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ABSTRACT 
Cloud computing is a new computing paradigm, combining 

diverse client devices – PCs, smartphones, sensors, single-

function, and embedded – with computation and data storage in 

the cloud. As with every advance in computing, programming is a 

fundamental challenge, as the cloud is a concurrent, distributed 

system running on unreliable hardware and networks. 

Orleans is a software framework for building reliable, 

scalable, and elastic cloud applications. Its programming model 

encourages the use of simple concurrency patterns that are easy to 

understand and employ correctly. It is based on distributed actor-

like components called grains, which are isolated units of state 

and computation that communicate through asynchronous 

messages. Within a grain, promises are the mechanism for 

managing both asynchronous messages and local task-based 

concurrency. Isolated state and a constrained execution model 

allow Orleans to persist, migrate, replicate, and reconcile grain 

state. In addition, Orleans provides lightweight transactions that 

support a consistent view of state and provide a foundation for 

automatic error handling and failure recovery.  

We implemented several applications in Orleans, varying 

from a messaging-intensive social networking application to a 

data- and compute-intensive linear algebra computation. The 

programming model is a general one, as Orleans allows the 

communications to evolve dynamically at runtime. Orleans 

enables a developer to concentrate on application logic, while the 

Orleans runtime provides scalability, availability, and reliability.  

Categories and Subject Descriptors 
C.2.4 [Comp.-Communication Networks]: Distributed Systems 

- Distributed applications 

D.1.3 [Software]: Programming techniques – Concurrent 

programming. 

D.2.12 [Software]: Software Engineering – Interoperability: 

Distributed objects. 

General Terms 
Design, Languages, Performance, Reliability 

Keywords 
Cloud Computing, Distributed Actors, Programming Models. 

1. INTRODUCTION 
Writing software for the cloud poses some of the most 

difficult challenges in programming. Cloud systems are inherently 

parallel and distributed, running computations across many 

servers, possibly in multiple data centers, and communicating 

with diverse clients with disparate capabilities. Individual 

computers and communication links are commodity components, 

with non-negligible failure rates and complex failure modes. 

Moreover, cloud applications generally run as a service, gaining 

economies of scale and efficiency by concurrently processing 

many clients, but also facing the challenges of handling varying 

and unpredictable loads while offering a highly available and 

reliable service in the face of hardware and software failures and 

evolution. These problems, of course, come in addition to the 

familiar challenges of constructing secure, reliable, scalable, 

elastic, and efficient software. 

1.1 Orleans 
Orleans is a software framework with two primary goals: to 

make it possible for developers unfamiliar with distributed 

systems to build large-scale applications, and to ensure that these 

systems handle multiple orders of magnitude of growth without 

requiring extensive re-design or re-architecture. In order to meet 

these goals, we intentionally constrained the programming model 

to guide developers down a path of best practices leading to 

scalable applications. Where possible, we provide declarative 

mechanisms, so a developer specifies his or her desired behavior 

and leaves the Orleans runtime responsible to meet the 

specification. 

The Orleans programming model is based on asynchronous, 

isolated, distributed actors. Actors can be automatically replicated 

to enhance scalability and availability. An actor’s state can be 

persisted to shared, durable storage, where a reconciliation 

mechanism allows actors to lazily merge their state changes. 

Lightweight transactions provide a consistent system view across 

actors and simplify failure handling. 

1.2 Grains 
Actors within Orleans are called grains and are the basic 

programming unit. All code that a developer writes for Orleans 

runs within a grain. A system runs many grains concurrently. 

Grains, however, do not share memory or other transient state. 

They are internally single-threaded and process each request fully 

before handling the next one. Cloud services achieve high 

throughput by processing multiple, independent requests 

concurrently. Grains support this architecture with a single-

threaded execution model that provides mechanisms such as 

isolation, consistency, and asynchrony to exploit concurrency 

among servers, while avoiding the error-prone difficulties of 

multithreading and synchronization. 
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Orleans does not prescribe the size of grains and supports 

both fine- and coarse-grain units of concurrency. Granularity must 

balance a tradeoff between the concurrency and state needed for 

efficient computations. Small grains typically hold entities that are 

logically isolated and independent. For example, a user account 

grain or a catalog item grain is often independent of other grains 

of the same type. At the other end of the spectrum, a complex data 

structure with many internal pointers, such as a search index, is 

more efficiently constructed in a single grain or a small collection 

of grains and accessed as a service. Orleans supports the full range 

of possibilities. We provide more examples for different grain 

usages and sizes in Section 4. 

Grains interact entirely through asynchronous message 

passing. Orleans messages are exposed as method calls. Unlike 

most RPC models, which block until a result arrives, Orleans 

message calls return immediately with a promise (Section 2.1) for 

a future result. An application can bind code to the promise which 

will execute when a result arrives, or it can treat the promise like a 

future and explicitly wait for a result. Promises resolve the 

impedance mismatch between synchronous method calls and 

asynchronous message passing and are well suited to coordinating 

concurrent computations [1, 2]. In Orleans, the primary use of 

promises is to allow a grain to start one or more operations in 

other grains and to schedule a handler to execute when the 

operations complete. Unpredictable timing introduces non-

deterministic interleavings among handlers, but it is limited to 

promises, where it is clearly delimited and easily understood. 

1.3 Activations 
In order to provide higher system throughput to handle 

increased load, Orleans automatically creates multiple 

instantiations, called activations, of a busy grain to handle its 

simultaneous requests. The activations process independent 

requests for the grain, possibly across multiple servers. This 

increases throughput and reduces queuing latency at “hot” grains, 

thus improving system scalability. If necessary, Orleans can 

obtain additional machines from the underlying elastic cloud 

service to run the new activations. 

Grains are logical programming abstractions and activations 

are run-time execution units. For the most part, a developer can 

assume a single logical entity in the system processes all messages 

sent to a grain. Each activation of the grain runs independently of 

and in isolation from the other activations. These activations 

cannot share memory or invoke each other’s methods. Their only 

interaction, where the behind-the-scene parallelism is exposed, is 

reconciling changes to the grain persistent state shared by the 

activations (Section 3.4). 

1.4 Persistence and Reconciliation 
A cloud system has persistent state that is kept in durable 

storage. Orleans integrates persistence into grains, which are 

containers of application state. A grain’s state is persistent by 

default, which means that state changes in one activation of a 

grain will be available for subsequent activations of the grain 

(Section 3.2). In addition to persistent state, a grain may also have 

in-memory transient state that is not saved to durable storage and 

exists only during the lifetime of the activation. 

A grain may exist only in durable storage – i.e., no 

activations on any server – when no requests for the grain are 

pending. In this case, when a request arrives, the Orleans runtime 

selects a server and creates an activation for the grain. The new 

activation is initialized with the grain’s persistent state. 

If the grain modifies its persistent state, Orleans updates 

persistent storage with the in-memory updates at the completion 

of the application request. In practice, this write may be delayed 

to improve performance, at the cost of increasing the window of 

vulnerability to failure. 

Since multiple activations of a grain can concurrently run 

and modify the grain’s state, Orleans provides a mechanism to 

reconcile conflicting changes. It uses a multi-master, branch-and-

merge data update model, similar to Burckhard’s revision-based 

model [3] (Section 3.3).  

