

is the stationary solution also of the full Fokker-Planck equation that corresponds

to the nonlinear KPZ equation . This can be seen by computing the contribution

introduced by the KPZ nonlinearity on the right hand side of the Fokker-Planck

equation,
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using only dimensional arguments. From the KPZ equation (4 .1), the dimensions of

a and Div are given by

[A ] = [x]2/[h][t], [Di v ] = [h]2/[x] .

	

(4.11)

The task is to construct a lateral length scale (of dimension [x]) from the invariant

quantities a, Div, and the time t . The only solution is

W) _ [(D12v)Ii2
Atria (4 .12)

where a factor of 2 has been inserted for later convenience . Together with the

asymptotic constraint (4 .10) it follows that S can be written as

S (q; t ) = L-1 2 D2 g (gS(t))

	

(4.13)

where, in analogy with the expressions (3 .25) and (3 .29) derived in the linear case,

g is now expected to be a universal function with the limiting behaviors

g(0) = 0, l~m~g(s) = 1 .

	

(4 .14)

In the linear theory (4.13) holds with g(s) =1 - e _s2
. The scaling function for the

KPZ-equation is not known explicitly. Approximate analytic results for a closely

related function describing the temporal correlations in the stationary state have

been presented by several groups [114, 116, 1251 . In the next section we show

how the scaling function can be characterized through dimensionless amplitudes of

statistical observabies such as the interface width.

4 .2 Universal amplitudes

Using the scaling form (4 .13) we can proceed to compute real space correlation

functions from the general formulae (3.26) and (3 .27) . Since all stationary (t --} oo)

correlations are identical to those of the linear theory, the focus is on transient

quantities, i .e. we take the limit L--} oo at fixed t . For the width this yields the

expression

W 2 = c2[(D/2v)2lAit]213

	

(4.15)

with a dimensionless prefactor c2 that is expressed in terms of the universal scaling

function gas

c2

	

1a Sa g(s)-

	

(4.16)

Similar expressions can be written for higher order correlation functions and higher

moments of the height fluctuation distribution . Of particular interest are quantities

that reveal the deviation of the distribution from a Gaussian, such as the skewness

S=	
((h	)))12

	

(4 .17)
(( _()) )
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and the normalized fourth cumulant

((h	( 1 )) 4 ) - 3 .

	

(4 .18)
((h-(h'2)2)2

The skewness is a measure of the asymmetry of the fluctuation distribution, to

be expected because the growth direction breaks the h ---b -h symmetry, while Q

gauges the weight contained in the tails of the distribution relative to a Gaussian;

for a Gaussian S = Q = 0 . Simulations of a variety of microscopic models belonging

to the KPZ universality class indicate [126, 136] that the skewness in the transient

regime converges to a universal value IS 1= 0.28 + 0 .04 and the sign of S is equal to

the sign of a in (4 .1) ; the value of Q is in the range Q ;to- 0 .12 -- 0.16. The theoretical

significance of these results was recently discussed by Friedberg and Yu [137].

A few remarks are in order regarding the numerical procedure [126, 138] em-

ployed to extract universal amplitudes like c2 , S and Q from simulations of mi-

croscopic models . Two steps are involved . First, the transient behavior of the

quantity of interest (e .g., the width) is measured, executing care that the asymp-

totic (W2 - t2/3) regime is well established in the time range used to determine the

prefactor . Then, in order to arrive at dimensionless coefficients such as c 2 , the di-

mensionful invariants D/v and a have to be computed for the particular model at

hand. In a few cases this can be done analytically [126], however in general one

has to resort to simulations . The ratio D/v figures prominently in the correlation

functions of the linear theory, and can therefore be obtained from numerically de-

termined stationary quantities, using exact relations like (3 .39) . The coefficient a

is most easily estimated from a direct measurement of the tilt dependence of the

growth rate [107], as defined in (4 .3) ; for this purpose a macroscopic tilt u (oh) is

imposed through helical boundary conditions, h(x ±L) = h(s) -;- uL (for an example

see Figure 17).

The knowledge of the universal amplitude c2 can be exploited to estimate the

crossover time t, at which the interface width saturates in a finite system, i .e. the

nonlinear analogue of (3 .41) . To this end we match the transient expression (4 .15)

to the stationary result (3 .39) (with z = 2), and obtain

0,)/L= (12c2 ) -i 0.21,

	

(4 .19)

with the numerical estimate [126] c 2 0 .40 . Similar considerations apply to the

crossover from an intermediate, Edwards-Wilkinson scaling regime in cases where

the value of the nonlinearity in (4 .1) is small (in a dimensionless sense) compared to

the linear term .vV 2 h . Matching the KPZ asymptotics (4 .15) to the exact expression

(3.40) for the transient regime of the z = 2 linear (EW) equation, the crossover is

found to occur at a time

tPw-rxPZ = 327r -3 c sv 5D-2 1aI-4 ti 252 v 5 D-2 1 a I-4 .

	

(4.20)
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This relation has been particularly useful in identifying the asymptotic behavior in

models of chaotic interfaces, to be described in Section 4 .4.

4.3 Finite size effects

An interesting feature of the nonlinear term in the KPZ equation is the coupling

that it induces between the spatially averaged, center of mass motion of the interface

L
h(t) =hq_o(t) = L -i

o
dx h(x,t)

	

(4 .21)

and the internal fluctuation modes . This is illustrated by writing the instantaneous

global interface velocity as

v (t ) =
d~

2
~g2

h2( t )I 2+71q=0(t)'
at,

q~ 0

Several important conclusions can be drawn from this expression . First, averag-

ing over both sides and taking t - co we find, using (4 .10), that the right hand side

is a sum over N - 1 identical terms L-' (D/2v), where N = L/a is the total number

of modes (the q = 0 mode does not contribute) . It follows that the stationary average

growth rate has a universal finite size correction [139]

[w= (v(L)) - v(oo)) =- ~L,

	

(4.23)

the average growth rate itself, (v(oo)) = DA/41/a, depends on the lattice cutoff a and

is therefore nonuniversal . Similarly in the transient regime one finds a correction

proportional to t -2/3 . The non-dimensional coefficient in (4 .23) is altered when the

periodic boundary conditions are replaced by open ones [132].

Second, the coupling to the internal modes induces [140] long ranged temporal

correlations in the growth rate, on time scales smaller than the correlation time

t c - L3!2 . This effect is displayed in the center of mass dispersion

(4.22)

W' = (( -E - (h))2 (4.24)

obtained by twice integrating the velocity correlation function (v(t)v(s)) . In one

dimension, this quantity behaves as

L -1 t4/3

	

t GG
L312

L- 1/2 t

	

t ~i L312 7

i .e. the dispersion is superdiff usive . in the transient regime, leading to a 1/ f -type

divergence in the velocity power spectrum [114, 123, 140, 141] . In the stationary

(4 .25)
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regime ordinary diffusion is recovered, however with a prefactor that is enhanced

relative to the 1/L-dependence of the linear theory (see below).

Equation (4 .25) highlights the necessity of carefully distinguishing between the

ensemble average (h) and the spatial average h in a finite system. The height

fluctuation relative to the ensemble average

W2 = ((h - (h))2)

	

(4 .26)

is dominated by the center of mass dispersion for t > t,., where WV » W 2 7 and W

can be equated to the conventional definition (3 .26) of the width W only for t <G ic;

of course in simulations W is of little relevance, since the ensemble average (h) is

generally not known.

These considerations apply also at the level of the linear theory, however there

they are comparatively trivial since the center of mass motion only couples to the q =-

0 mode of the noise, so that WW = Dt/L d for all times . Incidentally, this remains true

in nonlinear theories with conserved relaxation - indeed, the requirement of volume

conservation in all relaxation processes implies precisely that these processes do not

couple to the average height . In RG language this leads to the nonrenormalization

of the noise strength D and the concomitant exponent identity [80, 86, 95, 96, 140]

7 - d+ 2(z

	

(4.27)

as can be read off from the scaling transformation (3 .55).

It is instructive to rederive the second part of (4 .25) from a scaling argument.

Dimensionally, W! is no different from the width W 2 , hence one should be able to

write a scaling form analogous to (3 .31),

W2 = ~L f,(~lL )• (4.28)

To inform the shape of the scaling function L, we note that for times large compared

to the correlation time, i.e. for » L, the interface velocity becomes uncorrelated

and one expects that w,2 t . Since the KPZ correlation length behaves as t2/3

this requires that L(s) = c0 s312 for large arguments, and using the expression (4 .12)

we obtain

W = co(D/2v) 3/2 1a1 L -312 t (t» L3/2)

	

(4.29)

which determines also the prefactor in (4 .25) up to the universal constant co.

Remarkably, the amplitude co is known analytically by virtue of a recent exact

solution of a specific model due to Derrida, Evans and Mukamel [142] (DEM) . These

authors were concerned with the tracer diffusion of particles in a one-dimensional lat-

tice gas with hard core repulsion, the asymmetric simple exclusion process (ASEP).

66



0 .3

	

-1

	

I

	

i l l IFII

	

I

	

I

	

1111 II

	

I

	

I

	

1 111111

	

I

	

1111111

	

1

	

1

	

1111111

------------------------------------

0 .1

R

	

~	 1	F	111,111	3	1	1111111	,	111)1ll	I	1131111	1	1	,	11111.
0

1

	

10

	

100

	

1000

	

10~

	

105
t

Figure 13 : Center of mass fluctuation WW of the interface in the restricted solid-on-solid

growth model of Kim and Kosterlitz [143], scaled by system size (L = 100) and time ac-

cording to the scaling form (4 .29) . The data represent an average over 104 independent

runs, extending over 4 x 10 4 deposition attempts per site . The dashed line is the predic-

tion for the prefactor obtained from (4 .29) with the universal amplitude (4 .34) and the

dimensionful parameters D/2v = 0.81 and a = - 0 .75 which were determined numerically

in Ref .[126].

The equivalence between the ASEP and a simple growth model, the single step

model, has been known for some time [8, 19] . Any configuration of lattice gas oc-

cupation numbers e, =0,1 can be mapped onto a solid-on-solid interface through

the identification hi -1 - hi = 1 - 2e, = ±1, the integer height variables hi specifying

the interface position . In the ASEP particles jump to the right to vacant nearest

neighbor sites ; each jump increases the local height as hi --~ hi ; 2 . Thus, h i mea-

sures (twice) the time-integrated particle current through bond i . DEM compute the

time-integrated displacement Y of a tagged particle, and show that, for long times,

(Y t2

	

(Y ) 2. =

	

t '0 :30)

with a diffusion constant
( 1 - p)3/2 1 (4,31)

2

	

p'/2

	

L1121

where 0 < p < 1 denotes the particle density . Equation (4 .31) represents the leading
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behavior in 1/L when the stationary limit t -+ cc is performed first, followed by the

limit L -} co at fixed density p.

To establish the connection with (4 .29), note first that since the particle current

is equal to the product of density and velocity, the time integrated current is pY

and h= 2pY . Equations (4 .30) and (4 .31) therefore translate into

fv2 = ((h - (h)) 2 ) = 2[p(1 - p)]312t /L112

	

(4.32)

which is also equal to W, in the stationary (t L 312 ) regime considered here . Next

we remark that the stationary correlations of the ASEP (with periodic boundary

conditions'.) are trivial : For L - x every site is occupied independently with prob-

ability p (for an explicit proof see Refs .[19] and [141]) . Consequently it is an easy

matter to show that the dimensionful invariants of the equivalent growth model are

11261

A = -1, D/2v =4p(1- p) .

	

(4 .33)

Thus (4 .32) conforms exactly to the scaling prediction (4 .29), and allows us to

identify the dimensionless prefactor as

co = FT /4 .

	

(4.34)

The universality of this number is illustrated by simulation results for the center of

mass dispersion of a different growth model, the restricted solid-on-solid model of

Kim and Kosterlitz [143] (Figure 15) . For this model the quantities D/v and A are

known only numerically [126].

4.4 Chaotic interfaces

4.4 .1 The Kuramoto-Sivashinsky equation

A number of recent studies have been devoted to purely deterministic models of

interface motion where the fluctuations, rather than being induced externally by

thermal or kinetic noise, are generated by some local chaotic dynamics . The prime

representative for this class of systems is the Kuramoto-Sivashinsky equation

ah/at + V 2 h + D4h - (V h) 2 = 0

	

(4 .35)

which appears as an asymptotic local approximation to various moving boundary

value problems, such as laminar flame propagation [144], solidification at large un-

dercooling [145] and terrace edge evolution during step flow growth [146, 147] (see

also Section 5.2 .1) . Similar equations have been derived also in plasma physics [148]

and in the context of chemical turbulence [113, 149].
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The units in (4.35) have been chosen such that all coefficients are equal to

unity. Usually the one-dimensional equation is considered, with periodic boundary

conditions on an interval of length L . The trivial solution h = coast . is linearly

unstable when. L > 27t . For large L, almost all initial conditions evolve to a state

of spatiotemporal chaos, which can be viewed as a collection of cell-like structures

that split and merge in a random fashion . The cell size is set by the wavelength

to = /(2r) with the largest growth rate 1/ro = 1/4 under the linearized dynamics.
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Figure 16: Width of a one-dimensional Kuramoto-Sivashinsky interface of length L =

65536 . The squares show numerical data obtained by averaging over 70 independent runs.

The dashed line is a fit to the early time Edwards-Wilkinson behavior, W2 =0 .397 tll2 ,

The full line represents the asymptotic KPZ-behavior, w 2 = 0 .092 t2/3 , with the prefactor

calculated from (4.15) using the numerical estimates of D/2v and A. The arrow indicates

the crossover timetE UT-KPz 7000 predicted from (4 .20) . The last few data points are

already affected by finite size effects - the saturation time determined by (4 .19) is about

3 x 10 5 for this system size. [127]

In the present context, the fundamental question is to what extent the large scale

dynamics of this `turbulent' state, coarse grained beyond the typical cell size to, can

be described by a stochastic theory of kinetic roughening . Yakhot [150] was the

first to suggest, on the basis of a renormalization group coarse graining procedure,

that the appropriate large scale theory is the KPZ equation (at the time known as
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the noisy Burgers equation [133]) . Yakhot's conjecture is very plausible intuitively:

It only requires that (i) the stabilizing effect of the nonlinearity in (4 .35) can be

described in terms of a positive, effective interfacial tension v > 0 on large scales,

and (ii) the random cell interaction events are sufficiently uncorrelated to give rise

to a white noise forcing.

A careful numerical test of the conjecture was performed by Zaleski [151], who

found it exceedingly difficult to assess the asymptotic KPZ regime . A subsequent

quantitative crossover analysis [127], utilizing the amplitude relations derived in

Section 4 .2, estimated that the asymptotic behavior sets in only on length scales L >

2500 and time scales t > 7000 (Figure 16) . Somewhat paradoxically, the crossover

time (4 .20) is large because of the large value of the effective interface tension v,

which starts out being negative on the `microscopic ' (= sub cell size) level . Assuming

that v is generated by the cell dynamics, a rough estimate involving the characteristic

cell scales is v = Qfl/ro = 19 .7 . Numerically, one finds v = 10 .5 + 0 .6 [127].

The intuitive picture suggests that a KPZ-type large scale description should

apply also in higher dimensions . Recent numerical work in two dimensions [152,

1531 has not succeeded in unambiguously confirming this hypothesis, and the issue

remains controversial . It is unclear at present whether the problem is only one of

computational resources, or whether the two-dimensional equation is different from

the one-dimensional case in some more fundamental way.

We briefly comment on the relationship between the Kuraxnoto-Sivashinsky

equation (4.35), and the Golubovic-Bruinsma equation (3 .56), which may be viewed

as the vo -+ 0 limit of the generalized KPZ-equation

ah/at = voV 2h - V 4h + (Vh) 2 + .

	

(4.36)

The work summarized in this section has shown that an interface governed by (4 .35)

with zero external noise strength, D = 0, and a negative bare interface tension vo <

0 can be described on large scales by an equation with a nonzero intrinsic noise

strength Dintr > 0 and a positive effective tension v > O . It appears plausible that

the properties of the chaotic state of (4 .35) should not be qualitatively altered by

the addition of an external noise source. Moreover, if the nonlinearity in (4 .36)

is capable of generating a positive interface tension out of a negative bare value

vo < 0, this should remain true in the limit vo - 0 4 . Thus, one is lead to conclude

that a positive interface tension would be generated also in the case of eq .(3.56), in

contradiction to the £ = 8 - d expansion of Golubovic and Bruinsma [85].

The argument is somewhat less firm than it seems, because it presupposes that

the limit vo -~ 0 in (4.36) (which takes (4 .36) to (3 .56)) commutes with the limit

D --- 0 (which takes (4 .36) to (4.35)) . To gain some insight into this issue, consider
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(4.36) with D = 0 and vo <0 . This reduces to the parameter-free equation (4.35)

through the transformation

h(x,t) - Hol
-1h (I vOI

-112x
a Ivol-2t) .

	

(4.37)

Using this transformation together with the results obtained for (4 .35) in Ref .[127],

it is an easy matter to show that the effective large scale interface tension of the

deterministic version of (4.36) vanishes as v- -vo, and the intrinsic noise strength

vanishes as Dintr -
Ivo1712 when vo -+ O . If the limit v0 - 0 is performed at fixed

external noise strength D > 0, one therefore enters a regime where the external

noise dominates over that generated by the chaotic fluctuations, and which may

behave differently from the deterministic equation (4 .35) . The transition between

the two regimes was studied numerically by Karma and Misbah [147], who find a

smooth crossover with no singular features.

4.4.2 Coupled circle maps

It should be emphasized that, since (4 .35) contains no control parameters apart

from the system size L, the large crossover scale in one (and possibly also two)

dimensions is an intrinsic property of the equation . This lack of versatility was

one of the motivations that lead Bohr and coworkers [154, 155] to introduce lattices

of coupled circle maps as a new class of chaotic interface models . These models

are defined in terms of real, unbounded height variables h t (i) that live in discrete

time and on a discrete space (the integer lattice, for the present discussion) . In the

absence of coupling each variable is updated according to a rule that is a combination

of a constant shift (to break the h -3 -eh symmetry) and a nonlinear map on the

unit interval acting on the fractional part of h,

-4 F(h) =h+f(h-[h]) .

	

(4.38)

A typical choice is the logistic map, f (x) = Rx(1 -- x) . Two kinds of coupling schemes

have been considered [154, 155] : A diffusive coupling defined by

ht+1( i ) = F(ht(i)) + e(h t (z + 1) + ht (i --1) - 2ht( z ))

	

(4.39)

and a totalistic coupling

h t+1( i ) =F({ht( i + 1 )+ht(i)+ht( i 1)}/3)

	

(4.40)

It turns out [155] that the magnitude of the KPZ nonlinearity in the large

scale dynamics, and therefore the observability of KPZ scaling, depends crucially .. on

the choice of coupling. This is illustrated in Figure 17, which shows the variation
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Figure 17: Inclination dependence of the interface velocity v for coupled circle maps with

diffusive (squares) and totalistic (triangles) coupling . The local updating rule (4.38) was

the logistic map with B = 4 in both cases. The data were obtained from simulations of

systems of size L = 1000, with a duration of 10 6 time steps per data point . The dashed

lines indicate parabolic fits.

of the average interface velocity v = (ht+1 (i) - ht(i)) with inclination V h = (ht (i +

1) - ht (i)), for the two coupling schemes (4 .39) (with e= 0 .2) and (4 .40) . From

the indicated parabolic fits one estimates that A -0 .16 for the diffusive coupling,

and A , -2 .0 in the totalistic model . According to (4 .20), this implies that the

crossover times to asymptotic KPZ behavior differ by a factor of 2 .4 x 10 4 ? Indeed,

while clean KPZ scaling was observed in simulations of the totalistic rule, with the

diffusive coupling only the preasymptotic EST regime could be accessed [155].

Clearly, the coupled map models differ from the Kuramoto-Sivashinsky equation

(4.35) in several, possibly important, respects . Here, the chaotic fluctuations arise

(for appropriate choices of f) simply from the local updating rule (4 .38); there is

no analogue of the unstable spatial coupling in (4 .35), nor of the resulting cellular

structure. Also, the coupled map models have only discrete translational symmetry

in i and h ; moreover, in two dimensions the continuous rotational symmetry of

(4.35) is lost . Nevertheless, the great variability that can be achieved by different

choices of local maps and different coupling schemes makes them promising objects
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for explorative studies of spatiotemporal chaos.

