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Abstract. The Origins Space Telescope (Origins) concept is designed to investigate the creation
and dispersal of elements essential to life, the formation of planetary systems, and the transport

of water to habitable worlds and the atmospheres of exoplanets around nearby K- and M-dwarfs

to identify potentially habitable—and even inhabited—worlds. These science priorities are

aligned with NASA’s three major astrophysics science goals: How does the Universe work?

How did we get here? and Are we alone? We briefly describe the science case that arose from

the astronomical community and the science traceability matrix for Origins. The science trace-

ability matrix prescribes the design of Origins and demonstrates that it will address the key

science questions motivated by the science case. © The Authors. Published by SPIE under a

Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole

or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JATIS.7.1

.011012]

Keywords: infrared; cryogenic space telescope; spectroscopy; galaxy evolution; planet forma-

tion; biosignatures.
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1 Introduction

The Origins Space Telescope (Origins) traces our cosmic history, from the formation of the first

galaxies and the rise of metals to the development of habitable worlds and present-day life.

Origins does this through exquisite sensitivity to infrared radiation from ions, atoms, molecules,

dust, water vapor, and ice, and observations of extrasolar planetary atmospheres, protoplanetary

disks, and large-area extragalactic fields. Origins operates in the wavelength range 2.8 to 588 μm

and is >1000 times more sensitive than its predecessors due to its large (5.9 m∕25 m2), cold

(4.5 K) telescope, and advanced instruments.1

The science case for Origins was derived from the astronomical community through an

extensive three-year exercise led by the Origins science working groups on galaxy evolution

and cosmology, the Milky Way and nearby galaxies, planetary system formation, and exopla-

nets. The science input was prioritized and organized into three science themes that align with

NASA’s Astrophysics three thematic questions (Table 1). Each science theme has three science

objectives that are specific questions that Origins will address. These science objectives specify

the science requirements for the Origins design that are captured in the science traceability

matrix (STM; Fig. 1).

In this paper, we briefly describe the science case and traceability matrix for Origins. The full

science case is described in the Origins Space Telescope Study report.2,3 The science case builds

upon expected advances from, and limitations of, current and next-generation observatories,

namely, James Webb Space Telescope (JWST),4 Nancy Grace Roman Space Telescope,5

Atacama Large Millimeter Array (ALMA),6 and Vera C. Rubin Observatory.7 Origins addresses

the key science goals by achieving its nine scientific objectives in 2 years. Thus, Origins will

enable astronomers in the 2030s to ask new questions not yet imagined and provide a far-

infrared window complementary to planned, next-generation observatories, such as the Laser

Interferometer Space Antenna (LISA),8 Advanced LIGO,9 Athena,10 the Square Kilometer

Array,11 and ground-based Extermely Large Telescopes (ELTs).12

The remainder of this paper is organized as follows. Section 2 describes the extragalactic

case, which was coled by Alexandra Pope and Lee Armus. Section 3 highlights the planetary

system formation case, which was coled by Klaus Pontoppidan, Edwin Bergin, and Kate Su.

*Address all correspondence to Margaret Meixner, mmeixner@usra.edu

†Membership of the full Origins Space Telescope Study team can be found in the final report @ https://asd.gsfc.nasa.gov/firs/docs/

OriginsVolume1MissionConceptStudyReport25Aug2020.pdf
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Section 4 provides an overview of the exoplanet case, which was coled by Kevin Stevenson,

Tiffany Kataria, and Jonathan Fortney. Section 5 discusses the full Origins STM defined by the

three themes and one imaging polarization case identified by the Milky Way and nearby galaxy

science working group, which was coled by Cara Battersby and Karin Sandstrom. Section 6

discusses the discovery space for Origins.

2 Extragalactic Case

Origins will address the following key question about galaxy evolution: How do galaxies form

stars, make metals, and grow their central supermassive black holes (SMBHs), from the Epoch of

Reionization to today?

Decades of observations have shown that galaxies condensed out of primordial gas, built up

their stellar mass, heavy metals, and central supermassive black holes (SMBHs), and evolved

into the systems we see today. Yet we still do not understand how this happened. There is a rich

interplay between the drivers of galaxy evolution, which can only be understood through new

observations in a currently inaccessible wavelength regime, the far-infrared (Fig. 2).

