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Structurally disordered materials continue to pose fundamental questions1–4, including 

that of how different disordered phases (“polyamorphs”) can coexist and transform from 

one to another5–9. As a widely studied case, amorphous silicon (a-Si) forms a fourfold-co-

ordinated, covalent network at ambient conditions and much higher-coordinated, metallic-

like phases under pressure10–12. However, a detailed mechanistic understanding of the 

structural transitions in disordered silicon has been lacking, due to intrinsic limitations of 

even the most advanced experimental and computational techniques. Here, we show how 
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atomistic machine-learning (ML) models can break through this long-standing barrier, de-

scribing liquid–amorphous and amorphous–amorphous transitions with quantum-me-

chanical accuracy for a system of 100,000 atoms (ten-nanometre length scale). Our simu-

lations reveal a three-step transformation sequence for a-Si under increasing external pres-

sure. First, polyamorphic low- and high-density amorphous (LDA and HDA) regions are 

found to coexist, rather than appearing sequentially. Then, we observe a structural collapse 

into a distinct, very-high-density amorphous (VHDA) phase. Finally, our simulations indi-

cate the transient nature of this VHDA phase: it rapidly nucleates crystallites, ultimately 

leading to the formation of a poly-crystalline structure, consistent with experiments13–15 

but not seen in earlier simulations11,16–18. An ML model for electronic densities of states 

(DOS) confirms the onset of metallicity during VHDA formation and subsequent crystalli-

sation. These results shed new light on liquid and amorphous states of silicon, and, in a 

wider context, they exemplify a holistic, ML-driven approach to predictive materials mod-

elling. 

The state-of-the-art in understanding structurally complex materials, including liquid and 

amorphous matter, has been reached in no small part by means of computer simulations. Still, 

disordered phases have presented persistent challenges for simulations, requiring large system 

sizes, long simulation times, and transferable atomic interaction models (that are valid for all 

relevant structural and bonding environments). ML-driven interatomic potentials are an emerg-

ing and powerful approach to address these challenges19–21, with pressure-induced transitions 

between crystalline phases of silicon having been among the very first applications of these 

methods22, and crystal nucleation in the liquid among more recent ones23. We have previously 

carried out pilot studies of disordered silicon based on molecular-dynamics (MD) simulations 

with a quantum-accurate Gaussian approximation potential (GAP) ML model24,25, using system 

sizes between 512 and 4,096 atoms, and considering only the ambient-pressure regime at that 
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time26,27. In the present work, we now use much more extensive GAP-MD simulations of a sys-

tem containing 100,000 silicon atoms to resolve the atomistic mechanisms of the various struc-

tural transitions – including those at very high pressures and densities, which had been incom-

pletely understood (Extended Data Fig. 1–2). Comprising several million individual timesteps at 

this system size, such simulations would previously have only been possible with empirically 

parameterised force fields of (necessarily) limited accuracy and transferability28,29. However, we 

demonstrate that such a simple force field is unable to reproduce the pressure-induced changes 

in silicon, which are observed experimentally and found in the present study. ML potentials are 

currently gaining immense popularity19–21, although their use for larger system sizes than in the 

present work has largely focused on technical capability demonstrations30 or on transition path-

ways between crystalline phases31.  

Vitrification of silicon 

The first mechanism to be studied here in atomistic detail is the liquid–amorphous transition. 

Cooling liquid silicon at a properly chosen rate yields a glassy a-Si network with a structure 

compatible with experimental observations, as we have established for small GAP model struc-

tures26,27. We now carried out a quench simulation for our 100,000-atom system, reducing the 

temperature at a rate of 1011 K s–1 in the relevant interval (Fig. 1a). The large system size and 

(relatively) slow cooling allow us to pinpoint the transition from a supercooled high-density liq-

uid (sc-HDL) to a low-density amorphous (LDA) phase, as the volume increased by about 10% 

between 1,195 and 1,175 K (Fig. 1a). While our system at 1,500 K appeared to be fully disor-

dered (Fig. 1b), we observed an onset of spatial heterogeneity (“patchiness”) during cooling, 

shown at 1,195 K, just before the transition set in. At this stage, regions with high coordination 

numbers (red in Fig. 1b) coexisted with others that were much closer to fourfold, “diamond-like” 

coordination (white), and spatial fluctuations occurred on the length scale of a few nanometres. 

Upon further cooling (1,195 → 1,175 K), we then observed a rapid transition to a largely fourfold 
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coordinated, glassy network, concomitant with a sudden drop in the atomic mobility (as moni-

tored by the mean-square displacement, MSD; Fig. 1a). Beside the coordination numbers, the 

overall, short- to medium-range structural similarity to crystalline silicon also increased sharply 

during the transition: we measure that using the Smooth Overlap of Atomic Positions (SOAP) 

kernel32, which defines a quantitative value for the structural similarity to diamond-type silicon, 

ranging between zero and one for each atom (Fig. 1c)27,33; the same kernel was used to fit the 

GAP. We finally link the evolution of the spatial (and purely structural) heterogeneity with that 

of local energetic stability: the predicted atomic energy, εML, derived from the GAP regression 

model, can serve as an indicator for the stability of individual atomic environments in liquid and 

amorphous silicon27. Those regions that are low-coordinated (white in Fig. 1b) and similar to 

diamond-type silicon (light green in Fig. 1c) also have low – that is, favourable – ML atomic 

energies (blue in Fig. 1d), and vice versa. Remarkably, the distribution of εML and its evolution 

during the sc-HDL → LDA transition (between 1,195 and 1,175 K) can be deconvoluted into 

contributions from four-, five-, and sixfold coordinated environments (Fig. 1e). This approach 

complements the colour-coded plots in Fig. 1d by giving insight into the entire system – collect-

ing local information for 21 simulation snapshots, or 2.1 million distinct atomic environments.  