1.5 Consistency and Failure Handling 
To simplify development and reasoning about a concurrent 

system, Orleans provides a simple consistency model for grains. 

Orleans’s model is based on lightweight, optimistic transactions 

(Section 3.4). By default, all of the grains that process an external 

request are included within a single transaction, so that the request 

executes atomically and in isolation. Activations running in a 

transaction are isolated from activations running in other 

transactions and cannot access data modified by a transaction that 

has not yet completed. Transactions atomically succeed or fail and 

their state changes are durably and atomically persisted and 

become visible atomically.  

Transactions also offer a simple, albeit coarse, error-

handling mechanism, which is particularly valuable in failure-

prone distributed systems. If a grain fails or becomes unavailable, 

perhaps due to a network or server failure, the transaction 

processing a request aborts, and Orleans automatically re-executes 

it. This mechanism frees application developer from handling 

most transient hardware or software failures. 

1.6 Automated Scalability 
A service is scalable if increased load can be handled by 

proportionally increasing server capacity. Constructing a scalable 

service is a challenge. It must be designed and constructed to 

avoid bottlenecks, such as centralized resources, that throttle 

system throughput under increased load. Common techniques for 

achieving scalability are asynchrony, partitioning, and replication. 

Orleans incorporates these three techniques in its programing 

model and runtime. 

The actor model (grains) is based on asynchronous 

communications and encourages fine-grained partitioning of state 

and computation. The Orleans runtime automatically replicates 

activations of busy grains to dynamically spread demand and 

balance load across the available servers. 

Unfortunately, these mechanisms cannot automatically 

solve all scaling problems. Partitioning and replication must be 

designed into an application by using the appropriate Orleans 

mechanisms. For example, data and processing in a single grain 

can become large enough that simply replicating the grain does 

not provide sufficient throughput. An account grain with millions 

of connections in a social networking application would face this 

problem. Refactoring a large grain into a collection of manageable 

grains depends on the semantics of an application and so cannot 

be done automatically. Orleans provides mechanisms, but the 

developer is responsible for using them. 



 

1.7 Contributions 
This paper makes the following contributions: 

 A new programming model called Orleans for building cloud 

software, which makes it possible for non-expert developers 

to build scalable, elastic, reliable, and efficient cloud services. 

 Extensions to the actor model to enhance the scalability, 

software elasticity, and failure tolerance of systems providing 

cloud services. 

 A consistency model for replicated actor computations that 

offers weaker guarantees than traditional transactions, but 

greater scalability. 

 Mechanisms for managing performance, persistence, 

isolation, and consistency that provides a simple, effective 

programming model with minimal application code. 

 Implementation of an efficient runtime that provides good 

performance and high availability. 

The rest of the paper is organized as follows. Section 2 

describes the programming model in more detail. Section 3 

describes the runtime system. Section 4 describes three sample 

applications, and Section 5 presents performance measurements. 

Section 6 surveys related work, while Sections 7 and 8 discuss 

future work and conclusions. 

2. PROGRAMMING MODEL 
This section describes the Orleans programming model and 

provides some code examples from the sample Chirper message-

based social network application (Section 4.1). 

2.1 Promises 
Orleans uses promises as its asynchrony primitive. Promises 

have a simple lifecycle. Initially, a promise is unresolved – it 

represents the expectation of receiving a result at some 

unspecified future time. When the result is received, the promise 

becomes fulfilled and the result becomes the value of the promise. 

If an error occurs in the processing of the request, the promise 

becomes broken and has no value. A promise that has been 

fulfilled or broken is considered resolved. 

Promises are implemented as .NET types. An instance of 

these types represents a promise for future completion 

(AsyncCompletion) or for a future result value (AsyncValue<T>) 

from an operation.  

The primary way to use a promise is to schedule a delegate 

to execute when the promise is resolved. Delegates are scheduled 

by calling the ContinueWith method on a promise; ContinueWith 

returns a promise for the completion of or the value of the 

delegate. If the underlying promise is broken, then the scheduled 

delegate does not run, and the promise returned by ContinueWith 

is also broken unless the developer provides a failure delegate; 

this error propagation is a key feature of the Orleans programming 

model. 

Orleans also allows a promise to be treated similarly to an 

explicit future [4]. Promises provide a Wait method that blocks 

until the promise is resolved. Result value promises also provide a 

GetValue method that blocks until the promise is resolved and 

returns the result. 

Here is an example of creating a promise by invoking a 

method on a grain, scheduling a delegate for when the method 

completes, and then blocking until the promise is resolved: 

(1) AsyncCompletion p1 = grainA.MethodA(); 
(2) AsyncCompletion p2 = p1.ContinueWith(() => 
(3) { 
(4)     return grainB.MethodB(); 
(5) }); 
(6) p2.Wait(); 

A composite promise is created from multiple promises 

using the Join method. The composite promise is resolved when 

all of the joined promises resolve. If any of the individual 

promises are broken, the composite promise breaks as well. 

The execution of a delegate in an activation is always 

single-threaded; that is, no more than one delegate will execute at 

a time in a grain activation (Section 2.2).  

2.2 Grain Execution Model 
When an activation receives a request, it processes it in 

discrete units of work called turns. All grain code execution, 

whether handling a message from another grain or an external 

client or the execution of a delegate, runs as a turn. A turn always 

executes to conclusion without preemption by another turn for the 

same activation. 

While an Orleans system as a whole may execute many 

turns belonging to different activations in parallel, each activation 

always executes its turns sequentially. Hence, execution in an 

activation is logically single threaded. Threads are not dedicated 

to an activation or request; instead, the system uses a scheduler 

that multiplexes turns from many activations across a pool of 

threads. 

This single-threaded execution model removes the need for 

locks or other synchronization to guard against data races and 

other multithreading hazards. This model, however, limits parallel 

execution to collections of grains and hence excludes shared-

memory parallelism. The restriction on parallelism within a grain 

was made to significantly simplify code development and avoid 

the host of subtle and complex errors commonly associated with 

shared-memory parallelism. 

Orleans does not eliminate execution non-determinism. 

Promises are resolved asynchronously and the order in which 

continuation delegates execute is unpredictable. This interleaving 

never results in a fine-grained data race, but it does require 

attention since the state of the activation when a delegate executes 

may differ from its state when the delegate was created.  

By default, Orleans requires an activation to completely 

finish processing one external request before accepting the next 

one. An activation will not accept a new request until all promises 

created (directly or indirectly) in the processing of the current 

request have been resolved and all associated delegates have 

executed. If necessary, such as to handle call cycles, grain 

implementation classes marked with the Reentrant attribute 

allow turns belonging to different requests to freely interleave. 

Methods marked ReadOnly are assumed to also be reentrant. 

2.3 Error Handling 
Because every asynchronous operation, such as a call to a 

grain method or a call to ContinueWith, returns a promise, and 

because promises propagate errors, error handling can be 

implemented in a simple manner. A client can build a complex 

dataflow graph of interconnected asynchronous computations and 

defer error handling until the result is actually needed. In the code 

above, an error at any stage of the program (in MethodA or 



 

MethodB) will eventually break promise p2 and cause p2.Wait() 

to throw an exception with information about the error. All 

possible errors bubble up to that point in the program, even 

though the computations may have run concurrently on different 

threads or machines. Using the automatic error propagation and 

optional failure delegates as an asynchronous try/catch 

mechanism greatly simplifies error handling code. 