Far-infrared observations are required because galaxies are dusty. Dust is a byproduct of

star formation and is essential to astrophysical processes, from planetesimal formation in

protoplanetary disks, to radiation-driven galactic outflows.14 Dust also obscures star forma-

tion and SMBH growth since it efficiently absorbs ultraviolet and optical light, rendering the

driving processes of galaxy evolution nearly invisible at these wavelengths. However, the

dust re-emits this energy in the far-infrared, making optically dim galaxies brilliant infrared

sources. Just as importantly, infrared and molecular emission lines, which directly trace star

formation, black-hole growth, and metal abundances, can escape dusty galaxies, making the

mid- and far-infrared the only bands where a direct, unbiased view of the galaxy and metal

growth is possible.15 This lesson was reinforced by Spitzer16 and Herschel,17 which provided

our first census of dusty galaxies in the infrared during the peak epoch of star formation,

when the Universe was only 3 Gyr old.18 With 1000 times the sensitivity, Origins gives us

a clear view of galaxy and metal growth across cosmic time, through a deep-and-wide

Table 1 Mission design scientific drivers for the Origins Space Telescope.

NASA goal How does the universe work? How did we get here? Are we alone?

Origins
science
goals

How do galaxies form stars,
make metals, and grow their
central SMBHs from
reionization to today?

How do the conditions for
habitability develop during
the process of planet
formation?

Do planets orbiting M-dwarf
stars support life?

Origins
scientific
capabilities

With spectroscopic maps of
wide extragalactic fields,
Origins will simultaneously
measure properties of
growing SMBHs and their
galaxy hosts across cosmic
time.

With sensitive, high-
resolution far-IR
spectroscopy, Origins maps
the water trail from
protoplanetary disks to
habitable worlds.

With precise mid-infrared
transmission and emission
spectra, Origins will assess
the habitability of nearby
exoplanets and search for
signs of life.

Origins
scientific
objectives

(1) How does the relative
growth of stars and
SMBHs in galaxies
evolve with time?

(1) What role does water
play in the formation and
evolution of habitable
planets?

(1) What fraction of terrestrial
planets around M- and
K-dwarf stars has
tenuous, clear, or cloudy
atmospheres?(2) How do galaxies make

metals, dust, and organic
molecules?

(2) How and when do
planets form? (2) What fraction of terrestrial

M-dwarf planets is
temperate?(3) How do the relative

energetics from
supernovae and quasars
influence the interstellar
medium of galaxies?

(3) How were water and life’s
ingredients delivered to
Earth and to exoplanets? (3) What types of temperate,

terrestrial, M-dwarf
planets support life?
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spectroscopic survey in a wavelength regime inaccessible from the ground and that will

remain unexplored by JWST.15

The over-arching extragalactic science goal is specifically addressed by three questions

described below that correspond to science measurements in the traceability matrix.

2.1 How Do the Stars and Supermassive Black Holes in Galaxies Evolve
with Time?

Origins uses atomic and molecular emission lines and emission from dust grains to measure the

density, temperature, and ionization state of the gas where stars are forming and in galactic

nuclei.15 These observations probe the physics of the interstellar medium, characterize the atomic

and molecular gas that drives star-formation, measure the buildup of metals from dying stars,

and track the growth of SMBHs and their influence, as they drive energetic outflows into the

surrounding interstellar medium (Fig. 3).

2.2 How Do Galaxies Make Metals, Dust, and Organic Molecules?

Galaxies are the metal factories of the Universe, and Origins studies how heavy elements and

dust were made and dispersed throughout the cosmic web over the past 12 billion years.19

Sensitive metallicity indicators in the infrared can be used to track the growth of heavy elements

in even the densest optically obscured regions inside galaxies.

Fig. 2 Spectral reach of Origins over cosmic time showing a schematic representation of how the

key spectral diagnostic features of active galactic nuclei (AGN, red), star formation (blue), and

energetic feedback (green) move through the wide bandpass of the OSS13 with look-back time.

Origins can measure all of these important processes over the entire history of galaxy evolution,

filling in a key gap in wavelength and discovery space between JWST and ALMA.
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2.3 How Do the Relative Energetics from Supernovae and Quasars
Influence the Interstellar Medium of Galaxies?