Structural transitions under pressure 

The second mechanism, and perhaps the most intriguing question in the context of the pre-

sent work, concerns the structural transformations of a-Si under high pressure. Diamond-anvil 

cell (DAC) experiments have indicated an amorphous–amorphous transition upon compressing 

a-Si to several gigapascals, evidenced by the sudden disappearance of high-frequency Raman 

fingerprints and by a concomitant sharp increase of the electrical conductivity (a semiconductor–

metal transition), both indicative of a major change in atomistic structure10–12. Increasing the 

pressure even further, to about 14 GPa, was seen to induce crystallisation of the simple hexagonal 

(sh) phase of silicon (thereby demarcating the existence limit of dense disordered phases)13,14, 
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although the experimental results may depend on the nature, origin, and purity of the sample15,34, 

and the mere appearance of Bragg peaks in X-ray diffraction (XRD) does not fully explain the 

mechanism of crystallisation. Furthermore, while experiments made it possible to identify the 

transition in the first place, they can provide relatively little insight into the atomistic structure 

of the amorphous high-density phase(s). Over the years, computer simulations have led to pre-

dictions of various high-pressure structures, including those with N = 5 predominantly11,12,17 and 

those with much higher coordination numbers16, presumably depending on the computational 

method used. No previous atomistic simulation has been able to reproduce the pressure-induced 

crystallisation of amorphous silicon, to our best knowledge. Motivated by these outstanding 

questions, we carried out ML-driven simulations of the 100,000-atom a-Si system under isother-

mal compression. Hydrostatic pressure was applied at a constant rate of 0.1 GPa ps–1, while the 

temperature was held at 500 K: high enough to overcome local energy barriers, but below the 

melting line.  

The evolution of our a-Si system with increasing pressure is visualised in Fig. 2a–e, which 

reveals multiple interesting phenomena. Up to 11 GPa, most atoms remained in fourfold-coor-

dinated (LDA-like) environments. However, regions of higher coordination emerged (magenta 

in Fig. 2a), consistent with the notion of a “high-density amorphous” (HDA) phase. A striking 

result is the coexistence of LDA- and HDA-like regions at the same temperature and pressure; 

that is, the simulations indicate the presence of polyamorphism over a range of several GPa, 

rather than an abrupt transition to an almost completely fivefold-coordinated single HDA phase. 

Being able to capture this phenomenon at all requires system sizes beyond the nanometric length 

scale. We note that McMillan et al. explicitly mention the presence of both polyamorphs on 

decompression, inferred from Raman data at the time11, and that Moras et al. described the sim-

ulation of a gradual transition between LDA- and HDA-like a-Si under hydrostatic pressure, as 

well as the disappearance of this effect under shear35.  
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Upon further compression, beginning at around 12 GPa, much higher coordinated (N ≥ 7) 

regions suddenly emerged in our simulation (orange in Fig. 2b), again exhibiting spatial hetero-

geneity on a scale of several nanometres. These highly-coordinated regions rapidly coalesced 

into a dense form that is distinct from both LDA and HDA (Fig. 2c). We refer to this phase as 

“very-high-density amorphous” (VHDA), in line with conventions in the field16–18. The rapid 

structural collapse during VHDA formation reduced the volume from around 18 to around 14 Å3 

per atom (Fig. 2f). Vibrational densities of states, which are consistent with experimental evi-

dence from Raman measurements and corroborate the disappearance of the high-frequency 

modes as a consequence of the structural transition, are presented in Extended Data Fig. 3. 

Importantly, this VHDA phase was transient in our pressurization simulations, and crystal-

line regions rapidly nucleated (Fig. 2d), in agreement with experiments: DAC XRD measure-

ments showed sharp diffraction peaks, consistent with an sh phase (“Si-V”; Ref. 36), beginning 

to appear upon compression of an amorphous sample to around 14 GPa13. The remarkable find-

ing of the present work is not just the formation of sh at high pressure (that, alone, has been 

deduced from free-energy estimations37 and observed by XRD13,14), but the observation of a 

multistep crystallisation process which proceeds through an entirely distinct VHDA precursor – 

at variance with the assumption in previous work of direct HDA → crystalline transitions13,14,37. 

Having reached 20 GPa (a few tens of picoseconds after the crystallisation had first set in), our 

system had fully transformed into a polycrystalline (“pc”) phase exhibiting hexagonally packed 

layers, stacked to form an sh structure (Fig. 2e). Disordered regions between the grains remained, 

as expected for poly- and nano-crystalline materials (Fig. 2g). The small number of crystallites 

observed in our simulation (Fig. 2e) suggests a nucleation-controlled mechanism with a critical 

nucleus size of at least several atoms. It is challenging to quantify the critical nucleus size, due 

to the highly disordered nature of the preceding VHDA phase, but we may refer to an earlier, 

DFT-based thermodynamic estimate of a critical-nucleus diameter of ≈ 0.7 nm at 14 GPa13, much 

smaller than our simulation system size of > 10 nm. We note that an early DFT simulation16 on 
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a 216-atom a-Si model predicted an abrupt collapse of the tetrahedral network near 16 GPa 

(which we may now interpret as VHDA formation), though the tiny cell and short simulations 

revealed nothing about the stability of the structure, and did not show crystallisation16. The pres-

sure-induced crystallisation of amorphous solids appears to be a rather infrequent occurrence: 

two such instances include Ge2Sb2Te5 (Ref. 38) and Ce75Al25 (Ref. 39), but neither seem to in-

volve (transient) VHDA-like phases. 

To test the robustness of our observation, we developed a separate ML potential fit to results 

of the strongly constrained and appropriately normed (SCAN) functional40, which also predicts 

VHDA formation and crystallisation (Fig. 2h and Extended Data Fig. 4), as does a random phase 

approximation (RPA) correction to GAP-18 (Fig. 2h and Extended Data Fig. 5). We note that 

the potentials in these tests nucleated β-tin-like (rather than sh) crystallites, presumably because 

of a slight shift in the delicate balance between both high-pressure forms. We finally performed 

a negative control, using an empirically fitted force field41 that has been widely used to study 

disordered silicon, which showed neither the VHDA formation nor the subsequent crystallisation 

(Fig. 2h and Extended Data Fig. 6). 

To further substantiate the series of transformations observed in Fig. 2a–e, we computed 

excess enthalpies, ΔHac, compared to the respective most stable crystalline form of silicon at the 

same pressure. Their evolution is consistent with the subsequent transformations proposed here. 