2.4 Grain Interfaces 
Rather than developing a separate interface definition 

language, Orleans uses standard .NET interfaces to define the 

interface to grain’s services. An interface used for this purpose 

must adhere to the following rules: 

 A grain interface must directly or indirectly inherit from the 

IGrain marker interface. 

 All methods and property getters must return a promise. 

Property setters are not allowed as .NET does not allow them 

to return a completion promise. Similarly, .NET events are 

not allowed. 

 Method arguments must be grain interface types or 

serializable types that can be logically passed by value. 

For example, Figure 4 contains the Chirper grain interfaces. 

2.5 Grain References 
A grain reference is a proxy object that provides access to a 

grain. It implements the same grain interfaces as the underlying 

grain. A grain reference is the only way that a client, whether 

another grain or a non-grain client, can access a grain. Grain 

references are first-class values that can be passed as arguments to 

a grain method or kept as persistent values within a grain’s state.  

As with promises, grain references can be in one of the three 

possible states: unresolved, fulfilled or broken. A caller creates a 

grain reference by allocating a new grain or looking up an existing 

grain (Section 2.6). If operations are invoked on a reference 

before it was resolved, the operations are queued transparently in 

the reference and executed in order when the reference is fulfilled 

(i.e., the grain is successfully created or looked up). 

2.6 Creating and Using Grains 
For each grain interface, Orleans generates a static factory 

class and an internal proxy class. Clients use the factory classes to 

create, find, and delete grains. The proxy classes are used by the 

Orleans runtime to convert method calls into messages.  

In the simplest case, a factory class includes methods for 

creating and deleting a grain, and for casting a grain reference of 

one type to a reference of another type. Annotations on grain 

interface members, such as Queryable, are used by the developer 

to cause Orleans to generate additional methods on the factory 

class for searching for grains that satisfy specified conditions. The 

generated factory class for the IChirperAccount interface looks 

as follows: 

(1) public class ChirperAccountFactory  
(2) { 
(3)   public static IChirperAccount  
(4)      CreateGrain(string name); 
(5)   public static void  
(6)      Delete(IChirperAccount grain); 
(7)   public static IChirperAccount  
(8)      Cast(IGrain grainRef); 
(9)   public static IChirperAccount  

(10)      LookupUserName(String userName); 
(11) } 

Below is an example of the code to create a 

ChirperAccount grain and perform an operation on it: 

(1) IChirperAccount alice =      
(2)   ChirperAccountFactory.CreateGrain(“Alice”); 
(3)  
(4) AsyncCompletion aPromise = alice.FollowUser(“Bob”); 

CreateGrain immediately returns a grain reference. This 

enables pipelining of asynchronous requests to the grain, such as 

FollowUser, even before the grain is fully created. The invocation 

is queued on the grain reference and executes after the grain 

creation completes. If the grain creation fails, the grain reference 

would be broken, which would cause aPromise to break as well. 

2.7 Grain Classes 
As already mentioned above, a grain class implements one 

or more grain interfaces. Each grain method and property getter 

must return a promise. As a convenience, a method can return a 

concrete value, which is automatically converted into a resolved 

promise by the runtime. For example, the GetPublishedMsgs 

method of IChirperAccount can return a concrete list: 

(1) AsyncValue<List<string>> GetPublishedMsgs()  
(2) { 
(3)   List<string> list =  
(4)       PublishedMsgs.Skip(start).Take(n).ToList(); 
(5)   return list; 
(6) } 

An implementation method may also return a promise that it 

creates directly or obtains from calling another grain or 

scheduling a delegate. 

An example below demonstrates the FollowUser method 

implementation: 

(1) AsyncCompletion FollowUser (string name)  
(2) { 
(3)   IChirperPublisher user =  
(4)      ChirperPublisherFactory.LookupUserName(name); 
(5)  
(6)   IChirperSubscriber me = this.AsReference(); 
(7)  
(8)   AsyncCompletion p = user.AddFollower(myName, me); 
(9)   return p.ContinueWith(() => 

(10)   { 
(11)     this.Subscriptions[name] = user; 
(12)   }); 
(13) } 

Imagine that Bob wants to follow Alice. Bob will invoke a 

FollowUser method on his IChirperAccountGrain passing it 

Alice’s name. The method first looks up Alice’s account grain. 

For that it uses the ChirperAccountFactory method that allows 

looking up by name, since name is declared as a Queryable 

property. It then creates a reference to itself by casting the C# 

this reference to a grain reference using the factory-provided 

extension method AsReference and invokes the AddFollower 

method on Alice’s account grain. The invocation for AddFollower 

is queued by the runtime and is dispatched only after 

LookupUserName completes. Adding Alice to Bob’s local list of 

subscriptions is queued and will execute when AddFollower 

completes successfully. 

 

 



 

3. ORLEANS RUNTIME 
This section describes the Orleans runtime in greater detail, 

focusing on the key mechanisms that Orleans provides for an 

application. 

3.1 Platforms 
Orleans is a framework for the Microsoft .NET runtime that 

can be used from any .NET language (C#, F#, etc.). Orleans can 

run on desktop machines, servers running Windows Server 2008, 

and the Microsoft Windows Azure cloud platform. An Orleans 

application remains the same when run on those different 

platforms. 

3.2 State Management 
The state of a grain is managed by the Orleans runtime 

throughout the grain’s lifecycle: initialization, replication, 

reconciliation, and persistence. The programmer identifies the 

persistent state and Orleans handles the rest. No application code 

is required to persist or load the grain state. 

Orleans itself does not implement storage with the required 

capabilities of durability and high availability; rather, it relies on 

an external persistence provider such as Microsoft’s Windows 

Azure Storage. 

3.3 Persistence 
Each grain type declares the parts of its state that are 

persistent, using .NET annotations. Persistent property types must 

support serialization and may include data, grain references, and 

resolved promises.  

At the level of a single grain type, these declarations 

provide a simple model for persistence. The Orleans runtime 

activates a grain with its persistent properties already initialized, 

either from grain creation parameters or from the current version 

in persistent storage. The grain’s Activate method is then called 

to allow it to initialize its transient state. The runtime then invokes 

methods to handle requests sent to the activation, which can 

operate freely upon the state in memory.  

To commit an activation to storage, the runtime waits for 

the completion of a transaction (i.e., the end of a request), calls the 

grain’s Deactivate method, and writes the grain’s state property 

values to persistent storage. For optimistic transactions, the 

frequency of committing values to storage depends on the 

resource management policy, trading efficiency of combining 

writes from multiple requests against the risk of needing to replay 

more transaction in the event of failure. Furthermore, the runtime 

coordinates commit operations across multiple grains to ensure 

that only atomically consistent state is committed (Section 3.8.4). 

3.4 Replication 
The single-threaded execution model limits the amount of 

processing that may be performed by a single activation, and thus 

limits the amount of load that the activation can handle. Orleans 

uses grain replication – multiple activations of the same grain – as 

its primary mechanism to achieve software elasticity and 

scalability. Different activations can process independent requests 

for the same grain in parallel, which increases the throughput and 

reduces the queuing latency of the grain, thus improving system 

scalability. 

