
Orion 2.0: Native Support for Uncertain Data

Sarvjeet Singh, Chris Mayfield, Sagar Mittal,
Sunil Prabhakar, Susanne Hambrusch, Rahul Shah∗

Department of Computer Science, Purdue University
West Lafayette, Indiana, USA

{sarvjeet, cmayfiel, smittal, sunil, seh, rahul}@cs.purdue.edu

ABSTRACT
Orion is a state-of-the-art uncertain database management
system with built-in support for probabilistic data as first
class data types. In contrast to other uncertain databases,
Orion supports both attribute and tuple uncertainty with
arbitrary correlations. This enables the database engine to
handle both discrete and continuous pdfs in a natural and
accurate manner. The underlying model is closed under the
basic relational operators and is consistent with Possible
Worlds Semantics. We demonstrate how Orion simplifies
the design and enhances the capabilities of two example ap-
plications: managing sensor data (continuous uncertainty)
and inferring missing values (discrete uncertainty).

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query process-
ing ; H.2.8 [Database Management]: Applications

General Terms
Design, Management, Theory

1. INTRODUCTION
Probabilistic and uncertain data management have re-

cently received much attention in the database community
(see [7] for related work). Uncertainty is prevalent in numer-
ous application domains, ranging from information extrac-
tion and integration to scientific data management and sen-
sor databases. Orion1 is a general-purpose uncertain DBMS
that unifies the modeling of probabilistic data across appli-
cations. This in turn provides additional opportunities to
the query engine for indexing and optimization.

One motivating example is a data cleaning system that au-
tomatically detects and corrects errors. Since conventional
database management systems assume data to be certain
and precise, the software must either construct its own prob-
abilistic model for the data, or simply pick one of the alter-
native values to store in the underlying database. This leads
to a no-win situation: the first option significantly compli-
cates the queries, while the second technique results in a
substantial loss of information.
∗Work done while at Purdue University. Current affiliation:
Louisiana State University, Baton Rouge, Louisiana, USA.
1See http://orion.cs.purdue.edu/

Copyright is held by the author/owner(s).
SIGMOD’08, June 9–12, 2008, Vancouver, BC, Canada.
ACM 978-1-60558-102-6/08/06.

The Orion system provides a better solution: built-in sup-
port for uncertainty at the database level. By extending the
query processing engine of PostgreSQL, Orion natively man-
ages uncertain data modeled as arbitrary joint probability
distributions. “Orion 2.0” is a complete redesign and rewrite
of its predecessor “U-DBMS” [1], and includes the following
new and innovative contributions:

• An integrated implementation (within PostgreSQL) of
the “PDF Attributes” data model, which is consistent
with Possible Worlds Semantics (PWS) and supports
both continuous and discrete uncertainty [7].

• Efficient access methods for querying uncertain data,
including three index structures based on R-trees, sig-
nature trees, and inverted indexes [3, 5].

• Improved query optimization, join algorithms, and se-
lectivity estimation by gathering and exploiting addi-
tional statistics over probabilistic data types [2, 6].

• Integration with PL/R for graphical visualization of
and statistical inference over uncertain data [4].

The fundamental difference between Orion and related
projects is indeed its support of attribute-level continuous
uncertainty, which enables the system to represent proba-
bilistic data in a natural and efficient manner.

2. THE ORION 2.0 DATA MODEL
Orion 2.0 has two major kinds of attributes – uncertain

(or pdf attributes) and certain (or precise attributes). A
database table T is defined by a probabilistic schema (ΣT ,
∆T) consisting of a schema (ΣT) and dependency informa-
tion (∆T). The schema ΣT is similar to the regular rela-
tional schema and specifies the names and data types of the
table attributes (both certain and uncertain). The depen-
dency information ∆T identifies the attributes in T that are
jointly distributed (i.e. correlated). For each dependent set
of attributes in T , the model maintains a history Λ.

PDF attributes: The uncertainty in many applications
can be expressed using standard distributions. Orion has
built-in support for commonly used continuous (e.g. Gaus-
sian, Uniform) and discrete (e.g. Binomial, Poisson) distri-
butions. These uncertain values are processed symbolically
in the database. When the underlying data cannot be rep-
resented using standard distributions, Orion automatically
converts them to approximate distributions, including his-
tograms and discrete sampling.

!"#$%&'()*+,(

!-.'(/$0+'+123

4&,()'+5&$6-7(

!"#$%&'("

)&%*#&*%$

!+,- !./) !,0. !-,1

!"#$%&'("2.'&'2&34$5)&'"6'%6

.'&'2734$5

)&'"6'%62,4$%'&(8"5

9:;0
!"#$%&'("&32<*$%3

=*"#&(8"5

9.=284$%'&(8"52

>?@88%A2B'%C("'@(D$A2

4%86*#&AEFG

9%8HF2)#I$B'

!7A2"7

J(5&8%3

#

9'%5$%

9'&I2C$"$%'&8%

,4&(B(D$%

KL$#*&8%

"
8
(
)-
$9
&
3
5&
(

+85&2

$5&(B'&(8"2

?*"#&(8"5

/"6L5

!
)
K
0
2:
K
M
K
:

)
N
)
7
K
1
2:
K
M
K
:

Figure 1: Orion 2.0 Architecture

Correlations and missing data: Correlated attributes
in a table T (given by ∆T) are represented by a single joint
distribution. An important feature of Orion is its support
for partial pdfs. A partial pdf is a distribution that sums
(or integrates) to less than 1. This feature allows us to
represent missing tuples. If the joint pdf of a tuple (obtained
by multiplying the individual pdfs of attributes) sums up to
x, then 1−x is the probability that the tuple does not exist
in the database.