At 0 GPa, we obtained ΔHac = +0.15 eV at.–1 for LDA, and this value did not change notably 

upon initial compression. At 13 GPa, the VHDA phase is slightly favoured (+0.13 eV at.–1) over 

the LDA / HDA polyamorph (+0.15 eV at.–1). Compared to all these non-crystalline phases, the 

pc-sh structure that ultimately formed is much more stable, being only +0.02 eV at.–1 higher in 

enthalpy than the single-crystalline sh phase at 20 GPa (Extended Data Fig. 7). The driving force 

for crystallisation can further be demonstrated by using, once more, the stability of individual 

atoms as determined by the ML regression model. To include effects of pressure, we define a 

machine-learned enthalpy per atom, hML(i) = εML(i) + pV/N, which we reference to the enthalpy 



8 

of the respective most stable crystalline phase (“per-atom excess enthalpy”, in analogy to the 

above-mentioned ΔHac for macroscopic systems). Figure 2i shows the results by colour-coding. 

In the VHDA phase, the atomic-scale structural disorder is reflected in a seemingly random dis-

tribution of more stable (blue) and less stable (yellow) atomic environments. In contrast, the 

emerging sh crystallites at 15 GPa provide spatial regions of stability. At 20 GPa, the excess 

enthalpy in the grains is close to that of the crystalline phase, and the grain boundaries “light up” 

as expected (Fig. 2i). These results emphasise the usefulness of quantum-accurate ML-driven 

simulations, not only for amorphous but also for polycrystalline materials30, in which the precise 

atomistic structure of grain boundaries is a largely unresolved question. 

Electronic fingerprints from machine learning 

Among the experimental indicators for the amorphous–amorphous transition in silicon is a 

sudden increase in the electrical conductivity11. We studied the electronic structure of our 

100,000-atom systems using two approaches, details of which are given in the Methods section. 

On the one hand, we carried out tight-binding (TB) computations to obtain the electronic DOS 

directly. On the other hand, we used a recently introduced ML approach42 to develop a regression 

model for the DOS in disordered silicon, requiring only atomic coordinates as input. The new 

parameterisation is “learned” from hybrid-DFT data for representative structural models of all 

relevant polyamorphs, including VHDA, as well as the pertinent crystalline phases. With this 

model in hand, we are able to make hybrid-DFT-quality predictions for the electronic DOS 

within minutes, whereas the direct computation at this high level would have been restricted to 

system sizes of a few hundred atoms at most. The value at the Fermi level, DOS(EF), is a primary 

signature of electrical conductivity43, and its dramatic increase during compression (Fig. 3a–c) 

indicates metallisation in the transient VHDA phase, qualitatively consistent with the rapid con-

ductivity increase between 10–12 GPa observed in DAC experiments11. At 13 GPa, where the 

VHDA formation was complete in our simulation, the pseudogap was entirely filled in (marked 
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by an arrow in Fig. 3c). The prediction of this distinct electronic feature might be tested by 

ultrafast spectroscopy techniques, which have been previously applied to the liquid–liquid phase 

transition in silicon44 and can access timescales which indeed correspond to those in our simula-

tions. ML models for the DOS, as shown in Fig. 3, might play a key role in this regard, by giving 

access to experimentally relevant system sizes (unlike DFT). Another implication of the onset 

of metallicity is a possible link to superconductivity, in analogy to what has been observed for 

the metallic high-pressure form of the heavier congener, amorphous germanium45, and indeed 

for crystalline sh silicon (with a critical temperature of about 8 K at 14.8 GPa)46. This question, 

however, requires further experimental study. 

Finally, by combining the structural information (from SOAP similarity, as used in Fig. 2g) 

and the machine-learned electronic fingerprints, we may construct structure–property maps for 

atomic environments using kernel principal covariates regression47. This approach yields 2D 

slices that map out the atomic environments, arranged so as to reflect structural diversity and 

also the relationship between structure and metallicity, for which the locally-averaged ML 

DOS(EF) is used as a proxy42. We then arranged the slices in 3D to study their evolution through 

the transitions, with pressure as the third coordinate (Fig. 3e). We observed a rather uniform 

distribution of data points in LDA silicon at 0 GPa, reflecting the coexistence of locally-ordered 

semiconducting environments, and highly-defective environments that contribute to the DOS in 

the gap. The distribution gradually shifted and broadened towards environments with higher lo-

cal DOS(EF) as polyamorphic HDA regions developed up to 11 GPa. The structural collapse at 

12 GPa led to a new maximum in the map: this indicates a transition between two distinct phases, 

also seen in Fig. 2b. The VHDA phase was localised in a very different region of the map than 

the LDA / HDA environments, consistent with the marked increase in coordination numbers 

(Fig. 2c) and local DOS(EF) contributions. For the sh crystallites (at 20 GPa), the data points 

remained in an overall similar region of the map but became more sharply focused compared to 

VHDA silicon, and shifted slightly to a region of lower DOS(EF), indicative of the formation of 
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a small pseudogap (also seen in Fig. 3d). We expect that such maps, both in 2D and in 3D, will 

become useful tools for studying structural and electronic transitions in diverse phases of matter. 

Conclusions and outlook 

Our simulations have described and explained the full range of phase transitions in disor-

dered silicon, up to the experimentally established limit (namely, crystallisation), consistent with 

experimental observations. Beyond this one specific material, however, they demonstrate the 

ability of atomistic ML methods to enable scientific discovery. Giving access to quantum-accu-

rate predictions of structure, stability, and properties, these methods can reveal as-yet unknown 

phenomena: including structural and electronic fingerprints of individual atoms but also poly-

amorphism, polycrystallinity, and other forms of nanoscale heterogeneity. Simulations of disor-

dered materials have thereby taken a qualitative step forward: from simple structural models to 

realistic, predictive, and fully atomistic descriptions of material systems under experimentally 

challenging conditions.  
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Figure legends 

Figure 1: Vitrification of supercooled liquid silicon. (a) Evolution of the temperature, T, the 

cell volume, V, and the change in atomic mean-square displacement, ΔMSD (obtained by sub-

tracting a moving average) in the relevant region of the ML-driven simulation trajectory from 

supercooled high-density liquid (sc-HDL) to low-density amorphous (LDA) states. (b) Structural 

snapshots during the quench, taken at the beginning (top), just before (middle), and just after the 

structural transition (bottom). Simulation cells are shown in plan view, offering the same per-

spective in all panels. Atoms are drawn as opaque spheres, and so the slice thickness is a few Å 

at most. Coordination numbers, N (spatial cut-off = 3.1 Å), are indicated by colour coding. (c) 

Same for the SOAP-kernel similarity to ideal diamond-type crystalline (“dia”) Si. (d) Same for 

the ML atomic energy, εML (referenced to dia-Si). (e) Evolution of εML shown as kernel-density 

estimates (“smoothed histograms”), similar to Ref. 27, evaluated here for a 100,000-atom system 

at 1 K temperature increments between 1,195 and 1,175 K, and shown separately according to 

coordination numbers, N. The arrows indicate the direction of evolution of the curves with de-

creasing temperature, i.e. during the quench from the liquid to the amorphous state. 

