

Orleans: Cloud Computing for Everyone

Sergey Bykov, Alan Geller, Gabriel Kliot, James R. Larus, Ravi Pandya, Jorgen Thelin

Microsoft Research

{sbykov, ageller, gkliot, larus, ravip, jthelin}@microsoft.com

ABSTRACT
Cloud computing is a new computing paradigm, combining

diverse client devices – PCs, smartphones, sensors, single-

function, and embedded – with computation and data storage in

the cloud. As with every advance in computing, programming is a

fundamental challenge, as the cloud is a concurrent, distributed

system running on unreliable hardware and networks.

Orleans is a software framework for building reliable,

scalable, and elastic cloud applications. Its programming model

encourages the use of simple concurrency patterns that are easy to

understand and employ correctly. It is based on distributed actor-

like components called grains, which are isolated units of state

and computation that communicate through asynchronous

messages. Within a grain, promises are the mechanism for

managing both asynchronous messages and local task-based

concurrency. Isolated state and a constrained execution model

allow Orleans to persist, migrate, replicate, and reconcile grain

state. In addition, Orleans provides lightweight transactions that

support a consistent view of state and provide a foundation for

automatic error handling and failure recovery.

We implemented several applications in Orleans, varying

from a messaging-intensive social networking application to a

data- and compute-intensive linear algebra computation. The

programming model is a general one, as Orleans allows the

communications to evolve dynamically at runtime. Orleans

enables a developer to concentrate on application logic, while the

Orleans runtime provides scalability, availability, and reliability.

Categories and Subject Descriptors
C.2.4 [Comp.-Communication Networks]: Distributed Systems

- Distributed applications

D.1.3 [Software]: Programming techniques – Concurrent

programming.

D.2.12 [Software]: Software Engineering – Interoperability:

Distributed objects.

General Terms
Design, Languages, Performance, Reliability

Keywords
Cloud Computing, Distributed Actors, Programming Models.

1. INTRODUCTION
Writing software for the cloud poses some of the most

difficult challenges in programming. Cloud systems are inherently

parallel and distributed, running computations across many

servers, possibly in multiple data centers, and communicating

with diverse clients with disparate capabilities. Individual

computers and communication links are commodity components,

with non-negligible failure rates and complex failure modes.

Moreover, cloud applications generally run as a service, gaining

economies of scale and efficiency by concurrently processing

many clients, but also facing the challenges of handling varying

and unpredictable loads while offering a highly available and

reliable service in the face of hardware and software failures and

evolution. These problems, of course, come in addition to the

familiar challenges of constructing secure, reliable, scalable,

elastic, and efficient software.

1.1 Orleans
Orleans is a software framework with two primary goals: to

make it possible for developers unfamiliar with distributed

systems to build large-scale applications, and to ensure that these

systems handle multiple orders of magnitude of growth without

requiring extensive re-design or re-architecture. In order to meet

these goals, we intentionally constrained the programming model

to guide developers down a path of best practices leading to

scalable applications. Where possible, we provide declarative

mechanisms, so a developer specifies his or her desired behavior

and leaves the Orleans runtime responsible to meet the

specification.

The Orleans programming model is based on asynchronous,

isolated, distributed actors. Actors can be automatically replicated

to enhance scalability and availability. An actor’s state can be

persisted to shared, durable storage, where a reconciliation

mechanism allows actors to lazily merge their state changes.

Lightweight transactions provide a consistent system view across

actors and simplify failure handling.

1.2 Grains
Actors within Orleans are called grains and are the basic

programming unit. All code that a developer writes for Orleans

runs within a grain. A system runs many grains concurrently.

Grains, however, do not share memory or other transient state.

They are internally single-threaded and process each request fully

before handling the next one. Cloud services achieve high

throughput by processing multiple, independent requests

concurrently. Grains support this architecture with a single-

threaded execution model that provides mechanisms such as

isolation, consistency, and asynchrony to exploit concurrency

among servers, while avoiding the error-prone difficulties of

multithreading and synchronization.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SOCC’11, October 27–28, 2011, Cascais, Portugal.

Copyright 2011 ACM 978-1-4503-0976-9/11/10...$10.00.

Orleans does not prescribe the size of grains and supports

both fine- and coarse-grain units of concurrency. Granularity must

balance a tradeoff between the concurrency and state needed for

efficient computations. Small grains typically hold entities that are

logically isolated and independent. For example, a user account

grain or a catalog item grain is often independent of other grains

of the same type. At the other end of the spectrum, a complex data

structure with many internal pointers, such as a search index, is

more efficiently constructed in a single grain or a small collection

of grains and accessed as a service. Orleans supports the full range

of possibilities. We provide more examples for different grain

usages and sizes in Section 4.

Grains interact entirely through asynchronous message

passing. Orleans messages are exposed as method calls. Unlike

most RPC models, which block until a result arrives, Orleans

message calls return immediately with a promise (Section 2.1) for

a future result. An application can bind code to the promise which

will execute when a result arrives, or it can treat the promise like a

future and explicitly wait for a result. Promises resolve the

impedance mismatch between synchronous method calls and

asynchronous message passing and are well suited to coordinating

concurrent computations [1, 2]. In Orleans, the primary use of

promises is to allow a grain to start one or more operations in

other grains and to schedule a handler to execute when the

operations complete. Unpredictable timing introduces non-

deterministic interleavings among handlers, but it is limited to

promises, where it is clearly delimited and easily understood.

1.3 Activations
In order to provide higher system throughput to handle

increased load, Orleans automatically creates multiple

instantiations, called activations, of a busy grain to handle its

simultaneous requests. The activations process independent

requests for the grain, possibly across multiple servers. This

increases throughput and reduces queuing latency at “hot” grains,

thus improving system scalability. If necessary, Orleans can

obtain additional machines from the underlying elastic cloud

service to run the new activations.

Grains are logical programming abstractions and activations

are run-time execution units. For the most part, a developer can

assume a single logical entity in the system processes all messages

sent to a grain. Each activation of the grain runs independently of

and in isolation from the other activations. These activations

cannot share memory or invoke each other’s methods. Their only

interaction, where the behind-the-scene parallelism is exposed, is

reconciling changes to the grain persistent state shared by the

activations (Section 3.4).

1.4 Persistence and Reconciliation
A cloud system has persistent state that is kept in durable

storage. Orleans integrates persistence into grains, which are

containers of application state. A grain’s state is persistent by

default, which means that state changes in one activation of a

grain will be available for subsequent activations of the grain

(Section 3.2). In addition to persistent state, a grain may also have

in-memory transient state that is not saved to durable storage and

exists only during the lifetime of the activation.

A grain may exist only in durable storage – i.e., no

activations on any server – when no requests for the grain are

pending. In this case, when a request arrives, the Orleans runtime

selects a server and creates an activation for the grain. The new

activation is initialized with the grain’s persistent state.

If the grain modifies its persistent state, Orleans updates

persistent storage with the in-memory updates at the completion

of the application request. In practice, this write may be delayed

to improve performance, at the cost of increasing the window of

vulnerability to failure.

Since multiple activations of a grain can concurrently run

and modify the grain’s state, Orleans provides a mechanism to

reconcile conflicting changes. It uses a multi-master, branch-and-

merge data update model, similar to Burckhard’s revision-based

model [3] (Section 3.3).

1.5 Consistency and Failure Handling
To simplify development and reasoning about a concurrent

system, Orleans provides a simple consistency model for grains.

Orleans’s model is based on lightweight, optimistic transactions

(Section 3.4). By default, all of the grains that process an external

request are included within a single transaction, so that the request

executes atomically and in isolation. Activations running in a

transaction are isolated from activations running in other

transactions and cannot access data modified by a transaction that

has not yet completed. Transactions atomically succeed or fail and

their state changes are durably and atomically persisted and

become visible atomically.

