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Transcranial Direct Current Stimulation (tDCS) is investigated for a broad range of neu-
ropsychiatric indications, various rehabilitation applications, and to modulate cognitive
performance in diverse tasks. Specificity of tDCS refers broadly to the ability of tDCS to
produce precise, as opposed to diffuse, changes in brain function. Practically, specificity of
tDCS implies application-specific customization of protocols to maximize desired outcomes
and minimize undesired effects. Especially given the simplicity of tDCS and the complexity
of brain function, understanding the mechanisms leading to specificity is fundamental to
the rational advancement of tDCS. We define the origins of specificity based on anatomical
and functional factors. Anatomical specificity derives from guiding current to targeted brain
structures. Functional specificity may derive from either activity-selectivity, where active
neuronal networks are preferentially modulated by tDCS, or input-selectivity, where bias is
applied to different synaptic inputs. Rational advancement of tDCS may require leveraging
all forms of specificity.
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THE NEED FOR tDCS SPECIFICITY
As tDCS is a simple and general technique, applied to a wide
range of clinical and cognitive neuroscience applications (Brunoni
et al., 2012), a pivotal question to the rational advancement of
tDCS is how is specificity achieved? More generally, why does
low-intensity direct current produce (desirable) cognitive changes
on highly complex tasks recruiting multiple neural pathways or
treat multifarious neuropsychiatric disorders (Turkeltaub et al.,
2012; Medina et al., 2013; Zimerman et al., 2013)? A question
compounded when considering that the DC waveform is does
not carry apparent information and that the induced electric field
in the brain is low [<1 V/m; (Datta et al., 2009; Ruffini et al.,
2012)] producing minimal cell membrane polarization [<1 mV;
(Radman et al., 2009)]? Practically, how can stimulation protocols
be optimized to promote specificity with the goal of increasing
efficacy while reducing undesired side effects? Since these issues
are central for the rational advancement of tDCS, here we define
both anatomical and functional origins of specificity (Cano et al.,
2013). Although task specific effects of tDCS have been shown
(Saucedo Marquez et al., 2013; Tang and Hammond, 2013) the
mechanistic substrate remains poorly explained.

ANATOMICAL tDCS SPECIFICITY AND THE “SLIDING-SCALE”
MODEL
Anatomical specificity refers to the preferential neuromodulation
of targeted brain regions by delivering stimulation current to the
targeted area. The number, location, and size of anatomical targets
are application specific. For example, the targeted brain region
may be a specific cortical area implicated in a task or pathol-
ogy. Anatomical specificity is achieved only through the control of
tDCS electrode dose (defined as electrode montage and current)

to guide current to specific brain regions (Peterchev et al., 2011).
However, applied without consideration for functional specificity,
anatomical specificity is technically and conceptually limited.

Both computational models of current flow in the brain and
imaging studies indicate that conventional tDCS methodology
using two large sponge pads (5 cm × 5 cm) positioned on the
head disperse current through much of the cortex (Datta et al.,
2009; Faria et al., 2011; Antal et al., 2012; Neuling et al., 2012) and
even deep brain structures (Dasilva et al., 2012). It is important
to distinguish between carefully designed studies that demon-
strate dose-specific (e.g., electrode position) outcomes (Fiori et al.,
2013; Hauser et al., 2013; Penolazzi et al., 2013), from implications
that current flow is limited to one brain target. These studies also
typically leverage other forms of functional targeting.

Technology for High-Definition tDCS using arrays of elec-
trodes allows categorical increases in anatomical targeting by
increasing the focality of current flow (Datta et al., 2009; Dmo-
chowski et al., 2011), but even so, any brain region is evidently
involved in multiple tasks. Which presents the inherent concep-
tual challenge when relying exclusively on anatomical specificity:
how can passing DC current through a multi-tasking complex
brain region produce specific functional changes?

In the absence of further sophistication, the goals of tDCS
are often described as increasing excitability (near the anode)
or decreasing excitability (near the cathode) of the target brain
region, with brain function and disease thus reduced to a “sliding-
scale” of excitability to be adjusted by stimulation (c.f., Rahman
et al., 2013). For example, under the sliding-scale concept “anodal
tDCS” can enhance the performance of a cognitive task by
exciting an implicated brain region. Similarly anodal tDCS is
intended to increase left-prefrontal cortex activity in depression
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and enhance rehabilitation around lesions after stroke. Follow-
ing early evaluation of Transcranial/transcortical polarization in
humans and animal models (Bindman et al., 1962; Redfearn et al.,
1964; Elbert et al., 1981), influential neurophysiological stud-
ies of tDCS (Nitsche and Paulus, 2000) established modulation
of experimental evoked potentials [e.g., motor evoked potential
responses to transcranial magnetic stimulation (TMS)]. There
is significant extrapolation from these experimental findings to
behavior and cognition [TMS evoked responses may provide
poor evidence for effects on behavior; (Ridding and Rothwell,
2007)]. Moreover, even the direction of this basic modulation
of experimentally evoked potentials is highly sensitive to both
tDCS dose [intensity (Matsunaga et al., 2004; Dieckhofer et al.,
2006; Batsikadze et al., 2013); direction (Chan and Nicholson,
1986; Bikson et al., 2004; Rahman et al., 2013)] and depen-
dent on brain state (Fröhlich and McCormick, 2010; Reato et al.,
2010). Animal studies showing anodal/cathodal DCS producing
somatic depolarization/hyperpolarizing (Radman et al., 2009) and
increase/decrease in firing rate (Purpura and McMurtry, 1965;
Reato et al., 2010), are cited to support a sliding-scale concept,
however, global changes in firing rate across a brain region implies
a non-specific effect (Reato et al., 2013). In summary, it is rea-
sonable to conclude from neurophysiologic studies that tDCS
can produce dose-specific changes in brain functions (Nitsche
and Paulus, 2000) that can, with careful extrapolation, serve as
a basis for behavioral interventions (Kuo et al., 2013). However,
relying only on anatomical specificity by guiding current to spe-
cific brain regions (and so the “sliding-scale” rationale) remains
limited by the complex and divergent functions of any brain
region.