Figure 2: Amorphous silicon at high and very high pressure. (a–e) Structural snapshots dur-

ing isothermal compression at 500 K using the GAP-18 model, showing the coexistence of LDA-

like (N = 4) and HDA-like (N > 4) regions up to 11 GPa, the collapse into a transient VHDA 

phase (N ≫ 4) at 12–13 GPa, and finally the formation of simple-hexagonal (sh) crystallites. 

Colour coding indicates coordination numbers, N (spatial cut-off = 2.85 Å). (f) Volume versus 

pressure during this simulation. The transition pressure, as well as the onset of crystallisation 

(indicated by dashed lines), are consistent with experimental reports within a few GPa13; see text. 

The inset shows the evolution of coordination numbers, N, during the structural transitions. (g) 

SOAP kernel similarity to simple hexagonal (sh) silicon. This analysis shows the system at 13 

GPa to be fully disordered on the atomic scale and homogeneous on the nanometric scale. In 

contrast, sh-like crystallites have begun to form at 15 GPa, leading to nm-scale inhomogeneity. 

(h) As panel (f), now comparing three simulations with different interatomic potential models 

but otherwise similar parameters. A new ML potential using the SCAN functional (red line) as 

well as an RPA-corrected difference model (yellow line) both reproduce the structural collapse, 

VHDA formation, and eventual crystallisation; the established empirical Stillinger–Weber (SW) 

potential (grey dashed line) does not predict either of these effects (see also Extended Data Fig. 
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4–6). (i) ML-based prediction of atomic contributions to the enthalpy (defined here as εML + 

pV/N), indicating the local stabilisation of the sh-like regions. 

Figure 3: Electronic fingerprints of structural transitions. (a–d) Electronic densities of states 

(DOS) at various stages of the compression run (cf. Fig. 2a–e). Black lines indicate the result of 

an ML model for hybrid DFT data using the HSE06 functional; grey shading indicates the asso-

ciated uncertainty quantification (Methods). Blue dashed lines show the result of direct tight-

binding (TB) computations for the 100,000-atom systems. Note that the TB basis set is minimal 

(one s and three p valence orbitals per atom), and therefore states above the Fermi level, EF, are 

less well represented because of incompleteness effects. A red arrow marks the filling-in of the 

pseudogap upon VHDA formation, as discussed in the text. In all plots, EF is set as the energy 

zero. (e) Evolution of the atomic environments during our compression simulation, visualised 

using kernel principal covariates regression (KPCovR)47. The axes (components) provide the 2D 

projection of the SOAP kernel32 features that gives the best balance between discriminating the 

structural diversity of the environments, and linearly predicting the locally-averaged ML 

DOS(EF). The latter quantity, as a fingerprint of electronic structure and metallisation, is used to 

colour-code the points associated with individual atomic environments. Contour lines indicate 

the distribution of atomic environments in the KPCovR space and emphasise the structural and 

electronic transition upon VHDA formation. 
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Methods 

ML-driven modelling of dense disordered silicon. Our primary results are based on a re-

cently introduced general-purpose GAP for silicon25, henceforth referred to as “GAP-18”. De-

tails of the SOAP-GAP approach for fitting ML-based interatomic potential models are given in 

Refs. 24 and 32. We furthermore refer the reader to previous smaller-scale studies of a-Si25–27 

and amorphous carbon48,49 using this methodology, and to an overview article in Ref. 21. 

The fact that an unmodified potential can discover a range of new configurations for which 

it has not been “trained” (Fig. 2b–e) is a substantial demonstration of transferability: the silicon 

GAP-18 model has only included ambient-pressure liquid and amorphous configurations but 

none at high pressures (although we note that it does include the single-crystalline sh phase in 

its construction). The validation of this potential for ambient-pressure a-Si has been reported 

before26 and included comparison with three key experimental observables: calorimetric excess 

enthalpies, 29Si solid-state NMR shifts, and the structure factor, S(q)26. In fact, with the 100,000-

atom system in hand, we repeated the calculation of S(q) for completeness, and we obtained 

practically quantitative agreement with high-resolution experimental data, including the height 

of the first sharp diffraction peak (FSDP); see Extended Data Fig. 8a. In addition, as a supplement 

to Fig. 1e which showed the evolution of ML atomic energies during vitrification, we analysed 

the S(q) of our system along the same, decisive part of the simulation trajectory – which allows 

us to study the evolution of the FSDP during cooling (Extended Data Fig. 8b). 

Validation through a separate ML potential model. A separate database of disordered 

silicon structures was constructed for the fitting of a new ML model. To explore a wide range of 

pressures, we chose the unit-cell volume as a simple parameter, which we varied from 20 Å3 

atom–1 (almost corresponding to ambient-pressure a-Si) down to 11 Å3 atom–1 (extreme com-

pression). We performed GAP-driven constant-volume melt–quench simulations using a Lange-

vin thermostat, as implemented in quippy (https://github.com/libAtoms/QUIP); the 
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protocol was similar to that in Ref. 48. To these structures, we added the small-cell configura-

tions for crystalline diamond-type, β-tin-type, and sh silicon from the GAP-18 database. Single-

point energies, forces, and virial stresses for all configurations were then evaluated using the 

SCAN functional40 and the projector augmented-wave (PAW) method50 as implemented in the 

Vienna Ab Initio Simulation Package (VASP)51,52. The new potential therefore uses a different 

DFT functional, treatment of core electrons, and electronic-structure code than GAP-18, to rule 

out possible artefacts of any part of the ML input data generation. The SCAN-based potential 

used the same fitting architecture as before, namely a baseline for exchange repulsion at short 

distances and a Smooth Overlap of Atomic Positions (SOAP)32 descriptor and kernel, the latter 

using a cut-off radius of 5.0 Å and a fit using 9,000 representative points. It was found to be 

required to increase the smoothness of the SOAP kernel to σat = 0.75 Å, which was previously a 

key step in the development of the GAP-driven random structure searching (RSS) approach and 

can help to make potentials more flexible in highly disordered regions of configuration space 

and in the presence of limited reference data (see below for more details)53. The unique identifier 

of the newly fitted potential parameter files is GAP_2020_8_8_60_14_23_0_14.  