Transactions also offer a simple, albeit coarse, error-

handling mechanism, which is particularly valuable in failure-

prone distributed systems. If a grain fails or becomes unavailable,

perhaps due to a network or server failure, the transaction

processing a request aborts, and Orleans automatically re-executes

it. This mechanism frees application developer from handling

most transient hardware or software failures.

1.6 Automated Scalability
A service is scalable if increased load can be handled by

proportionally increasing server capacity. Constructing a scalable

service is a challenge. It must be designed and constructed to

avoid bottlenecks, such as centralized resources, that throttle

system throughput under increased load. Common techniques for

achieving scalability are asynchrony, partitioning, and replication.

Orleans incorporates these three techniques in its programing

model and runtime.

The actor model (grains) is based on asynchronous

communications and encourages fine-grained partitioning of state

and computation. The Orleans runtime automatically replicates

activations of busy grains to dynamically spread demand and

balance load across the available servers.

Unfortunately, these mechanisms cannot automatically

solve all scaling problems. Partitioning and replication must be

designed into an application by using the appropriate Orleans

mechanisms. For example, data and processing in a single grain

can become large enough that simply replicating the grain does

not provide sufficient throughput. An account grain with millions

of connections in a social networking application would face this

problem. Refactoring a large grain into a collection of manageable

grains depends on the semantics of an application and so cannot

be done automatically. Orleans provides mechanisms, but the

developer is responsible for using them.

1.7 Contributions
This paper makes the following contributions:

 A new programming model called Orleans for building cloud

software, which makes it possible for non-expert developers

to build scalable, elastic, reliable, and efficient cloud services.

 Extensions to the actor model to enhance the scalability,

software elasticity, and failure tolerance of systems providing

cloud services.

 A consistency model for replicated actor computations that

offers weaker guarantees than traditional transactions, but

greater scalability.

 Mechanisms for managing performance, persistence,

isolation, and consistency that provides a simple, effective

programming model with minimal application code.

 Implementation of an efficient runtime that provides good

performance and high availability.

The rest of the paper is organized as follows. Section 2

describes the programming model in more detail. Section 3

describes the runtime system. Section 4 describes three sample

applications, and Section 5 presents performance measurements.

Section 6 surveys related work, while Sections 7 and 8 discuss

future work and conclusions.

2. PROGRAMMING MODEL
This section describes the Orleans programming model and

provides some code examples from the sample Chirper message-

based social network application (Section 4.1).

2.1 Promises
Orleans uses promises as its asynchrony primitive. Promises

have a simple lifecycle. Initially, a promise is unresolved – it

represents the expectation of receiving a result at some

unspecified future time. When the result is received, the promise

becomes fulfilled and the result becomes the value of the promise.

If an error occurs in the processing of the request, the promise

becomes broken and has no value. A promise that has been

fulfilled or broken is considered resolved.

Promises are implemented as .NET types. An instance of

these types represents a promise for future completion

(AsyncCompletion) or for a future result value (AsyncValue<T>)

from an operation.

The primary way to use a promise is to schedule a delegate

to execute when the promise is resolved. Delegates are scheduled

by calling the ContinueWith method on a promise; ContinueWith

returns a promise for the completion of or the value of the

delegate. If the underlying promise is broken, then the scheduled

delegate does not run, and the promise returned by ContinueWith

is also broken unless the developer provides a failure delegate;

this error propagation is a key feature of the Orleans programming

model.

Orleans also allows a promise to be treated similarly to an

explicit future [4]. Promises provide a Wait method that blocks

until the promise is resolved. Result value promises also provide a

GetValue method that blocks until the promise is resolved and

returns the result.

Here is an example of creating a promise by invoking a

method on a grain, scheduling a delegate for when the method

completes, and then blocking until the promise is resolved:

(1) AsyncCompletion p1 = grainA.MethodA();
(2) AsyncCompletion p2 = p1.ContinueWith(() =>
(3) {
(4) return grainB.MethodB();
(5) });
(6) p2.Wait();

A composite promise is created from multiple promises

using the Join method. The composite promise is resolved when

all of the joined promises resolve. If any of the individual

promises are broken, the composite promise breaks as well.

The execution of a delegate in an activation is always

single-threaded; that is, no more than one delegate will execute at

a time in a grain activation (Section 2.2).

2.2 Grain Execution Model
When an activation receives a request, it processes it in

discrete units of work called turns. All grain code execution,

whether handling a message from another grain or an external

client or the execution of a delegate, runs as a turn. A turn always

executes to conclusion without preemption by another turn for the

same activation.

While an Orleans system as a whole may execute many

turns belonging to different activations in parallel, each activation

always executes its turns sequentially. Hence, execution in an

activation is logically single threaded. Threads are not dedicated

to an activation or request; instead, the system uses a scheduler

that multiplexes turns from many activations across a pool of

threads.

This single-threaded execution model removes the need for

locks or other synchronization to guard against data races and

other multithreading hazards. This model, however, limits parallel

execution to collections of grains and hence excludes shared-

memory parallelism. The restriction on parallelism within a grain

was made to significantly simplify code development and avoid

the host of subtle and complex errors commonly associated with

shared-memory parallelism.

Orleans does not eliminate execution non-determinism.

Promises are resolved asynchronously and the order in which

continuation delegates execute is unpredictable. This interleaving

never results in a fine-grained data race, but it does require

attention since the state of the activation when a delegate executes

may differ from its state when the delegate was created.

By default, Orleans requires an activation to completely

finish processing one external request before accepting the next

one. An activation will not accept a new request until all promises

created (directly or indirectly) in the processing of the current

request have been resolved and all associated delegates have

executed. If necessary, such as to handle call cycles, grain

implementation classes marked with the Reentrant attribute

allow turns belonging to different requests to freely interleave.

Methods marked ReadOnly are assumed to also be reentrant.

2.3 Error Handling
Because every asynchronous operation, such as a call to a

grain method or a call to ContinueWith, returns a promise, and

because promises propagate errors, error handling can be

implemented in a simple manner. A client can build a complex

dataflow graph of interconnected asynchronous computations and

defer error handling until the result is actually needed. In the code

above, an error at any stage of the program (in MethodA or

MethodB) will eventually break promise p2 and cause p2.Wait()

to throw an exception with information about the error. All

possible errors bubble up to that point in the program, even

though the computations may have run concurrently on different

threads or machines. Using the automatic error propagation and

optional failure delegates as an asynchronous try/catch

mechanism greatly simplifies error handling code.

2.4 Grain Interfaces
Rather than developing a separate interface definition

language, Orleans uses standard .NET interfaces to define the

interface to grain’s services. An interface used for this purpose

must adhere to the following rules:

 A grain interface must directly or indirectly inherit from the

IGrain marker interface.

 All methods and property getters must return a promise.

Property setters are not allowed as .NET does not allow them

to return a completion promise. Similarly, .NET events are

not allowed.

 Method arguments must be grain interface types or

serializable types that can be logically passed by value.

For example, Figure 4 contains the Chirper grain interfaces.

2.5 Grain References
A grain reference is a proxy object that provides access to a

grain. It implements the same grain interfaces as the underlying

grain. A grain reference is the only way that a client, whether

another grain or a non-grain client, can access a grain. Grain

references are first-class values that can be passed as arguments to

a grain method or kept as persistent values within a grain’s state.

As with promises, grain references can be in one of the three

possible states: unresolved, fulfilled or broken. A caller creates a

grain reference by allocating a new grain or looking up an existing

grain (Section 2.6). If operations are invoked on a reference

before it was resolved, the operations are queued transparently in

the reference and executed in order when the reference is fulfilled

(i.e., the grain is successfully created or looked up).

2.6 Creating and Using Grains
For each grain interface, Orleans generates a static factory

class and an internal proxy class. Clients use the factory classes to

create, find, and delete grains. The proxy classes are used by the

Orleans runtime to convert method calls into messages.