Historical dependencies: In addition to the pdfs, for
each dependent group of uncertain attributes present in ∆T ,
we store its history Λ. While dependency information (or
joint pdfs) express intra-tuple dependencies at the schema
level, history captures the inter-tuple dependencies at the
instance level. The history of a given set of uncertain at-
tributes denotes the attribute sets from which it is derived,
and is used while performing operations on the tuples to
ensure that the results are consistent with PWS.

PDF operations: Correct evaluation of select-project-
join queries under PWS reduces to three fundamental oper-
ations on pdfs: floor, marginalize, and product (see [7] for
a detailed discussion). These operations use the informa-
tion maintained by dependency sets in ∆T and histories in
Λ to detect any correlations and handle them appropriately.
The standard relational operations remain unchanged for
the certain attributes in the database.

3. SYSTEM IMPLEMENTATION
Orion is primarily written in C, with some portions at the

user level in PL/pgSQL. Figure 1 gives a high level overview
of the system architecture. The shaded regions represent
new components that correspond to the primary features
of the Orion data model. Partially shaded boxes highlight
portions of the PostgreSQL backend we extended to support
queries over uncertain data. Clear boxes (which include the
majority of the PostgreSQL backend) indicate components
we have not modified.

Query interface: One underlying goal in the design of
Orion was to support uncertain data with minimal changes
to SQL. The resulting user interface is standard SQL plus a
handful of data types and built-in functions for manipulating

probabilistic data. These include, for example, evaluating
the cdf of an uncertain attribute, and converting symbolic
pdfs into approximations. In addition, we have integrated
our system with PL/R [4], an extension to PostgreSQL that
allows the user to write SQL statements and functions in
the R programming language. “R is a free software environ-
ment for statistical computing and graphics,”2 and provides
elegant visualization of uncertain pdfs in the Orion client.

Uncertain data types: Orion supports four main types
of uncertain data attributes:

1. Continuous Numeric (ucon) – Each data item has an
associated probability density function for evaluating
the probability of any given value.
Example: Temperature or voltage from a sensor.

2. Discrete Numeric (udis) – Each data item has a prob-
ability distribution function, which stores the frequen-
cies of the alternative values.
Example: Number of neighbors in a mobile network.

3. Ordered Categorical (uord) – Similar to discrete nu-
meric, each data type comes with a pdf that stores
probabilities for each category.
Example: Fuzzy data value, e.g. low or high.

4. Unordered Categorical (unom) – Same as above, except
there is no logical ordering between categories.
Example: Document classification or generic type.

Internal representation: All uncertain attributes are
stored internally using a data structure named Uncertain.
This type is hidden from the user, and is only accessible
through the four SQL data types listed above. Consequently,
the data structure is generic and represents all possible types
of uncertainty pdfs. In particular, it can represent both in-
dependent and joint distributions. When multiple attributes
are correlated, the system automatically stores the number
of dimensions, the type of each dimension, and the resulting
joint pdf in a single data instance.

In addition to the pdf, Uncertain also maintains a list
of floored regions and historical dependencies that are due
to operations on pdfs. Probabilistic schemas (i.e. depen-
dency sets) for each table are stored in the system catalog.
All of this information is used by internal functions to de-
tect correlations while performing pdf operations. The demo
highlights the relative trade-offs of the two different options
for storing histories. These are either: 1) to store the top-
level ancestors, or 2) to store the immediate parents of the
attribute sets in a graph-like structure.

Indexes and query optimization: The standard cost
estimation and indexing techniques built into PostgreSQL
are not appropriate for uncertain data. Orion provides novel
query cost estimation techniques that are used for optimiz-
ing the generated query plans involving uncertain data [6].
In addition to cost estimation, Orion also includes a num-
ber of uncertainty indexing methods and join algorithms for
efficient execution of specialized queries [2, 3, 5].