4 .5 Directed polymers in random media

The directed polymer representation [14, 65] of the KPZ equation provides a link

between the nonequilibrium dynamics of interfaces and the equilibrium statistical

mechanics of flexible lines in a quenched random environment . The conceptual

basis of the mapping between the two problems is quite simple . The d-dimensional

substrate space of the interface is enlarged into a d+ 1-dimensional space by treating

the time direction as an additional coordinate . Thereby each noise history rt(x, t) can

be viewed as a realization of a quenched random potential in el+ 1 dimensions . The

time evolution of the interface is then encoded by an ensemble of `infection paths',

to be specified shortly, which are directed along the t-axis . The statistical weight

of each path can be written as a Boltzmann factor with an energy that comprises

an elastic term and a random contribution due to the disorder potential . Thus, the

paths can be identified with conformations of physical objects such as flux lines,

directed polymers or (in d = 1) equilibrium interfaces.

Figure 18: Directed line in a random potential, indicated by the crosses.

Mathematically, the mapping is achieved through the Cole-Hopf transformation,

which was discovered some forty years ago as a means to exactly linearize the (de-

terministic, one-dimensional) Burgers equation [156] . Here, we shall proceed in the

converse direction - we first state the directed polymer problem, and then show how

it leads to the KPZ equation . Throughout this section we will be working with a
general. number of transverse dimensions d, and : return to specific applications to

d = 1 in Section 4 .6 .

t
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By standard techniques [157] this is brought into the differential form of a diffusion

equation,
5Z kB Tv2z

	

1 iZ.
dt

	

try

	

kBT

In the last step we introduce the restricted free energy

(4 .43)

Consider then a directed line that runs through the random potential 77, con-

necting the origin (0,0) to some endpoint (x,t) (Figure 18) . The total energy of the

line can be written as

tx [Y( s )] = ~ cis
0

-/ (
dy\

2 ds) l+r1(Y (s)=s) (4 .41)

with a line tension y > O . The restricted partition function of all conformations that

run from (0,0) to (x,t) takes the form of a path integral,

(x't

)
x~Y~lka~3(x,t) =~

	

Dy[-]e
(®,o)

T(x, t) = --- k B T In 2(x, t)

	

(4 .44)

which satisfies, according to (4 .43), the KPZ equation

at
= kB Tp2~ '(V)2+(4.45)

with coefficients v = kB T/2y and A=

	

The equivalence between (4.42) and

(4.45) was first observed by Huse, Henley and Fisher [134].

Several remarks are in order . First, since (4 .45) is written for T rather than for

the thermal average is already implicitly performed when describing the directed

polymer by the KPZ equation, whereas the conventional noise average in the inter-

face dynamics corresponds to a subsequent disorder average . The succession of the

two averages implies that we are dealing with a case of quenched disorder. Second,

it should be noted that the natural initial condition for .F is different from the fiat

initial state commonly considered in the interface context : From the definition of

the path integral (4 .42) we have Z (x, 0) = ä d(x), corresponding to a deep narrow

groove in the `interface' .F(x,t) . Third, it is clear from the derivation that the map-

ping always leads to the isotropic KPZ equation; different signs of the Ai in (4.3)

cannot be accomodated [122] . This hints at some fundamental differences between

the isotropic and anisotropic equations, which still wait to be elucidated.

Readers who feel uneasy about the formal manipulations of the continuum path

integral (4 .42) will be reassured to learn that the mapping can be formulated and

explicitly carried out also on the level of microscopic, stochastic lattice growth mod-

els [8, 132, 158] . In these cases the resulting directed polymer problem typically

(4 .42)
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resides as zero temperature, so that the thermal average is replaced by the selection

of a single, optimal ground state path . This is nonessential as long as the finite

(low) temperature behavior and the behavior at T = 0 fall into the same universal-

ity class, which is true for the standard directed polymer (see below) but fails e .g.

in the presence of columnar disorder [159] (see Section 4 .6 .3).

We summarize the main correspondences induced by the mapping (details can

be found in the cited literature) . The rough interface configuration h(x,t) translates

into the rugged free energy landscape felt by a polymer of length t . The interface

velocity equals the free energy per unit length .f = 8.f /5t . This immediately provides

us with an appealing interpretation of the finite size correction to the stationary

interface velocity derived in Section 4 .3 : identifying the coefficients from (4.45) we

see that (4.23) expresses the increase in the free energy per unit length

n

f _ 2kB TL
(4 .46)

due to the confinement of the polymer to a cylinder of circumference L . The effect

is analogous to the increase in free energy incurred by a thermally excited line (in

the absence of disorder) confined to a region of lateral extent L, due to the loss of

configurational entropy [160) . The corresponding expression

(kE T) 2

	

(4.47)

is easily derived [132] from (4 .45) with 7? = 0 and appropriate boundary conditions.

Besides the different L-dependences of (4 .46) and (4.47), which show that the dis-

order always dominates the behavior on scales large than L , = (k B T)3hD, it is

interesting to note the opposite roles played by temperature in the two cases, as

well as the fact that (4 .46), in contrast to (4 .47), is independent of the line tension

Somewhat less obviously, the dynamic correlation length (t) N tl~z turns out to

be proportional to the transverse displacement of the polymer

. fthermal
'} L2

äx (t) "'- ([x(t)]2i112 W) t i / 2 , (4.48)

where square (angular) brackets indicate thermal (disorder) averages . The displace-

ment is superdiffusive when z < 2, due to the random potential which encourages

large transverse fluctuations ; diffusive behavior, z= 2, is characteristic of the en-

tropic wandering of a thermally excited line.

The directed polymer representation has been instrumental in developing an

intuitive understanding of the weak coupling/strong coupling phase transition of the

KPZ equation in dimensions d > 2 . In the directed polymer context the transition

75



appears as a thermal phase transition between a disorder-dominated, glassy low

temperature phase (strong coupling) and a high temperature phase in which the

polymer is essentially unobstructed by the disorder (weak coupling) . Rigorous proofs

for the existence of the transition, and bounds on the transition temperature have

been obtained [8, 161].

Another issue that deserves more than summary treatment is the interpretation

of the tilt (or Galilean) invariance of the KPZ equation in the directed polymer

language. We have argued in Section 4 .1 that, as a consequence of the invariance of

the equation under the tilt transformation (4 .4), the coefficient A of the nonlinearity

is not renormalized . From (4 .45) we see that this implies the nonrenormalization of

the polymer line tension 7 . Indeed, by applying the tilt invariance argument on the

level of the partition function (4 .42) it can be shown [162] that the average elastic

response of the polymer is completely unaffected by the disorder, in the sense that

the average free energy profile for a polymer of length t, fixed at the origin, is

2

(F(x , t )- T(O,t))

	

2t

	

(4 .49)

Since the transverse displacement of the endpoint from 0 to x stretches the poly-

mer, to leading order, by the amount x2 /2t, (4 .49) is simply a manifestation of

Hookes law with the line tension 7 of the pure system . This is a highly nontrivial

result, which has its roots in the statistical translational invariance of the disorder

potential, i .e. the fact that rl' and rl in (4 .5) have the same correlation functions;

statistical translational invariance, when regarded as a symmetry property, has pow-

erful consequences for a large class of disordered systems [163] . The simplicity of

the average free energy (4.49) notwithstanding, the actual response of a polymer in

a single realization of randomness is dominated by rare, large fluctuations drawn

from a nontrivial power law distribution [164].

While the line tension remains unrenormalized, the temperature T does not -

from (4.45) we see that T v, and hence, according to the scaling transformation

(3.55), temperature is driven to zero under renormalization, provided z < 2; the low

temperature (strong coupling) phase of the directed polymer is governed by a . zero-

temperature fixed point [120] . This is the reason for the equivalence of zero and

finite temperature scaling properties alluded to previously . The equivalence may

break down if the translational invariance of the disorder potential is broken, as is

the case in the situations discussed in the following section.

4o6 iraiLvä icrgeä2eous ~rcogrowth

In this section we shall concern ourselves with situations where the translational

invariance parallel to the interface (in the substrate plane) is broken due to the
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presence of an external, position dependent contribution to the local growth rate.

There is no principal difficulty in studying this problem in general dimensionalities,

however since almost all studies so far have addressed the one-dimensional case, we

will specialize to d = 1 from the outset . Consider then the following generalization

of the KPZ equation,

h
=vV 2 h +2(Vh)2+tI(x,t)+V(x) .

	

(4 .50)

We will discuss two types of growth rate inhomogeneities V(x) . In the first case (the

single defect case), V(x) is localized in a small spatial region and can be modeled,

in the continuum limit, by a 8-function,

V(x) = V0 6(x - x0),

	

(4.51)

where x 0 may be located either in the bulk, or at the boundary of the system; the

latter possibility is realized in the dynamics of an interface of finite lateral extent L in

which growth rate inhomogeneities arise at x = 0 and x = L due to some set of `free'

boundary conditions [129, 132] . Here the main interest is in morphological phase

transitions that may occur, by a mechanism to be explained shortly, as the strength

Vo of the inhomogeneity is varied . In the second case (many defects), V(x) is a

random function with short ranged correlations . Not surprisingly, as will be shown

in Section 4 .6 .3, this turns out to severely modify the roughness of the interface.

4.6 .1 Morphological transitions

The basic mechanism whereby a growth rate inhomogeneity of the type (4 .51) can

change the large scale morphology of the interface is easily accounted for [128] (Fig-

ure 19) . Consider an interface with a growth rate that is a symmetric function

of inclination, v(Vh) = v(0) + (A/2)( 7h)', and suppose for concreteness that A > O.

This implies that the interface can increase its growth rate by assuming a nonzero

tilt . Consequently, a macroscopic hill can form in response to a sufficiently large,

positive growth rate inhomogeneity Vo > 0 : Since the sides of the hill are tilted by

some amount ±u relative to the reference line, the hill grows faster than the planar

interface and thus allows the system to accomodate the external bias . This is not

possible if the growth rate is reduced at xo, i .e . if Vo < 0, since the planar interface

already propagates as slowly as possible and cannot slow down by tilting ; a defect

with Vo < 0 does not affect the large scale morphology. Clearly the roles of positive

(Vo > 0) and negative (Vo < 0) inhomogeneities are reversed if ) < O.

It is natural to regard the magnitude of the induced tilt, u, as an order parameter

of the transition, and to write

uN~Vo-VoT , VoVo

	

(4 .52)
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Figure 19: Illustration of the mechanism for tilting transitions induced by a localized

growth rate inhomogeneity. The growth rate v is assumed to be an increasing function

of inclination u. (a) If Vo > 0, the interface can increase its growth rate by forming a

macroscopic hill ; the slopes of the hillsides are indicated by dots in the v(u)-graph . (b)

If Va < 0, no transition occurs because the flat interface is already moving as slowly as

possible.

to define an order parameter exponent ß (note that possibly Vo = 0) . The transition

is associated with a diverging correlation length, which can be identified as follows.

In the tilted state, we consider the interface fluctuations about the average profile

he(x,t) =ux+v(u)t, i .e . setting h(x,t)=hp(x,t)+h(x,t) one has

ah

	

- at = Uv2~+auoh+ ~ (on)2+n(x,t)+V(x) .

	

(4 .53)

The essential feature is the linear term AuV h induced by the tilt . This term de-

scribes a drift of fluctuations with velocity c = - au. In contrast to the translational

invariant situation discussed subsequent to eq .(4.3), here the drift term cannot be

eliminated by going to a suitably chosen moving frame, since such a transformation

would not be compatible with the inhomogeneity V (x) . Instead, the drift is expected

to play an essential role in the dynamics [129] (for a related situation see [165] ) . In

view of the dimensional arguments employed in Section 4 .1, the primary effect of the

additional term is that it provides us with a third dimensionful coefficient, the drift

velocity c, that can be used together with the invariants A and Div to construct a

time-independent length scale

£(u) = A 2 (D/c 2 = ( Di v ) l ul - 2

	

(4.54)
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which diverges upon approaching the transition . Introducing the correlation length

exponent b through

f _1/gI-y (4.55)

it follows that o =Z3.

It is informative to contrast the quadratic divergence of (4 .54) with the corre-

sponding behavior in a ` mean field ' approximation [128, 129] to (4 .50), in which the

noise term ?1(x, t) is neglected . In the absence of noise the invariant quantities of the

equation are a, the drift velocity c and the coefficent v of the Laplacian term . Since

the dimension of v is [v[ _ [x]2/[t], a length scale can be constructed from v and c,

emF(u) = ( v l! al)I

u I-i (4.56)

which diverges linearly in .1/lu[ . This indicates that the presence of noise changes

the universal features of the transition : To clarify these issues we now turn to the

interpretation of inhomogeneous growth in the directed polymer representation.

4.6 .2 Delocalization and unbinding

To arrive, via the mapping described in Section 4 .5, at the generalized KPZ equation

(4.50), we have to start from the energy expression

1-[Y( s )] = ftds
2 ds

	

+77(Y( s ), s ) + V( y( s))

which contains an additional potential term V acting on the polymer . Since V is

independent of the `time' coordinate t, a localized inhomogeneity (4.51) corresponds

to a defect line that traverses the random energy landscape parallel to the t-axis

(Figure 18) . Noting that a < 0 in the KPZ equation (4 .45) for the polymer free en-

ergy, it becomes evident why a phase transition can be expected to occur for Vo < 0:

The defect potential being attractive, it competes with the roughening tendency of

the bulk disorder r? and may, if sufficiently strong, bind the transverse position of the

polymer close to xo ; in the bound phase the restricted free energy ..(x,t) increases

linearly with the distance from the defect, corresponding to a macroscopically tilted

interface. Thus the morphological transitions induced by the growth rate inhomo-

geneity reemerge in the guise of unbinding or delocalization transitions of a kind that

has been much studied in the context of thermal and disorder-induced fluctuations

of equilibrium interfaces [160].

At this point it becomes important to distinguish between the two possible lo-

cations of the defect position xo in the bulk or at the boundary of the system,

respectively . When the defect resides in the bulk, the defect potential V(x) is sym-

metricin x xo . This property is inherited by the positional probability distribution

(4.57)
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of the polymer. Consequently the average position will be equal to xo irrespective of

whether the polymer is bound to the defect or not ; in order to observe the transition,

the width (second moment) of the probability distribution has to be monitored . Fol-

lowing Forgoes, Lipowsky and Nieuwenhuizen [160] this case will be referred to as a

delocalization transition. In contrast, if the defect is located at the boundary of the

system (xo = 0, say), the polymer is subject to an additional 'hard wall' potential

which arises from the constraint that y(s) > 0 for all paths (this corresponds [132] to

a free boundary condition for the interface) . Therefore the total defect potential has

a repulsive hard core and an attractive short range part of strength Vo . In this case

the liberation of the polymer from the defect will result in a divergence of the aver-

age distance from the boundary, a phenomenon known as [160] unbinding . In both

cases the 'liberation' of the polymer from the defect is expressed in the divergence

of the correlation length £, which measures the typical distance of the polymer from

the defect ; for this reason the exponent 7P in (4 .55) is occasionally referred to as the

liberation exponent.

To appreciate why the two situations may lead to qualitatively different behav-

iors, it is useful to first consider the `mean field ' version of the problem in which

n = 0 in (4 .50) and (4 .57). Note that this simplification has a very natural interpre-

tation in the directed polymer language : In the absence of disorder (4 .57) reduces

to the energy of a thermally excited line (or one-dimensional interface) subject to

an external potential, a class of problems much studied in diverse contexts ranging

from wetting phenomena [160] to the adhesion and unbinding of fluid membranes

[93] .

In the thermal case the study of the delocalization or unbinding of a line reduces

to an exercise in elementary quantum mechanics . Taking the limit t ' co, the

diffusion equation (4 .43) for the restricted partition function Z(x,t) (derived from

the Hamiltonian (4 .57)) becomes a stationary Schrödinger equation

(k B T ) ` z }V
27

where fo denotes the free energy per unit length . The transition is associated with

the disappearance of the last bound state of the Schrädinger problem and the con-

comitant vanishing of the eigenvalue fo . Outside the range of V such a bound

state decays exponentially on a scale £ = kBT/\/--2N fa, hence the order parameter

u = (V/Ox is u = k B T/i in accordance with (4 .56) (note that from (4 .45) we have

vl i~ = k B T/2) . From the well-known fact that a symmetric, attractive potential

always possesses at least one bound state in one dimension we conclude that the de-

localization transition occurs at zero potential strength, Vä = 0, while the threshold

for unbinding is expected to be nonzero . Specifically, if the potential is modeled by

2_ fo3,

	

(4 .58)
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a square well of width a and depth -Vo, one obtains

kBT
(kBT) 2

=	

u

	- l ~ a ("vp - Va)

	

(4.59)

with Vo = 0 for delocalization and Vo = ---(kBT)2(i /2a) 2 /2fy < 0 for unbinding . Com-

paring with (4 .52) we see that the order parameter exponent 0 =1 in the thermal

case, both for delocalization and unbinding.
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Figure 20 : Phase diagram for a directed polymer confined by two attractive walls, as

obtained from the exact solution of the ASEP with open boundary conditions [132] . YE,

and V1 denote the (negative) contact potentials at the left and right walls . The bold lines

indicate continuous unbinding transitions, while the dashed line represents a first order

transition between two bound phases.

Delocalization and unbinding transitions in the presence of quenched bulk disor-

der constitute a highly nontrivial class of problems that has been intensely studied

in the years following the pioneering work of Kardar [166] . It was pointed out only

very recently [132] that the particular problem of zero-temperature disorder-induced

unbinding affords an exact solution in one transverse dimension, d = 1 . The solution

is obtained in a somewhat indirect fashion, through a sequence of mappings that

take a zero temperature . discrete directed polymer problem to a growth model (the

single step model briefly discussed at the end of Section 4 .3) and further to a ver-

sion of the asymmetric simple exclusion model (ASEP, see Section 4 .3) with open

boundaries originally introduced by Krug [129] . The ASEP, in turn, was solved

exactly by Derrida, Evans, Hakim and Pasquier [130] and independently by Schutz

and. Domany [131] .
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The main features of the unbinding transition that emerge from the exact so-

lution are as follows (see also Figure 20) . The transition occurs at a finite value of

the binding potential, and the order parameter exponent in (4 .52) is 3= 1 as in the

thermal case (in fact the entire phase diagram of the model is reproduced exactly

by the mean-field/thermal approximation, for reasons that are not completely un-

derstood) . The relation (4 .54) would then suggest that the liberation exponent V

defined by (4.55) should take the value V = 2, different from the thermal result V = 1

(see (4 .59)) . This was already predicted by Kardar [166], and is explicitly confirmed

by the exact solution [I32].

While early numerical studies [166, 167] suggested that disorder-induced delo-

calization may be rather similar to unbinding, recent analytic and numerical work

[168, 169, 170] seems to converge on the view that the two problems are in fact

fundamentally different . First, as in the thermal case, delocalization occurs at zero

potential strength, Vo =O . Second, and more importantly, the values of the expo-

nents ß and L' are formally infinite, in the sense that the power law divergence (4 .55)

is replaced by an essential singularity

-exp(-- C/Vo),

	

(4.60)

with C > 0, for Vo < 0 ; the relation (4.54) is nevertheless satisfied 170] . Needless to

say, the direct numerical verification of (4 .60) is exceedingly difficult [168, 169].

4 .6 .3 Many defects

Much of the recent work on the disorder-induced delocalization of directed polymers

has been motivated by the application to flux lines in dirty high-temperature super-

conductors [169] . There, the localizing potential is provided by a columnar defect

which may either be present in the material in the form of a screw dislocation, or

may be deliberately created by ion irradiation, with the intent of increasing the crit-

icalcurrent through enhanced pinning . Localization at the defect is counteracted

by thermal fluctuations (i .e ., entropy) as well as by bulk disorder that appears in

the form of point defects such as oxygen vacancies.

In this context it is very natural to consider the behavior of a flux line in an array

of many columnar defects with randomly distributed pinning strengths . Within the

continuum theory defined by (4 .57), this can be modeled by chosing the potential

V. as a_ .Gaussian random variable with zero mean and short ranged correlations,

(V( x)V(x')) = V02S(x - x') .

	

(4.61)

In terms of interfaces described by the inhomogeneous KPZ equation (4 .50), this

corresponds to a growth rate with a time-independent, spatially random component
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(not to be confused with the quenched, h-dependent noise that appears in the study

of interface displacement in random media [68, 69]) . Since a physical realization of

such an interface growth process seems somewhat hard to imagine, in the following

discussion we will mostly use the directed polymer language.

As it stands, the KPZ equation (4 .50) with random inhomogeneities poses a

rather formidable problem, the directed polymer being subject to the conflicting

influences of point disorder, columnar defects and thermal fluctuations . The problem

without point disorder @I= 0) has a rich history [159, 171], with applications ranging

from the conformation of (undirected!) Gaussian polymers in random media to the

evolution of biological species . Here, we shall focus on two special cases, (i) the

purely columnar problem ( = 0) at finite temperature, and (ii) the zero temperature

problem in the presence of both columnar and point disorder . We will argue that the

thermal fluctuations and the point disorder play very similar roles in counteracting

the localizing tendency of the columnar defects in the two cases, and can in fact be

treated on the same footing [172] . In passing, we note that the zero temperature,

purely columnar problem shows nonuniversal behavior [159] that is different from

that at finite temperature, while the finite temperature problem in the presence of

both columnar and point defects has not been studied so far.