In the simplest case, a factory class includes methods for

creating and deleting a grain, and for casting a grain reference of

one type to a reference of another type. Annotations on grain

interface members, such as Queryable, are used by the developer

to cause Orleans to generate additional methods on the factory

class for searching for grains that satisfy specified conditions. The

generated factory class for the IChirperAccount interface looks

as follows:

(1) public class ChirperAccountFactory
(2) {
(3) public static IChirperAccount
(4) CreateGrain(string name);
(5) public static void
(6) Delete(IChirperAccount grain);
(7) public static IChirperAccount
(8) Cast(IGrain grainRef);
(9) public static IChirperAccount

(10) LookupUserName(String userName);
(11) }

Below is an example of the code to create a

ChirperAccount grain and perform an operation on it:

(1) IChirperAccount alice =
(2) ChirperAccountFactory.CreateGrain(“Alice”);
(3)
(4) AsyncCompletion aPromise = alice.FollowUser(“Bob”);

CreateGrain immediately returns a grain reference. This

enables pipelining of asynchronous requests to the grain, such as

FollowUser, even before the grain is fully created. The invocation

is queued on the grain reference and executes after the grain

creation completes. If the grain creation fails, the grain reference

would be broken, which would cause aPromise to break as well.

2.7 Grain Classes
As already mentioned above, a grain class implements one

or more grain interfaces. Each grain method and property getter

must return a promise. As a convenience, a method can return a

concrete value, which is automatically converted into a resolved

promise by the runtime. For example, the GetPublishedMsgs

method of IChirperAccount can return a concrete list:

(1) AsyncValue<List<string>> GetPublishedMsgs()
(2) {
(3) List<string> list =
(4) PublishedMsgs.Skip(start).Take(n).ToList();
(5) return list;
(6) }

An implementation method may also return a promise that it

creates directly or obtains from calling another grain or

scheduling a delegate.

An example below demonstrates the FollowUser method

implementation:

(1) AsyncCompletion FollowUser (string name)
(2) {
(3) IChirperPublisher user =
(4) ChirperPublisherFactory.LookupUserName(name);
(5)
(6) IChirperSubscriber me = this.AsReference();
(7)
(8) AsyncCompletion p = user.AddFollower(myName, me);
(9) return p.ContinueWith(() =>

(10) {
(11) this.Subscriptions[name] = user;
(12) });
(13) }

Imagine that Bob wants to follow Alice. Bob will invoke a

FollowUser method on his IChirperAccountGrain passing it

Alice’s name. The method first looks up Alice’s account grain.

For that it uses the ChirperAccountFactory method that allows

looking up by name, since name is declared as a Queryable

property. It then creates a reference to itself by casting the C#

this reference to a grain reference using the factory-provided

extension method AsReference and invokes the AddFollower

method on Alice’s account grain. The invocation for AddFollower

is queued by the runtime and is dispatched only after

LookupUserName completes. Adding Alice to Bob’s local list of

subscriptions is queued and will execute when AddFollower

completes successfully.

3. ORLEANS RUNTIME
This section describes the Orleans runtime in greater detail,

focusing on the key mechanisms that Orleans provides for an

application.

3.1 Platforms
Orleans is a framework for the Microsoft .NET runtime that

can be used from any .NET language (C#, F#, etc.). Orleans can

run on desktop machines, servers running Windows Server 2008,

and the Microsoft Windows Azure cloud platform. An Orleans

application remains the same when run on those different

platforms.

3.2 State Management
The state of a grain is managed by the Orleans runtime

throughout the grain’s lifecycle: initialization, replication,

reconciliation, and persistence. The programmer identifies the

persistent state and Orleans handles the rest. No application code

is required to persist or load the grain state.

Orleans itself does not implement storage with the required

capabilities of durability and high availability; rather, it relies on

an external persistence provider such as Microsoft’s Windows

Azure Storage.

3.3 Persistence
Each grain type declares the parts of its state that are

persistent, using .NET annotations. Persistent property types must

support serialization and may include data, grain references, and

resolved promises.

At the level of a single grain type, these declarations

provide a simple model for persistence. The Orleans runtime

activates a grain with its persistent properties already initialized,

either from grain creation parameters or from the current version

in persistent storage. The grain’s Activate method is then called

to allow it to initialize its transient state. The runtime then invokes

methods to handle requests sent to the activation, which can

operate freely upon the state in memory.

To commit an activation to storage, the runtime waits for

the completion of a transaction (i.e., the end of a request), calls the

grain’s Deactivate method, and writes the grain’s state property

values to persistent storage. For optimistic transactions, the

frequency of committing values to storage depends on the

resource management policy, trading efficiency of combining

writes from multiple requests against the risk of needing to replay

more transaction in the event of failure. Furthermore, the runtime

coordinates commit operations across multiple grains to ensure

that only atomically consistent state is committed (Section 3.8.4).

3.4 Replication
The single-threaded execution model limits the amount of

processing that may be performed by a single activation, and thus

limits the amount of load that the activation can handle. Orleans

uses grain replication – multiple activations of the same grain – as

its primary mechanism to achieve software elasticity and

scalability. Different activations can process independent requests

for the same grain in parallel, which increases the throughput and

reduces the queuing latency of the grain, thus improving system

scalability.

When the current set of activations of a grain is not capable

of keeping up with the grain’s request load, the runtime will

automatically create new activations of the grain and shift a

portion of the load to them. A new activation can be created either

by copying the in-memory state of an existing activation or, if the

activations are busy, taking the current state from persistent

storage. When the load on the grain reduces, the system will

reclaim idle activations, thus reducing the amount of server

resources used by the grain.

Orleans will initially place new activations on the same

server as the first activation of the grain. If the local server is

sufficiently busy, Orleans will create new activations on other

servers of the system.

Orleans tracks the location of activations in a directory,

which provides more flexibility in activation placement than

schemes based on consistent hashing or other computed

placements. Depending on the application, this directory may

grow to millions or billions of entries. To support large

applications, Orleans uses a directory service based on a

distributed one-hop hash table supplemented with an adaptive

caching mechanism.

The policies to decide when to create a new activation and

which activation to route a request to are described in Section 3.6.

3.5 Isolation
Activations of many different grains, as well as multiple

activations of the same grain, may all run on the same server in

the same system process. Regardless of location, all activations

communicate only through asynchronous message passing and

reference each other using grain references (proxy objects).

Orleans relies on the standard .NET type and memory safety

guarantees to ensure isolation [5]. This allows Orleans to place

activations on any server, even across data centers, and migrate

activations between servers, in order to balance load, increase

failure tolerance, or reduce communication latency.

3.6 Resource Management
Orleans’s primary software elasticity mechanism is growing

and shrinking the number of activations of a grain. Activations

may also be placed on different servers and migrated between

servers to balance load across the system. New user requests may

be routed to any existing activation. Grains, because they can

encapsulate smaller units of computation, can efficiently support a

finer granularity of resource management than other distributed

frameworks, particularly service-oriented architectures in which a

process or a virtual machine is the unit of granularity. Grains with

a moderate amount of state offer the Orleans runtime considerable

flexibility in responding to changes in load, by reducing the cost

of starting and migrating grain activations.

Orleans automatically manages the computational resources

on which it runs. When running on an elastic infrastructure such

as Windows Azure, Orleans requests new server instances to

handle increasing user requests, and then starts new activations on

these servers. Orleans returns server instances when load

decreases and they are no longer required.

The initial version of Orleans uses a simple load-balancing

and load shedding policy. Requests are initially randomly

distributed to existing activations. A request arriving at an

overloaded server is rejected, and the sender resubmits the request

to another activation on another server. Server load is a

combination of the total CPU utilization and the total number of

pending requests for all activations on the server. If a request

arrives at an overloaded activation (with more pending requests

than a predefined threshold) on a non-overloaded server, a new

activation is created on the server and the request is queued to this

activation. Activations that remain idle for a sufficient length of

time are garbage collected. This simple, greedy policy has

worked well for the scenarios we looked at so far, but Orleans

exposes hooks and mechanisms to implement more sophisticated

and tailored policies.