A Δ-GAP model for beyond-DFT corrections. We also developed another proof-of-con-

cept ML model at the post-DFT level to rule out the possibility that VHDA formation is an 

artefact of the approximate DFT functional itself. For this, we use the random-phase approxima-

tion (RPA), which is an emerging approach for solids54–56. Instead of fitting the full RPA PES 

(which would be an extremely expensive task), we create a machine-learned difference model to 

be added to an existing baseline – the latter here being constituted by the general-purpose GAP-

18 model. The idea behind such a difference fit is sketched in Extended Data Fig. 5a and has 

been discussed, in the GAP framework, in Ref. 21. As reference points for sampling the poten-

tial-energy surfaces at two levels simultaneously, from which the difference (“Δ”) model is then 

constructed (Extended Data Fig. 5a), we use an ensemble of small structures generated using 

GAP-RSS. This approach, initially introduced in Ref. 53 and extended into a full “self-guided” 
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fitting framework for ML potentials in Ref. 57, makes it possible to generate potentials with low 

computational effort. In essence, an initial ensemble of random atomic configurations is created 

in analogy to the Ab Initio Random Structure Searching (AIRSS) approach58,59, and in fact using 

the buildcell algorithm of that implementation (including the use of a hard-sphere constraint 

and space-group symmetry operations to narrow down the search space). An initial GAP model 

is then fitted to those data, and used to drive structure searches, which iteratively explore a given 

PES and serve as input for the next round of fitting – extending the reference database up to a 

specified size and gradually increasing the quality of the evolving GAP53,57. Here, we used 900 

(110) structures from a large GAP-RSS structural database developed in Ref. 57 to generate 

RPA-computed training (testing) data, respectively. Each structure contained between 6 and 16 

atoms in the unit cell (giving 9,498 atomic environments in the training set in total). Illustrative 

examples of such GAP-RSS structures are shown in Extended Data Fig. 5b: they include highly 

disordered atomic environments, allowing us to generate robust potentials in an efficient 

way53,57.  

The RPA reference computations used the implementation in VASP 5.4.4, a Γ-centred k-

point mesh with spacing (KSPACING) of 0.5655, a plane-wave cut-off of 250 eV, and the VASP 

rev. 5.4 Si_GW PAW potential. The PBE functional60 was used for the initial wavefunction cal-

culations and also serves as the reference for the difference model; note that the baseline is there-

fore slightly different from the ground truth in GAP-18, viz. PW91. The third step, computing 

the virtual states, used no long-range Hartree–Fock contribution (LOPTICS = .FALSE.), as 

recommended by the VASP documentation for metallic systems, such as the highly disordered 

structures considered here. The final RPA correlation energy was evaluated with a grid order 

(NOMEGA) of 16. We fitted the energy difference between RPA and DFT (PBE) using a SOAP-

GAP model with 800 representative points, convergence parameters of {nmax, lmax} = {16, 6}, a 

smoothing of the neighbour density, σat, of 0.2 Å, and a kernel exponent of ζ = 4. The radial cut-

off of the SOAP descriptor was set to 6.0 Å, slightly larger than that used in GAP-18 (5 Å), and 
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it was combined with radial scaling (radial_decay=-0.5). The scaling pre-factor for the en-

ergy model was δ = 0.03 eV per atom (corresponding to the approximate distribution of the 

difference terms to be “learned”; Extended Data Fig. 5c), and the regularisation of the GAP fit 

was 0.003 eV per atom, the latter corresponding to an “expected error” for the input data. The 

unique identifier of the potential parameters for the RPA–DFT difference model is 

GAP_2020_6_11_0_19_39_52_705; these need to be combined with the GAP-18 baseline 

(unique identifier GAP_2017_6_17_60_4_3_56_165). 

We emphasise that neither this potential nor the SCAN variant discussed above are intended 

to be a full substitute for the general-purpose model described in Ref. 25. Instead, they are created 

here to demonstrate the robustness of the presented findings, most importantly, the formation of 

VHDA, which had not been observed with established empirical interatomic potentials (Ex-

tended Data Fig. 6). The development of a full RPA-quality general-purpose ML potential for 

silicon is envisioned for the future. 

Molecular-dynamics simulations. MD simulations for the 100,000-atom systems were car-

ried out using LAMMPS61, with a Nosé–Hoover thermostat controlling temperature and a baro-

stat controlling hydrostatic pressure62–64. The ambient-pressure quench follows the protocol es-

tablished in our preceding pilot studies, and similarly uses the GAP-18 model: liquid Si at am-

bient pressure was quenched from 1,500 to 1,250 K at a rate of 1013 K s–1, then to 1,050 K at 

1011 K s–1, and finally to 500 K at 1013 K s–1. The change in MSD shown in Fig. 1a, ΔMSD, was 

evaluated by subtracting a moving average reaching back 10 fs. Pressurisation runs were per-

formed independently for the liquid at temperatures following the melting line (Extended Data 

Fig. 2a) and for the a-Si structure at 500 K, compressing to 20 GPa over 200 ps. The time step 

in all simulations was 1 fs. For the enthalpy analysis (Extended Data Fig. 7), relevant systems 

were cooled using 1,000 MD steps and subsequently fully relaxed using a conjugate–gradient 

algorithm. Enthalpies are referenced to those of the respective most stable crystalline phase, the 

latter being derived from computing E(V) curves, taking the pressure as a third of the trace of the 
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stress tensor, and performing a piecewise linear interpolation of the resulting H(p) data for the 

relevant pressure interval. Vibrational densities of states (VDOS; Extended Data Fig. 3) were 

obtained for selected, fully optimised structures, which were thermalised at 300 K and the ap-

propriate pressure for 5 ps; the thermostat and barostat were then removed, and constant-energy 

(NVE) dynamics were carried out for another 1 ps (1,000 time steps). During the NVE simula-

tion, the averaged velocity–velocity autocorrelation function (VACF) was computed at every 

timestep, as implemented in LAMMPS61. The VDOS were then obtained using a Fourier trans-

formation of the VACF, using in parts the dump2vdos code [S. Bringuier; http://www.u.ar-

izona.edu/~stefanb/Codes/dump2VDOS.py].  