To avoid some subtleties associated with the continuum formulation of the prob-

lem, we envision, for the purposes of the present discussion, a suitable discretization.

For example, in the case of directed paths on the square lattice with the transverse

displacement restricted to at most one lattice spacing per time step, the discrete

version of the diffusion equation (4 .43) for the restricted partition function reads

[159, 172]

z(x, t + 1) = e-o(x,t)+V(z))/kBT[z(x, t) + z(x 1,t) + z(x + 1, t)] .

	

(4.62)

In the zero temperature limit this reduces to a recursion for the ground state energies

E(x,t) = -limya,okB TIn z(x,t).

The competition between the localizing defect and the delocalizing influence of

thermal or point disorder fluctuations has already been emphasized as the driving

force behind delocalization and unbinding transitions . In the presence of a random

array of columnar defects, this competition extends to all scales, thereby dramati-

cally enhancing the transverse wandering of the polymer . To see this, we first need

to identify the 'optimal' disorder regions to which the polymer is attracted . In the

presence of either point disorder or thermal fluctuations, the (free) energy cost per

unit length required to localize the polymer in a region of transverse extent £ is of

order £-T , where (for d =1 transverse dimension) r = 1 for point disorder, and = 2

in the thermal case (see eqs .(4.46) and (4 .47)) . Due to the confinement energy, the

polymer is primarily attracted to wide regions in which all columnar defect energies
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Figure 21 : Measures of the transverse wandering of a finite temperature directed polymer

in 1+1 dimensions, subject to binary columnar disorder, but no point disorder (77= 0 in

{4 .62)) . The upper and the lower curves show ([x(t)2])1/2 and ([x(t)]2)112, respectively,

divided by the path length t . The dashed line indicates the prediction (4 .64) for the

logarithmic prefactor, with r = 2 in the entropic case . The data were obtained by averaging

over 104 realizations of disorder . [159]

are lower than average ; naturally, such regions are rare, arid to reach them large

transverse fluctuations are necessary.

For a quantitative estimate, consider e .g. a binary distribution of columnar

defect energies, V = - Vo with probability p and V = 0 with probability 1 - p . The

probability for finding £ subsequent attractive defects (which have V = - V0) is then

p .g , and the (free). energy per unit length for a polymer residing in such a region can

be estimated as -Vo + E, with e N 1/f T This translates into a `density of states'

p(c)

	

exp -	1	pE l

	

(4 .63)

a similar form is obtained for continuous, bounded disorder distributions . A stan-

dard variable range hopping argument [159, 1721 applied to (4 .63) . then shows that

the transverse displacement increases as

&x(t) .. .
(lnt)1fT

, (4.64)
t
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in reasonable agreement with simulations [159 . 172] (see Figure 21) . In d transverse

dimensions the exponent of the logarithmic factor in (4 .64) is 1+7/d. The result

bx ' t/(lnt) 3 for the thermal case in one dimension has been rigorously confirmed

by Sznitman [173].

In case (ii), point and columnar defects at zero temperature, the result (4 .64)

has the surprising, and somewhat counterintuitive, feature that the displacement

due to the combined effect of both types of defects is larger than that produced by

any of the two types alone : The pure point problem has the standard KPZ behavior

bx - tilt = t213, while purely columnar defects at zero temperature, with a uniform

distribution of defect energies, lead to a wandering as 6x t 1/2 [159].

Returning to the kinetic roughening of interfaces described by the KPZ equation

(4.50) with random inhomogeneities, the main interest is in the temporal behavior

of the interface width W, rather than the correlation length Sx described by

(4.64) . Arguments of the type sketched above indicate that the width increases as

t

	

(4.65)
(InO r

in one transverse dimension, where T = 1 (r = 2) in the presence (absence) of a time-

dependent noise term at . The t/lnt behavior has in fact been observed in numerical

simulations of a growth model that combines time-dependent noise and spatially

random, quenched growth rates [174].

Up to higher order corrections (which may however decay very slowly, as powers

of (ln(lni)) -1 [159]), these arguments apply whenever the distribution of columnar

defect strengths V(x) in (4.62) has finite support . For rapidly decaying, unbounded

distributions (e .g. Gaussian or exponential) the wandering is still subballistic, 6x

t/(lnt?, but the value of j differs from that in (4 .64) [159] . The effect of slowly

decaying (power law) distributions of columnar disorder has so far been studied only

in the absence of both thermal fluctuations and point disorder, where it typically

leads to ballistic wandering, bx t, and ..nonextensive behavior of the ground state

energy [159] .
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io The role of surface diffusion

Despite the challenging unresolved problems posed by the KPZ theory, over the last

few years the attention of the kinetic roughening community has turned increasingly

towards a class of surface growth processes that are not described by the KPZ

equation. The shift of focus is motivated mainly by a critical reassessment [15] of

the physical relevance of the KPZ nonlinearity in deposition processes, which would

appear to provide the most natural realization of kinetic roughening phenomena.

We have emphasized in Chapter 4 that the origin of the (kinematic) KPZ non-

linearity lies in a nontrivial inclination-dependence of the growth rate v, measured in

the vertical (h-) direction (see eq .(4 .3)) . However, as was first pointed out by Krug

[102], in the most. simplistic model of crystal growth from the vapor (the Wilson-

Frenkel model ; see [101] and [73]), in which every atom impinging on the surface is

immediately incorporated into a perfect crystal lattice, the growth rate is manifestly

independent of inclination. In suitable units it can be written as

u--F/p

	

(5.1)

where F denotes the deposition flux and p is the deposit density (equivalently, 1/p is

the atomic volume) ; in the situation just described, both are independent of surface

orientation. In the framework of the derivation of the isotropic continuum equation

(3.6) in Section 3.1, this result may be regarded as a consequence of crystalline

anisotropy, which enforces an orientation dependence of the normal surface velocity

that precisely cancels the geometric factor 1/1-{- (Vh) 2 in (3 .4).

Equation (5.1) is useful in identifying the mechanisms by which the simplistic

Wilson-Frenkel picture fails in real deposition processes . At low temperatures, the

mobility on the surface is insufficient for every deposited atom to reach a lattice site

before the arrival of other atoms, and a finite concentration of vacancies and other

defects results . This implies a shift in the deposit density which, as is well known

for the extreme case of ballistic deposition [23] (see also Section 2 .1), is a function of

the surface inclination relative to the deposition beam . On an inclined surface one

has a higher concentration of steps, at which overhangs and, eventually, overgrown

vacancies can form; consequently the density p decreases, and, according to (5 .1),

the growth rate increases with the tilt [102].

At high temperatures there is a nonnegligible probability for a deposited atom to

redesorb from the surface ; the sticking coefficient is less than unity . As the desorption

probability depends on the local bonding environment, the desorption flux varies e.g.

with the step density, and hence with surface inclination . To account for desorption,

the total deposition flux in (5 .1) should be replaced by a net flux F-Fdesorp( Vh ),
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which, again, induces an inclination dependence in v . This mechanism is also evident

in the celebrated Burton-Cabrera-Frank (BCF) expression for the growth rate of a

vicinal surface [73, 175] (see also Section 5 .2.1)

V BCF = 2F( D s f g)tanh(q2Ds, ),

	

(5 .2)

where Q= 17hI-' is the step distance, D5 is the surface diffusion coefficient, and ,-

is the inverse desorption rate . In the limit r -} oa (no desorption) (5 .2) reduces to

(5 .1), VBCF # F.

In the context of simple stochastic growth models, the `desorption' mechanism

may be viewed as being responsible for the inclination-dependence of the growth rate

for the class of restricted solid-on-solid (RSOS) models introduced by Meakin et al.

[19], Kim and Kosterlitz [143] and others [109, 176] . In these models deposition

attempts are accepted only if certain conditions on the local height configuration

are met; obviously this can be interpreted in terms of a zero sticking coefficient, or

immediate redesorption, for some local environments.

The conclusion is that vapor deposition processes do fall into the KPZ univer-

sality class, however the two underlying mechanisms apply mainly at either high or

low temperatures . It turns out that technologically relevant deposition methods -

in particular molecular beam epitaxy (VIBE) - are often operated in the temper-

ature window where both mechanisms, desorption as well as defect formation, can

be neglected. This is perhaps not entirely surprising, since the practitioner would

attempt to optimize the process towards growing perfect crystals (no defects) at

maximal yield (no desorption) . Empirically, the absence of the two mechanisms is

demonstrated directly by the observed independence of the growth rate on miscut

angle (that is, inclination), e .g . in the MBE of silicon [73].

Given the widespread interest in MBE applications, and availability of MBE

growth chambers as well as sophisticated experimental techniques for the charac-

terization of the growing surface, it is obviously desirable to bring the concepts

of kinetic roughening to bear upon the MBE process. This has prompted a large

amount of theoretical work devoted to the limiting case, termed ideal MBE by Lai

and Das Sarma [95], of deposition in the complete absence of both desorption and

defect formation . The fundamental interest in this class of processes arises from

the hope of finding new, nontrivial universality classes - distinct from the KPZ-class

which is excluded by construction . As we shall see in this chapter, the removal of

the dominant KPZ-term opens up a Pandoras box of possible behaviors . Moreover,

the assignment of a universality class (represented by a specific large scale equation

of motion) to a given microscopic model turns out to be a rather subtle problem,

with seemingly minor details playing a decisive role in a way unprecedented by the

experience with KPZ-type models .
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Ideal MBE. In the absence of desorption all relaxation processes on the surface

conserve the mass of the growing film . The assumption of perfect crystalline struc-

ture transforms mass conservation into volume (or height) conservation . Thus, apart

from the deposition flux, which is by definition uncorrelated with the surface con-

figuration, ideal MBE is a conservative growth process that can be described by a

driven continuity equation

at
+V -= F,

	

(5 .3)

where F includes the average deposition flux as well as shot noise fluctuations.

Clearly, the question of universality classes reduces to a classification of the possible

forms for the surface diffusion current J.

We remarked already in Section 3 .1 that, in addition to the classical equilibrium

surface diffusion current, two types of nonequilibrium contributions generically oc-

cur. Here, we reemphasize that these contributions are fundamentally different

from the KPZ nonlinearity, in the following sense . The KPZ-term is obtained from

a purely kinematic relation, eq .(3.4), and arises physically simply because the in-

terface is moving on average . In contrast, for the MBE equation (5 .3) the mean

motion is irrelevant, because it does not couple to the surface fluctuations (compare

to Section 4 .3) . Instead, the nonequilibrium contributions to the current J are of

dynamical origin, reflecting the perturbation of the surface diffusion processes im-

posed by the external deposition flux . Consequently, the microscopic interpretation

of these contributions requires considerable insight into the behavior of adatoms on

the surface.

The purpose of this chapter is to review the current theoretical understanding of

nonequilibrium effects in ideal MBE . The two types of nonequilibrium contributions

- inclination-dependent currents and inclination-dependent chemical potentials - are

discussed separately in Sections 5 .2 and 5 .3 . A central theme is provided by the idea

that the main effect of the deposition flux is to remove the constraints imposed on

equilibrium surface diffusion by the requirement of detailed balance in microscopic

processes. This view is supported by the fact that closely analogous nonequilibrium

effects arise if a surface is driven out of equilibrium by some mechanism other than

growth, provided detailed balance is broken [77, 177, 178) . In Section 5 .4. the

emerging picture is summarized, and the experimental situation is evaluated . To

set the stage, . we . begin in Section 5 .1 with . a survey of microscopic models.
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501 A survey of MBE models

5 .1 .1 Limited mobility models

The first example of a growth model that conforms to the 'ideal MBE' restrictions of

no desorption and no defect formation was proposed by Family in 1986 [100] ; we have

described the model in Section 3 .4. Although the title of Family's paper features

the term 'surface diffusion', the basic assumption of the model - that the motion of

adatoms is biased in the direction of decreasing absolute height - is hardly realistic

in the context of MBE (unless one posits that the adatom dynamics is completely

dominated by transient mobility and downward funneling effects, which may well

be true on metal surfaces at low temperatures [84, 179, .180]) . Recognizing this

weakness, Wolf and Villain [86] and Das Sarma and Tamborenea [105] independently

proposed variants of Family's model in which the preferred incorporation sites for

the adatom are determined by the local bonding environment ; roughly speaking, the

function Kx introduced in Section 3 .4, which the mobile adatom seeks to minimize,

is identified with the negative coordination number.

In fact the two models introduced by Wolf and Villain [86] and by Das Sarma

and Tamborenea [105] differ slightly in their microscopic rules . For later reference,

we make the effort to precisely define three versions of these models, the first two of

which (DT1 and DT2) are probably close to the model actually simulated by Das

Sarma and Tamborenea, while the third (WV) is the model proposed by Wolf and

Villain . Bizarre as it may seem at this point, we will argue in Section 5 .2 .3 that

all three models belong to different universality classes asymptotically - a striking

example of the sensitive dependence on microscopic details alluded to above.

Figure 22: Illustration of the lateral coordination number defined in (5 .4) . . The shaded

squares. are virtual atoms about to be deposited onto the (bold) surface.

To keep . matters simple, we restrict the discussion to one-dimensional surfaces,

and allow the freshly deposited atom to search for an incorporation site only among

the nearest neighbors of the deposition site . As in Section .3 .4, the surface configura-

tion is described by a set of integer height variables h, defined on the one-dimensional

substrate lattice i=1, . . .,L (with periodic boundary conditions, say) . The bonding

~'.

k i - . 0 1

	

0 2.
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environment at each site i is characterized by the lateral coordination number ki

(that is, the number of lateral nearest neighbor bonds) that an additional atom

would have if it were deposited at i,

0 : hi > h2+1 and h i > hi-1

k i =

	

1 : hi_1 < h i < h,+1 or hi_1 > hz > h,+1

	

(5 .4)

2 : hi < h 2 _ 1 and h i < hi+1

(see Figure 22) . In one deposition step, a site i is chosen at random and the coor-

dination numbers (k, 1 , k2 , k i+ 1 ) are examined.

In the DT models, sites with k, = 1 or 2 are permanent traps; the freshly de-

posited atom is moved to one of the neighboring sites i ± I only if ki = 0 and kz_ 1 > 0

or k i+ 1 > O . The atom is moved to the right if (ki_ 1 , ki+1) _ (0,1) or (0, 2), and to the

left if (ki_1 ,k i+ 1 ) = (1,0) or (2,0) . In a symmetric environment, (kia l ,ki+1 ) = (1,1)

or (2,2), a random choice is made to move the atom left or right with equal prob-

ability. The two versions DT1 and DT2 differ in their treatment of the cases

(ki_ 1 , k i+1 ) = (1,2) and (2,1) . Rule DTI treats them as symmetric configurations, i .e.

one of the two neighboring sites is chosen at random, while DT2 always moves the

atom to the site with the largest value of ki, i .e . to the right for (ki_l,ki+ 1 ) = (1,2)

and to the left for (ki_ 1 , ki+1 ) _ (2,1).

The WV rule coincides with DT2 when ki = 0, however in addition atoms de-

posited on sites where ki =1 are allowed to move, if they can increase the coordina-

tion number . The atom is moved to the right if (k i , k i+1 ) = (1,2) and to the left if

(ki_1, ki ) _ (2,1) ; the symmetric case (ki_ 1 , ki , ki+1 ) _ (2,1,2) cannot occur.

It is worthwhile to point out that in all three models (DTI ., DT2 and WV)

the height of the incorporation site is always less or equal to that of the deposition

site, i .e . there are no 'uphill ' jumps (this is no longer true if next nearest neighbor

jumps are included) . Naively, one might expect this asymmetry to give rise to a

`downhill' nonequilibrium current, as discussed in Chapter 3, and consequently place

all models in the Edwards-Wilkinson universality class (see Section 3 .2) . We will

show in Section 5 .2 .2 why this simple minded reasoning fails.

The work of Wolf and Villain [86] and Das Sarma and Tamborenea [105] was

of great importance because it numerically demonstrated, for the first time, the

possibility of scaling behavior in vapor deposition processes that is distinct from

the familiar Edwards-Wilkinson and KPZ universality classes . A confusing variety

of related models have been subsequently proposed, with rules that are not always

easy to decipher from the published description [95, 106, 181, 182, 183, 184].

A particularly interesting variant, which will play a certain role in the final

classification attempted in Section .5 .4.1, was introduced very recently by Kim, Park

and Kim [185] . This model is a restricted solid-on-solid (RSOS) model in which a
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Figure 23: Surface configuration hi - (h) (upper curve) and local step size .si = I hi+l - h i+

(lower curve shows s i -- 300) generated by the DTI rule . A total of 105 monolayers were

deposited on a substrate of L = 500 lattice sites . [94]

strict constraint on the absolute magnitude of nearest neighbor height differences

is enforced at all times . Since it is required, under the rules of ideal MBE, that

every deposited atom be incorporated somewhere on the surface, such a constraint

can be maintained only if the region around the deposition site in which the atom

searches for an eligible incorporation site is unlimited . In the implementation of

Kim et al .[185] the search is conducted in shells of ever increasing radius around the

deposition site.

The common feature of all these models (and the rationale for subsuming them

under the `limited mobility' heading) is that only freshly deposited atoms are re-

garded as mobile ; once the preferred incorporation site has been chosen, according to

some rule, in the neighborhood of the deposition site, the deposited atom is placed

there permanently . If, as is commonly done, the potential incorporation region is

restricted to the nearest neighbors of the deposition site, the adatom mobility is

very limited indeed, and the model strongly overemphasizes the disordering influ-

ence of the shot noise in the atomic beam . Consequently, the surface morphology is

extremely rough (Figure 23) . In a certain sense the limited mobility models do not

allow for any true surface relaxation, since there is no dynamics when the beam is
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turned off. The crucial improvement afforded by the collective diffusion models, to

be described next, addresses precisely this problem.

These remarks make it clear that the limited mobility models have the status of

toy models, rather than providing a (semi-) realistic description of MBE . We should

mention, however, that a realistic interpretation of these models does exist, in terms

of a coarse-grained algorithm for island nucleation and growth, when the growth

rule is supplemented by a noise-reduction algorithm [186].

5 .1 .2 Collective diffusion models

An important number for characterizing epitaxial growth is the ratio of the surface

diffusion constant D5 to the deposition flux F . To arrive at a properly nondimen-

sional quantity, we express the flux in terms of the monolayer completion time T ML

and the diffusion constant through the atomic hopping rate R, as

~'` _ (adfML)
-1 '

-D5
= a2R

where a is the lattice constant, and d the substrate dimension . The relevant number

is then Rr> 1L . Note that Ds refers to the tracer diffusion of a single adatom on

a perfect, flat surface without steps or islands ; the collective diffusion constant,

which determines the adatom mobility in the macroscopic theory, eq .(3 .11), can be

significantly reduced relative to Ds [187].

For an order of magnitude estimate, consider MBE of silicon at 600 ° C and a

growth rate of one monolayer per second [73] . The conventional Arrhenius ansatz

for the hopping rate reads

R =woexp(--Es /kB T)

	

(5 .6)

with a vibrational attempt frequency wo 2kB T/h = 3 .64 x 10 13 s -1 (here h denotes

Plancks constant) . With the experimental estimate Fs ti 1 .3 eV for the surface diffu-

sion activation barrier, this yields RTML 1 .1 x 106 . At higher temperatures, lower

flux rates or for metal surfaces where the activation energies are lower, values of

RTML 10 10 and more are possible . Thus, growth under MBE conditions must be

viewed as a competition between two opposing processes - disordering through de-

position and smoothening through diffusion - that occur on widely separated time

scales . The models described in this section are designed to deal with this situation,

at least in principle (in practice computational resources limit the values of RTML

that can actually be achieved) . Accordingly, their dynamics consists of two sets of

rules - a deposition rule and a diffusion rule - that can be applied at widely different

rates .

(5 .5)
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Arrhenius dynamics . The most popular model in this class is the Arrhenius

model introduced and investigated by Vvedensky and coworkers several years prior

to the advent of ideal MBE in the kinetic roughening community (188, 189, 190]

(see also [191] and references therein) . These early studies were concerned mainly

with reproducing experimentally observed features of the early stages of growth,

such as the characteristic oscillations in the RHEED (reflection high-energy electron

diffraction) signal.

The surface is modeled in the conventional solid-on-solid (SOS) fashion [101], its

position being specified by a set of integer height variables hx above the substrate

(x-) lattice. Deposition occurs, at a rate F, by selecting a site x at random and

letting hx --} hx + 1 ; more involved deposition schemes, in which the kinetic energy of

the depositing atom allows it to search, in the spirit of the limited mobility models,

for a highly coordinated site in the neighborhood of the deposition site, have also

been implemented [192].

n i = 1 2

	

0

	

2

	

2

Figure 24: Definition of the coordination numbers (5 .8) . The surface configuration is

identical to that in Figure 22, but here the relevant environments are those of (shaded)

surface atoms that attempt to hop.