We are currently actively experimenting with more

sophisticated resource allocation policies that take into account

data locality as well as compute load (similar to map/reduce [6])

in a more globally coordinated fashion. Effectively, our runtime

will dynamically decide between transferring functions and data,

based on a cost model. We also plan to make use of the network

topology and the failure domain structure to minimize the latency

of each request while ensuring the availability of the application

in the face of failures and maximizing overall throughput.

3.7 State Reconciliation
If multiple activations of a grain concurrently modify their

persistent state, the changes must be reconciled into a single,

consistent state. For many applications, a last-writer-wins strategy

is often sufficient, but complex data structures can benefit from

fine-grained reconciliation policies. To handle common cases, the

Orleans runtime provides reconcilable data structures (records,

lists, and dictionaries) that track updates and automatically

reconcile conflicting changes. If an application requires a different

reconciliation algorithm or other data structures, Orleans provides

mechanisms to allow the developer to implement them.

The reconciliation mechanism is integrated into the

transactions system; its implementation is described in Section

3.8.5.

3.8 Transactions
Transactions in Orleans serve three roles:

 Isolate concurrent operations from each other.

 Ensure that an operation sees a consistent application state

despite grain replication and distribution.

 Reduce the need for explicit error handling and recovery

logic.

Orleans transactions are atomic, consistent, isolated, and

durable. During execution, a transaction sees only a single

activation of each grain involved in the transaction, thus every

transaction by itself sees a consistent application state. This state

is isolated from changes made by concurrently executing

transactions. A transaction’s updates to durable storage, even if

they occur in multiple grains, become visible atomically to

subsequent transactions when the transaction completes; so

another transaction sees the entire, consistent set of changes from

a completed transaction. Updates across many grains are

atomically committed to durable storage, providing a consistent

mechanism for persisting the result of a computation.

The transaction system operates by tracking and controlling

the flow of execution through grain activations. A transaction is

created at the arrival of an initial, external request from a client

outside the system. The transaction encompasses all grain

activations invoked to process the request, unless the developer

specified explicit transactional boundaries. A transaction is

completed when the request processing finishes execution. It is

committed when its changes are written to durable storage.

Orleans allows the programmer to choose to see the results of a

completed transaction before it has been committed. We refer to

this as optimistic transactions. The programmer can also choose to

wait for the transaction to commit before seeing its results. This

alternative is called a pessimistic transaction; it provides stronger

consistency at the cost of higher latency and reduced performance.

In case of failures, an executing or completed transaction

may be aborted and re-executed before it commits. Re-execution

is non-deterministic and may produce a different result. If this

possibility is unacceptable for an application, a client may mark a

transaction as pessimistic. In most cases, however, the prior and

re-executed transactions are semantically equivalent, and the

client need not wait until the application’s state is fully

committed.

3.8.1 Isolation
Isolation ensures a transaction does not see changes from

concurrently executing transactions, and its changes are not

visible to other transactions until it completes. To ensure this,

Orleans maintains a one-to-one correspondence between

activations of a grain and active read-write transactions. An

activation will participate in no more than one active transaction,

unless all of the transactions are read-only. We say that an

activation joins a transaction when it receives a first message

within this transaction. An activation remains joined to the

transaction until the transaction completes.

3.8.2 Consistency
Consistency is specified both within a transaction and across

transactions.

Within a transaction, consistency requires that the sequence

of observed activation states must be consistent with the partial

order defined by the flow of request and response messages within

the transaction. Joining activations to transactions ensures that

there is only a single activation of a grain in each transaction. That

is, a single transaction operates on a single copy of the grain’s

state. This guarantees a strongly consistent view of state within a

transaction.

Maintaining this property is easy for applications that

execute serially across a set of grains (i.e., grain A send a message

to grain B, which sends a message to grain C). Each request or

response message contains the entire set of activations joined to

the transaction so far. Every time a request within a transaction is

made to a grain X, the runtime picks an activation for X that is

already present in this transaction’s joined set. If no activation

was joined so far, the runtime is free to choose any activation that

is not already participating in another transaction. However, when

the application issues multiple, concurrent requests, an additional

mechanism is required.

In Figure 1, activation A1 (activation “1” of grain “A”)

sends concurrent messages to B1 and D1, both of which

concurrently send messages to grain C. The Orleans runtime tries

to ensure that B1 and D1 send to the same grain activation without

using a distributed coordination mechanism, which would be

expensive and non-scalable. If this heuristic mechanism fails and

the grains choose different activations, say C1 and C2, the

inconsistency will be discovered when the responses arrive at A1.

At that point, the transaction aborts before any code can observe

inconsistencies between the state of C1 and C2. When the

transaction is replayed, it is notified of the cause of the failure,

and the runtime proactively selects one activation of grain C to

join to the transaction before restarting grain A. This prevents the

same inconsistency by ensuring that grains B and D will choose

the same activation.

Figure 1: Consistency failure if the transaction sees two

different activations (C1 and C2) of a grain

Between transactions, the Orleans consistency model

ensures that the sequence of grain states visible to a requestor

(whether an outside client process or another grain) always

reflects its previous operations, so that a single requestor always

observes its own writes. This guarantee must be maintained in the

presence of quiescence, branching, and merging of activation

states, in either the requestor or the target. Orleans does not

provide any consistency guarantees for uncommitted changes

between independent requestors. Independent requestors may

ensure visibility of changes by waiting for their transactions to be

committed.

3.8.3 Atomicity
To preserve atomicity, Orleans must ensure that a

transaction’s updates, from its set of grain activations, become

visible to other transactions as a complete set or not at all. To

ensure this, the runtime keeps the transaction/activation

correspondence until transactions are committed (Section 3.8.4).

Before joining an activation to a transaction, it verifies that this

action preserves atomicity. If the active transaction has invoked

the same grains as a prior, uncommitted transaction, it must use

the same activations.

For example, in Figure 2 a completed transaction TX has

modified activations A1, B1, and C1, and a completed transaction

TY has modified D1, C2, and E1. Active transaction TZ has

modified activations F1 and B1 and sends a request to grain E. If

this message arrives at activation E1, the runtime has enough

information to detect a potential – but not yet actual – violation of

atomicity if TZ were to send a message to grain C. It might

choose to redirect the message to another activation of grain E.

Or, if none is available and it is too expensive to create a new one,

it may go ahead and join activation E1 to TZ. So far, atomicity is

preserved. However, if TZ does later send a message to grain C,

the runtime cannot choose either activation C1 or C2 without

violating atomicity (of TY or TX, respectively). The runtime will

detect this before the message to grain C can be sent and abort TZ,

ensuring that no executing code observes an atomicity violation.

Transactions TX and TY will also need to abort and replay

because their updates to B1 and E1 will be lost when TZ aborts.

Grain A A1 Grain D D1 Grain F F1

Grain B B1 Grain E E1Grain C C1 C2

Transaction TX Transaction TY Transaction TZ

Figure 2: Potential atomicity violation; Transaction TZ cannot

use either grain C1 or C2 without violating the atomicity of TY

or TX, respectively

3.8.4 Durability
Orleans also ensures that committed transactions are written

atomically to persistent storage. The transaction persistence

mechanism also follows an optimistic approach, asynchronously

writing modified results to storage without delaying an executing

transaction. When a transaction completes, the server that handled

the initial request sends a completion notification to the system

store, listing all activations involved in the transaction.

Committing a transaction has three phases:

 The store collects serialized representations of the persistent

state of each activation in the transaction.

 If more than one version of a grain is to be committed –

either because a more recent version already committed to

the store, or because of multiple, concurrent transactions –

their state must be reconciled to produce a single merged

version before writing it to store (Section 3.8.5).

 The grain states are written to persistent storage using a two-

phase commit to ensure that all updates become visible

simultaneously.

This process runs without blocking executing transactions,

and so can fall back to an earlier phase as additional update

notifications arrive for a participating grain that has already been

partially processed. Our current implementation of the system

store is a single point of failure and a scalability bottleneck. We

are in the process of developing a distributed persistence

management mechanism that will remove these limitations.