When the current set of activations of a grain is not capable 

of keeping up with the grain’s request load, the runtime will 

automatically create new activations of the grain and shift a 

portion of the load to them. A new activation can be created either 

by copying the in-memory state of an existing activation or, if the 

activations are busy, taking the current state from persistent 

storage. When the load on the grain reduces, the system will 

reclaim idle activations, thus reducing the amount of server 

resources used by the grain. 

Orleans will initially place new activations on the same 

server as the first activation of the grain. If the local server is 

sufficiently busy, Orleans will create new activations on other 

servers of the system.  

Orleans tracks the location of activations in a directory, 

which provides more flexibility in activation placement than 

schemes based on consistent hashing or other computed 

placements. Depending on the application, this directory may 

grow to millions or billions of entries. To support large 

applications, Orleans uses a directory service based on a 

distributed one-hop hash table supplemented with an adaptive 

caching mechanism. 

The policies to decide when to create a new activation and 

which activation to route a request to are described in Section 3.6. 

3.5 Isolation 
Activations of many different grains, as well as multiple 

activations of the same grain, may all run on the same server in 

the same system process. Regardless of location, all activations 

communicate only through asynchronous message passing and 

reference each other using grain references (proxy objects). 

Orleans relies on the standard .NET type and memory safety 

guarantees to ensure isolation [5]. This allows Orleans to place 

activations on any server, even across data centers, and migrate 

activations between servers, in order to balance load, increase 

failure tolerance, or reduce communication latency.  

3.6 Resource Management 
Orleans’s primary software elasticity mechanism is growing 

and shrinking the number of activations of a grain. Activations 

may also be placed on different servers and migrated between 

servers to balance load across the system. New user requests may 

be routed to any existing activation. Grains, because they can 

encapsulate smaller units of computation, can efficiently support a 

finer granularity of resource management than other distributed 

frameworks, particularly service-oriented architectures in which a 

process or a virtual machine is the unit of granularity. Grains with 

a moderate amount of state offer the Orleans runtime considerable 

flexibility in responding to changes in load, by reducing the cost 

of starting and migrating grain activations.  

Orleans automatically manages the computational resources 

on which it runs. When running on an elastic infrastructure such 

as Windows Azure, Orleans requests new server instances to 

handle increasing user requests, and then starts new activations on 

these servers. Orleans returns server instances when load 

decreases and they are no longer required. 

The initial version of Orleans uses a simple load-balancing 

and load shedding policy. Requests are initially randomly 

distributed to existing activations. A request arriving at an 

overloaded server is rejected, and the sender resubmits the request 

to another activation on another server. Server load is a 

combination of the total CPU utilization and the total number of 

pending requests for all activations on the server. If a request 

arrives at an overloaded activation (with more pending requests 



 

than a predefined threshold) on a non-overloaded server, a new 

activation is created on the server and the request is queued to this 

activation. Activations that remain idle for a sufficient length of 

time are garbage collected.  This simple, greedy policy has 

worked well for the scenarios we looked at so far, but Orleans 

exposes hooks and mechanisms to implement more sophisticated 

and tailored policies.  

We are currently actively experimenting with more 

sophisticated resource allocation policies that take into account 

data locality as well as compute load (similar to map/reduce [6]) 

in a more globally coordinated fashion. Effectively, our runtime 

will dynamically decide between transferring functions and data, 

based on a cost model. We also plan to make use of the network 

topology and the failure domain structure to minimize the latency 

of each request while ensuring the availability of the application 

in the face of failures and maximizing overall throughput. 

3.7 State Reconciliation 
If multiple activations of a grain concurrently modify their 

persistent state, the changes must be reconciled into a single, 

consistent state. For many applications, a last-writer-wins strategy 

is often sufficient, but complex data structures can benefit from 

fine-grained reconciliation policies. To handle common cases, the 

Orleans runtime provides reconcilable data structures (records, 

lists, and dictionaries) that track updates and automatically 

reconcile conflicting changes. If an application requires a different 

reconciliation algorithm or other data structures, Orleans provides 

mechanisms to allow the developer to implement them.  

The reconciliation mechanism is integrated into the 

transactions system; its implementation is described in Section 

3.8.5. 

3.8 Transactions 
Transactions in Orleans serve three roles: 

 Isolate concurrent operations from each other. 

 Ensure that an operation sees a consistent application state 

despite grain replication and distribution. 

 Reduce the need for explicit error handling and recovery 

logic. 

Orleans transactions are atomic, consistent, isolated, and 

durable. During execution, a transaction sees only a single 

activation of each grain involved in the transaction, thus every 

transaction by itself sees a consistent application state. This state 

is isolated from changes made by concurrently executing 

transactions. A transaction’s updates to durable storage, even if 

they occur in multiple grains, become visible atomically to 

subsequent transactions when the transaction completes; so 

another transaction sees the entire, consistent set of changes from 

a completed transaction. Updates across many grains are 

atomically committed to durable storage, providing a consistent 

mechanism for persisting the result of a computation. 

The transaction system operates by tracking and controlling 

the flow of execution through grain activations. A transaction is 

created at the arrival of an initial, external request from a client 

outside the system. The transaction encompasses all grain 

activations invoked to process the request, unless the developer 

specified explicit transactional boundaries. A transaction is 

completed when the request processing finishes execution. It is 

committed when its changes are written to durable storage. 

Orleans allows the programmer to choose to see the results of a 

completed transaction before it has been committed. We refer to 

this as optimistic transactions. The programmer can also choose to 

wait for the transaction to commit before seeing its results. This 

alternative is called a pessimistic transaction; it provides stronger 

consistency at the cost of higher latency and reduced performance. 

In case of failures, an executing or completed transaction 

may be aborted and re-executed before it commits. Re-execution 

is non-deterministic and may produce a different result. If this 

possibility is unacceptable for an application, a client may mark a 

transaction as pessimistic. In most cases, however, the prior and 

re-executed transactions are semantically equivalent, and the 

client need not wait until the application’s state is fully 

committed. 

3.8.1 Isolation 
Isolation ensures a transaction does not see changes from 

concurrently executing transactions, and its changes are not 

visible to other transactions until it completes. To ensure this, 

Orleans maintains a one-to-one correspondence between 

activations of a grain and active read-write transactions. An 

activation will participate in no more than one active transaction, 

unless all of the transactions are read-only. We say that an 

activation joins a transaction when it receives a first message 

within this transaction. An activation remains joined to the 

transaction until the transaction completes. 

3.8.2 Consistency 
Consistency is specified both within a transaction and across 

transactions. 

Within a transaction, consistency requires that the sequence 

of observed activation states must be consistent with the partial 

order defined by the flow of request and response messages within 

the transaction. Joining activations to transactions ensures that 

there is only a single activation of a grain in each transaction. That 

is, a single transaction operates on a single copy of the grain’s 

state. This guarantees a strongly consistent view of state within a 

transaction. 

Maintaining this property is easy for applications that 

execute serially across a set of grains (i.e., grain A send a message 

to grain B, which sends a message to grain C). Each request or 

response message contains the entire set of activations joined to 

the transaction so far. Every time a request within a transaction is 

made to a grain X, the runtime picks an activation for X that is 

already present in this transaction’s joined set. If no activation 

was joined so far, the runtime is free to choose any activation that 

is not already participating in another transaction. However, when 

the application issues multiple, concurrent requests, an additional 

mechanism is required.  