The modeling of the diffusion step adheres to the Arrhenius form (5 .6) for the

hopping rate, however with an activation barrier that depends on the local bonding

environment . The barrier is assumed to be of the form

E=Es+nEN

	

(5 .7)

where E,s is the barrier on a flat surface used in (5 .6), and EN is a bonding contri-

bution multiplying the number n of in-plane (lateral) nearest neighbor bonds of the

adatom that attempts to jump. It is important to point out that the lateral coordi-

nation number n is different from the coordination numbers k2 introduced in Section

5.1 .1, since it refers to an atom that is actually present on the surface, rather than

to a `virtual' atom about to be deposited . For clarity we give here the definition of
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n for a one-dimensional surface, in analogy with (5 .4),

( 0 : h i > h i+1 and h i > hi_1

ni =

	

1

	

h i_1 < h, < h i+1 or hi-1 > hi > hi+1

2 : h i < hi_1 and hi < hil l,

see Figure 24 . Since jumps of isolated adatoms (n = 0) constitute the fastest process

in the problem, they define the time scale and are accepted with unit probability

(note that this implies a considerable speedup, by a factor of exp(E s /kB T), com-

pared to a molecular dynamics simulation that operates at the attempt frequency

wo in (5.6)) . Jumps of more highly coordinated atoms (n > 0) are executed with

probability exp(-nEN/kB T) . It should be emphasized that, within the SOS model,

the topmost atom above each substrate site is a potentially mobile adatom; even

fully coordinated surface atoms, which have n = 2d on a d-dimensional surface, can

move, albeit at a very small rate.

When a jump occurs, the atom is removed (hx hx - 1) and placed at a ran-

domly chosen nearest neighbor site y (hy -+ by +1) . At least in this basic, most

commonly used version of the model, the jump rate is independent of the bonding

environment at the final site ; variants which abandon this simplifying (and, as we

shall see, crucial) assumption have been considered recently [192, 193, 194] . A note-

worthy feature of the equilibrium (F = 0) dynamics of the basic Arrhenius model is

a simple relation between the collective and the tracer surface diffusion coefficients,

viz . their ratio is exp(-dEN /kB T) for a d-dimensional surface [195].

Detailed balance. It was first suggested by Siegert and Plischke [74, 196](see also

[197]) that, as a minimal criterion in the choice of surface diffusion rules in MBE

models, one should require the surface to relax into a reasonable thermodynamic

equilibrium state when the beam is turned off . This would ensure that the observed

nonequilibrium effects are really associated with the external particle flux, rather

than being artifacts of the surface diffusion dynamics . A sufficient condition is that

the jump rates satisfy detailed balance with respect to some short-ranged energy

function 7( . Explicitly, denoting by Rxy the jump rate from site x to a nearest

neighbor site y., the condition reads

Rxy(H)/Ryx(Hxy) = exp[-(R(H"Y ) - x(H))/kBT],

	

(5.9)

where H is a shorthand notation for a height configuration . {hx} and HxY is the

configuration obtained from H by moving an atom from x to y ; for clarity, the

dependence of the jump rates on the configuration has been indicated also.

Simple energy expressions for a solid-on-solid surface are the Hamiltonians

q=Kq

	

jhx - by',

	

(5.10)
(xy)
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the sum running over nearest neighbor pairs . The case q =1 is known as the standard

SOS model, and q = 2 is the discrete Gaussian model [198] . It is easily checked that

the basic Arrhenius rules for surface diffusion satisfy detailed balance with respect to

the standard SOS model (q = 1), provided the bonding contribution to the activation

barrier is set to EN = 2K 1 .

Of course, the requirement of detailed balance is fulfilled by a large variety of

jump rates . Siegert and Plischke [74, 196] chose the `Metropolis' function

~xy = [1 + exp(('7-((Hx3') - 7i(~))/ kB T )]-1

	

(5.11)

and studied the effect of varying the power q in (5 .10), with rather remarkable results

(see Section 5 .2.2) . One motivation for considering different values of q comes from

the observation [199] that the Hamiltonian (5 .10) mimics, for q > 1, the effect of step

edge barriers (also referred to as Schwoebel barriers [200, 201]) which are known to

exist on certain metal surfaces . Field-ion microscopy studies [202, 203, 204] show

that atoms diffusing on a terrace can be reflected when attempting to jump down

from the terrace edge . This is interpreted in terms of an increased energy barrier

for inter-layer diffusion, due to the reduced bonding experienced by the atom at an

edge position (the energy landscape is illustrated in Figure 28).

Figure 25 : The excess step edge energy (5 .12) is the energy difference between atom 2

and atom 1.

To see that the Hamiltonian (5 .10) incorporates this effect, consider adding an

isolated adatom (n = 0) to a perfectly flat terrace (Figure 25) . From (5.10) the excess

energy associated with the atom is 2dKq in d dimensions . Now imagine moving the

atom to the cliff edge of a straight, monoatomic step . At such an edge site the

energy of the atom is (2d-1)Kq + (29 -1)Kq , since one of the neighboring sites is

now two lattice units lower, rather than one . Thus, the energy at a step edge is

increased by an amount

=(2q -2)Kq >0

	

(5.12)

for q > 1 . If the jump rates are sensitive to the energy at the final site (this is true

e.g. for the rates (5.11)), then a diffusing atom approaching a step from above is

likely to be reflected, rather than being incorporated at the step . This effect is

one of the main microscopic mechanisms that give rise to a nonequilibrium surface

diffusion current [15] and will be discussed in detail in Section 5 .2.1.
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In our opinion, the requirement of detailed balance for surface diffusion processes

is a useful guiding principle that should be abandoned only if compelling reasons

exist to do so ; as we shall see below, matters are sufficiently complicated even

without artifacts arising from ill-chosen diffusion dynamics . Nevertheless, a number

of investigations of collective diffusion models of MBE have been carried out in which

surface diffusion is governed by energetic considerations, but detailed balance is not

(or only approximately) fulfilled . For example, in some studies of the Arrhenius

model the slowest processes, involving the motion of atoms with n = 2 in d = 1,

are completely suppressed for numerical convenience [105, 106] ; this clearly violates

detailed balance, though the effects may be small at low temperatures . Phillips and

Chrzan [199] proposed a model of crystal growth (in the presence of desorption)

in which surface diffusion is governed by the Gaussian Hamiltonian, q = 2, but the

system is updated in parallel, in violation of detailed balance [197] . Finally, in

some recent papers [184, 214] Arrhenius-type dynamics is supplemented with an

additional rule that prevents atoms from jumping up, a further source for possibly

artificial, non-detailed balance behavior.

5 .13 Beyond the SOS approximation

All models described so far are of the SOS-type, wherein the crystal is viewed as

an array of columns of heights hX above the substrate lattice . The SOS restriction

is quite natural in the context of ideal MBE, since it prevents, by construction, .

the formation of bulk defects . Nevertheless it has been been criticized as becoming

unphysical in the presence of high surface steps [205, 206] . Indeed, since atoms move

laterally, from the top of one column to another, irrespective of the height difference

involved, the vertical motion is effectively instantaneous, as the time required for

diffusion does not depend on the distance along the surface. This is hardly a problem

for collective diffusion on two-dimensional surfaces, especially for realistically large

values of RTML , since high steps are exceedingly rare in that case ; but the criticism

is clearly relevant in one dimension, where fluctuation effects can create large local

height gradients, especially in the limited mobility models . Furthermore, it is of

some interest to understand the crossover from ideal MBE to (presumably) KPZ

scaling once overhangs are allowed to form through 'vertical' diffusion.

Deposition models which include both surface diffusion and defect formation

have long been considered in the optical thin film community [207] as well as in the

detailed microscopic modeling of semiconductor MBE [208, 209], however in these

works the emphasis was not on obtaining information about the statistical properties

of the surface . Because of the significant computational demands associated with

a realistic modeling of isotropic surface diffusion, only a few, exploratory studies
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of this problem have been performed to date in the context of kinetic roughening.

Yan [2051 introduced two models on the square lattice (d = 1) which are essentially

isotropic variants of the limited mobility models of Section 5 .1 .1 . Deposition occurs

either in the manner of ballistic deposition (sticking at the first empty site with an

occupied nearest neighbor, see Section 2 .1), or as in the SOS models (deposition onto

the topmost atom in a lattice column) . The freshly deposited atom then performs

a number of random walk steps along the arclength of the surface, vertically or

horizontally. The atom is trapped permanently at sites with two or more nearest

neighbors, or else it stops walking when the number of steps has reached a prescribed

threshold LRW . For both kinds of deposition rules a rather gradual crossover from an

early time regime possibly described by the noisy Mullins equation (see Section 3 .2),

to KPZ-type scaling was observed, and it was confirmed that the deposit acquires

a finite density of defects 1 -- p which approaches zero upon increasing L RW .

The model of Kessler, Levine and Sander [206] is closer in spirit to the collective

diffusion models of Section 5 .1 .2, in the sense that any atom that is not fully coor-

dinated may move, even if it was not recently deposited . A move occurs if a more

highly coordinated site can be found within a box of length and height 2L D +1,

where the `diffusion length' L D is to be roughly identified with L 1a in Yan's model.

The model was studied on the square lattice, with a `ballistic' deposition rule (see

above) . In this case the crossover from an early time regime, apparently character-

ized by Edwards-Wilkinson scaling (see Section 3 .2), to the KPZ-regime is observed

to be rather violent, with a rapid intermediate increase of the width attributed to

the sudden proliferation of bulk defects.

A similar scenario was found by Das Sarma, Lanczycki, Ghaisas and Kim [210]

in simulations on both two- and three-dimensional lattices (d =1 and 2) with the

`ballistic' deposition rule . These authors employed an Arrhenius-type collective

diffusion model in which the activation barrier is proportional to the total number

of (horizontal and vertical) . nearest neighbors of the atom . If the hopping attempt is

accepted, the atom is moved to a randomly chosen nearest or next nearest neighbor

site, provided the landing site is at the surface, i .e . it possesses at least one occupied

nearest neighbor. It . should be noted that this rule includes the possibility of the

deposit becoming disconnected - e .g. if part of the deposit is connected to the rest

only through a single, doubly coordinated atom which hops away ; this problem is

not specifically addressed by Das Sarma et al . The simulations show an early time

'epitaxial' regime consistent with Edwards-Wilkinson scaling (W P.M in d = 1 and

W ' O..(logt) in d = 2), followed by a rapid increase of the width and a final power-

law regime, which is clearly resolved (and consistent with KPZ behavior) only at low

temperatures, in d =1 . The crossover time (or thickness) at which epitaxial growth
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breaks down shows the expected, strong temperature dependence . By monitoring

the deposit density, Das Sarma et al . verified that the crossover is associated with

the onset of bulk defect formation . The defect density is rather small in the square

lattice simulations, about 1 % at 700 K, but the three-dimensional cubic lattice

deposits turn out to be extremely porous, with a saturation defect density of about

2/3 which, moreover, appears to be temperature independent.

Figure 26 : Two-dimensional deposit grown with a rule that allows for the formation of

defects through isotropic surface diffusion . Courtesy of Martin Schimschak.

Schimschak [211] recently carried out a detailed study of the defect-induced

cross-over to KPZ scaling in which both the pre-asymptotic `epitaxial' regime, and

the KPZ regime were clearly resolved, and the available information about the uni-

versal KPZ amplitudes was exploited . The model was defined on the square lattice,

and the rules were chosen as a compromise between realism and tractability . First,

to avoid defect formation already in the deposition stage, an SOS deposition rule

was used in which particles slide down lattice columns until they reach the topmost

occupied site (cf. [205]) ; physically this can be viewed as a consequence of transient

mobility [84] . Second, a collective diffusion rule in the spirit of Das Sarma et al.

[210] was employed, however diffusion was limited to singly coordinated atoms, in

order to ensure the connectivity of the deposit ; in this sense the model is the low

temperature limit of that of Das Sarma et al . [210] . Diffusion proceeds along the

arclength of the surface, and hops to nearest and next nearest neighbor sites (from

the point of view of the square lattice) occur at equal probability ; the inclusion of
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step edge barriers which suppress -around the corner ' jumps to next nearest neighbor

sites is straightforward.

100

10

Figure 27 : Surface width IV as a function of the number of monolayers, t, for system sizes

L = 20- 1000. The ratio of hopping rate to deposition rate is RTML = 200. The full line

is the KPZ prediction (4 .15), evaluated with the numerically determined KFZ parameters

D/2v = 6.6+0.4 and a = 0.0314+0.0006, and corrected for the intrinsic width T' 2 . The

inset shows the stationary (t -* oo) width as a function of system size . The dashed line

corresponds to a roughness exponent ( 1 .3; the slope of the full line has been used to

determine D/2v according to (3 .39) . Courtesy of Martin Schimschak.

The control parameter in the model is the ratio R,-ML of the hopping rate to the

deposition rate . A typical deposit grown at RTML = 200 is shown in Figure 26 . The

most striking feature is the appearance of vertical void chains that seem to originate

from deep narrow grooves in the surface ; at least in this regime of rather high-quality

epitaxial growth (the deposit density is about 0 .98), the bulk defects are seen to be

induced by surface fluctuations. The surface grooves themselves are reminiscent of

structures found in the one-dimensional limited mobility models (compare to Figure

23) . Indeed, the analysis of spatial and temporal correlation functions reveals that

the surface fluctuations on short length and time scales (up to about 50 lattice

spacings and 1000 monolayers) are virtually identical to those found in the limited

ignobility models of Wolf and Villain [86] and Das Sarma and Tamborenea [105],

including the anomalous scaling of the height difference correlation function [89, 90,

94] (see also Sections 3 .2 and 5.4 .1).

The crossover to KPZ scaling that occurs on larger scales is illustrated in Figure
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27 . While the scaling range available for determining the asymptotic exponents is

quite limited, KPZ universality can be unambiguously identified by including the

prefactors into the analysis . As was described in Section 4 .2, the relevant numbers

are D/v, which can be extracted, via. eq .(3 .39), from the stationary surface width

shown in the inset of Figure 27, and a, which is obtained from a measurement of the

tilt dependence of the deposit density (compare to (4 .3) and (5.1)). The prediction

for the KPZ asymptotics resulting from (4 .15) is plotted in Figure 27; it is interesting

to note that, in contrast to the crossover from Edwards-Wilkinson scaling (Figure

16), here the asymptote is approached from below.

5 .2 NoneQui ibriu surface currents

As was noted in the preliminary discussion of nonequilibrium effects in Section 3.1.

the central importance of the nonequilibrium surface current (3 .14) lies in the fact

that it changes the surface dynamics already on the level of the linearized equa-

tion of motion, and hence ultimately decides the stability of the surface. Possible

mechanisms for generating an `Edwards-Wilkinson' (EW) term vV 2 h under MBE

conditions were discussed by Wolf and Villain [86] in their pioneering paper ; numer-

ical evidence for the presence of such a term was reported by Kessler et al . [206] and

by Kessler and Orr [212], but its origin remained unclear . The thoughtful study of

Villain [15] focused the attention on the role of step edge barriers (termed `diffusion

bias' by Villain) in producing an EW term with a coefficient that could be either

stabilizing (v > 0) or destabilizing (v < 0) ; unknowingly Villain rediscovered the re-

sults of Schwoebel [200, 201], who had investigated the effects of step edge barriers

in the framework of a step dynamical model (see Section 5 .2 .1).

Subsequently, Krug, Plischke and Siegert [77] offered a somewhat different point

of view by proposing that inclination-dependent surface currents with an expansion

(3 .14) should be regarded as a generic consequence of the nonequilibrium conditions

of MBE growth. The core of the argument can be phrased as follows : On a vicinal

surface the in-plane direction of the miscut induces an asymmetry in the statistics of

local bonding environments ; for example, the density of up steps differs from that of

down steps. Generically, an adatom moving on the surface will be influenced by the

asymmetry, and consequently acquire a systematic drift along the direction of the

miscut, unless some constraint is present which prevents the asymmetric bonding

environments to be reflected in the hopping rates . In equilibrium, such a constraint

is always present in the form of detailed balance . However, once detailed balance

is broken by the presence of a deposition flux, or some other external influence, the

drift of the particles adds up to a systematic mass current directed either `uphill' or

`downhill' . The step edge barrier arguments of Schwoebel and Villain focus on one

100



particular set of bonding environments, however it is clear that many other config-

urations potentially play a role in determining the overall current . This implies, in

particular ; that nonequilibrium surface currents can appear also on surfaces where

the simplest kind of step edge barriers [202, 203] is absent or undetectably weak.

An analogy may be useful in clarifying the spirit of this argument . There has

been much recent interest in the Brownian motion of particles in one-dimensional,

periodic, 'ratchet'-like potentials ([213] and references therein) . According to a fa-

mous remark of Feynman, the left-right asymmetry of the potential is unable to

induce a drift in the particle motion provided the stochastic dynamics satisfies the

fluctuation-dissipation relation of thermal equilibrium. On the other hand, fluctua-

tions that are of nonequilibrium origin, modeled e .g. by a `colored ' noise term in the

Langevin equation, do generically produce a systematic motion of the particle, even

if the fluctuations themselves are symmetric . While the magnitude of the induced

current is of the order of the correlation time of the noise, as would be expected,

the sign of the drift results from an interplay between the shape of the potential

and the detailed noise statistics, in a way not easily accessible to intuitive reasoning.

It is our contention that the nonequilibrium surface currents in MBE growth can

be viewed as a similar, though more complex phenomenon . Indeed, rather than

dealing with a single particle in an external potential, we are confronted with the

collective diffusion of adatorns on a surface whose structure is determined by the

moving atoms themselves.

Krug et al . [77] corroborated their hypothesis by numerically measuring the sur-

face current as a function of misorientation, for MBE models of the `collective dif-

fusion' and the `limited mobility' varieties, as well as for models of nonequilibrium

surface diffusion without growth, in which detailed balance is broken by a suitable

choice of hopping rates [177] . Here, we focus on the (rather limited) analytic un-

derstanding of these effects . Three types of analytic results have been obtained so

far. First, in Section 5 .2J the growth-induced surface current is calculated for the

classic step dynamical model of crystal growth at vicinal orientations [73, 175] . This

model is intermediate between continuum theories (as introduced in Section 3 .1)

and atomistic models, in the sense that certain microscopic structures - steps - are

retained, but deposition and surface diffusion are described in terms of a continuous

adatom density . While the neglect of fluctuation and nucleation effects leads to

some artificial features, the results are useful for the order-of-magnitude compar-

ison with experiments that will be attempted in Section 5 .2A. Second, for some

of the models described in Section 5 .1 hidden symmetries can be identified that

force the nonequilibrium current to be zero, despite the absence of detailed bal-

ance in the conventional sense; these `negative' results are summarized in Section
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5 .2 .2 . Third, in Section 5 .2.3 an approximate, microscopic calculation of the current

is presented for the one-dimensional limited mobility models introduced in Section

5.1 .1 . In these models only a few local configurations contribute to the current, the

statistical weights of which can be reasonably estimated.

5 .2.1 Burton-Cabrera-Frank theory with step edge barriers

The classic BCF theory [175] (here we follow the presentation of Ghez and Iyer [73])

considers a vicinal surface consisting of perfectly straight steps at a fixed spacing t'.

The (effectively one-dimensional) geometry, and the basic processes are indicated in

Figure 28. Particles impinge on the surface at a flux F, diffuse on the terraces with

a diffusion constant Ds, and incorporate into the crystal at the steps ; the presence of

step edge barriers is modeled through the rates r± at which atoms coming from the

lower (r+) and the upper (r_) terrace are incorporated ; the conventional behavior

corresponds to r+ > r_ [200, 201] . As usual in ideal MBE, desorption is neglected.

E

Figure 28: Schematic of a vicinal surface according to Burton, Cabrera and Frank [175].

The underlying adatom energy landscape is also indicated.

We adopt the quasistatic approximation, assuming that the adatom population

on the terrace equilibrates on a time scale that is fast compared to the step mo-

tion ; the consistency of this approximation will be addressed shortly. The adatom

density n(x) on the terrace (more precisely, the deviation of the density from its

equilibrium value) then satisfies, in steady state, the stationary diffusion equation

(n' (x) = do/dx, n"(x) = den/dx 2 )

Ds n"+F=O (5.13)

with the incorporation boundary conditions [73]

Ds n' (0) = r+n(0), Dsn ' (t) = n(e) (5 .14)

The resulting parabolic density profile is easily written down . For later reference we

note that the density scale is

no = Ff2 /Ds ,

	

(5 .15)
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as could be guessed from dimensional considerations.