3.8.5 Reconciliation
Reconciliation occurs as application state is written to

persistent storage. The reconciliation model uses a branch-and-

merge model, tracking and reconciling changes to multiple

independent revisions of the grain state [4]. The existing persistent

state is considered the master revision. When created, each grain

activation branches a new revision from the store, as illustrated in

Figure 3.

Grain A A1

Grain B B1 Grain D D1

Grain C C1 C2

Figure 3: Reconciliation

When committing multiple transactions that utilized

different activations of the same grain, Orleans requests the

current state of each activation. These are sent as incremental

deltas from the branch point to minimize data transfer and

simplify reconciliation. Orleans uses a grain type and data

structure-specific policy to reconcile changes to a single merged

state and sends updates to each activation to bring it forward to

that state. If an activation has not modified its state since sending

it to the Orleans, the activation accepts the update and proceeds. If

all activations accept the updates, Orleans notifies them that they

have effectively returned to an initial state as freshly branched

revisions from the store.

If an activation was modified, it rejects the update, and

subsequently sends a second, compound set of changes to

Orleans. The process then repeats. Eventually an activation will

accept its updates and merge, although in a busy system the

runtime may need to prevent a grain from accepting new

transactions in order to ensure it does not fall too far behind.

3.8.6 Failure recovery
If a transaction encounters an error and aborts before it

completes, all of its activations are destroyed and the request is re-

executed. However, if some of its activations had participated in

prior transactions that have completed but not committed, then the

earlier transactions also must abort and re-execute since their state

was not persisted.

3.8.7 Relation to Snapshot Isolation
Orleans transactions provide a model comparable to, but

slightly weaker than, snapshot isolation (SI). There are two main

differences between Orleans transaction and SI. First, SI does not

allow write-write conflicts, while Orleans does. Orleans allows

different activations of the same grain’s state to be changed

concurrently by independent transactions and to be later merged

and reconciled into a single, application-consistent state.

Second, under SI, a transaction sees a consistent snapshot of all

committed updates as of the time when the transaction starts.

Future changes that occur after the transaction has started are not

visible to this transaction. In Orleans, a transaction sees

atomically consistent subsets of completed transactions. Those

subsets become visible to the transaction at different points in

time of its execution, not necessarily at its start. Every subset of

completed transactions includes all grain activations changed

during these transactions and all the transactions they transitively

depended upon [7]. The changes made by a completed transaction

become visible to future transactions atomically as a set of

activations that form a consistent view. When an activation joins a

running transaction, its consistent view of activations is checked

for compatibility and merged with the running transaction. Unlike

SI, the transaction expands its consistent view lazily as it

executes, and there may be different activations of the same grain

belonging to distinct consistent views in different transactions.

This design, although weaker than serializability or SI, maximizes

responsiveness and system throughput and does not require global

coordination.

4. APPLICATIONS
We describe three applications built on Orleans to illustrate

the flexibility of its architecture and programming model. The

applications differ in the way they use the system. The first

application is a Twitter1-like messaging application, which is

communication-intensive with little data or computation. The

second application is a linear algebra library for large sparse

matrix computations, which is both computation-,

communication-, and IO- intensive. The third is a distributed

engine for querying and processing large graphs, which is data-

intensive. The applications differ significantly in the size and

number of grains and types of interactions between the grains.

4.1 Chirper
Chirper is a large-scale Twitter-like publish-subscribe

system for distributing small text message updates within a large

network of consumers / subscribers. It allows a user to create an

account, follow other users, and receive messages posted by them

on their account. We built Chirper in 200 lines of Orleans C#

code. It includes only the core functionality of subscribing to a

publisher and publishing and receiving messages. It does not

include authentication and security, archival message storage, or

message searching and filtering. Replication, persistence, and

fault tolerance, however, are managed automatically by Orleans.

4.1.1 Implementing Chirper on Orleans
A Chirper account is naturally modeled as a grain. Each

user has an account grain and accounts for different users act

independently and interact via well-defined interfaces. An account

grain has 3 facades: publisher, subscriber and account

management, for different types of interactions. The account grain

declares some of its properties as persistent – user id, name, list of

published and received messages, a list of contacts that follow this

user (subscribers), and a list of contacts this user follows

(publishers). All of the persistent state is managed automatically

1 Twitter is a trademark of Twitter, Inc. Orleans has no relationship with

Twitter, Inc.

(no change)

(no change)

Store
Replica #1

Replica #2

(no change)

Store
Replica #1

Replica #2

(busy)

(no change)
OK OK

(a) Branch, merge, forget (b) Rejected merge

B
ran

ch
M

erge
U

p
d

ate
A

ccep
t

Fo
rget

B
ran

ch
M

erge
R

eject
M

erge 2
U

p
d

ate 2

by the Orleans runtime. Some properties are declared as

InitOnly, which indicates that they are immutable after

initialization. Some properties allow querying. Other properties

specify a reconciliation strategy; for example, the list of published

messages is a special SyncList data type, which accumulates the

changes in different activations and merges the additions and

deletions.

The account grain exposes three public interfaces:

IChirperAccount, IChirperSubscriber and

IChirperPublisher. IChirperAccount represents a single user

account and allows a user to start and stop following another user,

retrieve the list of their followers, retrieve the list of users they

follow, and retrieve the list of received messages. The user can

also publish a new message via IChirperAccount.

IChirperSubscriber and IChirperPublisher represent the view

of one user on another for subscription and notification activities.

When user A subscribes to user B, A invokes the AddFollower

method of B’s IChirperPublisher interface, passing his or her

own IChirperSubscriber interface. When B’s account has a new

message, it notifies A’s IChirperSubscriber interface. Figure 4

contains partial interfaces for Chirper.

By default, Orleans creates one activation per account grain.

However, hot accounts will automatically be replicated by the

runtime. This helps achieve scalability and eliminate bottlenecks.

The following types of application behavior will result in creating

multiple activations:

 An account that receives a large number of messages will be

replicated to spread the subscription load. Each activation

will receive a subset of the messages, to be merged as

described in section 3.6. This allows accounts to scale with

increasing received message load.

 An account that publishes a large number of messages (a

chatty chirper) will be replicated to partition the publishing

load. Each message will be published to all subscribers by a

single activation. This will allow publishers to scale with

increasing number of published messages.

There is another case in which multiple activations do not

help solve the problem: an account that has an extremely large

number of subscribers (a popular chirper), so that the list requires

a significant portion of memory on a single server and simply

iterating through the subscribers takes an appreciable amount of

time. In this case the state of the account (list of subscribers)

needs to be partitioned by the application. One possible solution is

a hierarchical system, where the list of subscribers is partitioned

into a hierarchy of small helper grains with a distribution tree

from the main account grain to the helper grains which notify the

subscribers. Such a pattern is easy to implement on Orleans, and

would allow publishers to scale with an increasing number of

subscribers.

Chirper leverages Orleans transactions to ensure that

publishers and subscribers are always paired. Establishing a

“following” relationship is done as follows: when user A wants to

follow another user B, A sends a message to B with a reference to

his subscriber grain interface and B stores the grain reference to A

in its Followers list. A also stores B’s identity it its Subscriptions

list, so that it will be able to know later on whom A follows. The

update to both grains thus needs to be done atomically, so in case

of intermediate failures the transaction is re-executed, so the

system is kept in a synchronized and consistent state.