In Figure 1, activation A1 (activation “1” of grain “A”) 

sends concurrent messages to B1 and D1, both of which 

concurrently send messages to grain C. The Orleans runtime tries 

to ensure that B1 and D1 send to the same grain activation without 

using a distributed coordination mechanism, which would be 

expensive and non-scalable. If this heuristic mechanism fails and 

the grains choose different activations, say C1 and C2, the 

inconsistency will be discovered when the responses arrive at A1. 

At that point, the transaction aborts before any code can observe 

inconsistencies between the state of C1 and C2. When the 

transaction is replayed, it is notified of the cause of the failure, 

and the runtime proactively selects one activation of grain C to 



 

join to the transaction before restarting grain A. This prevents the 

same inconsistency by ensuring that grains B and D will choose 

the same activation. 

 

Figure 1: Consistency failure if the transaction sees two 

different activations (C1 and C2) of a grain 

 

Between transactions, the Orleans consistency model 

ensures that the sequence of grain states visible to a requestor 

(whether an outside client process or another grain) always 

reflects its previous operations, so that a single requestor always 

observes its own writes. This guarantee must be maintained in the 

presence of quiescence, branching, and merging of activation 

states, in either the requestor or the target. Orleans does not 

provide any consistency guarantees for uncommitted changes 

between independent requestors. Independent requestors may 

ensure visibility of changes by waiting for their transactions to be 

committed. 

3.8.3 Atomicity 
To preserve atomicity, Orleans must ensure that a 

transaction’s updates, from its set of grain activations, become 

visible to other transactions as a complete set or not at all. To 

ensure this, the runtime keeps the transaction/activation 

correspondence until transactions are committed (Section 3.8.4). 

Before joining an activation to a transaction, it verifies that this 

action preserves atomicity. If the active transaction has invoked 

the same grains as a prior, uncommitted transaction, it must use 

the same activations. 

For example, in Figure 2 a completed transaction TX has 

modified activations A1, B1, and C1, and a completed transaction 

TY has modified D1, C2, and E1. Active transaction TZ has 

modified activations F1 and B1 and sends a request to grain E. If 

this message arrives at activation E1, the runtime has enough 

information to detect a potential – but not yet actual – violation of 

atomicity if TZ were to send a message to grain C. It might 

choose to redirect the message to another activation of grain E. 

Or, if none is available and it is too expensive to create a new one, 

it may go ahead and join activation E1 to TZ. So far, atomicity is 

preserved. However, if TZ does later send a message to grain C, 

the runtime cannot choose either activation C1 or C2 without 

violating atomicity (of TY or TX, respectively). The runtime will 

detect this before the message to grain C can be sent and abort TZ, 

ensuring that no executing code observes an atomicity violation. 

Transactions TX and TY will also need to abort and replay 

because their updates to B1 and E1 will be lost when TZ aborts. 

Grain A A1 Grain D D1 Grain F F1

Grain B B1 Grain E E1Grain C C1 C2

Transaction TX Transaction TY Transaction TZ

 

Figure 2: Potential atomicity violation; Transaction TZ cannot 

use either grain C1 or C2 without violating the atomicity of TY 

or TX, respectively 

 

3.8.4 Durability 
Orleans also ensures that committed transactions are written 

atomically to persistent storage. The transaction persistence 

mechanism also follows an optimistic approach, asynchronously 

writing modified results to storage without delaying an executing 

transaction. When a transaction completes, the server that handled 

the initial request sends a completion notification to the system 

store, listing all activations involved in the transaction. 

Committing a transaction has three phases: 

 The store collects serialized representations of the persistent 

state of each activation in the transaction. 

 If more than one version of a grain is to be committed –  

either because a more recent version already committed to 

the store, or because of multiple, concurrent transactions – 

their state must be reconciled to produce a single merged 

version before writing it to store (Section 3.8.5). 

 The grain states are written to persistent storage using a two-

phase commit to ensure that all updates become visible 

simultaneously.  

This process runs without blocking executing transactions, 

and so can fall back to an earlier phase as additional update 

notifications arrive for a participating grain that has already been 

partially processed. Our current implementation of the system 

store is a single point of failure and a scalability bottleneck. We 

are in the process of developing a distributed persistence 

management mechanism that will remove these limitations.  

3.8.5 Reconciliation 
Reconciliation occurs as application state is written to 

persistent storage. The reconciliation model uses a branch-and-

merge model, tracking and reconciling changes to multiple 

independent revisions of the grain state [4]. The existing persistent 

state is considered the master revision. When created, each grain 

activation branches a new revision from the store, as illustrated in 

Figure 3. 

Grain A A1

Grain B B1 Grain D D1

Grain C C1 C2



 

 

Figure 3: Reconciliation 

 

When committing multiple transactions that utilized 

different activations of the same grain, Orleans requests the 

current state of each activation. These are sent as incremental 

deltas from the branch point to minimize data transfer and 

simplify reconciliation. Orleans uses a grain type and data 

structure-specific policy to reconcile changes to a single merged 

state and sends updates to each activation to bring it forward to 

that state. If an activation has not modified its state since sending 

it to the Orleans, the activation accepts the update and proceeds. If 

all activations accept the updates, Orleans notifies them that they 

have effectively returned to an initial state as freshly branched 

revisions from the store. 

If an activation was modified, it rejects the update, and 

subsequently sends a second, compound set of changes to 

Orleans. The process then repeats. Eventually an activation will 

accept its updates and merge, although in a busy system the 

runtime may need to prevent a grain from accepting new 

transactions in order to ensure it does not fall too far behind. 

3.8.6 Failure recovery 
If a transaction encounters an error and aborts before it 

completes, all of its activations are destroyed and the request is re-

executed. However, if some of its activations had participated in 

prior transactions that have completed but not committed, then the 

earlier transactions also must abort and re-execute since their state 

was not persisted. 

3.8.7 Relation to Snapshot Isolation 
Orleans transactions provide a model comparable to, but 

slightly weaker than, snapshot isolation (SI). There are two main 

differences between Orleans transaction and SI. First, SI does not 

allow write-write conflicts, while Orleans does. Orleans allows 

different activations of the same grain’s state to be changed 

concurrently by independent transactions and to be later merged 

and reconciled into a single, application-consistent state.  

Second, under SI, a transaction sees a consistent snapshot of all 

committed updates as of the time when the transaction starts. 

Future changes that occur after the transaction has started are not 

visible to this transaction. In Orleans, a transaction sees 

atomically consistent subsets of completed transactions. Those 

subsets become visible to the transaction at different points in 

time of its execution, not necessarily at its start. Every subset of 

completed transactions includes all grain activations changed 

during these transactions and all the transactions they transitively 

depended upon [7]. The changes made by a completed transaction 

become visible to future transactions atomically as a set of 

activations that form a consistent view. When an activation joins a 

running transaction, its consistent view of activations is checked 

for compatibility and merged with the running transaction. Unlike 

SI, the transaction expands its consistent view lazily as it 

executes, and there may be different activations of the same grain 

belonging to distinct consistent views in different transactions. 

This design, although weaker than serializability or SI, maximizes 

responsiveness and system throughput and does not require global 

coordination. 