Galaxies are made of billions of stars, yet star formation is extremely inefficient on all scales,

from single molecular clouds to galaxy clusters. The reason is thought to be “feedback” from star

formation or black hole growth, because supernovae or quasar winds can disrupt star-forming

gas.20 Origins studies the role of feedback processes in galaxies over a wide range of environ-

ments and redshifts by investigating the processes that drive powerful outflows and by surveying

the demographics of galactic feedback.

3 Planetary System Formation Case

Origins will address the following key question about the formation and evolution of planetary

systems (Fig. 4): How do the conditions for habitability develop during the process of planet

formation?

Water is essential to all life on our planet. Water provides the liquid medium for life’s chem-

istry and plays an essential biochemical role. However, we do not know how terrestrial planets

get their liquid water. Rocky planets with liquid water exist in regions of the protoplanetary disk

where water was not available during the planetary system formation because the star would

have sublimated and photodissociated the water ice off the protoplanetary dust at this location.

With its broad wavelength coverage, Origins can detect many water vapor lines that trace the

entire range of temperatures found in protoplanetary disks, from the cold snowline to the hot

steam line in disks (Fig. 5).21 Origins can survey all reservoirs of water in more than 1000 planet-

forming disks around stars of all masses, including the faint M-dwarfs that likely host most

planets in the Galaxy.

Another puzzle in planetary formation is the role of hydrogen gas in protoplanetary disks.

The disk’s gas reservoir is essential to form gas giants. Moreover, the coupling of the gas to the

dust may affect the formation and composition of planetesimals, which are the building blocks of

Fig. 3 Origins studies the baryon cycle in galactic ecosystems. Energetic processes that shape

galaxies and the circumgalactic medium together define this ecosystem. Through its ability to

measure the energetics and dynamics of the atomic and molecular gas and dust in and around

galaxies, Origins can probe nearly all aspects of the galactic ecosystem: star formation and AGN

growth; stellar death; AGN- and starburst-driven outflows; and gas cooling and accretion. These

measurements provide a complete picture of the lifecycle of galaxies.
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rocky planets. Despite decades of effort, the hydrogen gas mass of protoplanetary disks is

essentially unknown because molecular hydrogen (H2), being a symmetric molecule, requires

significant energy to excite its rotational levels. Hence, molecular hydrogen is largely invisible

at the low temperatures of planet-forming gas. Carbon monoxide (CO), which is the second

most abundant molecule to H2, has been a traditional tracer for H2 in the interstellar medium.

However, in protoplanetary disks CO-estimated H2 masses are uncertain by factors of 10 to 100

in disks because the physical conditions in disks is very different than the insterstellar medium.

Origins can observe the HD 112 μm line, which provides a new and robust measure of disk gas

mass.22

The planetary system formation science goal is specifically addressed by three questions

described below that correspond to science measurements in the traceability matrix.

3.1 What Role Does Water Play in the Formation and Evolution of
Habitable Planets?

With its unprecedented sensitivity to weak emission from all forms of water (ice as well as gas),

Origins deciphers the role of water throughout each phase of planetary system formation (Figs. 4

and 5).21 The Origins wavelength range includes warm water lines between 25 and 100 μm, and

the ground-state lines at 179.5 and 538 μm. Origins observers will use these tracers to quantify

the gas mass and the location of water in planet-forming disks. The model protoplanetary disk

Fig. 4 Origins will trace water and gas during all phases of the formation of a planetary system.

The trail begins in the “prestellar” phase explored by Herschel, where (a) a cloud of gas collapses

into a still-forming star surrounded by a disk nearly the size of our solar system and (b) a collapsing

envelope of material. Over time, (c) the envelope dissipates, leaving behind a young star and a

disk with nascent planets, (d) eventually leaving behind a new planetary system. Origins will excel

at probing the protoplanetary and later phases.
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spectrum in Fig. 5 is rendered at 4 to 660 μm with a uniform 6 km s−1 spectral resolving power

and for a disk distance of 125 pc. Previous spectroscopic observations of disks with Spitzer and

Herschel were under-resolved, and therefore, did not show the dramatic line-to-continuum ratios

to be revealed by Origins. JWST is only sensitive to warm, highly excited water lines near the

star but not the cold-gas water lines that arise throughout the protoplanetary disk and serve as the

best tracers of water during planetary system formation. Indeed, Origins accessibility to the cold

water lines is very complementary to measurements made by JWSTand ALMA, which are not as

sensitive to water lines (Fig. 6).