(1) public interface IChirperSubscriber : IGrain
(2) {
(3) AsyncCompletion NewChirp(ChirperMessage chirp);
(4) }
(5)
(6) public interface IChirperPublisher : IGrain
(7) {
(8) [Queryable(IsUnique=true)] [InitOnly]
(9) AsyncValue <long> UserId { get; }

(10) [Queryable(IsUnique=true)]
(11) AsyncValue <string> UserName { get; }
(12) [ReadOnly]
(13) AsyncValue<List<ChirperMessage>>
(14) GetPublishedMessages(int n, int start);
(15) AsyncCompletion AddFollower(string u,
(16) IChirperSubscriber s);
(17) AsyncCompletion RemoveFollower(string u,
(18) IChirperSubscriber s);
(19) }
(20)
(21) public interface IChirperAccount : IGrain,
(22) IChirperPublisher, IChirperSubscriber
(23) {
(24) AsyncCompletion PublishMessage(string chirpText);
(25) [ReadOnly]
(26) AsyncValue <List<ChirperMessage>>
(27) GetReceivedMessages(int n, int start);
(28) AsyncCompletion FollowUser(string user);
(29) AsyncCompletion UnfollowUser(string user);
(30) [ReadOnly]
(31) AsyncValue <List<string>> GetFollowingList();
(32) [ReadOnly]
(33) AsyncValue <List<string>> GetFollowersList();
(34) }

Figure 4: Chirper grain interfaces

4.2 Linear Algebra Library
Linear algebra is a broad area that comprises general-

purpose computations on scalars, vectors, and matrices (including

higher dimensions as tensors). The core of a linear algebra library

is the vector-matrix multiplication operation. This operation is the

basis for many algorithms, including PageRank, singular value

decomposition, clustering, feature extraction, and social group

discovery (partitioning). Conceptually, vector-matrix multiply is

quite simple, and an implementation can be written very

efficiently if the data set can be held in memory on one machine.

As the data size grows, distributing the computation and

maintaining efficiency becomes difficult due to the complexity

and limitations of data placement, disk access, network bandwidth

and topology, and memory limitations. A web graph, for example,

may contain greater than 1011 pages with more than 1012 links;

this translates to a sparse 1011 by 1011 matrix, with 1012 cells (out

of a total of 1022) having non-zero values.

Our coworker has implemented a linear algebra library on

top of Orleans. The computations are broken into worker grains

that own pieces of the data set. Special coordinator grains manage

the computation by dynamically assigning work to worker grains.

The coordinator grains are organized into a two-level hierarchy,

with each second-tier grain responsible for a set of worker grains.

The data can flow directly from disk to worker grains and

between the worker grains, while the coordinator grains

participate only in the control flow of the operations. Currently,

we take advantage of explicit runtime APIs that Orleans provides

to control the server placement of the grain activations; worker

grains can be co-resident on the same machine (typically one per

hardware thread) or distributed across many machines (co-located

with the secondary storage that holds the data). In the future, we

plan that many of these explicit decisions will be replaced by

automated Orleans resource management (Section 7).

4.3 Large Graph Engine
Graphs are central to web search, social networking, and

other web applications. Large graphs pose many challenges, as

they do not fit a single computer and distributed algorithms are

communications intensive [8]. Our graph engine provides support

for partitioning and distributing graph data (nodes, edges, and

metadata) across many machines and for querying graphs. In

contrast to the linear algebra library, where data is represented by

a numerical matrix, the graph engine supports rich node and edge

data types with user-defined properties and metadata, similar to

database rows.

Orleans offers two options for implementing graphs:

encapsulate each node in a separate grain or represent a partition

of the nodes by a grain. We selected the latter approach because it

allows for a significant reduction in overhead and messages

because steps between grains during a graph traversal may be

batched together based on the source and destination partitions.

Every server hosts a small number of partition grains, and every

partition grain contains a moderate number of graph data nodes

(104 – 106). A graph algorithm running in a partition directly

accesses nodes in its partition. Accesses across partitions involve

sending messages between partition grains. The graph algorithms

are aware of this distinction and batch messages between

partitions to reduce communication overhead.

The graph engine demonstrates the flexibility of Orleans

model: it imposes no restrictions on the size of a grain. Grains can

hold potentially large amounts of state, while still offering

isolation, asynchronous messaging, persistence, and transactional

updates. The graph engine is built upon an abstract graph

execution framework similar to Pregel [8].

5. PERFORMANCE MEASUREMENTS
We measured the performance of the current Orleans

implementation with a set of benchmarks. The measurements

were performed on a cluster of up to 50 servers, each with two

AMD Quad-Core Opteron processors running at 2.10GHz for a

total of 8 cores per server, 32GB of RAM, all running 64 bit

Windows Server 2008 R2.

5.1 Micro Benchmarks
Figure 5 depicts the round-trip latency of a grain method

invocation, for grains located on the same and different servers.

The method invocation had one parameter, a byte buffer of

varying size. The latency for the remote case is approximate 1.2

millisecond, and 0.5 millisecond for the local case. In the local

case, time is spend primarily in making a deep copy of the

message body and in thread synchronization. The remote case

adds time to serialize the message and response and their headers,

socket read/write and the actual network latency. For large

messages, latency increases proportionaly to the message size, due

to the cost of copy and serialization.

We also measured the overhead of promises. The time to

create a promise and trigger its result delegate is 50–100

microseconds, which is mainly due to memory allocation and

thread synchronization. This is small compared to the message

latency.

The latency to create a new grain is approximately 5

milliseconds, which includes creating the first activation for this

grain and registering it in the distributed directory.

Figure 5: Local and remote invocation latency, average and 95

percentile.

5.2 Chirper

5.2.1 System throughput
In this section, we measure the performance and scalability

of the Chirper application (Section 4.1). We created a synthetic

network of 1,000 user accounts (we tested the application with

millions of user accounts, but because the messaging throughput

is insensitive to the total number of users, we measured with

1,000 to reduce the initial load time), each user following 27

random users – this corresponds to the average number of

followers in the actual Twitter service. We ran load generator

processes on multiple machines, with each generator posting

messages of varying size, averaging 250 characters, to a random

user account. Each message was then sent to the user’s followers.

We ran each load generator so that it generates the maximum

number of messages per second that it could handle before

saturation.

In this scenario, the Orleans servers running Chirper run at

94–96% CPU utilization, receiving and de-serializing messages,

processing them, and serializing and resending them to follower

grains. The majority of server’s work is spent serializing and de-

serializing messages.

Figure 6 shows that the throughput (number of chirps per

second) scales linearly with the number of servers. The system

can deliver approximately 7,000 chirps per second with 35

servers. By comparison, the actual Tweeter service delivers about

1600 tweets per second on average; the highest recorded single-

second load was 6,939 tweets per second [9].

5.2.2 Multiple activations
In this section we show that the Orleans runtime can

automatically maintain the performance of an application by

creating multiple activations. We put a heavy load on a single

grain by simulating a subscriber who follows many users. We also

added a short processing time of 10 milliseconds for every

message. Thus, this user’s grain becomes a bottleneck, since it can

process only a limited number of messages per second.

Figure 6: Chirper system-wide throughput – scalability with

increased capacity

Figure 7 shows that the system throughput still scales

almost linearly because Orleans runtime creates the multiple

activations of the grain (on the same machine). This optimization

occurs automatically. Publishers continue to send messages to the

single logical grain for this user, and the runtime distributes the

messages across the grain’s activations, evenly spreading the load

and processing time among activations running on different cores.

We also measured the overhead cost of the Orleans

automated mechanisms by configured the system to not create

multiple activations of a grain and disabling the transaction

system. With the 10ms processing time per request, measured

throughput is 13% higher with the transaction system disabled,

and with 100ms of processing time, throughput is 2% better, in

both cases compared to the system with transactions enabled but

limited to single activations. We could not measure the

mechanisms independently because the system cannot create

multiple activations without the transaction system, which is

necessary for consistency and reconciliation.

Figure 7: Maintaining Chirper throughput by automatically

creating multiple activations on a single server

5.3 Linear Algebra Library
We implemented PageRank in our Linear Algebra library.

The PageRank computation is essentially an iterated matrix-vector

multiplication. We used a partial web graph of 134 million pages

and 1.4 billon hyperlinks and ran 10 iterations of PageRank

computation, until it converges. The web graph is stored in SQL

databases, one per server, outside of Orleans.

Figure 8 shows the speedup on a single machine (time to

compute the complete PageRank on one core vs. multiple cores).