Further sophistication in anatomical targeting follows from
considering tangential as well as radial inward/outward currents
(Dmochowski et al., 2012) as discussed in a separate article in
this special issue. Indeed, the assumption of inward (“excitatory”)
and outward (“inhibitory”) current under the anode and cathode,
respectively, may be a further over-simplification. Electrophys-
iological studies in animal models of DC stimulation suggest
differential processing of afferent information (Rahman et al.,
2013) and that polarity-specific effects invert due to neuronal
morphology (Bikson et al., 2004; Kabakov et al., 2012).

ACTIVITY-SELECTIVITY AND TASK-SPECIFIC MODULATION
Activity-selectivity refers to tDCS preferentially modulating a neu-
ronal network that is already activated, while not modulating
separate neuronal network that are inactive. The active neuronal
network may be activated for a host of reasons described. The
active and inactive networks can in fact overlap in space (e.g., in
the same cortical column) such that activity-selectivity does not
require physical separation in contrast to anatomical specificity –
therefore, we refer to activity-selectivity as a form of functional
specificity. The active network may represent a subset of neu-
rons and/or a subset of connections (synapses). Because tDCS
produces low-intensity electric fields in the brain, “sub-threshold”
neuromodulation may reflect changes in ongoing processes (Reato
et al., 2010) in contrast to supra-threshold driven firing by TMS.
Activity-selectivity thus assumes there is some feature of the active
network that makes it preferentially sensitive to modulation by

tDCS compared to other inactive networks. We consider two neu-
rophysiological substrates for this preferred sensitivity: ongoing
activity-selectivity and input-selectivity.

Activity-selectivity is based on the assumption that tDCS will
preferentially modulate specific forms of ongoing activity. For
example, at a cellular level, direct current stimulation (DCS) may
enhance plasticity in a given synaptic pathway while stimulated at
a preferential frequency (0.1 Hz in Fritsch et al., 2010) or consoli-
date a specific pattern of activity presented during DCS (Morrell,
1961). DCS may preferentially modulate the level of potentiation
in the activated pathway (Ranieri et al., 2012). DCS may facili-
tate long-term potentiation through membrane polarization and
removal of Mg+ block (Stagg and Nitsche, 2011) but only those
pathways activated during DCS (by a task or experimental stimu-
lation) would benefit from this facilitation. DCS may be too weak
and/or unspecific in isolation to enhance synaptic efficacy, but
may boost ongoing (e.g., Hebbian) plasticity activated by task per-
formance (i.e., modulation of input specific plasticity along an
activated synaptic pathway while sparing quiescent synapses). In
humans, transcranial electrical stimulation may also preferentially
modulate networks with heightened oscillatory activity (Reato
et al., 2010) or preferentially change the progression of an active
network during memory consolidation or synaptic downscaling
(Reato et al., 2013).

At a behavioral level, specific brain activity is often targeted by
training in conjunction with tDCS with the goal that this select
activity be sensitized to tDCS neuromodulation (and so implicitly
other brain functions not active in training may be less so). For
example use-dependent modulation and learning of motor skills
is modulated by tDCS (Reis and Fritsch, 2011; Madhavan and
Shah, 2012). Clinically, tDCS is often applied to enhance the effi-
cacy of rehabilitation or cognitive training (Edwards et al., 2009;
Kuo and Nitsche, 2012; Gomez et al., 2013; Leśniak et al., 2013;
Ochi et al., 2013), which may further confer functional specificity
through activity-selectivity. Clinically when tDCS is applied to
subjects at rest, we can speculate that any functional-specificity
results from increased sensitivity of pathological network activity
to tDCS (e.g., dysfunctional pain or mood regulating networks).
It has been speculated that altered network function associated
with brain injury (stroke) may alter the susceptibility to tDCS
(Olma et al., 2013). Generally, any interaction between brain activ-
ity and the efficacy of tDCS modulation (Kim and Ko, 2013; Pirulli
et al., 2013) suggests “tDCS can be highly focal when guided by a
behavioral task” (Lapenta et al., 2013).