4. APPLICATIONS 
We describe three applications built on Orleans to illustrate 

the flexibility of its architecture and programming model. The 

applications differ in the way they use the system. The first 

application is a Twitter1-like messaging application, which is 

communication-intensive with little data or computation. The 

second application is a linear algebra library for large sparse 

matrix computations, which is both computation-, 

communication-, and IO- intensive. The third is a distributed 

engine for querying and processing large graphs, which is data-

intensive. The applications differ significantly in the size and 

number of grains and types of interactions between the grains. 

4.1 Chirper 
Chirper is a large-scale Twitter-like publish-subscribe 

system for distributing small text message updates within a large 

network of consumers / subscribers. It allows a user to create an 

account, follow other users, and receive messages posted by them 

on their account. We built Chirper in 200 lines of Orleans C# 

code. It includes only the core functionality of subscribing to a 

publisher and publishing and receiving messages. It does not 

include authentication and security, archival message storage, or 

message searching and filtering. Replication, persistence, and 

fault tolerance, however, are managed automatically by Orleans. 

4.1.1 Implementing Chirper on Orleans 
A Chirper account is naturally modeled as a grain. Each 

user has an account grain and accounts for different users act 

independently and interact via well-defined interfaces. An account 

grain has 3 facades: publisher, subscriber and account 

management, for different types of interactions. The account grain 

declares some of its properties as persistent – user id, name, list of 

published and received messages, a list of contacts that follow this 

user (subscribers), and a list of contacts this user follows 

(publishers). All of the persistent state is managed automatically 

                                                                 
1 Twitter is a trademark of Twitter, Inc. Orleans has no relationship with 

Twitter, Inc. 
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by the Orleans runtime. Some properties are declared as 

InitOnly, which indicates that they are immutable after 

initialization. Some properties allow querying. Other properties 

specify a reconciliation strategy; for example, the list of published 

messages is a special SyncList data type, which accumulates the 

changes in different activations and merges the additions and 

deletions. 

The account grain exposes three public interfaces: 

IChirperAccount, IChirperSubscriber and 

IChirperPublisher. IChirperAccount represents a single user 

account and allows a user to start and stop following another user, 

retrieve the list of their followers, retrieve the list of users they 

follow, and retrieve the list of received messages. The user can 

also publish a new message via IChirperAccount. 

IChirperSubscriber and IChirperPublisher represent the view 

of one user on another for subscription and notification activities. 

When user A subscribes to user B, A invokes the AddFollower 

method of B’s IChirperPublisher interface, passing his or her 

own IChirperSubscriber interface. When B’s account has a new 

message, it notifies A’s IChirperSubscriber interface. Figure 4 

contains partial interfaces for Chirper. 

By default, Orleans creates one activation per account grain. 

However, hot accounts will automatically be replicated by the 

runtime. This helps achieve scalability and eliminate bottlenecks. 

The following types of application behavior will result in creating 

multiple activations: 

 An account that receives a large number of messages will be 

replicated to spread the subscription load. Each activation 

will receive a subset of the messages, to be merged as 

described in section 3.6. This allows accounts to scale with 

increasing received message load. 

 An account that publishes a large number of messages (a 

chatty chirper) will be replicated to partition the publishing 

load. Each message will be published to all subscribers by a 

single activation. This will allow publishers to scale with 

increasing number of published messages. 

There is another case in which multiple activations do not 

help solve the problem: an account that has an extremely large 

number of subscribers (a popular chirper), so that the list requires 

a significant portion of memory on a single server and simply 

iterating through the subscribers takes an appreciable amount of 

time. In this case the state of the account (list of subscribers) 

needs to be partitioned by the application. One possible solution is 

a hierarchical system, where the list of subscribers is partitioned 

into a hierarchy of small helper grains with a distribution tree 

from the main account grain to the helper grains which notify the 

subscribers. Such a pattern is easy to implement on Orleans, and 

would allow publishers to scale with an increasing number of 

subscribers. 

Chirper leverages Orleans transactions to ensure that 

publishers and subscribers are always paired. Establishing a 

“following” relationship is done as follows: when user A wants to 

follow another user B, A sends a message to B with a reference to 

his subscriber grain interface and B stores the grain reference to A 

in its Followers list. A also stores B’s identity it its Subscriptions 

list, so that it will be able to know later on whom A follows. The 

update to both grains thus needs to be done atomically, so in case 

of intermediate failures the transaction is re-executed, so the 

system is kept in a synchronized and consistent state. 

(1) public interface IChirperSubscriber : IGrain 
(2) { 
(3)   AsyncCompletion NewChirp(ChirperMessage chirp); 
(4) } 
(5)  
(6) public interface IChirperPublisher : IGrain 
(7) { 
(8)   [Queryable(IsUnique=true)] [InitOnly] 
(9)   AsyncValue <long> UserId { get; } 

(10)   [Queryable(IsUnique=true)]  
(11)   AsyncValue <string> UserName { get; } 
(12)   [ReadOnly]  
(13)   AsyncValue<List<ChirperMessage>> 
(14)     GetPublishedMessages(int n, int start); 
(15)   AsyncCompletion AddFollower(string u,  
(16)     IChirperSubscriber s); 
(17)   AsyncCompletion RemoveFollower(string u, 
(18)     IChirperSubscriber s); 
(19) } 
(20)  
(21) public interface IChirperAccount : IGrain,  
(22)   IChirperPublisher, IChirperSubscriber 
(23) { 
(24)   AsyncCompletion PublishMessage(string chirpText); 
(25)   [ReadOnly]  
(26)   AsyncValue <List<ChirperMessage>>  
(27)     GetReceivedMessages(int n, int start); 
(28)   AsyncCompletion FollowUser(string user); 
(29)   AsyncCompletion UnfollowUser(string user); 
(30)   [ReadOnly]  
(31)   AsyncValue <List<string>> GetFollowingList(); 
(32)   [ReadOnly]  
(33)   AsyncValue <List<string>> GetFollowersList(); 
(34) } 

Figure 4: Chirper grain interfaces  

 

4.2 Linear Algebra Library 
Linear algebra is a broad area that comprises general-

purpose computations on scalars, vectors, and matrices (including 

higher dimensions as tensors). The core of a linear algebra library 

is the vector-matrix multiplication operation. This operation is the 

basis for many algorithms, including PageRank, singular value 

decomposition, clustering, feature extraction, and social group 

discovery (partitioning). Conceptually, vector-matrix multiply is 

quite simple, and an implementation can be written very 

efficiently if the data set can be held in memory on one machine. 

As the data size grows, distributing the computation and 

maintaining efficiency becomes difficult due to the complexity 

and limitations of data placement, disk access, network bandwidth 

and topology, and memory limitations. A web graph, for example, 

may contain greater than 1011 pages with more than 1012 links; 

this translates to a sparse 1011 by 1011 matrix, with 1012 cells (out 

of a total of 1022) having non-zero values. 

Our coworker has implemented a linear algebra library on 

top of Orleans. The computations are broken into worker grains 

that own pieces of the data set. Special coordinator grains manage 

the computation by dynamically assigning work to worker grains. 

The coordinator grains are organized into a two-level hierarchy, 

with each second-tier grain responsible for a set of worker grains. 