Here we are mainly interested in the surface current, which is obtained by aver-

aging the local diffusion current j = -D 3n ` over the terrace . This yields

J
- Q+

(5 .16)= (DA [n(0) - n(f )] = +4

where the length scales

,e± = D S /r± (5 .17)

have been introduced, and

J~ = -
2E

(5.18)

refers to the maximal current that results when mass transport between layers is

completely inhibited, r_ = 0; eq . .(5 .18) was previously derived by Villain [15] . Under

normal conditions (r+ > r_) the current is negative because particles preferentiallylAal

	

,

attach at the left, in the uphill direction (Figure 28).
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Figure 29: Growth-induced current (5.22) computed from the BCF theory without nu-

cleation . The incorporation length is i_/a= 10.

For an estimate of the length scales ~~- we write, in analogy to

r~ =woaexp(-Et%kBT)

with E± denoting the energy barriers that have to be overcome to attach to the step

(compare to Figure 28) . Together with the expression (5 .5,5.6) for D S this implies

~f = aexp(AE±/kB T)

	

(5 .20)

5 .6

	

(5 .19)
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where AE_ = Ez - E s . Since attachment from below the step is expected to be

facilitated, AE+ < 0 ; consequently £+ is at most of the order of the lattice constant,

and can be neglected relative tot' and L in (5 .16) . In contrast, L can be significantly

larger than a, e.g. using the experimental estimate ALL 0 .2eV for tungsten [203 ;,

one obtains L /a 2300 at room temperature . The meaning of the incorporation

length L is clarified by considering the probability p+ (p- ) that a deposited atom

will be incorporated at the upward (downward) step . Since the total flux impinging

onto the terrace is Ft', we have (neglecting 6+)

p+ D
s n'(0) 1/2+ß / .e

1+ f /e
p-=1-p+.

	

(5 .21)
FQ

	

_

Hence incorporation becomes symmetric, p+ p-, for terraces much wider than L.

In the same approximation (e+ -} 0)

J ^s J 6 [1 + .e/L] -' ,

	

(5 .22)

illustrating the reduction of the current relative to J, due to the finite interlayer

transport.

Island nucleation . In Figure 29 the current (5 .22) is plotted as a function of the

surface inclination Vh = -alt . The current is discontinuous at the high symmetry

orientation V'h = 0 . because (5 .22) has a finite limit -FL/2 for oo . This is

of course an artifact of not allowing for the nucleation of islands on the terraces,

a process that becomes important when the terrace width £ exceeds the diffusion

length £r which characterizes the typical island size on the singular (Vh = 0) surface.

Studies of submonolayer epitaxial growth [215] show that £D is typically given by a

relation of the form
(D s /Fr

	

(5 .23)

where the exponent -y depends on the size of the smallest stable island, the fractal

dimensionality of islands, etc . In the simplest case of stable dimers and compact

islands, one finds ' y =1/(2d± 2) for a d-dimensional surface.

ID

4

Figure 30 : Schematic of a vicinal surface in the nucleation dominated regime, £ > £D . The

dashed line indicates the original surface prior to growth.
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Heuristically, the effect of island nucleation can be treated as follows [15, 216].

When Q» tD, the surface morphology more closely resembles Figure 30 than Figure

28: Rather than a well-ordered step train, one has to consider a disordered array of

steps of both signs, with a small fraction QD /f of excess (down) steps representing

the overall vicinality of the surface . Only the excess steps contribute to the current,

and the contribution of each is given by (5 .22) evaluated at f = 2D . Thus the current

vanishes for £ --4 oo, as required by symmetry . Specifically, J vl (a/f) = --v1 V h as

in (3 .14), with a coefficient

- FE 2D /a

	

: L » ~D

-F(QD E_ )/a :

	

« iD.
vl ti (5 .24)

Myers-Beaghton and Vvedensky [217, 218] have proposed to include island nu-

cleation in the BCF theory through a quadratic pair-formation term in the balance

equation (5.13) . In the following we show that this extended BCF theory, supple-

mented with the boundary conditions (5.14), reproduces the behavior of the current

expected on heuristic grounds . At high adatom densities, where nucleation becomes

significant, one may also expect the steps to move sufficiently fast to invalidate the

quasistatic approximation [73] . Thus, the stationarity condition replacing (5 .13)

reads, in a frame moving with the step velocity c [217]

Ds n" + cn ' + F = ma2Fn +r2Dsn2 .

	

(5.25)

The first loss terms on the right hand side accounts for events in which an atom is

deposited next to an adatom (m is the number of nearest neighbor sites of the adatom

and ma t the corresponding capture area), while the second term describes loss of

adatoms due to dirtier formation, which occurs with probability r 2 . In the absence

of desorption the step velocity is c = Q/ f, L = a2 FE by mass balance (compare to

eq. (5 .5)) .

The significance of the various terms in (5 .25) can be assessed by going over to

scaled quantities, n(x) = nop(x/t), with the BCF density scale (5 .15) . This results

in

p!' + (qea ) 2Ä + 1 = m(t/Qo ) 2p -~ (-e ~~D ) 4p2

where the length scales

~ß = (Ds'1` a2)112 = (DsrmL) 112 , E D = (Ds /Fr2 ) 114

	

(5 .27)

have been introduced . The length e0 is the distance covered by a freely diffusing

adatom during the monolayer completion time, while QD can be identified with

the diffusion length introduced above . The value -y = 1/4 for the exponent in (5.23)

results because the dominant nucleation effect has been assumed to be the formation

(5.26)
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of dimers; in fact it is much more likely that an adatom is captured by a preexisting

island, which would give 1=1/6 [220] . This effect could be included by writing a

separate equation for the island density [217, 218, 219].

For the purpose of the present discussion, the main point is that £D «fo for

RrML » 1 . Thus, the leading correction to the quasistatic, linear equation (5 .13)

is due to the pairwise nucleation term, and both the convection term en' and the

deposition term ma 2Fn in (5 .25) can be neglected. Keeping the relevant terms, we

rewrite (5 .25) as

n" = -F/D S +r2 n2 = W--V'(n)

	

(5.28)

to emphasize the analogy with a Newtonian particle of unit mass, moving in a cubic

potential V (n) _ (F/D s )n -- (r 2/3)n3 . This analogy is very useful in extracting the

behavior of the density profile in the limit Q - oo . Since 2 is the total travel time

of the particle, for Q cc it has to spend most of its time close to the unstable

equilibrium position n l > 0 where V '(ni) = 0 . Thus, the adatom density on the

terrace approaches, for £ -+ co, the value

n l = /F/Dsr2 = F 2D/D,s

	

(5.29)

which is, not surprisingly, of the same form as (5 .15) . The boundary values n(0) and

n(f) that determine the current (5 .16) can now be obtained from the law of energy

conservation for the particle problem (5 .28), which states that the quantity

E(x) _ (n`(x))2/2+V (n(x))

	

(5.30)

is independent of x . Indeed, since the particle is almost at rest (the density profile is

almost constant) close to nr, for -3 co the energy converges to E = V(nr) . Using the

bondary conditions (5 .14), the boundary densities are then given by two uncoupled

cubic equations,

(n(0)/i+)2/2+V(n(0)) = (n(t)/x-)2/2+V (n( .e)) =V (nl) .	( 5 .31)

We now specialize to the case where attachment to the step from below is

rapid, so that 4 =0 and n(0) =0 is ensured . The current (5.16) is then simply

J = -(Ds/i)n(e) . Writing n(e) = p,n 1 , the dimensionless coefficient y satisfies

( D/L_) 2 /1 2/2+~-1L3 /3-2/3 =0,

	

(5 .32)

which implies that p N 1 for £D «L, and y ti (2/V).2_/iD for 2D »Q_ . As ex-

pected, the current vanishes linearly in Vh = -ate, and the coefficient is given by

- FAD/a : L » iD
yr

	

- (2/0)F(tDi_)/a

	

«ED

	

(5 .33)
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Figure 31 : Growth-induced current in the presence of island nucleation, for L = cc and

£D /a=10 . The full line shows the lower bound (5 .34), and the dashed line shows the

current (5.18) obtained in the absence of nucleation.

in accordance with (5 .24).

To obtain the full inclination dependence of the current one would require the

solution of the mechanical problem (5 .28) for arbitrary f, which is not available in

closed form. For the case of perfect step edge barriers (r_ = 0, r+ .= Do), the lower

bound

It.... 0	 ..-.

J~ Jb = 2J.(~D/ t)4[\/1 + (Q/tD)4 - 1] (5.34)

can be derived, which reproduces the exact asymptotics for .£' G` £D and £>> fD . The

expression (5 .34) is shown in Figure 31, together with the current (5 .18) obtained in

the absence of nucleation . . A similar, heuristic interpolation formula . was . proposed

by Johnson et al . [1941.

Stability. Irrespective of its derivation, the bound . (5 .34) is representative of the

generic form of the inclination-dependent surface current induced by step edge bar-

riers, and can be used to discuss the stability of the growing surface . We consider

the physical dimensionality d = 2, and assume in-plane isotropy . The nonequilibrium

contribution to the surface current v in (5.3) can then be written as [771

JNE = ¢( E V h1 2) Vh

	

(5.35)

where the function Q corresponding to (5 .34) is

= ~'(~D{a)[~(uiD%u) +1-=

	

(u~D/a)?] .

	

(5..30)
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The important (and generic) features of (5 .36) are that p .; -v-, for a «a/.ED and

q .; Fa/2u2 for u a/t?D.

We now insert (5 .35) into (5.3) and expand the equation of motion about a

growing surface uniformly tilted in the x-direction,

h(x, y, t) =ux +Ft +E(x, y, t) .

	

(5 .37)

We disregard for the moment the fourth order derivatives due to the equilibrium part

of the current, since they do not affect the stability with respect to long wavelength

fluctuations (see Section 5 .2 .4) . This results in

Ö£

	

826

	

at e

at -vl~äx2 v ia22

	

(5 .38)

with

UII = -(¢(u2) --,L 2u2¢ '(u 2 ))

vi = `« u2)•

	

(5.39)

The stability coefficient in the tilt direction can be written in terms of the BCF

current function J(t) as

v li = -( .e 2/a)dJ/de

	

(5.40)

which changes sign at .e ; eD . Thus, as was first pointed out by Schwoebel and

Shipsey [200], the step edge barriers stabilize the surface in the step flow regime,

£<-eD , but the same effect acts to destabilize it once island nucleation becomes

appreciable for f > £D [15] . However even in the step flow regime the surface is not

completely stable, because the transverse coefficient vl < 0 for all u.

The transverse instability is related to the meandering instability of terrace

edges discussed by Bales and Zangwill [221] (see also [146, 147]) . In the context

of the present continuum theory, a terrace edge is simply a height contour line in

the (x,y)-plane. In the regime of step flow growth treated by Bales and Zangwill,

the surface is stable in the tilt direction, v~ > O . It is then reasonable to consider

perturbations that vary only in the transverse direction, e = e(y, t) in (5 .37) . Defining

the position of the h = Ft contour line by the relation x = x(y, t), we see from (5 .37)

that x _ - c/u and x evolves according to

ax

	

a2x
at = v' äy 2

For a quantitative comparison with Ref .[221], consider the case of absolute step edge

barriers (r_ = 0, r+= co), where v j _ (e/a)J,o . The growth rate for a transverse

modulation of wavenumber q is then equal to (1/2)(Fe2 /a)q2 , which coincides with

(5 .41)
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the appropriate limit (no desorption, qe « 1) of the expression derived by Bales and

Zangwill [221].

The converse scenario of transverse stability (v1 > 0) and longitudinal instability

(v~ < 0) is possible if adatoms preferentially approach the step from above ('reverse'

Schwoebel effect) . Due to the strongly anisotropic surface diffusion rates on the

dimer-reconstructed terraces, this case is approximately realized on vicinal Si(00l)

[222].

We conclude that truly stable growth requires that (i) the current is a decreasing

function of inclination, so that v > 0, and (ii) the current is in the downhill direction,

< 0, to ensure that v1 > 0 also. Within the BCF theory the latter condition can be

met only by assuming 'reversed' step edge barriers with r+ < r_ (this may be possible

in the presence of surfactants [223]), while the former requires the surface to be in

the nucleation-dominated regime, f > tD . On the other hand, the BCF theory is

expected to apply only to orientations vicinal to a high symmetry direction, and it

is quite conceivable that a more refined treatment will reveal additional features of

the current, such as zeroes related to other crystallographic symmetries [77] or 'hot

atom' effects [193, 216], which favor stable growth.

60 120
x

180 240

Figure 32: Evolution of a one-dimensional vicinal surface (2/a = 3) in the presence of

absolute step edge barriers . The ratio of hopping to • deposition rate is . RrML =5 x 10 5 .

Note the nucleation of an unstable region after 60 monolayers, and the development of an

approximately periodic pattern at late times . Courtesy of Martin . Schimschak.
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Figure 33: Time evolution of the surface width for various values of u= -ate, at

R7-ML = 5 x 105 . Initially W2 N t1/2 with a prefactor that is correctly predicted by the

EW equation (inset) . After the nucleation of unstable regions (Figure 32) W2 increases

faster than linearly in order to catch up with the Poisson behavior (5 .42). Courtesy of

Martin Schimschak.

Since the transverse destabilization is absent for one-dimensional surfaces, one

may hope that the stable step-flow regime envisioned by Schwoebel may be realiz-

able at least in one-dimensional stochastic growth models . This conclusion appears

to be invalidated by the second important feature, apart from the transverse step

fluctuations, that is left out by the BCF theory, namely the shot noise in the depo-

sition flux . Schimschak [211] has carried out simulations of a one-dimensional SOS

model that incorporates the basic processes of the extended BCF theory described

above - deposition at rate F, diffusion of singly bonded adatoms, and the formation

of immobile islands when two adatoms meet . The step edge barriers are assumed to

be absolute (re.= 0) so that mass transport between layers is completely inhibited.

For the singular orientation, Vh =0, this is well known to give rise to a Poisson

distribution of layer coverages, and a width that increases diffusively,

W2 = Ft

	

(5.42)

with no saturation even on a finite substrate [224] . On vicinal surfaces, for large

values of RTML (typically RrML = 5 x 105), step flow behavior is observed that con-

forms to the predictions of BCF theory for the current (equation (5 .18)), as well as

for the fluctuations, described by the Edwards-Wilkinson equation with v = vll > 0
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(see Section 3 .2) . However, the step flow regime is metastable and terminates at a

transition time t v (measured in units of rML ) that empirically scales as

t, 112 .3 (RrIvIL
) 0 .7

	

(5.43)

with the surface inclination u and the diffusion rate . The transition proceeds through

the nucleation of a large fluctuation in the local orientation that brings the surface

into the regime where < 0 (Figure 32) . For times t» t, the surface configurations

resemble the strongly disordered morphology obtained on a flat substrate (u = 0),

and the width asymptotically approaches the maximal `Poisson' randomness given

by (5.42) . It is interesting to note that W 2 increases faster than linearly with t in

the transition region (Figure 33).

Symmetry arguments~en¢ ,m ..~AAe¢~ a?e~ c°~ia ~aa

in this section we return to the microscopic level, and begin by formulating a precise

microscopic definition of the nonequilibrium surface current for SOS models . To

unburden the notation we focus on a one-dimensional surface described by discrete

height variables h i , i = 1, . . ., L. The average heights then evolve according to

dt
(h2) +(Ja Ji_i ) -F, (5.44)

the discrete analogue of (5 .3), where the current is given in terms of the jump rates

Rij between neighboring sites, j = i ± 1, as

Ji = Rii }1 - Rii- Ii .

	

(5 .45)

The inclination-dependent current of the macroscopic description is obtained by av-

eraging (5 .45) with respect to the stationary probability distribution of height config-

urations . of fixed average tilt u= (hi+1 - hi), imposed e.g. through helical boundary

conditions

hi+L = hi + uL .

	

(5.46)

Thus we would like to evaluate the expectation

J(u) _ (-R-ii-i-r - Ri+xi)u•

	

(5 .47)

Numerically, this is done simply by keeping track of the cumulative number of jumps

executed to the right and to the left [77] . Note that the vertical displacements of

theatoms - whether their actual height is increased or decreased by a jump - plays

no role in determining the current .' Therefore, in the following we shall use the

terms `uphill ' and `downhill' motion to imply moves in the direction of increasing or
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decreasing average height, respectively. If u > 0 in (5.46), uphill jumps are directed

to the right, downhill jumps to the left.

The analytic computation of (5 .47) is difficult because the stationary distribution

of the growth process is not known . However, in some cases either the jump rates

or the stationary state itself possess a symmetry that forces J ' to vanish identically.

This is obviously true if the rates satisfy detailed balance. It is also true for the

Arrhenius growth model introduced in Section 5 .1 .2. There, the key point is that

the jump rates depend only on the bonding environment at the initial site, R ii+1 =

exp(-niEN/kBT ), where n i denotes the number of lateral neighbors at site i . Thus

j(e --n iENI kB T ) u °- (e-n t +1 EN /k$T)u = 0

	

(5.48)

by translational invariance . Physically, the current vanishes because the jump rates

do not couple to the asymmetry of the local environment.

A somewhat different argument applies to the discrete Gaussian model, defined

by (5.10) with q = 2, equipped with random deposition and the Metropolis-type jump

rates (5.11) . These rates depend on the initial and final position of the atom, and

therefore the motion does couple to the asymmetry of local environments . Instead,

in this case the stationary state at fixed tilt u turns out to be independent of u ; since

the current vanishes by symmetry at u = 0, it then has to vanish identically for all

u. The tilt-invariance follows from writing the energy difference involved in a jump

as [225] (the notation is explained in Section 5 .1 .2)

u2 1 [N(ii+l) - fl(H)] = 6 - 2(h i+2 ± hi - 2h i+Ä) + 2(h ;±, ± h i ._ 1 - 2h i )

= 6 - 2[(®2h)i,1- (® 2h) i ] .

	

(5.49)

The dynamics depends only on differences in the discrete local curvature, and is

therefore invariant' under global tilts, h i -; hi + ui . In this sense, the discrete Gaus-

sian `collective diffusion' model is similar to the `limited mobility' curvature model

introduced in Section 3 .4, and the conclusion drawn for this model applies here

also: As a consequence of the tilt-invariance there are no relevant nonlinearities,

and the large scale properties of the surface should be given exactly by the linear

noisy Mullins equation . While the original simulations of Siegert and Plischke [74]

seemed to indicate a different behavior, more recent numerical results are in accord

with this prediction [225].

Two comments are in order . First, we recall having argued, in Section 5 .1 .2,

that the discrete Gaussian model has a sizable step edge barrier [199] (see eq .(5.12)),

'Strictly speaking the argument only implies invariance for integer values of the tilt . Indeed,

careful simulations of the discrete Gaussian model [226] reveal a nonzero current that is a periodic

function of the tilt, with unit period ; however its amplitude (se, 2 x 10 -7) is so small as to make it

negligible for all practical purposes .
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nevertheless we have shown here that the nonequilibrium surface current vanishes

identically. Thus, the presence of step edge barriers is not sufficient to produce a

nonzero net current, because their effect can be cancelled by other, less conspicuous

local configurations. Second, the fact that the step edge barrier energy (5 .12) is an

increasing function of q, vanishing at q =1, leads to a plausible conjecture regarding

the q-dependence of the current : Since J = 0 at q= 2, we expect a net current in

the uphill (downhill) direction for q > 2 (q < 2) . This conclusion is corroborated by

a detailed analysis of how the jump rates in various local environments change as q

is moved away from q = 2 [227] . It is further confirmed by the direct measurement

of the current for q = 1 and q = 4 [77], as well as by the resulting behavior of the

surface, which shows clean Edwards-Wilkinson scaling for q =1 [196], and unstable

growth for q = 4 [74, 225].

The symmetry arguments for the Arrhenius and the Gaussian models apply in

arbitrary surface dimensionalities . In contrast, our last example, the version DTI of

the limited mobility rules described in Section 5 .1.1, can be simply analyzed only in

d= 1 . For the present discussion, the important property of the rule is that it does

not distinguish between incorporation sites with one (ki = 1) and two (ki = 2) lateral

nearest neighbors (the coordination numbers ki are defined in (5 .4)) . The behavior

of adatoms on the surface can therefore be predicted on the basis of a two-state

variable ki = min[ki ,1] = 0,1 assigned to each site i . The local environments that

contribute to the current are (ki_ 1 , ki , ki+1 ) _ (0, 0,1) and (1,0,0), where the atom

is thought to be deposited at i and incorporates at i +1 or i -1, respectively.
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Figure 34: In a random sequence of 0's and 1's on a ring, the number of triples (001) is

equal to the number of triples (100).