3.2 How and When Do Planets Form?

Origins can uniquely use the HD 112 μm emission line, which is a powerful tool to measure the

gas mass of protoplanetary disks to within a factor of 2 to 3.22 This precision is one to two orders

of magnitude better than alternative tracers and can distinguish between competing models of

planet formation and set the timescale for gas-giant formation. Origins’ gas-mass measurements

have the potential to provide calibrations for all other observations of protoplanetary disks,

including those made with ALMA using CO isotopes.

3.3 How Were Water and Life’s Ingredients Delivered to Earth and to
Exoplanets?

Earth likely formed within the snowline: the distance from a young star where water transitions

from a gas to a solid. Thus, water was not a solid in the planetesimals where Earth formed. The

Fig. 5 Origins provides access to critical molecular tracers, including the HD J ¼ 1-0 line at

112 μm, and nearly the full H2O rotational spectrum. Also shown is a schematic of the different

water regions in a planet-forming disk. The main regions include inner disk warm water vapor,

midplane ice, and outer disk cold (photoevaporated) water vapor. Origins will probe the water and

gas mass content throughout the disk.
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prevailing theory holds that water was delivered to the early Earth via impacts by bodies that

formed beyond the snowline. The evidence for this comes from the relatively high deuterium

content of Earth’s oceans relative to the protosolar nebula, an excess that is locked when water is

formed at a temperature of 10 to 20 K.23 In our Solar System, comets and asteroids also carry

this signature. Only a handful of comets have been measured to date and they show a range of

deuterium abundances. With a larger sample of comets, Origins can finally establish the relative

contributions of comets versus asteroids to the source of Earth’s water.

4 Exoplanets

Origins will address the following key question about exoplanets: Do planets orbiting M-dwarf

stars support life?

Humankind has long pondered the question, “Are we alone?” Our quest to search for life on

planets around other stars relies on our ability to measure the chemical composition of their

atmospheres and understand the data in the context of models for planet formation and evolution

(Fig. 7). Using the techniques of transmission and emission spectroscopy, Origins will expand
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Fig. 6 Origins studies more than 100 transitions of the relevant water vapor lines, compared with

one and three with JWST and ALMA, respectively. The plot shows the number of H2O transitions

observable by JWST, Origins, and ALMA as a function of the gas temperature for energies above

the ground state but less than 1000 K gas temperature. Gas temperatures less than 1000 K are

the most relevant for studies of water throughout the protoplanetary disk and the formation of

planetary systems. JWST probes only warm water lines close to the star. ALMA is limited by

atmospheric absorption in its ability to observe water.

Fig. 7 Origins is designed to characterize already-discovered rocky planets that transit M dwarf

stars and place critical constraints on their temperatures. By leveraging the midinfrared wave-

lengths offered by Origins, these atmospheres can be examined for gases that are the most

important signatures of life.
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upon the legacy of Hubble and Spitzer – and soon JWST – with a midinfrared instrument spe-

cifically designed to characterize temperate, terrestrial exoplanets (Fig. 8). In its search for signs

of life, Origins will employ a multitiered strategy, beginning with a sample of planets with

well-determined masses and radii that are transiting nearby M dwarfs, the most abundant stars

in the galaxy.24 With its broad, simultaneous wavelength coverage and unprecedented stability,

Origins will be uniquely capable of detecting signs of life.

The exoplanet science goal is specifically addressed by three questions described below,

which correspond to the three tiers of exoplanet measurements in the search for life in M-dwarfs.

The sample size is largest for the first tier experiment/question and becomes smaller for the

second tier and third tier experiments as only the most promising-for-life exoplanet candidates

are promoted in the investigation. These three measurements involve transit spectroscopy

(Fig. 8) and specify both instrument and observatory requirements in the STM.

4.1 What Fraction of Terrestrial K- and M-Dwarf Planets Have Tenuous,
Clear, or Cloudy Atmospheres?

In the first tier of its exoplanet survey, Origins will obtain transmission spectra over 2.8 to 20 μm

for temperate, terrestrial planets spanning a broad range of planet sizes, equilibrium tempera-

tures, and orbital distances, to distinguish between tenuous, clear, and cloudy atmospheres.