The system fails to scale well. The computation is I/O bound and

thus having more cores on a single machine does not speed the

computation as the machine’s I/O bandwidth is totally saturated.

Figure 8: PageRank computation – single server, varying

number of cores.

Figure 9 demonstrates the speedup on multiple machines.

The speedup is much higher since the matrix is read from multiple

disks, so the I/O runs concurrently with the computation. For up

to 4 servers, we see near-linear speedup and for 32 machines we

still get a speedup of 13. The sublinear performance is due to the

increased communications overhead of exchanging data among

grains (results from one iteration for the next iteration) as well as

some increased coordination overhead.

Figure 9: PageRank computation – varying number of servers,

16 cores each.

We want to stress that exactly the same program was used

both in the single server and the distributed case. This

demonstrates the power of Orleans to abstract the computation

from its execution environment – no changes to the application

were necessary to scale from 16 cores to 512 cores.

5.3.1 Other Runtimes
We also compared the Orleans implementation of PageRank

against one running on Dryad [10], which provides a data-flow

engine similar to map/reduce. The total computation time on

Orleans was roughly two orders of magnitude faster than the

Dryad implementation on the same cluster. The primary reason

for this disparity is that the Orleans implementation did not write

data to disk after each iteration; instead it kept data in memory

inside grains and passed it other grains by direct messaging. In

addition, data partitioning in Dryad is static, while Orleans

permitted dynamic load balancing that accommodated the varying

amount of work for different blocks in a sparse matrix. Of course,

this performance gain came at the cost of increased code

complexity, as the Dryad implementation is simpler and more

compact.

6. RELATED WORK
Orleans is built from a combination of techniques,

borrowing many concepts from previous systems. However, we

believe that the combination of design choices is unique and well

suited as a comprehensive solution to building scalable cloud

applications.

6.1 Actors
Actors are a well-known model for concurrent programming

that form the basis for many programming languages [11],

including Erlang [12], E [13], Thorn[14], and many others.

Orleans extends the basic actor model with support for

replication, transactions, and consistency. Replication in particular

is a significant extension to the classical model, allowing Orleans

systems to scale automatically when a single actor is heavily

loaded. No other actor language intrinsically supports replication.

Orleans, unlike Erlang, is based on an imperative language.

Moreover, Orleans communication differs from Erlang, as it is

based on a single mechanism that provides expressiveness and

flexibility. Promises are inherently asynchronous, like Erlang

messages, but are higher-level abstractions, comparable to

Erlang’s synchronous RPC.

Erlang libraries support transactions and failure replication;

although the strong consistency semantics is built on mechanisms

less scalable than Orleans. Erlang also differs in its distributed

error handling mechanism, which requires a programmer to

implement guard processes to handle system failures; an approach

also feasible with Orleans promises. In addition, Orleans

transactions provide an automatic mechanism for recovering from

system failures, going beyond Erlang’s failure signaling

capability.

E is an object-oriented programming language for secure

distributed computing. E has a concurrency model similar to

Orleans, based on event loops and promises, but its unit of

isolation and distribution is much larger: a “vat” containing many

objects that can share state. E also lacks Orleans’s distributed

runtime support for persistence, replication, migration, and

transactions.

Thorn is an object-oriented, dynamic language intended to

bridge the gap between exploratory scripting and production

development. It provides two different communications

abstractions: synchronous RPCs and explicit Erlang-style send

and receive. Thorn does not provide a promise-like mechanism to

unify these two abstractions, and it lacks the distributed

mechanisms provided by Orleans such as replication, migration,

persistence, and transactions.

6.2 Transactions
Our distributed runtime employs well-known techniques to

provide service availability (replication) and data reliability

(persistence). However we use a novel set of techniques for state

synchronization and distributed coordination. We combine the

branch-and-merge update data model [3], with application-defined

reconciliation strategies, for conflict resolution with lightweight

transactions for isolating computation and providing a consistent

view of a distributed state.

Our distributed techniques strike a middle ground between

the strong, full consistency and the weak, eventual consistency

models. They provide sufficient guarantees for most applications

while enabling high performance and a high degree of scalability.

The traditional strong consistency model (linearizability for

shared memory or serializability for transactions) provides strong

guarantees for a developer, which facilitate programing and

reasoning about the state of a distributed computation. However,

this comes at a significant cost in performance, availability, and

scalability. The weak eventual consistency model promises

efficiency, availability, and scalability, but it is a complex

programming model that requires a developer to explicitly reason

about inconsistencies and handle with them in application code.

Orleans provides a middle ground in this spectrum: each

transaction sees a state that is strongly consistent with the

transaction’s history. Independent transactions are isolated and

merge their updates via well-defined application strategies. This

allows for an efficient implementation that avoids global

coordination or locking while providing a much simpler

programming model than eventual consistency.

6.3 Distributed Object Models
Enterprise Java Beans (EJB), Microsoft’s Component

Object Model (COM), and the Common Object Request Broker

Architecture (CORBA) are all object-oriented frameworks for

building three-tiered web applications. While they differ in detail,

all are based on distributed objects, (primarily) synchronous

RPCs, location transparency, declarative transaction processing,

and integrated security. They share Orleans’s goals of offering a

higher-level collection of abstractions that hide some of the

complexity of building distributed systems, but are targeted at

enterprise rather than cloud-scale applications.

At a low level, Orleans differs from these in its embrace of

asynchronous APIs as the programming model for all application

component access. At another level, Orleans’s usage of multiple

activations for scalability and failure tolerance is a significant

capability difference. Orleans approach to consistency and

transactions also makes a different trade-off between consistency

and scale than the strict ACID semantics offered by the other

frameworks.

6.4 Other
Map/reduce [6] and dataflow (Dryad) [10] frameworks, are

popular for large-scale distributed computations. The map/reduce

model is well-suited to off-line processing of very large data sets,

but does not support interactive requests that touch a small set of

related data items. We intend to incorporate standard map/reduce

features such as data/processing locality into Orleans, and are

investigating the possibility of implementing a map/reduce

framework and programming model similar to DryadLINQ [15]

on top of Orleans.

The linear algebra library demonstrates that Orleans can

substitute for MPI [16]. MPI allows any general computation flow

to be expressed, without the restrictions of map/reduce

frameworks. Its main difference from Orleans is code complexity.

MPI offers much lower level abstractions than Orleans: raw

messaging, manual synchronization, no transactions and no

asynchronous programming model.

7. FUTURE WORK
An on-going area of research is resource management. In

Orleans, most resource management decisions revolve around

activations: when and where should a new activation be created,

rather than reusing an existing one? When should an existing

activation be deactivated? At the next level of resources, Orleans

also needs to grow and shrink the pool of server instances.

Another important area for future work is in extending

Orleans to run on devices such as PCs and smartphones in order to

provide a seamless programming model for cloud software across

both the client and servers. Client applications raise new issues

such as disconnected and intermittently connected operation,

untrusted or partially trusted systems, migration between client

and server, and resource management across highly heterogeneous

systems.

A different, but equally important, direction is enhancing

support for development and maintenance of large, long-live

systems: software and API versioning, geo-distribution across

data centers, and support for large data objects stored outside of

Orleans.

Finally, we intend to extend the graph library (Section 4.3)

and to develop additional high-level libraries for common

functionality, such as pub/sub messaging and map/reduce.

8. CONCLUSIONS
This paper described the design and implementation of

Orleans, a programming model and software framework for cloud

computing. Orleans defines an actor-like model of isolated,

replicated grains that communicate through asynchronous

messages and manage asynchronous computations with promises.

Isolated state and the grains’ constrained execution model allow

the Orleans runtime to persist, migrate, replicate, and reconcile

grain state without programmer intervention. Orleans also

provides lightweight, optimistic, distributed transactions that

provide predictable consistency and failure handling for

distributed operations across multiple grains.