For a fixed height configuration H = {hi } subject to helical boundary conditions

(5 .46), we now consider the spatially and temporally averaged surface current J

defined by depositing many `test' atoms onto each site i, and recording where they

would incorporate . Clearly,

J(H) = .L- 1 (N001(H) - N10o(H))

	

(5.50)

where Nirn ,- is the number of local environments (ki_1, ki, ki+1) = (l, m, n) in the con-

figuration H. The crucial observation is that N003 = N100 for any string of 0's and
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l 's with periodic boundary conditions, both numbers being equal to the number of

clusters of at least two consecutive 0's (Figure 34) . Thus, J(H) = 0 for any configu-

ration, and the ensemble average over H vanishes also . The proof is easily extended

to versions of the rule where the atoms are allowed to search in a larger neighbor-

hood for a favorable incorporation site, as long as the property of having only two

possible values for the effective coordination number ki is preserved . The remaining

two rules defined in Section 5 .1 .1, DT2 and WV, do not have this property and

hence give rise to a nonzero current, which is approximately computed in the next

section.

5 .2.3 Approximate microscopic theory8,

Having established that the surface current vanishes identically for rule DTI, we

may conclude that the current for the more elaborate rules DT2 and WV must be

due solely to configurations in which these rules differ from DT1 . For DT2, these

are the asymmetric configurations (kz_1 , k i , ki+1) = (l,02) and (2, 0,1), which bias

the deposited particles to the right and to the left, respectively . We may therefore

write

JDT2 = Prob(l,0, 2) - Prob(2,0,1) .

	

(5 .51)

For the Wolf Villain rule WV, an additional contribution comes from the motion

of particles deposited onto a site with k i =1 that has a neighbor for which k3 =2.

Thus

Jwv = JDT2 + Prob(1, 2) - Prob(2,1) .

	

(5 .52)

kz= 1 0 2

	

10 2

	

12

Figure 35 : Height configurations contributing to the current in the limited mobility rules

DT2 and WV.

In order to evaluate the probabilities occurring in (5 .51) and (5.52), we now

make two rather drastic approximations . First, we assume that the local height

differences (also referred to as step heights) ai = h 2 +1 - hi at different sites are sta-

tistically independent. The probabilities in (5.51) and (5 .52) can then be expressed

as products of the three numbers p+, p_ and po defined by.

p+ = Probai > 0}, p_ = Prob{ai < 0}, po = Prob{ai = 0} .

	

(5 .53)
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The height configurations contributing to Prob(1,0,2) and Prob(1,2) are illustrated

in Figure 35 . We conclude that

Prob(l, 0, 2) = (po -I- p+)p+p- + pop'p+, Prob(1, 2) = p? p+

	

(5.54)

and therefore

JDT2 = P+P- (P+ - P~ )

Jwv = JDT2 +P+ p- (p- - P+) = -p+ p- Po(P+ -P-) .

	

(5.55)

Figure 36: Simulation results for the growth-induced current, at surface inclination Vh

1, obtained using the three limited mobility rules described in Section 5 .1.1. Each data

point represents an average over 106 monolayers deposited onto a substrate of size L = 100.

If the surface is flat on average, p+ =p_ by symmetry and the currents van-

ish . A positive average surface inclination increases p+ relative to p_ . Thus, a first

conclusion from the expressions (5 .55) is that the current is directed uphill for the

DT2 model, JDT2(u > 0) > 0, while Jwv (u > 0) < O . The two rules belong to different

universality classes, in the sense of different signs for the coefficient v 1 in the expan-

sion (3 .14) . This is confirmed by the direct numerical measurement of the currents

• (Figure 36) . Note, however, that JDT2 is extremely small and barely distinguishable

from the noise . The fact that v1 < 0 for this model therefore does not lead to any

observable consequences on accessible time and length scales.
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Figure 37: The inclination-dependent current in the one-dimensional Wolf-Villain model.

The symbols show simulation results for two different system sizes, obtained by averaging

over 10 8 monolayers per data point . The full and dashed lines without symbols show the

corresponding analytic approximation.

The inclination dependence of the currents can be obtained by making a sec-

ond assumption regarding the probability distribution of the step heights a . For

convenience, we choose an exponential distribution

_(o) s Z exp(-Kjo- +ma),

	

(5 .56)

where the .`slope chemical potential' m controls the average inclination through, the

relation
sinhm

u = - (o) =
cosh K - cosh m'

	

(5 .57)

the coupling K controls the spread of . the distribution, which can be characterized,

for u= m = 0, by the variance

2 (cosh K - 1) -1 ; (5.58)

and Z(K,m) is a normalization. constant . Eq.(5.56) would be exact if the surface

were in equilibrium, governed . by. the Hamiltonian (5.10) with q= 1 . The actual

height difference distribution for the one-dimensional limited mobility models is
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much broader, and better described by a stretched exponential (Krug, 1994a) . In

view of the uncontrolled approximations inherent in the present approach, however,

the form (5.56) is quite sufficient for our purposes. The generalization to other

choices for P(o-) is straightforward.

Using (5 .56), the probabilities p* , pq and thus the currents are easily evaluated.

In the following we discuss only the Wolf-Villain rule . In Figure 37 the calculated

current is compared to the results of direct simulations . Since the current tends to

strongly decrease with increasing system size (see below), we have chosen small sys-

tems for the simulations - L = 10 and L 25 - , and averaged over 10 8 monolayers for

each value of the inclination . For comparison with the simulations, the parameter

K in the exponential distribution (5 .56) was chosen such that the variance (5 .58)

matches that of the numerically determined step height distribution ; for L = 10 this

gives K = 0.797 (in this case (72) 2.986), and for L = 25 we chose K = 0 .361 (cor-

responding to (a 2 ) 15.21) . It can be seen that the approximate theory reproduces

the overall inclination dependence rather well, but the magnitude of the current is

significantly overestimated, especially at larger tilts.
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Figure 38: The expression (5 .59) for the (negative) derivative of Jwv at zero tilt, as a

function of the variance of the step height distribution . The arrow indicates the value at

which (a 2) saturates for large systems sizes and long times.

It is of particular interest to understand how the shape of the current-inclination
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curve changes as the step height distribution P(o) broadens, e .g. by decreasing K

in (5.56) . Qualitatively, Figure 37 shows that the minimum in J(u) shifts to larger

slopes, such that the absolute magnitude of the current decreases with decreasing

K for slopes smaller than the minimum, but increases for large slopes . On a more

quantitative level, one obtains the following simple expressions for the derivative at

zero slope,

(5.59)

(5.60)

Thus, vi vanishes as vl N K 2 /16 for K -) 0, while the prefactor in (5 .60) diverges

for small K. lrn rr5igure 38n /r
~0 .

rn\ is plotted as a function. ox bi	variance (5 .58).~~1

	

S the

Somewhat surprisingly, the asymptotic 1/u 2 behavior predicted by (5 .60) seems to be

confirmed by simulations of the WV model (Figure 39) . Note that this asymptotics is

distinct from that obtained using simple step-edge barrier arguments, which always

lead to a decay of the current as 1/u (see Section 5 .2.1).

These considerations can be used to discuss the strong size dependence of the

current in the Wolf-Villain model observed by Krug et al . [77] . Recent numerical

work [89, 90, 94] has revealed that the one-dimensional limited mobility models are

generally characterized by a stationary step size distribution P(8) that broadens

with increasing system size L ; more precisely, the moments appear to satisfy scaling

laws of the form [94]

e-291 e-x) 2

= -' J~v~v( 0 ) =

	

(1-i- e-'x )4

and for the asymptotics for u -> eo at fixed K,

e-x 1
J (u) -

2 sinhK u2>
u -~ cc.wv

(o.q)li4

	

Laq (5 .61)

with nontrivial, q-dependent exponents al . We have encountered a simple form of

this `anomalous' scaling behavior in our investigation of the noisy Mullins equation in

Section 3 .2, in that case P(cr) is a Gaussian of width 's, L'12 in one dimension. From

our approximate theory we conclude that such broadening will result in a decrease

of the current with increasing system size . This is not hard to understand : If the

step height distribution is very broad, the excess steps introduced by an external

tilt will have little effect, and thus the current will be small.

For the Wolf-Villain model, Schroeder et al .[89] found that the broadening of

P(e) ceases when the system size exceeds L 250, at which point the variance

has reached a value of c;4-
2 ) 80 . From (5.58) we see that this corresponds to a

value of K 0.158 and, using (5 .59), vi 0.00i32 (see Figure 38) . In comparison,

in the direct numerical measurements reported by Krug et al . [77] the current was

found to become size independent at L Pe, 320, where J(u =1) -0.0008 . Thus,

the approximate theory appears to provide a reasonable description of the relation
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Figure 39: Inclination-dependent current in the one-dimensional Wolf Villain model, for

a small system (L = 10) and large slopes . Each data point corresponds to an average over

108 monolayers . The dashed line indicates the
I VA A -2

decay predicted by the approximate

theory.

between the statistics of step heights and the resulting nonequilibrium current . It

does not, however, explain why the step height distribution broadens according to

(5.61) in the first place (see also Section 5 .4 .1) . We may note in this context that the

broadening appears to continue indefinitely for the DTI rule [94], which allows no

current by symmetry (Section 5.2.2), indicating that the saturation of P(a) observed

for the WV rule is indeed due to the fact that Jwv is nonzero.

5.2 .4 Unstable growth: Theory vs. experiment

Perhaps the most remarkable corollary of the ubiquity of growth-induced surface

currents is : the conclusion that ideal MBE growth is generically unstable, in the

sense that destabilizing `uphill ' currents occur . as frequently as stabilizing `downhill'

currents . Among the models discussed in the preceding sections we have encountered

examples of. both kinds - the Metropolis model (5 .11) with .. Hamiltonian (5 .10) is

stable when q =1 but unstable when q = 4, and similarly the limited mobility model

WV is stable, while DT2 is (asymptotically) unstable . Indeed, if we adopt the

common view that nonequilibrium currents arise on real . surfaces . mainly due to

1D

Vh
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repulsive step edge barriers, unstable growth on singular surfaces should be the rule

rather than the exception.

Experiments . It is therefore gratifying that several recent MBE experiments have

obtained surface morphologies that are indicative of a growth instability of the kind

anticipated by theory. Albrecht, Fritzsche and Gradmann [228] observed the for-

mation of a periodic array of one-dimensional ridges during the early stages of low

temperature (200 K) homoepitaxy of Fe on Fe(110) . The ridges appeared after the

deposition of the first few monolayers (ML), and the wavelength perpendicular to

the ridges remained constant, at about 60 atomic distances, throughout the exper-

iment, which comprised the deposition of a total of 10 ML . The amplitude of the

ridges was found to increase roughly as the square root of the film thickness, and cor-

respondingly the sides of the ridges steepened, the average terrace width decreasing

from 6 .1 atomic distances at 2.8 ML to 3.6 atomic distances at 9 ML.

Qualitatively similar behavior was observed by Ernst, Fabre, Folkerts and Lapu-

joulade [229] in a study of low temperature MBE on the Cu(100) surface . Growing

up to about 100 ML at temperatures of 160 K and 200 K, they concluded from

helium scattering measurements that pyramidal structures form on the surface . As

in the case of Fe(110), the sides of the pyramids were found to steepen as a func-

tion of time, and their height (monitored through the surface width) increased as

the square root of the film thickness h at T = 200K, and as it 0 .26 at T = 160K. For

long times (beyond 50 ML) the sides of the pyramids appeared to approach a fixed

crystallographic orientation, which was identified as (115) at 200 K, and (113) at

160 K. The lateral size of the pyramids, as estimated from the correlation length

of the height-height correlation function, was about 22 A at 160 K, and 106 A at

20.0 K, after deposition of 60 ML . No information about the evolution of the lateral

scale with film thickness was given.

A second set of experiments was carried out for the GaAs(001) surface [230].

Compared to the metal surfaces, the scales of the developing morphology are much

larger in this case. Using the atomic force microscope (AFM) to scan areas of

2 .5 x 2.5prn, Smith, Pidduck, Whitehouse, Glasper . and Spowart [231] observed the

formation of ridges running parallel to the [110] direction . The transverse spacing (in

the [110] direction) was about 0 .l µm at a film thickness h 0 .2µm, and subsequently

coarsened to a value of 0 .3;um at T x= 2µm . The ridges were found to be remarkably

shallow, with slopes between 1 .5° and 3 .5° that appeared to remain constant during

growth. These gentle slopes and the large lateral scale may explain why the ridge

structure was overlooked in earlier studies - on scales smaller than the ridge spacing,

which can be scanned using e .g. the scanning tunneling microscope (STM), the

surface would appear perfectly fiat, though somewhat miscut [232].
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The key features of the instability on GaAs(001) were confirmed by the detailed

study of Orme, Johnson, Sudijono, Leung and Orr [233] (see also [194]) . In the fol-

lowing we will refer to this work in a preliminary attempt to quantitatively interpret

the experimental observations in the light of the theory presented in this section.

It is vital that such a quantitative comparison be attempted, and eventually re-

fined, since it provides the only way to ascertain that the mechanism underlying the

observed phenomenon is in fact that described by the theory.

Orme et al .[233] grew GaAs(001) films by MBE at 555°C and a growth rate of

0.18pm/h . At various stages the growth was quenched and the surface was scanned

using an AFM . The ridge structure first appeared after the deposition of 270 bilayers,

with a transverse ridge spacing of 0 .25pm. From an STM study of the same surface

grown under identical conditions, the diffusion length was estimated to be £D N 165

A [232] . Thus, the initial ridge spacing exceeds the diffusion length by a factor of

15. The first task of the theory must be to explain the appearance of such a large

length scale.

Initial wavelength . Some insight can be gained from the linearized interface

equation of motion . To linear order the general MBE equation (3 .15) reduces to

ah/at = v1V2 h - K®'h -i- F

	

(5.62)

where, as usual, vl is the leading coefficient in the expansion of the nonequilibrium

current (3.14), and Is =Fa g is the product of adatom mobility and surface tension.

In the unstable case, vl < 0, the fastest growing wavelength under (5 .62) is

4/-2n/vl .~:~ = 2.r,

This mode growth exponentially N exp(t/r'), with a time constant

T *= (A '')/(G7r2'31~.

We use the generalized BCF estimate vl -F.QDI a derived in Section 5 .2.1,

iD = min[QD , VeDQs]

(5 .63)

(5.64)

where

(5.65)

is an effective diffusion length . Multiplying both sides of (5 .64) by the deposition flux

F, we obtain a relation between the film thickness h* = Fr" at which the modulation

first becomes visible, the initial wavelength ag , and £D, which we write as

.1* = 7r\/2h*/a £D .

	

(5.66)

Thus, the initial wavelength exceeds the effective diffusion length by a factor which

is proportional to the square root of the number of deposited layers.
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We can now ask whether the step edge barriers on GaAs(001) are `strong ' , in the

sense that the incorporation length L > .2D and .2D =2D (see Section 5 .2.1), or `weak',

.2_ < . D . Setting .P D =QD =165 A, (5.66) predicts an initial wavelength of 1 .2gm, a

factor 5 larger than what is observed . Thus we may assume that in < eD, and use the

experimental value ) = 0.25/Lm to estimate that in 7 A . This can be converted

into an estimate of the step edge barrier energy AE_ by invoking the relation (5 .20).

With a 2 .8 A, the bilayer thickness, and T = 555°C we obtain AK_ ^ 0 .06eV, a

very small number compared to the energy barrier ES 1 .3eV for surface diffusion

on GaAs(001) [234] . Direct experimental information on the magnitude of AE_

is not available . Smilauer and Vvedensky [235] obtained AE_ 0.175eV by fitting

the results of an Arrhenius-type computer simulation (see Section 5 .1 .2) to reflection

high energy electron diffraction (RHEED) data monitoring the thermal smoothening

of MBE grown vicinal surfaces . The two estimates agree at least to the extent that

both predict a weak barrier, in the sense that AE'_ K Es.

While the arguments given here clearly are of a rather tentative character, they

do indicate that the observed phenomenology for the growth-induced instability of

the GaAs(001) surface is consistent with a mechanism involving weak, repulsive step

edge barriers.

Slope selection and coarsening . The experiments described above suggest two

possible scenarios for the nonlinear evolution of the surface morphology, beyond

the validity of the linearized dynamics (5 .62). In the case of ß'e(110) (and possibly

also for Cu(100)) the wavelength of the pattern was found to be independent of

film thickness while the slopes of the ridges increased as a power law with h. In

contrast, in the GaAs experiments a considerable coarsening, that is, an increase

of the lateral wavelength of the pattern was observed, but the slopes of the ridges

remained constant.

To disentangle these behaviors it is useful to first consider unstable growth in

one dimension. We start from the interface equation (3 .15), including a general

nonequilibrium current JNE (Vh) but neglecting both the nonequilibrium chemical

potential ,aNE and the nonlinearities induced by the geometric factors in (3 .15) and

(3.5) . The equation for the local slope u(x,t) = Vh(x,t) can then be written in the

form
au a2 6V

at ax e Su

V[u(x,t)] =f.d K 8U

2 ( ,x )2+V(
u(x,t))l ,

	

(5.67)
J

which is the Cahn-Hilliard equation for a conserved order parameter u [236] . Here
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FaC, and the `free energy density' V is the integral of the nonequilibrium current,

V(u) =-
r

u dvJNE(v) .

	

(5 .68)

In the situation of unstable growth, V(u) has an unstable stationary point (a max-

imum) at u = 0, and therefore an initially fiat surface (a homogeneous system pre-

pared at u = 0) will phase separate through the process of spinodal decomposition

[236] ; the analogy between growth instabilities and spinodal decomposition was first

pointed out by Golubovic and Karunasiri [237].

Spinodal decomposition proceeds in two stages . The initial evolution is gov-

erned by the linearized dynamics (5 .62), which selectively amplifies fluctuations at

the most unstable wavelength (5 .63) . During this stage, which may correspond to

the regime observed in the experiments on metal surfaces, the wavelength of the

pattern does not change,

	

~--but the amplitude (and therefore the slopes of the surface"~Clf1 does

morphology) increases . Once the surface modulations have reached an amplitude

where the nonlinear terms in (5 .67) can no longer be neglected, a domain structure of

typical wavelength A is established. This domain structure further evolves through

coarsening, a process in which larger domains grow at the expense of smaller ones.

In the coarsening stage the wavelength e of the pattern typically increases according

to a power law,

el'

	

(5 .69)

characterized by a dynamic exponent z (see also Section 2 .3.1).

The nature of the coarsening process depends crucially on the shape of the slope

potential V(u) . A domain structure with fixed, time independent slopes of the kind

observed in the GaAs experiments is possible only if V(u) has stable minima at

some slopes +u 0 , corresponding to zeroes in the current JNE (u) [77] . For example,

fora cubic current function (compare to (3 .14))

JNE( U ) -v1u - v3u 3 (5 .70)

the potential (5.68) becomes the familiar Landau-Ginzburg-Wilson model which

describes (for v1 < 0 and v3 > 0) the coexistence between two phases located at u =

+J v1 /v3 . Coarsening in the one-dimensional y4 model is well understood . In the

absence of fluctuations the domain size grows logarithmically with time [40], while

in the presence of fluctuations (as would be furnished e .g. by the shot noise in the

MBE process) one obtains power law coarsening with z =3 [238], at least up to

the point where e(t) reaches the (finite) correlation length of the one-dimensional

system.

However, as we have seen in the preceding sections, simple models for the growth

induced currents (such as the generalized BCF theory) typically do not produce any
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zeroes in JNE(U), apart from the symmetry condition that JNE (0) = O . In such cases

a stable domain structure cannot be established, but rather the domains continue

to steepen even during the coarsening stage . It seems plausible that the shape of an

individual domain (a ridge or pyramid on the surface) would approach, for large 6,

the stationary solution of the Cahn-Hilliard equation (5 .67) with wavelength 6 . The

stationarity condition SV/Su = 0 takes the form of Newton's equation for a particle

moving in the potential -V(u), Ku" = V'(u(x)) [236] . In the case of interest here

-V is a potential well with a single minimum at u = O . The stationary solutions

of wavelength 6 correspond to `trapped ' periodic trajectories with period 6 . Using

energy conservation, the relationship between the wavelength and the maximal slope

Umax (that is, the turning point of the particle trajectory) can be written as

6 =41
umaz

du r2(V(umax) -V(u)) -1 .

	

(5 .71)

For example, if the current decays to zero as

JNE(u) u --v , u --) oo,

	

(5.72)

evaluation of (5 .71) yields
62/(1)

umax ^'

	

. (5 .73)

Together with (5 .69) this predicts how the morphology steepens as a function of

time.