The data can flow directly from disk to worker grains and 

between the worker grains, while the coordinator grains 

participate only in the control flow of the operations. Currently, 

we take advantage of explicit runtime APIs that Orleans provides 

to control the server placement of the grain activations; worker 

grains can be co-resident on the same machine (typically one per 

hardware thread) or distributed across many machines (co-located 

with the secondary storage that holds the data). In the future, we 



 

plan that many of these explicit decisions will be replaced by 

automated Orleans resource management (Section 7). 

4.3 Large Graph Engine 
Graphs are central to web search, social networking, and 

other web applications. Large graphs pose many challenges, as 

they do not fit a single computer and distributed algorithms are 

communications intensive [8]. Our graph engine provides support 

for partitioning and distributing graph data (nodes, edges, and 

metadata) across many machines and for querying graphs. In 

contrast to the linear algebra library, where data is represented by 

a numerical matrix, the graph engine supports rich node and edge 

data types with user-defined properties and metadata, similar to 

database rows. 

Orleans offers two options for implementing graphs: 

encapsulate each node in a separate grain or represent a partition 

of the nodes by a grain. We selected the latter approach because it 

allows for a significant reduction in overhead and messages 

because steps between grains during a graph traversal may be 

batched together based on the source and destination partitions. 

Every server hosts a small number of partition grains, and every 

partition grain contains a moderate number of graph data nodes 

(104 – 106). A graph algorithm running in a partition directly 

accesses nodes in its partition. Accesses across partitions involve 

sending messages between partition grains. The graph algorithms 

are aware of this distinction and batch messages between 

partitions to reduce communication overhead. 

The graph engine demonstrates the flexibility of Orleans 

model: it imposes no restrictions on the size of a grain. Grains can 

hold potentially large amounts of state, while still offering 

isolation, asynchronous messaging, persistence, and transactional 

updates. The graph engine is built upon an abstract graph 

execution framework similar to Pregel [8].  

 

5. PERFORMANCE MEASUREMENTS 
We measured the performance of the current Orleans 

implementation with a set of benchmarks. The measurements 

were performed on a cluster of up to 50 servers, each with two 

AMD Quad-Core Opteron processors running at 2.10GHz for a 

total of 8 cores per server, 32GB of RAM, all running 64 bit 

Windows Server 2008 R2. 

5.1 Micro Benchmarks 
Figure 5 depicts the round-trip latency of a grain method 

invocation, for grains located on the same and different servers. 

The method invocation had one parameter, a byte buffer of 

varying size. The latency for the remote case is approximate 1.2 

millisecond, and 0.5 millisecond for the local case. In the local 

case, time is spend primarily in making a deep copy of the 

message body and in thread synchronization. The remote case 

adds time to serialize the message and response and their headers, 

socket read/write and the actual network latency. For large 

messages, latency increases proportionaly to the message size, due 

to the cost of copy and serialization. 

We also measured the overhead of promises. The time to 

create a promise and trigger its result delegate is 50–100 

microseconds, which is mainly due to memory allocation and 

thread synchronization. This is small compared to the message 

latency.  

The latency to create a new grain is approximately 5 

milliseconds, which includes creating the first activation for this 

grain and registering it in the distributed directory. 

 

Figure 5: Local and remote invocation latency, average and 95 

percentile. 

5.2 Chirper 

5.2.1 System throughput 
In this section, we measure the performance and scalability 

of the Chirper application (Section 4.1). We created a synthetic 

network of 1,000 user accounts (we tested the application with 

millions of user accounts, but because the messaging throughput 

is insensitive to the total number of users, we measured with 

1,000 to reduce the initial load time), each user following 27 

random users – this corresponds to the average number of 

followers in the actual Twitter service. We ran load generator 

processes on multiple machines, with each generator posting 

messages of varying size, averaging 250 characters, to a random 

user account. Each message was then sent to the user’s followers. 

We ran each load generator so that it generates the maximum 

number of messages per second that it could handle before 

saturation. 

In this scenario, the Orleans servers running Chirper run at 

94–96% CPU utilization, receiving and de-serializing messages, 

processing them, and serializing and resending them to follower 

grains. The majority of server’s work is spent serializing and de-

serializing messages.  

Figure 6 shows that the throughput (number of chirps per 

second) scales linearly with the number of servers. The system 

can deliver approximately 7,000 chirps per second with 35 

servers. By comparison, the actual Tweeter service delivers about 

1600 tweets per second on average; the highest recorded single-

second load was 6,939 tweets per second [9]. 

5.2.2 Multiple activations 
In this section we show that the Orleans runtime can 

automatically maintain the performance of an application by 

creating multiple activations. We put a heavy load on a single 

grain by simulating a subscriber who follows many users. We also 

added a short processing time of 10 milliseconds for every 

message. Thus, this user’s grain becomes a bottleneck, since it can 

process only a limited number of messages per second.  



 

 

 

Figure 6: Chirper system-wide throughput – scalability with 

increased capacity 

Figure 7 shows that the system throughput still scales 

almost linearly because Orleans runtime creates the multiple 

activations of the grain (on the same machine). This optimization 

occurs automatically. Publishers continue to send messages to the 

single logical grain for this user, and the runtime distributes the 

messages across the grain’s activations, evenly spreading the load 

and processing time among activations running on different cores.  

We also measured the overhead cost of the Orleans 

automated mechanisms by configured the system to not create 

multiple activations of a grain and disabling the transaction 

system. With the 10ms processing time per request, measured 

throughput is 13% higher with the transaction system disabled, 

and with 100ms of processing time, throughput is 2% better, in 

both cases compared to the system with transactions enabled but 

limited to single activations. We could not measure the 

mechanisms independently because the system cannot create 

multiple activations without the transaction system, which is 

necessary for consistency and reconciliation. 

 

Figure 7: Maintaining Chirper throughput by automatically 

creating multiple activations on a single server  

5.3 Linear Algebra Library 
We implemented PageRank in our Linear Algebra library. 

The PageRank computation is essentially an iterated matrix-vector 

multiplication. We used a partial web graph of 134 million pages 

and 1.4 billon hyperlinks and ran 10 iterations of PageRank 

computation, until it converges. The web graph is stored in SQL 

databases, one per server, outside of Orleans. 

Figure 8 shows the speedup on a single machine (time to 

compute the complete PageRank on one core vs. multiple cores). 

The system fails to scale well. The computation is I/O bound and 

thus having more cores on a single machine does not speed the 

computation as the machine’s I/O bandwidth is totally saturated. 

 

Figure 8: PageRank computation – single server, varying 

number of cores. 

Figure 9 demonstrates the speedup on multiple machines. 

The speedup is much higher since the matrix is read from multiple 

disks, so the I/O runs concurrently with the computation. For up 

to 4 servers, we see near-linear speedup and for 32 machines we 

still get a speedup of 13. The sublinear performance is due to the 

increased communications overhead of exchanging data among 

grains (results from one iteration for the next iteration) as well as 

some increased coordination overhead. 

 

Figure 9: PageRank computation – varying number of servers, 

16 cores each. 



 

We want to stress that exactly the same program was used 

both in the single server and the distributed case. This 

demonstrates the power of Orleans to abstract the computation 

from its execution environment – no changes to the application 

were necessary to scale from 16 cores to 512 cores.  