We believe that the Orleans framework can significantly

simplify the development of cloud applications by encouraging

the use of software architectures that produce predictable,

scalable, and reliable outcomes. This is not a strong guarantee, as

it is possible to write a bad program in any language.

Nevertheless, Orleans consciously encourages successful cloud

design patterns:

 Cloud services achieve high throughput by processing

multiple, independent requests concurrently. Orleans supports

this style of computation by providing a programming model

with strong isolation between grains, to prevent interference,

and transactions spanning the grains processing a request, to

ensure consistency among pieces of a single computation.

 Shared memory parallelism can reduce the latency of

processing a request, but threads, locks, and concurrency are

fertile sources of errors. Orleans supports a simple, single-

threaded model within a grain, but permits parallelism

between grains, albeit limited to message passing. In practice,

nothing in the design or implementation of Orleans precludes

internal parallelism, but it has not proved necessary yet.

 Computers and networks fail in distributed systems, so error-

handling and recovery code is fundamental. Promises, by

propagating errors equivalently with values, permit error-

handling code to be concentrated in one place, much like an

exception handler, rather than spread across all of the

delegates invoked by promises. In addition, the transactions

that wrap external requests provide the capability to roll-back

and re-execute a failed computation with no explicit

application code.

 Cloud applications must respond to varying and unpredictable

workloads. Grain replication offers a simple, mostly

transparent mechanism that permits Orleans to allocate more

computing resources at bottlenecks in an application, without

explicit decisions or actions by the application. Replicating a

computation replicates its state and so introduces consistency

problems, which Orleans handles with transactions and a

multi-master, branch-and-merge update data model. Grain

isolation also permits them to be migrated between servers,

providing another mechanism for automatic load balancing.

Orleans is currently being used by several projects inside

Microsoft Research. It is too early to report on our experience,

except to note that Orleans’ mechanisms and patterns are effective

when used, and that training and education remains an important

aspect of cloud software development.

9. REFERENCES

[1] Liskov, B. and Shrira, L. Promises: Linguistic Support for Efficient

Asynchronous Procedure Calls in Distributed Systems. In Proceedings of

the ACM SIGPLAN 1988 Conference on Programming Language Design

and Implementation (Atlanta, GA, June, 1988). ACM, 260-267.

http://doi.acm.org/10.1145/53990.54016.

[2] Miller, M. S., Tribble, E. D. and Shapiro, J. Concurrency Among

Strangers: Programming in E as Plan Coordination. In Proceedings of the

International Symposium on Trustworthy Global Computing (Edinburgh,
UK, April, 2005). Springer, 195-229.

http://www.springerlink.com/content/fu284833647hg054/.

[3] Burckhardt, S., Baldassin, A. and Leijen, D. Concurrent Programming

with Revisions and Isolation Types. In Proceedings of the ACM

International Conference on Object Oriented Programming Systems

Languages and Applications (Reno, NV, October, 2010). ACM, 691-707.
http://dx.doi.org/10.1145/1869459.1869515.

[4] Baker, H. G., Jr. and Hewitt, C. The Incremental Garbage Collection

of Processes. In Proceedings of the Symposium on Artificial Intelligence
and Programming Languages (August, 1977), 55-59.

http://dx.doi.org/10.1145/800228.806932.

[5] Hunt, G., Aiken, M., Fähndrich, M., Hawblitzel, C., Hodson, O.,
Larus, J., Levi, S., Steensgaard, B., Tarditi, D. and Wobber, T. Sealing OS

Processes to Improve Dependability and Safety. In Proceedings of the 2nd

http://doi.acm.org/10.1145/53990.54016
http://www.springerlink.com/content/fu284833647hg054/
http://dx.doi.org/10.1145/1869459.1869515
http://dx.doi.org/10.1145/800228.806932

ACM SIGOPS/EuroSys European Conference on Computer Systems

(Lisbon, Portugal, March, 2007). ACM, 341-354.
http://doi.acm.org/10.1145/1272996.1273032.

[6] Dean, J. and Ghemawat, S. MapReduce: a Flexible Data Processing

Tool. Communications of the ACM, 53, 1 (January 2010), 72-77.
http://doi.acm.org/10.1145/1629175.1629198.

[7] Atul, A., Barbara, L. and Patrick, O. N. Generalized Isolation Level

Definitions. In Proceedings of the 16th International Conference on Data
Engineering (San Diego, CA, February, 2000). IEEE, 67-67.

http://doi.ieeecomputersociety.org/10.1109/ICDE.2000.839388.

[8] Malewicz, G., Austern, M. H., Bik, A. J. C., Dehnert, J. C., Horn, I.,
Leiser, N. and Czajkowski, G. Pregel: A System for Large-scale Graph

Processing. In Proceedings of the International Conference on

Management of Data (Indianapolis, IN, June, 2010). ACM, 135-146.
http://doi.acm.org/10.1145/1807167.1807184.

[9] Twitter Twitter Blog # numbers. 2011.

http://blog.twitter.com/2011/03/numbers.html.

[10] Isard, M., Budiu, M., Yu, Y., Birrell, A. and Fetterly, D. Dryad:

Distributed Data-parallel Programs from Sequential Building Blocks. In

Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on
Computer Systems 2007 (Lisbon, Portugal, April, 2007). ACM, 59-72.

http://doi.acm.org/10.1145/1272996.1273005.

[11] Karmani, R. K., Shali, A. and Agha, G. Actor Frameworks for the
JVM Platform: A Comparative Analysis. In Proceedings of the 7th

International Conference on the Principles and Practice of Programming

in Java (Calgary, Candada, August, 2009). ACM, 11-20.
http://doi.acm.org/10.1145/1596655.1596658.

[12] Armstrong, J. Erlang. Communications of the ACM, 53, 9 (September

2010), 68-75. http://doi.acm.org/10.1145/1810891.1810910.

[13] Eker, J., Janneck, J. W., Lee, E. A., Jie, L., Xiaojun, L., Ludvig, J.,

Neuendorffer, S., Sachs, S. and Yuhong, X. Taming Heterogeneity - the

Ptolemy Approach. Proceedings of the IEEE, 91, 1 (January 2003), 127-
144. http://dx.doi.org/10.1109/JPROC.2002.805829.

[14] Bloom, B., Field, J., Nystrom, N., Östlund, J., Richards, G., Strnisa,

R., Vitek, J. and Wrigstad, T. Thorn: Bobust, Concurrent, Extensible
Scripting on the JVM. In Proceedings of the 24th ACM SIGPLAN

Conference on Object Oriented Programming Systems Languages and

Applications (Orlando, Florida, October, 2009). ACM, 117-136.
http://dx.doi.org/10.1145/1640089.1640098.

[15] Yu, Y., Isard, M., Fetterly, D., Budiu, M., Erlingsson, Ú., Gunda, P.

K. and Currey, J. DryadLINQ: A System for General-purpose Distributed

Data-parallel Computing Using a High-level Language. In Proceedings of

the 8th Symposium on Operating Systems Design and Implementation

(San Diego, CA, December, 2008). USENIX Association, 1-14.
http://www.usenix.org/events/osdi08/tech/full_papers/yu_y/yu_y.pdf.

[16] Snir, M., Otto, S., Huss-Lederman, S., Walker, D. and Dongarra, J.

MPI: The Complete Reference. MIT Press, Cambridge, MA, 1996.

http://doi.acm.org/10.1145/1272996.1273032
http://doi.acm.org/10.1145/1629175.1629198
http://doi.ieeecomputersociety.org/10.1109/ICDE.2000.839388
http://doi.acm.org/10.1145/1807167.1807184
http://blog.twitter.com/2011/03/numbers.html
http://doi.acm.org/10.1145/1272996.1273005
http://doi.acm.org/10.1145/1596655.1596658
http://doi.acm.org/10.1145/1810891.1810910
http://dx.doi.org/10.1109/JPROC.2002.805829
http://dx.doi.org/10.1145/1640089.1640098
http://www.usenix.org/events/osdi08/tech/full_papers/yu_y/yu_y.pdf