A detailed study of the BCF-case y =1 has been performed by Hunt, Orme,

Williams, Orr and Sander [239] . On the basis of an analysis of the lifetime of

stationary solutions of fixed wavelength [40], as well as from a numerical solution

of the Cahn-Hilliard equation, they estimate a coarsening exponent z 4 in the

absence of noise . Another case of interest is -y = 0, corresponding to a finite limiting

current for u - eo . This behavior was found numerically for the q = 4 Metropolis

model [77] . With -y = 0, (5 .73) predicts that uma X ti 6 2 , which is reasonably close to

the result umax 62 .6 obtained in simulations of the model [74, 225] . However the

agreement may well be fortuitous, since the anisotropies in the surface tension and

the adatom mobility probably have significant effects at the large slopes involved

[195].

The simultaneous coarsening and steepening of the surface pattern can lead to a

rather rapid temporal increase of the modulation amplitude. Combining (5 .69) and

(5.73), the amplitude Sh um a,{6 is seen to grow as

L(3-1-ry) /z(d~ ) (5.74)

Depending on the values of z and y, the exponent in (5 .74) may well exceed 1/2, the

value describing the most rapid stochastic roughening of a surface through purely
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random deposition, with no relaxation whatsoever . For example, Siegert and Plis-

chke [2251) found Sh N t°•s " in simulations of the one-dimensional q= 4 Metropolis

model (see Section 5 .1 .2), where z 6 and umax ß' 2 .6 , see above. This observation

could be relevant to recent experiments on the epitaxial growth of silicon, where a

linear increase of surface roughness with film thickness was found both on the Si(100)

and the Si(111) surface [240, 241] . A rapid development of surface roughness was

earlier conjectured by Eaglesham, Gossmann and Cerrullo [242] to be at the heart

of the crystalline/amorphous transition that determines the limiting film thickness

for low temperature MBE of silicon, and Eaglesham and Gilmer [2401 tentatively

attributed the observed behavior to the presence of step edge barrires . However, the

available information about the surface morphology does not allow one to decide at

this time whether an unstable growth scenario in fact applies here.

Returning to the GaAs experiments, it appears that the observed phenomenol-

ogy - lateral coarsening at fixed slope - is consistent only with a current that vanishes

at the selected inclinations ; at least the experiments are not consistent with a BCF-

type current, 7 -= 1, which would predict that the ridges steepen at the same rate

as they coarsen. Krug et al. [77] pointed out that additional zeroes in JNE should

be expected simply due to crystalline symmetry, however the small values of the

ridge slopes observed on GaAs(001) make it unlikely that these orientations would

be selected by symmetry. Another possibility is that the current is driven to zero by

additional effects such as knockout processes [193], which compete with the step edge

barriers [216] . It seems fair to say, however, that our understanding of the micro-

scopic origins of the growth-induced surface currents on real surfaces is insufficient

to allow for any firm conclusions at this point.

Of course, in order to be relevant to real surfaces these considerations should

be extended to two dimensions (though the strong anisotropy of the patterns on

GaAs(001) may provide some justification for using a one-dimensional model) . In

two dimensions the order parameter u = Vh is a vector field satisfying the potential

condition V x u = 0. Theories of phase ordering [243] predict a coarsening exponent

z = 4 for a vector order parameter with continuous symmetry (corresponding to in-

plane isotropy of the current JNE), and z= 3 if the symmetry is discrete (in-plane

anisotropy) . Siegert and Plischke [216] have numerically solved the deterministic

continuum growth equation with a surface current that has symmetry-related ze-

roes, finding z -e-z,' 4 both with and without in-plane anisotropy . An analytic under-

standing of this result would be of interest also for the problem of thermal faceting

of a thermodynamically unstable crystal surface, which is governed (for the case of

evaporation-condensation relaxation) by the same equation of motion as the MBE

problem [216, 244] .
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5 .3 The nonequilibrium chemical potential

The conserved KFZ equation

at
=-V2[vV 2h+z(Vh)2](5.75)

was proposed in 1989 by Sun, Guo and Grant [245] in a first exploration of non-

KPZ universality classes . These authors were concerned with the nonequilibrium

dynamics of interfaces under conditions of local volume conservation, and therefore

chose the noise term ri to be of the conserving type, characterized by the covariance

(3 .17). The equation reemerged, equipped with nonconserving `shot noise', in the

first papers on ideal MBE [86, 105] . In both contexts the quadratic nonlinearity

in (5 .75) was written down by appealing to symmetry considerations, and to the

analogy with the KFZ equation (see Chapter 4).

A physical interpretation was suggested by Villain [15], who pointed out that the

nonlinearity in (5 .75) could be thought to arise from an inclination dependence of the

adatom density under growth conditions; such a dependence is easily demonstrated

e.g. in the framework of the BCF-type theories discussed in Section 5 .2 .1 . Villain's

picture is very close to the point of view adopted in Section 3 .1, where nonlinear

terms of the form V 2 (Vh)' were argued to represent the inclination dependence of

a nonequilibrium contribution to the adatom chemical potential µ NE , see eq.(3 .13).

In the notation of Section 3 .1, the coefficients in (5 .75) are v = ra cr and a = -- 2ra ) 2 .

The goal of this section is to give a precise microscopic meaning to the notion

of an inclination dependent, nonequilibrium chemical potential . We will be working

mostly in the context of the Arrhenius MBE model described in Section 5 .1 .2. Be-

sides having the advantage of a simple equilibrium dynamics [195], this model suits

our purposes because, as shown in Section 5 .2.2, it does not allow any nonequilib-

rium surface current. According to the power counting arguments of Section 3.3,

this implies that the nonlinearity in (5 .75) is a relevant term which governs the large

scale behavior of the surface . We noted in Section 3 .3 that the role of higher order

corrections of the form V 2(Vh)' with n > 2, i .e . the consistency of keeping only

the leading term in the gradient expansion (3 .13), is not well understood, especially

in low dimensionalities ; here we will follow the common practice and disregard this

complication.

Once the physics behind the nonequilibrium chemical potential has been elu-

cidated for the case of growth, it is straightforward to devise other microscopic

mechanisms that give rise to the same kind of effects under conditions of volume

conservation, and thus to construct models that are described by the (fully) con-

served KFZ equation originally envisioned by Sun et al .[245] . This will be addressed

briefly in Section 5 .3 .2 . In Section 5 .3.3 we summarize what is known analytically
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about the properties of (5 .75), with conserved or nonconserved noise.

5 .3.1 Microscopic origin in the Arrhenius model

As a starting point, consider the change in the ensemble-averaged local height (hx)

induced by deposition and diffusion processes . For the purpose of the present discus-

sion, we envision an ensemble of microscopic surface configurations that correspond

to the same, slowly varying macroscopic surface shape . Due to deposition, (hx) in-

creases at constant rate F ; diffusion processes remove particles from site x and add

particles coming from the neighboring sites . The resulting dynamics can be written

ä (hx)= d
E(RyX-Rxy)+F,

	

(5.76)

with the sum over the averaged rates including the nearest neighbor sites y of x . For

the standard Arrhenius model described in Section 5 .1 .2, RXy =exp(-2KI nx/k$T)

which is independent of the final site y (recall that K 1 is the coupling constant of

the SOS Hamiltonian ?-1 i in (5.10)) . Consequently the sum on the right hand side

of (5.76) takes the form of the lattice Laplacian of the quantity

Mx = (exp(-2Krn X /kB T))

	

(5 .77)

and the coarse grained equation of motion reads

as

äh
= ~

v2m + r~. (5.78)

It is clear from a comparison with the conserved interface equation (3 .15) that

M should be associated with the chemical potential ,u (the geometric prefactor

Jl + (Vh)2 in (3.15) does not appear in the large scale description of SOS models,

see [178, 195]) . In particular, a term V 2 (Vh) 2 appears in the equation of motion if

and only if the local value of M depends on the local surface slope.

In fact a more precise connection can be established {1951 . In (global) thermal

equilibrium (F = 0) it can be shown that M= exp(-2dKl/kB T) independent of

inclination. Moreover, if the surface is constrained by an inhomogeneous chemical

potential µx to adopt a modulated, local equilibrum shape, one finds

Mx - exp[(2dKx µx)/kB T] .

	

(5,79)

We give here a simple proof due to H.T. Dobbs . Let the total energy of a surface

configuration H={hx} be given by (compare to (5.10))

'7-t =

	

E lhx - hyl E hx,

	

(5.80)
<xy>

	

x
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and let H' = {h'y } denote the configuration obtained from {hy} by removing a par-

ticle at site x,

by-1 : y = x

by

	

yLx.

The energy difference between the two configurations is readily shown to be

1-t(H') - 3~(~) =2K I (nx - d) + ~x .

Consequently,

(e-(2Ki(nx--d)-ß°kIk&Z')

	

1 E e-(7-t(H)+2Kz(nx-d)+ux)I k2T-

Z F

1(E e-x(H)/kBr) - E e-rt( H ')Ik $T =

\ H

	

I-f

and (5 .79) follows .

Vh

Figure 40: Inclination-dependent nonegnriibrium chemical potential for the one-

dimensional Arrhenius model, at reduced inverse temperature K1 /k .B T = 1.15 and de-

position rate F = 0 .01 . The symbols represent numerical results from simulations of a

system of size L = 40, averaged over 10 7 Monte Carlo steps per site (10 5 monolayers) for

each data point . The full line is the result of the approximate analytic theory.

hy. (5 .81)

(5 .82)

(5.83)
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Turning the relation (5 .79) around, we see that the quantity

«(x) k B T ln(exp(-2Krnx/kB T)) + 2dKr

	

(5.84)

provides a direct measure of the local chemical potential which can be used also in

a nonequilibrium situation . In Figure 40 we show a measurement of the chemical

potential as a function of inclination, for the one-dimensional Arrhenius MBE model

with parameters K1 /kB T =1.15 and F = 0 .01 . The chemical potential is seen to be

increased relative to its equilibrium value I) = 0, with a distinct peak at zero slope . In

a slope expansion as in (3 .13) this implies a negative value of A2, which is estimated

from the data to be a2 ti -0.015 . It should be no surprise that this is a small number:

Since UNE is induced by the growth, its scale is set by the deposition rate F. This

will be made more precise shortly.

To gain some insight into the behavior of the chemical potential, we note that

(5.77) can be expressed as [246]

2a

M = E exp(-2Krn/kB T)

	

(5.85)
n=0

where cn, is the probability that a surface atom has n lateral nearest neighbors . The

e n depend on the surface inclination even in thermal equilibrium. For example, in

d =1 all sites have n = 1 for strongly tilted surfaces, so that e l -i 1 and c0 ,2 - 0 for

V h -a ±oo. It is only the specific linear combination (5 .85) that is slope-independent

in equilibrium, due to the subtle constraint of detailed balance . Conversely, it is

evident that virtually any nonequilibrium influence disrupting detailed balance will

also make M a slope-dependent quantity.

In the case of growth, one expects that the deposition beam will create isolated

adatoms . and thereby increase co relative to the o n with n > O. Since co enters the

sum (5.85) with the largest coefficient, this results in an overall increase of M, and

also of the chemical potential y=kB T JnM+2dKl . On the other hand , for large

slopes it is easy . to see that sites with n= d will, dominate, thereby resetting M

and µ to their equilibrium values M = exp(--2dK I/kB T), p= O . Consequently, the

behavior of the nonequilibrium chemical potential depicted in Figure 40 - /NE >0,

with a peak at zero inclination and pNE -4 0 for large slopes - should be generally

valid.

For the one-dimensional case a simple scheme can be devised to approximately

calculate the nonequilibrium chemical potential . Let g nn denote the . probability that

deposition onto a site occupied by an atom with m lateral nearest neighbors will

create an atom with n lateral nearest neighbors . Nonzero off-diagonal . elements of g

are gio (creation of an isolated adatom on a step edge), g20 (creation of an adatom

on _ .a flat portion of the surface) and g21 (deposition below a step edge), see Figure
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2-0

	

2-1

Figure 41: Changes in the local coordination numbers n due to the deposition of atoms.

41 . For a one-dimensional equilibrium surface governed by the Hamiltonian H1 in

(5.10), the g„+, ,,, are easily calculated as a function of surface inclination . To leading

order in the deposition flux, the changes Sc,, in the coordination number . densities

can then be expressed as

Sc, =F~(a~,,,~ -(5.86)~,,,	
m

which, inserted into (5 .85), yields the changes in M and in ~c . The result of this

calculation is shown as the full line in Figure 40 . The overall behavior of the chemical

potential is well reproduced, though the magnitude is considerably overestimated.

The situation appears to be similar, in this respect, to the calculation of the slope-

dependent current in Section 5 .2 .3.

5 .3.2 Conserved nonequilibrium dynamics

In their original work on eq .(5 .75) with conserving noise, Sun et al .[245] proposed a

microscopic realization based on the restricted solid-on-solid (RSOS) model of Kim

and Kosterlitz [143] . It was subsequently pointed out by Räcz et al. [1'77] that this

model in fact possesses detailed balance, and therefore cannot display the nonlinear

term in (5.75) . . RAcz et al.[177] showed how to break detailed balance in the RSOS

rule, however in the process a nonequilibrium surface current was also generated

[77] . As a consequence, . the large scale dynamics of their model contains a Laplacian

term u1 V2h which supersedes the effect of the nonlinearity (see Section 3 .3), except

at a special parameter value where vg is (close to) zero.

From the dicussion in the preceding section it is clear how to construct a model

of conserved surface dynamics that is described by the conserved KPZ equation

(5.75) for arbitrary parameter values. We have seen that the essential effect of the

deposition current in the Arrhenius MBE model is to upset the delicate balance

between the terms in the sum (5.85) defining the local chemical potential, such that

the conserved KPZ nonlinearity is generated in the large scale equation of motion.

Thus, the task is to break detailed balance without violating the symmetry of the

Arrhenius model that disallows a net nonequilibrium surface current (see Section
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Figure 42: Simulation results for the simple symmetric nonequilibrium surface diffusion

model described in the text . The full line shows the surface width (squared) as a function

of time, for a one-dimensional surface of length L = 2 x 10 5 . The dotted line indicates

an initial Mullins-regime, with (/z= 1 /8, while the dashed line W 2 0.68 t2in shows the

asymptotic behavior predicted by the conserved KPZ equation, see (5 .93).

It is easy to. imagine nonequilibrium processes that have this effect, and that

do not change the amount . of mass on the : surface . For example, consider a surface

exposed to a beam of energetic ions . The kinetic energy provided by the beam allows

particles on the surface to move to neighboring sites without thermal activation [247].

Within an Arrhenius-type model, we may suppose that an adatom is `kicked' by the

beam with probability p, and performs a thermal jump with probability . : 1 ..-p. The

total jump rate is then

y p+ (1p)exp(-2Kinx),

	

(5.87)

which is still independent of the final site y, but no longer satisfies detailed balance;

the deviation from equilibrium is governed by . the parameter p, the analogue of

the. deposition flux in the MBE case . A straightforward simulation verifies that an

inclination-dependent nonequilibrium chemical potential is indeed generated . Since

the total volume of the solid is conserved, one therefore expects this model to . be

1 10
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described asymptotically by the conserved KPZ equation, eq .(5 .75), with conserving

noise .

10
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Figure 43: Height-difference correlation function at time t= 10 5 , from the simulation

shown in Figure 42 . The dashed line indicates the predicted roughness ..exponent, (=1/3

(see (5 .92)), G 2 ;~ 2 .0 r213 .

A simpler (and computationally more efficient) rule with the same properties is

obtained as follows . A site x is chosen at random. It is checked whether the height at

any one of the neighboring sites exceeds /Ix, by at least one lattice spacing . If so, the

particle at x is regarded as immobile and a new site is chosen; if not, the particle at

x is moved to a randomly chosen neighbor site . Note that, under this rule, particles

incorporated into a perfect, fiat singular surface are mobile . Simulation results for

this rule are shown in Figures 42 and 43 . The exponents are in good agreement with

the theoretical predictions for eq .(5.75), which we describe next.

5.3.3 Properties of the conserved KPZ equation

One-loop renormalization group analyses of eq . (5 .75) were reported by Sun et al .[245]

for the case of conserved noise, and by :Lai and Das • Sarnia [95] for the case of

nonconserved noise ; the latter work was extended by Tang and Nattermann [96] by

including the effect of a lattice pinning potential, which turns out to be irrelevant

1
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on large length scales . In the conserved case the lattice potential gives rise to a

Kosterlitz-Thouless-type roughening transition in d = 2 [248].

These calculations suggest a remarkably simple picture . We noted above in

Section 4.3 that the lack of coupling between the average motion of the surface,

and the internal fluctuations, which is a common feature of all ideal MBE processes

described by equations of the type (5 .3), enforces the exact exponent identity z =

d+ 2( (eq.(4.27)) . Replacing the deposition noise 17 by the conserving noise nc defined

by (3.17) merely shifts the dimensionality d--> d+ 2 and implies the relation

z=d +2-{-2( .

	

(5.88)

While the scale-independence of the noise strength D is an exact property of these

equations, the one-loop calculations indicate that the coefficient A of the nonlinearity

in (5 .75) is also invariant under resealing, implying the second identity

C-1- z = 4,

	

(5.89)

the analogue of the Galilean invariance relation (4 .7) for the KPZ equation . The

relation (5 .89) was implicitly used by Villain [15] in a Flory-type estimate of the

scaling exponents.

The invariance of A is commonly believed to hold to all orders, though this

has not been rigorously established ; it is not clear what symmetry plays the role

of Galilean invariance in the conventional KPZ context (see [96, 177, 245] for dis-

cussions of this point) . Here we follow the common view and assume that A is

scale-independent . This leaves us in the fortunate situation encountered previously

in the treatment of the one-dimensional KPZ equation in Section 4 .1 : Having two

invariant quantities, D and A, at our disposal, both exponents and scaling forms

can be determined exactly, up to universal scaling functions and amplitudes [138].

Using (4.27) and (5 .89) we obtain the exponents [15, 95]

~=(4-d)/3, z=(8+ d)/3, d<d~ -4

	

(5 .90)

for (5 .75) with nonconserved noise, and [245]

~= (2-d)/3, z=(10+ d)/3, d <d, =2

	

(5.91)

for the conserved noise case.

Specializing to the case of conserved noise in d= 1 dimensions, we can further

introduce universal amplitudes through the relations

G2 (r,t) a2(D/A) 2l3 r2/3; r<<«t)

	

(5 .92)
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Figure 44: Average jump rate M as a function of inclination for the nonequilibrium surface

diffusion model described in Section 5 .3 .2 . The data were obtained from simulations of a

system of size L = 200 ; each point constitutes an average over 10 7 attempted moves per

site . The dashed line is a parabolic fit M = 0 .358 - 0 .17(Vh) 2 . The large scale equation of

motion for this model is, in analogy to (5 .78), 0h/8t = (1/2)V 2M, hence comparison with

(5 .75) shows that A M 0 .17.

for the stationary height difference correlation function (see Section 3 .2), and

W2(L, t) N c2(D4 /A3)2/11 t2/11, 6(t) <L .

	

(5.93)

For the simple model described in Section 5 .3 .2, a measurement of the average jump

rate as a function of surface inclination (which is the equivalent of the quantity

M defined in (5 .77) for the Arrhenius growth model) yields the value A 0 .17 (see

Figure 44) . Together with the prefactors of G2 and W2 obtained from the data in

Figures 42 and 43, this allows us to estimate the universal amplitude ratio

'R = `2
ll/I2 !a2 P.,- 0.47. (5 .94)

In view of the somewhat uncertain status of the scaling relation (5 .89), it is

clearly desirable to confirm the predictions (5 .90) and (5 .91) for the scaling expo-

nents through a direct numerical integration of the equation (5 .75) . Chakrabarti

[249] carried out such a study for the equation with conserved noise, and found
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agreement with (5.91) . For the case of nonconserved noise the numerical integra-

tion has been attempted by Tu [250] and Moser [251] . Both authors encountered

severe difficulties in integrating the equation for d = 1, which they attributed to the

large value (=1 of the roughness exponent (see eq .(5 .90)) . Tu found the temporal

behavior of the width to be consistent with the prediction, W N
ti/3, up to a fi-

nite transition time at which the interface developed singularities and the algorithm

broke down. He conjectured that the development of finite time singularities might

be an intrinsic feature of the deterministic conserved KPZ equation, (5 .75) with

ri=0.

This seems unlikely in view of recent analytic work by Putkaradze, Bohr and

Krug [252], who show that (i) cusp-like singularities can develop in finite time, but

only if the stabilizing linear term in (5 .75) is absent, i .e. if v = 0, and (ii) the

solutions remain bounded even when singularities do develop . Nevertheless, it is

worth pointing out that the behavior of the deterministic, conserved KPZ equation

is much less understood (and potentially more interesting) than its nonconserved

counterpart, which can be exactly linearized using the Cole-Hopf transformation

[156] (see also Section 4 .5).