Fig. 8 The geometry and spectra for a typical transiting exoplanet. When a transiting planet

passes in front of its host star, its apparent size changes as molecules absorb light at different

wavelengths. When the planet passes behind the star, the planet’s dayside thermal emission is

measured, thus constraining a terrestrial planet’s apparent surface temperature.
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An atmosphere that is large and uninhibited by clouds at these wavelengths will exhibit large

spectral features such as CO2 in absorption. Because CO2 absorption features are so strong, this

tier can include terrestrial planets orbiting stars from late-M to late-K, giving Origins a broader

perspective in the search for life than JWST.

4.2 What Fraction of Terrestrial M-Dwarf Planets Is Temperate?

For a subset of planets with the clearest atmospheres, Origins will measure their thermal emis-

sion to determine the temperature structure of their atmospheres. This is critical to assessing

climate because it yields an understanding of how incoming stellar and outgoing thermal

radiation dictate the heating and cooling of the atmosphere. Moreover, with this information

the temperature at the surface of the planet can be estimated. Thus, Origins can then determine

whether the planet could support liquid water near the surface.

4.3 What Types of Temperate, Terrestrial M-Dwarf Planets Support Life?

Origins will be the first observatory with the necessary spectroscopic precision to not only mea-

sure habitability indicators (H2O, CO2) but also crucial biosignatures (O3 coupled with N2O or

CH4), which are definitive fingerprints of life on habitable-zone planets. To address this third and

most interesting question, Origins will obtain additional transit observations for the highest-

ranked targets to search for and detect biosignatures with high confidence. The wavelength range

afforded by Origins will provide access to multiple spectral lines for each molecular species. This

will increase the detection significances and prevent potential degeneracies due to overlapping

features, averting false positives. This framework robustly detects a variety of potentially

habitable planet atmospheres, including those similar to the life-bearing Archaean Earth.

5 Origins Science Traceability Matrix

The Origins team took a holistic approach to the observatory by understanding not only the

specific instrument and telescope needed to make a measurement but also how the observatory

works to make the observation effectively and efficiently. Three instruments are specified to

achieve the science goals of Origins: Origins Survey Spectrometer (OSS),13 Far-infrared

Imager Polarimeter (FIP),25 and Mid-Infrared Spectrometer Camera Transit channel (MISC-T).26

Executing an observation requires understanding the choreography needed for the observatory1

and instruments to work together to make a measurement. Analysis of conceptual observations

with specific operational modes has been conducted to identify key Mission Requirements, such

as telescope diameter, attitude control requirements, and efficiency requirements.

The three Origins science themes and their science objectives are captured in the mission’s

STM (Fig. 1). The STM’s six columns show the flow down from NASA science goals (col-

umn 1), to the Origins science theme question (column 2), to the prioritized science objectives

(column 3), to science requirements (column 4), to the instrument requirements (column 5), and

mission requirements (column 6). The STM rows are the three science themes. Science require-

ments (column 4) have two subcolumns: the science observable and its corresponding measure-

ment requirement. The four instrument requirement (column 5) subcolumns show the parameter,

technical requirement needed to achieve the science goal, the instrument, and the current best

estimate (CBE) performance of that instrument based on the study. The science goals are traced

from left to right (columns 1 to 5). The mission requirements column (6) presents overarching

mission capabilities needed to support a science theme, such as telescope collecting area and

observatory pointing stability, as these parameters also stem from the science measurement

requirements.

To illustrate the requirements flow, let us follow the first science goal, column 2, “How do

galaxies form stars, build up metals, and grow their central SMBHs from reionization to today?”

This science goal is achieved with three science objectives noted in column 3. The first objective

is “measure the redshifts, star formation rates (SFR), and black hole accretion rates in main-

sequence galaxies since the epoch of reionization down to an SFR of 1 Myr−1 at cosmic noon
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and 10 Myr−1 at z ∼ 5, performing the first unbiased survey of the coevolution of stars and

SMBHs over cosmic time.” To meet this objective, there are science requirements (column 4).

The science observable (left subcolumn of column 4) is “A catalog of 106 galaxies with star-

formation rates and black hole accretion rates measured using mid and far-IR emission lines.”

This science observable gives rise to a measurement requirement (right subcolumn of column 4)

for “moderate (R ≥ 100) spectral resolution spectral mapping survey spanning 0.5 deg2 and

20 deg2 to deep and shallow depths, respectively.” The instrument requirements (column 5)

specify the technical requirement for each instrument parameter needed to meet the measurement

requirement. For example, the parameter, wavelength range, has a technical requirement of 25 to

500 μm for the OSS-grating mode of the OSS instrument. The concept OSS design has a CBE

performance of 25 to 588 μm for the wavelength range. The mission requirement (column 6) of

telescope diameter is>5.0 m if the extragalactic objectives# 1 to 3 are to be completed in a 4000-

h observing campaign. However, the mission requirement of telescope diameter is >3 m to

resolve source confusion expected in spectral mapping surveys.