Although the mechanisms may vary, in any case, functional
specificity through activity-selectivity presumes the enhanced
activity of the network makes it preferentially sensitive to mod-
ulation by tDCS. Thus activity-selectivity necessitates an ongoing
network process becoming preferentially tuned to influence by
DCS compared to the myriad of other ongoing (background)
brain functions.

INPUT-SELECTIVITY AND BIAS
A third form of specificity we define here is input-selectivity, which
assumes a neuronal network that is predisposed to serve at least two
functions or operate in at least two states such that tDCS can switch
the network from one function/state to another: for example
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attentional bias in the prefrontal cortex (Eldar et al., 2013). tDCS
would change the state of the system toward a different input bias
and thus enhance information processing of a specific stream of
information. Input-selectivity may activate endogenous “gating”
systems (e.g., gate theory of pain) or bi-stable neuronal states –
where a non-specific DC signal is able to“switch”a system between
complex functions or modes. In contrast to a sliding-scale hypoth-
esis for a stimulated brain region or activity-selectivity affecting
a specific ongoing process, input-selectivity implies a regional
process is enhanced at the cost of another process – not that
input-selectivity results in a zero-sum effect in regards to lasting
cognition or behavior outcomes. However, input-selectivity does
emphasize the “cost” of acute stimulation. Input-selectivity is also
considered a form of functional-specificity since it does not require
gross anatomical targeting of current flow. Input-selectivity thus
differs conceptually from functional-selectivity (as defined above)
in that it does not presuppose co-activation (e.g., by training), and
moreover implies that one process may be enhanced at the cost of
enhancing another.

Many animal studies that have investigated the modulation of
information processing, for example through synaptic efficacy
[as opposed to simply membrane polarization and excitability
(Chan and Nicholson, 1986; Radman et al., 2007)], have observed
that DCS will differentially modulate incoming inputs. We ini-
tially showed in hippocampal slice that DCS enhances some and
inhibits other afferent inputs (Bikson et al., 2004), a finding veri-
fied (Kabakov et al., 2012) and extended to the cortex (Rahman
et al., 2013). The cellular origins of bias in favor of selective
inputs are twofold. First, although anodal and cathodal tDCS
are mistakenly referred to as depolarizing and hyperpolarizing,
it is more accurate to describe tDCS as redistributing polarization
across the cellular axis, for example one dendritic branch versus
another (Fritsch et al., 2010; Rahman et al., 2013). This change
in “weights” across the dendrite may provide a cellular substrate
to influence the input bias of a network. Second, polarization
of afferent axons itself appears to exert pathway specific mod-
ulation (Arlotti et al., 2012; Kabakov et al., 2012; Rahman et al.,
2013).

Clinically, the concept of input-selectivity can be extended to
(selective) attention and working-memory, as well as disease states
such as ADHD (Levy, 2004), anxiety, and schizophrenia (Grace,
2000); which are indeed already indications explored for tDCS
(Kang et al., 2009; Faber et al., 2012; Demirtas-Tatlidede et al.,

2013; Shiozawa et al., 2013). The prefrontal cortex, an anatom-
ical target for several indications including depression (Loo et al.,
2012), is indeed implicated in executive function and differenti-
ating among (conflicting) inputs. The concept of bias-selection
is consistent with stimulation inhibiting some functions while
enhancing others within any given region (Iuculano and Kadosh,
2013; Tang and Hammond, 2013) as well as modulation of relative
value judgments (Vanderhasselt et al., 2013; Votinov et al., 2013),
which can be considered as a form of weighting inputs so specific
outcomes can be biased.

Future studies on the actions of input-selectivity using tDCS
can explore applications of multimodal imaging technologies,
including magnetic resonance spectroscopy (MRS), functional
magnetic resonance imaging (fMRI), magneto-encephalogram
(MEG), and electro-encephalogram (EEG), to further establish the
different functional brain-states of a cortical region activated dur-
ing tDCS (Soekadar et al., 2013). The topic of multimodal imaging
in tDCS is discussed further in another article in this special issue
of Frontiers in Human Neuroscience (Hunter et al., 2013).

OUTLOOK FOR tDCS
Anatomical specificity and functional specificity, through either
ongoing activity-selectivity or input-selectivity, are not exclusive
and may potentially be leveraged together in the development of
rational tDCS protocols. In general, we propose that understand-
ing the basis for tDCS selectivity is essential. Although we have
focused our discussion to tDCS, the approaches described here
would apply to other brain stimulation techniques including DBS,
VNS, TMS, tRNS, and tACS (discussed further in another article
in this special issue, Reato et al., 2013) as well as ultrasound and
light based approaches. But the diversity of applications already
investigated for tDCS, including increasing dosage (e.g., weeks of
sessions), broader populations (e.g., children), suggests a need to
address the basis of specificity to be especially acute. Both time-
dependent and homeostatic effects (Penolazzi et al., 2013; Peters
et al., 2013) increase the subtlety in tDCS protocol design that may
require understanding origins of specificity.
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