In d = 2 dimensions the equation is numerically better behaved . Tu [250] esti-

mates that C/z = 0.21 ± 0.03 and ti 0 .71, in reasonable agreement with the predic-

tions 1/5 and 2/3, respectively. The extensive simulations of Moser [251] yield the

estimate (/z = 0 .183 + 0 .010, somewhat smaller than predicted, however the devia-

tion is attributed to a finite-time effect . Thus, at present there appears to be no

compelling reason to doubt the values (5 .90) of the scaling exponents.

5.4 Conclusion: The universality classes of MBE

In this chapter we have attempted to provide microscopic derivations of the nonequi-

librium contributions to the conserved growth equation (3 .15), which allow, at least

in principle, to estimate their magnitude under conditions of real MBE growth . The

relevance of these terms for the large scale surface fluctuations was discussed already

in Section 3.3 . The emerging picture is that of a `nested' sequence of universality

classes :

(I) Under generic circumstances, the behavior is dominated by the linear part of

the nonequilibrium surface current .1NE(V h) . Depending on the sign of the leading

coefficient . v 1 in the gradient expansion (3 .14), one obtains either Edwards-Wilkinson

(EW) scaling, with logarithmic roughness in d= 2 surface dimensions (see Section

3.2), or unstable growth of the kind discussed in Section 5 .2.4.

(II) If, for reasons of symmetry (or, more realistically, because asymmetric con-
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figurations such as step edges are dynamically unimportant), JNE - 0, the most rel-

evant terms are those generated by the nonequilibrium chemical potential, eq . (3 .13),

and one expects the surface to be described by the conserved KPZ equation with

the exponents (5 .90) (at the conserved KPZ fixed point the geometric nonlinearities

in (3 .15) are believed to be irrelevant [95]).

(III) Finally, if the symmetry of the system not only prohibits nonequilibrium

surface currents, but also imposes an invariance of the dynamics under arbitrary tilts,

all conceivable nonlinearities are irrelevant and one is left with a surface described

exactly by the noisy Mullins equation, with (=I and z = 4 in d = 2 (see Section

3 .4) .

Strictly speaking, this list does not exhaust all possibilities . For example, one

should also consider the case were both JNE = 0 and P'NE 0 in (3 .15), and ask what

scaling behavior results from the interplay of the geometric nonlinearities with the

nonconserved shot noise [75, 76] . As was mentioned in Section 3 .3, this problem

is difficult to control, because all geometric nonlinearities are relevant below d = 2.

However, it is hard to imagine a situation where {LNE 0, except for the case of tilt-

invariance, which suppresses the geometric nonlinearities at the same time . Thus,

for the present discussion we restrict our attention to the three cases I - III.

The purpose of this section is to examine to what extent the available numerical

and experimental results on ideal MBE growth is consistent with the picture sketched

above. The case of unstable growth was already dealt with in Section 5 .2.4, and will

not be discussed here . We begin with a survey of computer simulations, following

the classification of Section 5 .1.

5.4.1 Computer simulations

Limited mobility models . A surprising result of the numerical measurement

of nonequilibrium surface currents in Ref. [77] was the prediction of a crossover to

Edwards-Wilkinson scaling for the Wolf-Villain (WV) model both in one and two

substrate dimensions; the crossover time was estimated to be t, ti 10 6 monolayers in

d = 1, and t~ 2 x 104 ML in d = 2 . Direct numerical evidence for such a crossover

has been presented in two recent studies [253, 254] . Moreover, the measurement

of surface currents for a variety of limited mobility rules introduced by Das Sarma

and Ghaisas [133] indicates that JNE is nonzero generically for these models [255].

This is to be expected, since their dynamics, which is governed by a comparison

of local coordination numbers (see Section 5 .1 .1), does not possess any symmetries

that would enforce JNE = 0 ; the only exception is the one-dimensional rule DTI

(Section 5 .2.2) . Both uphill and downhill currents have been observed [255] . The
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most spectacular manifestation of uphill currents and unstable growth was displayed

by Smilauer and Kotrla [256] in a study of the WV model in d = 3 and d = 4 substrate

dimensions.

However, clean and unambiguous EW scaling is observed in these models only

when the dynamics favors downhill moves in some obvious way, through funneling

[179, 180] or an explicit suppression of down jumps [183, 257] . In all other cases the

downhill currents are very weak, and the scaling on numerically relevant length and

time scales is governed by some effective continuum theory that is often difficult to

identify. In one dimension this effective theory would also be expected to govern the

asymptotic behavior of the DT1 model, which has no EW term.

0 1 . 2 3
log 10 r

Figure 45: Generalized height difference correlation functions Cq(r), defined in (5.95),

from a simulation of the DT1 limited mobility model . From top to bottom, the data sets

correspond to q = 4, 3, 2 and 1 . [94]

Early results obtained for the surface width W(L, t) in one dimension suggested

that the effective behavior might be described simply by the linear noisy Mullins

equation [86, 105], but recent studies of the full height-difference correlation function

point at a much more complex scenario [89, 90, 94] . It appears that limited mobility

models in one dimension generically show anomalous scaling of correlation functions,

as in (3 .45), with exponents a and that cannot easily be associated with continuum

theories . Microscopically, the anomalous behavior manifests itself in an extremely
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broad (stretched exponential) distribution of local height differences, with moments

scaling according to (5 .61) . This can lead to multiscaling of the generalized height-

difference correlation functions Cq ,

Cq( r ) = (l h(x +r) - h(x)]q)llq
rCg

	

(5.95)

with q-dependent exponents, through the dominance of rare, large slope fluctuations

for large q [94], see Figure 45.

While the origin of these anomalous fluctuations is yet unknown, there are two

indications that their explanation lies outside the realm of continuum theories . First,

Schroeder [258] has investigated the effect of increasing the incorporation range in

the WV model (see Section 5 .1 .1) . He finds that this dramatically decreases the value

of ee in (3 .45), while leaving the roughness exponent essentially unchanged . Thus,

the long wavelength fluctuations described by which are the only feature that can

be modeled by a continuum theory, do not appear to be influenced by the divergence

of the short range slope fluctuations expressed by the scaling G 2 (1,t) ^ 2a . This

suggests a picture of a conventionally rough surface `decorated ' by anomalous local

fluctuations, which can be eliminated by local smoothening, e .g. by increasing the

diffusion range.

The actual value of the roughness exponent, = 0 .78 ± 0.05, is close to that

associated with the continuum equation

oh =
v37(®h)3 - x®4h +

	

(5.96)
at

which is obtained if the next-to-leading, cubic term in the gradient expansion (3 .14)

of ,TNE dominates over the leading linear term . Balancing the nonlinear term in

(5.96) against the time derivative one obtains the relation 2( + z = 4, which together

with the general exponent identity (4 .27) yields [95, 183]

C=c'=(4-d)/4, z=(4+d)/2, (5 .97)

hence < = 0 .75 in d =1 . However the validity of this result, and in particular its

relevance for the description of microscopic growth models, must be questioned. It

is easy to see [259] that the cubic nonlinearity in conjunction with the noise in (5 .96)

gives rise to an effective surface diffusion current which is in fact linear in the imposed

surface inclination, with a coefficient i ^,- van/D . Thus, as it stands equation (5.96)

gives rise to either Edwards-Wilkinson scaling (if v3 > 0), or to unstable growth (if

v3 < 0) . Different behavior (possibly described by (5 .97)) can be expected only if

a `bare' Laplacian term vi ®2h is added to the right hand side of (5 .96), and the

coefficient v1 is tuned such that vi + yr = O. It seems unlikely that such fine tuning

would take place in any `generic ' microscopic model.
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A second indication for the decoupling of the anomalous slope fluctuations from

the long wavelength behavior in the one-dimensional limited mobility models de-

rives from the work of Kim, Park and Kim [185] on a restricted SOS model briefly

described in Section 5 .1 .1 . In this model large local slopes are suppressed by defini-

tion. The resulting scaling behavior is in excellent agreement with the predictions

(5 .90) of the conserved KPZ equation . Thus, once the anomalous local fluctuations

are eliminated, the simple scenario sketched at the beginning of this section is re-

instated . The inclination-dependent surface current was not measured in the work

of Kim et al .[185], therefore it is not known when (or if at all) a crossover to EW

behavior should be expected.

In two dimensions, anomalous scaling, while still detectable [255], is much

weaker; Smilauer and Kotrla [253] estimate that «/z ^: 0.05 for the d= 2 WV model,

as compared to a/z 0 .19 in one dimension with nearest neighbor incorporation.

Consequently, the identification of the effective behavior prior to the crossover to EW

scaling is less problematic . For the WV model Kotrla et al .[257] and Smilauer and

Kotrla [253] obtain results consistent with the exponents (5 .90) of the conserved

KPZ equation. For some of the variants considered by Das Sarma and Ghaisas

[183], the measured exponents are closer to the values (5 .97) associated with the

cubic equation (5 .96) [260] . As mentioned already, the reason for the applicability

of this equation needs to be clarified.

Collective diffusion models . We have shown in this chapter that (i) the Arrhenius

model of MBE has no net surface current, and (ii) a nonequilibrium chemical poten-

tial pNE > 0, quantified by the expression (5 .84), is generated under growth condi-

tions. Thus, the large scale behavior of this model should be governed asymptotically

by the conserved KPZ equation (5 .75) with nonconserved noise . This conclusion is

supported by simulations of Wilby, Vvedensky and Zangwill [261] in dimensionalities

d = 1, 2 and 3, though the scaling range in these simulations, especially in d=1 and

3, was quite small . In the one-dimensional case, part of the difficulty probably arises

from the appearance of anomalous scaling of the kind discussed above, particularly

at low temperatures [184, 225] . A detailed crossover analysis for this model as a

function of temperature and deposition rate would be quite useful.

The behavior of the Metropolis model, defined by the Hamiltonian (5 .10) and

the jump rates (5 .11), can be understood completely from the consideration of the

surface current [77, 2251 . For q= 1 one observes a considerable downhill current, and

clean EW scaling [190] . For q = 4 the current is uphill and the surface is unstable

[74, 225] . Finally, for q = 2 the symmetry argument given in Section 5 .2 .2 implies

that the surface should be governed by the linear Mullins equation, in agreement

with recent simulations [225] .
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Among the collective diffusion simulations with detailed balance violating dif-

fusion algorithms mentioned in Section 5 .1 .2, we discuss here only the careful work

of Pal and Landau [214] . In their model, the suppression of upward jumps would

be expected to induce a downhill current . Indeed, the logarithmic roughening char-

acteristic of the two-dimensional EW equation is observed, though the dynamic

exponent is estimated to be z = 1 .61 ± 0 .02, rather than the EW value z =2 ; it

appears, however, that the data are not inconsistent with z = 2.

5 .4 .2 Kinetic roughening experiments

Over the last few years, an increasing number of deposition experiments have been

performed with the aim of verifying the dynamic scaling scenario, and estimating

the universal scaling exponents widely advertised by theoreticians . In carrying out

such experiments and interpreting their results in the light of theory, one is faced

with two somewhat unrelated difficulties.

First, real surfaces are immensely more complex than the theorist's mental im-

ages. They typically display a wide variety of characteristic length scales, associated

with e.g. grain boundaries, defects and impurities, and it is often hard to ensure

that the phenomena occurring at the scale accessible to a particular experimen-

tal technique are indeed governed by the simple processes described by theoretical

models ; also, the substrate on which growth occurs is usually not perfectly flat, but

possesses a roughness that can be quite comparable to that developed kinetically

during growth. Second, all experimental techniques that can access the micro- and

mesoscopic scales of interest are, to a larger or lesser degree, indirect in the sense that

the interpretation of data requires additional assumptions and theoretical input.

These inherent difficulties place high demands on the versatility and inventive-

ness of the experimental investigation . To unambiguously determine that kinetic

roughening is taking place, it is crucial that the dynamic development of the rough-

ness be monitored (e .g . through the increase of the surface width W or the cor-

relation length ) in addition to its spatial characterization through the roughness

exponent C . This requires either the use of some in situ technique by which the sur-

face morphology can be observed during growth, or . the preparation of a sequence

of samples with different film thicknesses (that is, deposition times) that are then

investigated ex situ . An interesting third possibility is the growth of multilayer films,

where the surface configurations at various stages of the deposition process are pre-

served in. the bulk of the film in the form of solid-solid interfaces [240, 262, 263].

Similarly, in order to overcome the limitations of any particular experimental probe

of surface roughness, it is essential that the same system be investigated using dif-

ferent, complementary techniques [264] .
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In the following, a few recent key experiments are described that have gone a

long way in meeting the requirements formulated above, and that were moreover

conducted under conditions reasonably close to the `ideal MBE' process envisioned

in this chapter.

Iron. The first set of experiments concerns the epitaxial growth of iron . Chevrier,

Le Thanh, Buys and Derriere [265] deposited iron films of up to 2500 A thickness onto

the Si(l11) surface at 50°C . Analyzing the broadening of the peaks in the RHEED

(reflection high energy electron diffraction) pattern as a function of deposition time,

they found that the surface width W increased with film thickness I~ as a power law,

WN h~, (5.98)

where ß was in the range 0 .22-0 .3. Since the measured value of ß is close to the

prediction of KPZ simulations, ß=(/z 0 .24 [109], the experiment was initially

interpreted as being indicative of a KPZ-type roughening mechanism.

This conclusion had to be revised when He, Yang, Lu and Wang [266] reported

results on a closely related system (Fe on Fe(001)) obtained with a technique (high

resolution low energy electron diffraction, HRLEED) that allows for the simultane-

ous measurement of dynamic and static scaling properties . While the value of ß

estimated by HRLEED, ß =0.22+0.02, is fully compatible with that of Chevrier

et al . [265], the large value ( = 0.79 +0.05 of the roughness exponent clearly rules

out KPZ behavior. The observed exponents are roughly halfway between those

predicted by the linear Mullins theory (0=(/z =1/4, (=1 in d= 2) and by the

conserved KPZ equation (ß = 1/5,( = 2/3 from (5 .90) ), perhaps slightly closer to

the latter.

More significantly, the scaling relation (4 .27), characteristic of all ideal MBE-

type processes, is well satisfied by the experimental exponent estimates. In terms

of the experimentally accessible exponents, the relation (4 .27) reads

2ß( 1 H- 1/() =1 ,

	

(5 .99)

while the values given by He et al . .[266] imply 2/3(1+ l/o) =1 .0 +.0 .1 . In contrast,

the KPZ identity (4.7) would predict ((1 +1/ß) = 2, whereas experimentally 0(1 -F

1/0) = 4 .4+ 0.6. This provides quite strong evidence that the epitaxial growth of

iron, films at ambient temperatures fails into the ideal MBE category (note, however,

the rather different behavior found in the low temperature epitaxy on Fe(110), as

described in Section 5 .2.4; we will return to this point at the end of the section).

Silver . A detailed study of room temperature vapor deposition of silver films onto

silicon and quartz substrates was recently carried out by Thompson, Palasantzas,
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Feng, Sinha and Krim [267] and by Palasantzas and Krim [268] . Thompson et

al. [267] used an in situ apparatus where thermal deposition could be alternated

with X-ray reflectivity measurements . In these measurements, the increase of the

surface width is monitored through the decrease in specular reflection, while the

height difference correlation function is extracted from the diffuse scattering [269].

Examining a range of film thicknesses I00A < < 1500A, the surface width was

found to increase as in (5 .98) with ß = 0 .26 +0.05 . The estimate for the roughness

exponent obtained from the diffuse scattering intensity was (= 0 .63 ± 0 .05 . Correct-

ing for the influence of the `buried' Si/Ag interface lead to larger values, in the range

0 .65 < < 0.75. A larger value for C is also suggested by an STM analysis of the sur-

face, which yields C = 0.78 ± 0 .014 from a direct measurement of the height difference

correlation function . The final estimate given by the authors is ( = 0 .7+0 .1.

In principle, the diffuse scattering of X-rays provides a measure also of the

dynamic correlation length e, and thus of the dynamic exponent z defined through

e N tllz [269] . Thompson et al . [267] conclude that, in their system, the correlation

length is too small to be accurately determined in this way, however the data are

consistent with a power law dependence on film thickness, 'Piz with z = Clß M 2.7

obtained from the experimental estimates for C and O . This issue was reexamined

in the STM study of Palasantzas and Krim [268] . For silver films of thicknesses

between 100 and 10000 A, deposited onto quartz substrates, they estimated that

ß = 0.29 +0 .06 and C =0.82+0 .05, in good agreement with the X-ray results . In

addition, the increase of the dynamic correlation length with film thickness was

explicitly verified, and the dynamic exponent was estimated to be z = 2 .53 + 0 .50.

Within the error bars, these numbers satisfy the ideal MBE scaling relation (5.99) as

well as the (theoretically self-evident) relation ß = (/z. Additional direct evidence

for the applicability of ideal MBE models to this system derives from the observation

[267] that the film density is close to the bulk density of silver (no defects), and the

sticking coefficient is close to unity (no desorption).

Discussion . The silver deposition studies of Thompson, Krim and coworkers pro-

vide the most detailed confirmation to date of the dynamic scaling scenario for the

kinetic roughening of surfaces . They also highlight the typical difficulties mentioned

at the beginning of this section.

First, since the substrates used in this work (silicon and quartz) are not wetted

by the silver, the initial stage of growth proceeds through the formation of three-

dimensional islands, which lead to a polycrystalline film structure and considerable

long-wavelength roughness not associated with the stochasticity in the deposition

process [267] . The polycrystallinity can be neglected only as long as the size of the

crystalline domains much exceeds the dynamic correlation length [270] . In addi-
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tion, a considerable amount of substrate roughness was present in the experiments,

which had to be subtracted from the measured (squared) surface width prior to

analysis [267, 2681.

Second, X-ray scattering, while being an extremely powerful technique for the

study of correlated surface roughness, is also a typical example of an indirect method,

the results of which can be strongly affected by the assumptions put into the data

analysis . In order to extract the roughness exponent ( and the correlation length

from the diffuse scattering intensity, a model for the full height difference correlation

function has to be provided . The traditional choice (see e .g . [269])

G2 (r) = 2W 2 (1- exp[-(r{02C])

	

(5.100)

combines the proper asymptotics for rg « 1 and r/ » 1 in a simple way, but it is

motivated by convenience rather than supported by theory or experiment . Palas-

antzas and Krim [271] have proposed alternative forms for G 2, and shown that the

value of extracted from diffuse X-ray data depends sensitively on the precise shape

of the scaling function.

These comments do not intend to criticize the admirable and highly encouraging

experimental efforts . Rather, it is hoped that they will inspire future theoretical work

addressing the pertinent issues, i .e . (i) the effects that a polycrystalline domain

structure and a rough substrate have on the kinetic roughening process, and (ii)

an improved model for the shape of the height correlation function, to replace the

heuristic ansatz (5 .100).

One may wonder, finally, why the EW universality class, purportedly the most

robust and generic class of ideal MBE processes, does not appear in the experi-

ments described here (rather convincing evidence for EW scaling has been found

in the growth of amorphous multilayers, however [263]) . A tentative explanation

was given in Section 5 .2.4: If repulsive step edge barriers are primarily responsi-

ble for nonequilibrium surface currents on real surfaces, then destabilizing currents

(vi < 0) should occur more commonly than stabilizing ones (vi > 0, EW scaling).

This view would reconcile the iron film experiments described in this section with

those discussed in Section 5 .2.4: Under the low temperature conditions considered

by Albrecht et al .[228], step edge barriers may be sufficiently effective to instigate

unstable growth, while at room temperature effectively v 1 = 0 and higher order terms

in the general interface equation of motion (3 .15) become important.

Indirect evidence that points in the same direction is provided by studies of

kinetic roughening during the MBE of GaAs(001) . Johnson et al .[232] observed

that the increase of roughness as a function of film thickness is exceedingly slow,

consistent with the logarithmic behavior expected from the EW theory . In view

of the subsequently discovered growth-induced instability of the GaAs surface, this
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result should be interpreted as describing the kinetic roughening of the sides of the

evolving ridge structures (see Section 5 .2.4) . Whatever the mechanism that selects

the slopes of these ridges, it is clear that the slopes have to lie in the stable region of

the inclination dependent current, where vl = -J' > 0, and hence their roughening

should indeed be of EW type.

Note added : The experimental situation in this area is very much in a state of flux.

Recent work by Stroscio et al. [272] suggests that the scaling behavior observed

in the iron deposition experiments described above [265, 266] may in fact be due

to unstable growth of the kind discussed in Section 5.2 .4, at least for the case of

deposition onto atomically flat, single crystal surfaces . On the other hand, the real

space images of Palasantzas and Krim [268] seem to rule out an unstable growth

scenario for the silver/quartz system. Two recent experimental studies of scaling in

heteroepitaxial growth [273, 274] emphasize the need to incorporate droplet forma-

tion and coalescence in the initial stages of deposition, and the subsequent formation

of a polycrystalline domain structure, into the kinetic roughening theories.
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