Several Origins programs (e.g., science objectives 1 and 2 for the extragalactic goal) require

large-area sky surveys, with the consequence that Origins needs to accomplish large-area surveys

efficiently. To support such surveys, the mission required an observatory survey mode that sup-

ports 60 arcsecond per second motion while observing. The optimal performance of far-infrared

direct detectors is such that rapid motion of a source over the detectors is required, which neces-

sitates on-sky scanning or motion of a field steering mirror. The instrument and observatory need

stability to fulfill the mid-infrared spectroscopy of exoplanet goals. Science targets are located all

over the sky, which means the field of regard over the year must cover the entire sky. Origins’

requirement of >80% observing efficiency guides attitude control system development and

operational scenarios outlined in the science cases.

The science requirements specified in the STM set the minimum necessary to achieve

the science goal. However, the Origins design is roughly 25% more capable than required

by these science requirements (e.g., Fig. 9), leading to what is denoted as “science margin.”

Fig. 9 Origins’ key science program requires a cold telescope with a primary aperture diameter

of 5.3 m. This requirement comes primarily from the exoplanet science case to detect biosigna-

tures in a 5-year mission, given that transit durations are fixed and sensitivity cannot be recov-

ered with a longer single-epoch integration, unlike most other proposed Origins observations.

The extragalactic study places an aperture size requirement of >5 m, based on the need to

detect a statistically significant sample of galaxies at z > 6, to study the formation mechanisms

and physical properties of dust and metals during reionization. The minimum primary aperture

diameter is 3 m to enable an effective extragalactic and Galactic science program, where source

confusion does not compromise the telescope’s ability to conduct spectroscopic studies of gal-

axies at z ¼ 2 to 3 and the sensitivity is not too poor to study water and gas in protoplanetary

disks at the distances of Orion.
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The margin can be interpreted in two ways: margin captures the uncertainty in the model pre-

dictions or the margin implies that the scientific objectives can be reached with lower integration

times than predicted in calculations for the report.

The baseline mission provides a good starting point upon Origins selection, with the flex-

ibility to explore alternatives during an engineering phase A study.1 For example, Fig. 9 shows

the fraction of each science theme that can be accomplished compared with the telescope diam-

eter (collecting area). The baseline mission has a JWST collecting area (5.9-m diameter) that

fits without deployments in the large launch vehicles under development. This size provides an

estimated 25% margin for Origins’ science driver cases.

6 Origins: Transformative Discovery Space

Origins is designed for discovery. The three science goals that drive Origins’ design can be

achieved in ∼2 years based on our observational program scenario assessments. Thus, there

will be significant time to address other science topics. Indeed, Origins is a true community

observatory, and its science program will be driven by science proposals selected through the

usual peer-review process, as used for existing large NASA observatories.

The Origins-enabled scientific advances described above are extensions of known science

questions. However, history has shown that order-of-magnitude leaps in sensitivity lead to dis-

coveries of unanticipated phenomena. For example, the sensitivity of IRAS over balloon and

airborne infrared telescopes led to the discovery of debris disks, protostars embedded within

dark globules, Galactic infrared cirrus, and infrared-bright galaxies, none of which were

expected at the time of launch. Likewise, no study anticipated that Spitzer would determine the

stellar masses of z > 6 galaxies and characterize the TRAPPIST-1 multiexoplanet system, the

coldest known brown dwarfs, measure winds transporting energy in exoplanet atmospheres, and

detect dust around white dwarfs produced by shredded asteroids.

Origins’ sensitivity exceeds that of its predecessor missions by a factor of 1000.1 Jumps of

this magnitude are very rare in astronomy and have always revolutionized our understanding

of the Universe in unforeseen ways. Moreover, the entire era of exoplanetary science has shown

that Nature’s imagination trumps our own, and Origins MISC-T’s broad wavelength coverage

and precise measurements are guaranteed to give us views into the new and unexpected. Thus,

we anticipate a series of transformative discoveries by Origins that are impossible to imagine

today.
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