One major advantage with the design and implementa-
tion of Orion is that there is virtually no system overhead in
the absence of uncertain data. The modifications for uncer-
tain data support are for the most part self-contained, and
operate side by side with the standard indexing and query
optimization components.
2See http://www.r-project.org/

CREATE TABLE location (

id integer, ts time,

xloc ucon, yloc ucon, room udis, -- unc. types

PRIMARY KEY (id, ts),

DEPENDENT (xloc, yloc)); -- prob. schema

INSERT INTO location VALUES (

1, ’2008-06-09 14:05:27’,

’prod(norm(5,3) , norm(7,3))’, -- 2D pdf

’dist(2 : 0.75 , 3 : 0.25)’); -- 1D pdf

SELECT * FROM location -- floored pdfs

WHERE xloc > 5 and yloc < 5; -- with history

Figure 2: Example SQL Queries

4. DEMONSTRATION CONTENT
We demonstrate the benefit of processing uncertainty at

the database level by running two example applications in-
teractively. Orion seamlessly manages all types of uncer-
tainty, whether inherent in the base data or generated via
probabilistic operations over standard data.

4.1 Example Applications and Datasets
The first application monitors the movement of people

within a building using 802.11-based sensors that report ap-
proximate locations in real-time. Using a dataset collected
during training exercises at the Purdue Homeland Security
Institute, we show how Orion effectively stores and indexes
uncertain position measurements as gaussians derived from
the sensor specifications. We also highlight how accurate
selectivity estimation over such data guides the query opti-
mizer in when to use the uncertain index structures. The
presence of these features increases the overall accuracy.

The second application is a genealogical database that
leverages discrete uncertainty to infer missing information.
We present a basic technique for estimating unknown birth
and death years for individuals based on their relatives.
Starting with known events and domain knowledge, our sys-
tem iteratively propagates estimated ranges from parents to
children and vice versa. Orion tracks the change in uncer-
tainty during each iteration, and automatically handles cor-
relations when combining multiple values in the base data.

4.2 Outline of the Demonstration
Creating uncertain data: We first introduce the Orion

data model through a series of SQL statements that create
and populate uncertain data tables for the aforementioned
applications. These examples illustrate both inter-tuple and
intra-tuple dependencies, and we show how the system effi-
ciently tracks and accurately reports probability values.

Probabilistic queries: Next, we demonstrate the two
example applications from the user’s perspective, and dis-
play a real-time SQL trace on the database server. We
also show several non-trivial queries over uncertain data and
their resulting execution plans.

Optimization and indexes: To highlight the perfor-
mance features of Orion, we demonstrate common queries
with and without indexes. We also turn off cost estimation
and show how the inappropriate use of indexes would have
affected efficiency.

Visualization of results: Using PL/R, we show sev-
eral interesting plots of the uncertain data constructed in
the previous steps. We also use a custom Orion client to
illustrate historical dependencies.

Behind the scenes: Since Orion is built inside of the
database engine, we conclude by demonstrating the low-level
features of our system using standard PostgreSQL tools.
These include psql (the command line client) and pgAdmin
III (a graphical administration platform).

5. FUTURE DIRECTIONS
In this demonstration we have highlighted only two of the

numerous applications that will immediately benefit from
advancements in probabilistic data management. The Orion
project aims to build a general-purpose uncertain DBMS to
support both current and forthcoming applications. We are
exploring several avenues of future work which are essential
to providing a comprehensive database solution:

• Probabilistic extensions to (and semantics for) other
standard database features including aggregation, du-
plicate elimination, and key constraints.

• Approximation methods for calculating probabilities
in result sets with complex historical dependencies.

• Efficient processing of specialized queries, including k-
nearest neighbor queries over uncertain data.

• If necessary, additional SQL language extensions.

Research and development of a database system that sup-
ports uncertain data will advance scientific understanding
and enable future work in a variety of fields. But whether
emerging applications use databases simply as an informa-
tion storage technology rather than an effective data man-
agement solution depends on to what extent they can reason
about and make use of the uncertainty of data directly.

6. REFERENCES
[1] R. Cheng, S. Singh, and S. Prabhakar. U-DBMS: A

Database System for Managing Constantly-Evolving
Data. In 31st Intl. Conference on Very Large Data
Bases, 2005.

[2] R. Cheng, S. Singh, S. Prabhakar, R. Shah, J. Vitter,
and Y. Xia. Efficient Join Processing over Uncertain
Data. In ACM 15th Conference on Information and
Knowledge Management, 2006.

[3] R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. S.
Vitter. Efficient Indexing Methods for Probabilistic
Threshold Queries over Uncertain Data. In 30th Intl.
Conference on Very Large Data Bases, 2004.

[4] J. E. Conway. PL/R - R Procedural Language for
PostgreSQL. http://www.joeconway.com/plr/, 2008.

[5] S. Singh, C. Mayfield, S. Prabhakar, R. Shah, and
S. Hambrusch. Indexing Uncertain Categorical Data. In
IEEE 23rd Intl. Conference on Data Engineering, 2006.

[6] S. Singh, C. Mayfield, R. Shah, S. Prabhakar, and
S. Hambrusch. Query Selectivity Estimation for
Uncertain Data. In 20th Intl. Conf. on Scientific and
Statistical Database Management, 2008.

[7] S. Singh, C. Mayfield, R. Shah, S. Prabhakar,
S. Hambrusch, J. Neville, and R. Cheng. Database
Support for Probabilistic Attributes and Tuples. In
IEEE 24th Intl. Conference on Data Engineering, 2008.