Tight-binding computations. TB electronic DOS were obtained using the methods of Ref. 

65. A linear-scaling, maximum-entropy method65 was combined with the tight-binding Hamil-

tonian of Kwon et al.66, previously used in studies of Urbach tails in a-Si.67 A relatively realistic 

tight-binding scheme using four orbitals (one s and three p) per site (Ref. 65) was employed to 

compute the Hamiltonian matrices for snapshots from 0 to 20 GPa, and also for large supercells 

of the diamond-type and simple hexagonal crystal phases of silicon. The electronic densities of 

states were computed with 70 Tchebychev polynomial moments extracted from sparse Hamilto-

nian matrices of dimension 400,000. For each snapshot, the 400,000 × 400,000 matrix was con-

verted into a sparse format. A conservative initial guess, somewhat broader than the exact sup-

port of the spectrum, was made; the sparse Hamiltonian was then scaled and shifted onto the 

range (–1,1). An approximate “impartial vector” reproducing the first three exact moments was 

obtained,65 and Tchebychev polynomial moments were extracted from the matrix (which are, in 

turn, Tchebychev moments of the DOS function of the matrix). The preceding matrix operations 

were order-N (N being the dimension of the matrix), since they required only matrix-on-vector 

operations68 (no matrix multiplications). To obtain an approximate DOS, we solved the resulting 

Hausdorff moment problem. The Principle of Maximum Entropy69 was used to solve the moment 
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problem, both because of its underlying fundamental rationale, and its rapid pointwise conver-

gence70,71 compared to methods such as the Kernel Polynomial Method72. For large numbers of 

moments, numerical convergence is sensitive to the guessed spectral support, and this is itera-

tively tuned to the exact support as the number of moments increases. The convergence of the 

DOS was examined and 70 moments were found to be more than sufficient to obtain accurate 

pointwise estimates for the DOS across the full spectral range for all of our snapshots. For refer-

ence, and to showcase the system sizes accessible to our method, we also include the DOS of the 

diamond-type structure (computed for a cubic 2,097,172-atom cell, 34.7584 nm on a side), using 

170 moments, in Extended Data Fig. 9. This result may be compared to analogous computations 

in large fullerenes and graphene73. 

Machine-learning model for the electronic DOS. We obtained the hybrid-DFT-quality 

global DOS, represented in Fig. 3a–d, using the methods of Ref. 42. We use SOAP features with 

radial scaling74 and sparsified Gaussian processes (GPs) to build an ML model for the total DOS 

of a given atomistic structure, by decomposing the latter into a sum of local contributions 

(LDOS) centred on every atomic environment in the system. We represent the DOS as a target 

of the ML models by its cumulative distribution function (CDF). This approach yielded system-

atically lower prediction errors than models utilising the DOS curve directly,42 because it is sen-

sitive to shifts in peak positions. Once the prediction is obtained, we derive the obtained CDF to 

obtain the ML DOS curves. 

Using this approach, a new parameterisation was developed for the present work that is 

based on hybrid-DFT data. The SOAP cut-off radius was 6.0 Å; the smoothness parameter was 

set to σat = 0.5 Å. The radial scaling parameters correspond to a cut-off function, 

𝑓𝑓cut(𝑟𝑟) =
1

1 + (𝑟𝑟/𝑟𝑟0)𝑚𝑚 , 

where we set the rate parameter r0 to 3.0 Å and the exponent m to 5. We selected 3000 atomic 

environments by Farthest Point Sampling (FPS)75 to be the representative environments for the 
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sparsified GPs. As a kernel, we used the square of the scalar product between the normalised 

feature vectors, as discussed in Ref. 42. The training data consisted of 658 structures from Ref. 

25, supplemented by 100 small a-Si snapshots (64 atoms per cell) at 0 GPa, used in Ref. 42, and 

30 small dense disordered silicon structural models (64 atoms per cell) that were drawn from the 

new reference dataset used to fit the SCAN model, over a range of pressures between 11 and 20 

GPa. The latter part serves to properly represent the high-density phases and their electronic 

DOS. Electronic structure calculations to extract the DOS for labelling the input data were per-

formed using the FHI-aims package76, with the intermediate convergence settings. The 

HSE06 hybrid functional77,78, which is known to usually provide reliable estimates of the band 

structure of systems with small band gaps79, was used to determine the self-consistent Kohn–

Sham eigenvalues, which were then used to compute the reference DOS. The k-point spacing 

was 0.01 Å–1. 

Uncertainty quantification for the ML DOS model. Instead of using the variance estima-

tor of GPs, we built a committee of 8 models, each containing a subset of 394 structures randomly 

selected from the training set. This approach has been shown to be more computationally effi-

cient and ensures a proper error propagation80. The average prediction of the DOS from the com-

mittee of models was taken as the final prediction and their variance as the uncertainty estimate. 

Since the models of the committee are correlated, we rescaled the variance around the mean, 

determining the calibration coefficient with a likelihood maximization criterion. The value of 

the uncertainty estimate at each given energy increment is shown by shading in Fig. 3a–d. 

Local DOS and kernel principal covariates regression (KPCovR). We discuss here 

briefly the definition of the locally averaged DOS which is used in constructing the plots in Fig. 

3e; more details may be found in the technical work in Ref. 42. In an additive atom-centred 

learning framework as we use to predict the DOS, the model for an entire structure is constructed 

as a simple combination of the predictions for individual (i-th) atomic environments, viz. 



23 

DOS(𝐸𝐸) = � LDOS(𝐸𝐸,𝐴𝐴𝑖𝑖)𝑖𝑖∈𝐴𝐴  . 

Individual predictions do not have to be physically meaningful (e.g., it is entirely possible to 

predict a locally negative LDOS), but reflect the way the ML model combines atom-centred 

information to reproduce the total DOS: there might exist a scenario in which the best overall 

model can be achieved by having two nearby atoms having very different density of states, be-

cause one of the two distorted environments always occurs in combination with its neighbour. 

In this scenario, only the sum of the two LDOS would be physically relevant. Following this 

reasoning, we use a locally-averaged (“LA”) value of the ML DOS prediction42, viz.  

LADOS(𝐸𝐸,𝐴𝐴𝑖𝑖) = �𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐�𝑟𝑟𝑖𝑖𝑖𝑖� LDOS�𝐸𝐸,𝐴𝐴𝑖𝑖�∑  𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐�𝑟𝑟𝑖𝑖𝑗𝑗�𝑗𝑗∈𝐴𝐴𝑖𝑖∈𝐴𝐴  , 

where fcut is the same cut-off function used to define the atom-centred representations. In other 

words, we average the ML predictions of the LDOS over a length scale comparable to that used 

to define the environments, which eliminates the strong fluctuations of the direct LDOS predic-

tions and leads to a more easily interpretable value. These LADOS values are used, together with 

the same kernel used to regress the DOS, to build a map of the environments in the large struc-

tures (represented in Fig. 3e), that reflects both structural diversity (dissimilarity) and the corre-

lations between structure and the LADOS. To this end, we use the recently-introduced kernel 

principal covariates regression (KPCovR) method, described in Ref. 47, that can be seen as a 

modified kernel principal-component analysis in which one uses a modified kernel with a scaling 

parameter, 𝛼𝛼, 

𝐊𝐊� = 𝛼𝛼𝐊𝐊+ (1 − 𝛼𝛼)𝐘𝐘�𝐘𝐘�𝑇𝑇 , 

combining the structural information encoded in 𝐊𝐊 with the target properties (more precisely, 

their best GP estimate), 𝐘𝐘�. Here, we take 𝐘𝐘� to contain the LADOS restricted to the [–4, 4] eV 
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energy interval to highlight the correlation between the local environments and their correspond-

ing (LA)DOS in the vicinity of EF. The two principal components used to draw the maps in Fig. 

3e were determined by training the KPCovR model on 164,000 environments, selected by FPS, 

from 41 structures at pressures ranging from 0 to 20 GPa. All remaining atomic environments 

were then projected on these two coordinates and used for further analysis. In the plots of Fig. 

3e, the axis for component 1 has been inverted to ease visualisation; note that the numerical axis 

values are immaterial to the interpretation and are therefore not shown. Original data underlying 

these plots are provided (see Data availability statement below). 

Data availability 

Original data supporting this work, including coordinates for all reported structural models, are 

openly available in the Zenodo repository (https://doi.org/10.5281/zenodo.4174139). 

Code availability 

The QUIP code, which provides the interface for carrying out GAP-driven simulations with 

LAMMPS, is publicly available at https://github.com/libAtoms/QUIP; additional information 

may be found there. The GAP code is available freely for non-commercial research at 

http://www.libatoms.org/gap/gap_download.html. 
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Extended Data Figure legends 

Extended Data Figure 1: Machine-learning-driven modelling beyond the nanometric 

length scale. The fully relaxed amorphous silicon (a-Si) structure with 100,000 atoms is shown. 

The smaller boxes on the left show the size of a 512-atom system from a recent study26, marking 

the limit of current DFT methods for simulations over several nanoseconds, and that of a 4,096-

atom system in our pilot GAP-MD studies26. All boxes are drawn to scale.  

Extended Data Figure 2: Compression of liquid silicon. (a) Overview of the transition path-

ways investigated in the present work. The quench (vitrification) and compression runs are dis-

cussed in the main text. We focus here on additional data that we have collected for validation: 

viz. the description of the high-temperature liquid. We melted a structure at 1,800 K, above the 

melting point of diamond-type silicon, and then compressed it by simultaneously adapting the 

thermostat and barostat settings so as to trace the estimated phase coexistence lines given by 

Bundy82, in analogy to Ref. 83. The temperature was reduced by 41 K GPa–1 to follow the dia-

mond melting line, up to the estimated triple point at 15 GPa, after which the slope was inverted 

and followed the metallic silicon melting line (+14 K GPa–1)82. The compression rate was 0.5 

GPa ps–1. (b) Structure factors of liquid silicon during this compression run. Computed values 

from our simulations (red) are overlaid on experimental reference data by Funamori and Tsuji83 

(black) for which the estimated temperatures are at about 50 K above the melting line83, closely 

mirrored by our computations. In the original experimental work83, arrows indicate the location 

of the maxima (labelled there as Q1 and Q2) and a shoulder in the first peak (Qh), the latter being 

gradually diminished at higher pressure, all of which are correctly described by our simulations. 

In the context of liquid–liquid transitions, we mention in passing very recent density-functional84 

and empirical force-field based studies85; such research questions may become worthwhile tar-

gets for future GAP-driven studies as well. Reprinted figure with permission from [Funamori, 

N. & Tsuji, K. Phys. Rev. Lett. 88, 255508 (2002)]. Copyright 2002 by the American Physical 

Society. 

Extended Data Figure 3: Vibrational densities of states (VDOS). We obtained these by Fou-

rier transformation of the velocity–velocity autocorrelation function, as described in the Methods 

section. Two characteristic features associated with the amorphous–amorphous transition under 

high pressure, observed in previous Raman spectroscopy experiments10–12, are reproduced by 

these simulations. First, the peak at large wavenumbers persists throughout the LDA / HDA 

coexistence but then disappears entirely. Second, the VHDA formation is associated with the 
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formation of another peak at intermediate wavenumbers. It is noted that this feature appears in 

both the simulated VHDA and the polycrystalline sh system. The predictions here might be 

tested, in the future, by combined in situ X-ray diffraction and Raman spectroscopy, because the 

former technique will easily be able to distinguish VHDA silicon from crystalline phases. 

Extended Data Figure 4: Reproducibility of VHDA formation with a separate ML poten-

tial. (a) Snapshots from a compression simulation using the same starting structure and protocol 

as for the main result (Fig. 2a–e), but now using a newly fitted GAP ML model based on SCAN 

meta-GGA input data (Methods section). This simulation confirms the structural collapse at high 

pressure, seen in the third panel, and the subsequent crystallisation. The SCAN-level ML poten-

tial initially nucleated β-Sn-like crystallites (N = 6; red colour on the atoms), which is explained 

in the following. (b) Energy–volume curves for relevant crystalline allotropes of silicon, com-

puted using the GAP-18 model (based on PW91 data; top) and the new SCAN-based model 

(bottom). In both cases, the sequence of diamond-type → β-Sn-type → simple hexagonal (sh) 

with increasing pressure (decreasing cell volume) is correctly reproduced, consistent with early 

DFT studies86. With SCAN, the β-Sn-like phase is favoured over a wider range of pressures; the 

cross-over between the two E(V) curves is indicated by arrows in both panels. Note that the 

absolute energies for both allotropes are very similar, leading to a delicate balance between both. 

(c) Oblique view of the simulation cell from the SCAN simulation after having reached 20 GPa. 

Initially, β-tin-like crystallites had formed (N = 6; red); then, an sh grain emerged (N = 8; orange). 

Note that the absolute pressure values at which the subsequent transitions occur are slightly dif-

ferent between the GAP-18 (Fig. 2a–e) and SCAN (Extended Data Fig. 4a) simulations, but the 

VHDA phases and subsequent formation of polycrystalline phases are clearly observed in both. 

The same is not the case with an established, empirically fitted interatomic potential, as shown 

in Extended Data Fig. 6b below. 

Extended Data Figure 5: Beyond-DFT modelling with a Δ-GAP ML fit. (a) Schematic illus-

tration of the approach, as discussed in the Methods section. The key ideas are that: (i) the ran-

dom-phase approximation (RPA) potential-energy surface (PES) can only be sampled at selected 

points, because of the computational cost, and that: (ii) the difference Δ(RPA–DFT), indicated 

by red shading, varies more smoothly than the full PES and is therefore more easily amenable to 

an ML fit. (b) Example structural snapshots from a GAP-RSS search (Ref. 57). We use such 

very small simulation cells to represent large structural diversity in ML-potential fitting where 

computational cost is at a premium. (c) Quality-of-fit for the difference model, shown in the form 

of a scatter plot for the training data (blue) and a separate test set (green) of the ML prediction 
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(vertical axis) against the “ground truth” to be learned (horizontal axis). The distribution of the 

target values, σ, is given as inset, alongside the root mean square error (RMSE) measures for 

training and testing set. (d) Snapshots from a compression simulation using the same starting 

structure and protocol as for the GAP-18 (Fig. 2a–e) and SCAN (Extended Data Fig. 4) results, 

but now using the GAP-18 + Δ-GAP(RPA–DFT) difference ML potential. The collapse into 

VHDA is clearly reproduced, as is the subsequent nucleation of crystallites; the result at 20 GPa 

is a poly-crystalline β-Sn-like phase (cf. Extended Data Fig. 4a). 

Extended Data Figure 6: Describing VHDA formation and crystallisation requires quan-

tum-accurate simulations. In panel (a), we show the results of our ML-driven simulation, with 

the collapse to VHDA between 12 and 13 GPa, and the crystallisation between 15 and 20 GPa. 

In panel (b), we show results for the same simulation setup but now using the empirical 

Stillinger–Weber (SW) potential41, which had been the state of the art for 100,000-atom simula-

tions of silicon so far. Here, neither VHDA formation nor the subsequent crystallisation are ob-

served. 

Extended Data Figure 7: The enthalpy landscape of metastable disordered forms of silicon. 

(a) Computed enthalpy of 100,000-atom systems, given relative to the respective most stable 

crystalline form at any given pressure (diamond-type → β-Sn-type → sh); see Methods section. 

The red line shows the result for snapshots along the 500 K compression trajectory. Squares 

indicate results for snapshots which have been frozen in by rapid MD quenching (over 1 ps) and 

subsequently relaxed with a conjugate-gradient algorithm, all at the given external pressure. The 

shaded area is a guide to the eye and corresponds to the enthalpy difference between the 500 K 

and fully relaxed a-Si structures at 0 GPa. Relevant structures are shown: note the near-perfect 

ordering of layers in the polycrystalline (“pc”) sample. (b) Enthalpy changes associated with the 

structural changes during compression. Copies of the 10 GPa structure (LDA / HDA poly-

amorph) were relaxed with increased external pressure (open symbols); this direct relaxation 

freezes the structure and does not allow it to transform to VHDA. A direct comparison between 

two competing phases at 13 GPa is therefore possible (labelled as ΔH1) and indicates the prefer-

ence for VHDA formation. The enthalpy is lowered much further upon crystallisation (ΔH2). A 

dashed vertical line emphasises the change in the crystalline reference, from diamond-type (dia) 

to β-Sn-type silicon. (c) Relaxation of copies of the pc-sh structure with decreased external pres-

sure, mirroring decompression of a sample in experiment. The relative enthalpic stability over a 

relatively wide pressure range is qualitatively consistent with the observation of a hysteresis 
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upon decompression: e.g., in Ref. 10, the LDA phase was fully recovered only after decompres-

sion to about 4 GPa. 

Extended Data Figure 8: Computed structure factors. (a) The static structure factor, S(q), as 

a probe for medium-range structural order, has been evaluated for the fully relaxed amorphous 

system. The computed result, including the height of the first sharp diffraction peak (FSDP), is 

in excellent agreement with experimental data taken from Ref. 87. The inset shows a radial dis-

tribution function, g(r), for the same structure, indicating long-range correlations beyond the first 

nanometre, which our ML-driven simulations can access. A dashed line at ≈ 11 Å illustrates the 

limit of DFT modelling (half the cell length of the smallest system sketched in Extended Data 

Fig. 1). (b) Computed structure factors during quenching. The plot on the left-hand side shows 

the evolution of simulated structure factors through the relevant part of the liquid-quenching 

trajectory in the vicinity of the glass transition, plotted in 1 K temperature increments. The emer-

gence of the FSDP (between 1.5 and 2.0 Å–1), as well as the structuring of the third peak (between 

5 and 6 Å–1), are clearly visible. On the right-hand side, a detailed view is provided of the evo-

lution of the FSDP with decreasing temperature, using the same colour scale as on the left-hand 

side. 

Extended Data Figure 9: Tight-binding DOS for an ultra-large system. Supplementing the 

TB electronic-structure computations in Fig. 3a–d, this figure shows the electronic DOS com-

puted with the same approach but for a diamond-type crystalline silicon supercell at atmospheric 

pressure, containing > 2 million atoms (see details in the Methods section). The energy scale is 

set by Ref. 66. 
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