5.3.1 Other Runtimes 
We also compared the Orleans implementation of PageRank 

against one running on Dryad [10], which provides a data-flow 

engine similar to map/reduce. The total computation time on 

Orleans was roughly two orders of magnitude faster than the 

Dryad implementation on the same cluster. The primary reason 

for this disparity is that the Orleans implementation did not write 

data to disk after each iteration; instead it kept data in memory 

inside grains and passed it other grains by direct messaging. In 

addition, data partitioning in Dryad is static, while Orleans 

permitted dynamic load balancing that accommodated the varying 

amount of work for different blocks in a sparse matrix. Of course, 

this performance gain came at the cost of increased code 

complexity, as the Dryad implementation is simpler and more 

compact. 

6. RELATED WORK 
Orleans is built from a combination of techniques, 

borrowing many concepts from previous systems. However, we 

believe that the combination of design choices is unique and well 

suited as a comprehensive solution to building scalable cloud 

applications. 

6.1 Actors 
Actors are a well-known model for concurrent programming 

that form the basis for many programming languages [11], 

including Erlang [12], E [13], Thorn[14], and many others. 

Orleans extends the basic actor model with support for 

replication, transactions, and consistency. Replication in particular 

is a significant extension to the classical model, allowing Orleans 

systems to scale automatically when a single actor is heavily 

loaded. No other actor language intrinsically supports replication. 

Orleans, unlike Erlang, is based on an imperative language. 

Moreover, Orleans communication differs from Erlang, as it is 

based on a single mechanism that provides expressiveness and 

flexibility. Promises are inherently asynchronous, like Erlang 

messages, but are higher-level abstractions, comparable to 

Erlang’s synchronous RPC. 

Erlang libraries support transactions and failure replication; 

although the strong consistency semantics is built on mechanisms 

less scalable than Orleans. Erlang also differs in its distributed 

error handling mechanism, which requires a programmer to 

implement guard processes to handle system failures; an approach 

also feasible with Orleans promises. In addition, Orleans 

transactions provide an automatic mechanism for recovering from 

system failures, going beyond Erlang’s failure signaling 

capability. 

E is an object-oriented programming language for secure 

distributed computing. E has a concurrency model similar to 

Orleans, based on event loops and promises, but its unit of 

isolation and distribution is much larger: a “vat” containing many 

objects that can share state. E also lacks Orleans’s distributed 

runtime support for persistence, replication, migration, and 

transactions. 

Thorn is an object-oriented, dynamic language intended to 

bridge the gap between exploratory scripting and production 

development. It provides two different communications 

abstractions: synchronous RPCs and explicit Erlang-style send 

and receive. Thorn does not provide a promise-like mechanism to 

unify these two abstractions, and it lacks the distributed 

mechanisms provided by Orleans such as replication, migration, 

persistence, and transactions. 

6.2 Transactions 
Our distributed runtime employs well-known techniques to 

provide service availability (replication) and data reliability 

(persistence). However we use a novel set of techniques for state 

synchronization and distributed coordination. We combine the 

branch-and-merge update data model [3], with application-defined 

reconciliation strategies, for conflict resolution with lightweight 

transactions for isolating computation and providing a consistent 

view of a distributed state. 

Our distributed techniques strike a middle ground between 

the strong, full consistency and the weak, eventual consistency 

models. They provide sufficient guarantees for most applications 

while enabling high performance and a high degree of scalability. 

The traditional strong consistency model (linearizability for 

shared memory or serializability for transactions) provides strong 

guarantees for a developer, which facilitate programing and 

reasoning about the state of a distributed computation. However, 

this comes at a significant cost in performance, availability, and 

scalability. The weak eventual consistency model promises 

efficiency, availability, and scalability, but it is a complex 

programming model that requires a developer to explicitly reason 

about inconsistencies and handle with them in application code. 

Orleans provides a middle ground in this spectrum: each 

transaction sees a state that is strongly consistent with the 

transaction’s history. Independent transactions are isolated and 

merge their updates via well-defined application strategies. This 

allows for an efficient implementation that avoids global 

coordination or locking while providing a much simpler 

programming model than eventual consistency. 

6.3 Distributed Object Models 
Enterprise Java Beans (EJB), Microsoft’s Component 

Object Model (COM), and the Common Object Request Broker 

Architecture (CORBA) are all object-oriented frameworks for 

building three-tiered web applications. While they differ in detail, 

all are based on distributed objects, (primarily) synchronous 

RPCs, location transparency, declarative transaction processing, 

and integrated security. They share Orleans’s goals of offering a 

higher-level collection of abstractions that hide some of the 

complexity of building distributed systems, but are targeted at 

enterprise rather than cloud-scale applications. 

At a low level, Orleans differs from these in its embrace of 

asynchronous APIs as the programming model for all application 

component access. At another level, Orleans’s usage of multiple 

activations for scalability and failure tolerance is a significant 

capability difference. Orleans approach to consistency and 

transactions also makes a different trade-off between consistency 

and scale than the strict ACID semantics offered by the other 

frameworks. 

6.4 Other 
Map/reduce [6]  and dataflow (Dryad) [10] frameworks, are 

popular for large-scale distributed computations. The map/reduce 



 

model is well-suited to off-line processing of very large data sets, 

but does not support interactive requests that touch a small set of 

related data items. We intend to incorporate standard map/reduce 

features such as data/processing locality into Orleans, and are 

investigating the possibility of implementing a map/reduce 

framework and programming model similar to DryadLINQ [15] 

on top of Orleans. 

The linear algebra library demonstrates that Orleans can 

substitute for MPI [16]. MPI allows any general computation flow 

to be expressed, without the restrictions of map/reduce 

frameworks. Its main difference from Orleans is code complexity. 

MPI offers much lower level abstractions than Orleans: raw 

messaging, manual synchronization, no transactions and no 

asynchronous programming model.  

7. FUTURE WORK 
An on-going area of research is resource management. In 

Orleans, most resource management decisions revolve around 

activations: when and where should a new activation be created, 

rather than reusing an existing one? When should an existing 

activation be deactivated? At the next level of resources, Orleans 

also needs to grow and shrink the pool of server instances. 

Another important area for future work is in extending 

Orleans to run on devices such as PCs and smartphones in order to 

provide a seamless programming model for cloud software across 

both the client and servers. Client applications raise new issues 

such as disconnected and intermittently connected operation, 

untrusted or partially trusted systems, migration between client 

and server, and resource management across highly heterogeneous 

systems.  

A different, but equally important, direction is enhancing 

support for development and maintenance of large, long-live 

systems: software and API versioning, geo-distribution across 

data centers, and support for large data objects stored outside of 

Orleans.  

Finally, we intend to extend the graph library (Section 4.3) 

and to develop additional high-level libraries for common 

functionality, such as pub/sub messaging and map/reduce. 

8. CONCLUSIONS 
This paper described the design and implementation of 

Orleans, a programming model and software framework for cloud 

computing. Orleans defines an actor-like model of isolated, 

replicated grains that communicate through asynchronous 

messages and manage asynchronous computations with promises. 

Isolated state and the grains’ constrained execution model allow 

the Orleans runtime to persist, migrate, replicate, and reconcile 

grain state without programmer intervention. Orleans also 

provides lightweight, optimistic, distributed transactions that 

provide predictable consistency and failure handling for 

distributed operations across multiple grains. 

We believe that the Orleans framework can significantly 

simplify the development of cloud applications by encouraging 

the use of software architectures that produce predictable, 

scalable, and reliable outcomes. This is not a strong guarantee, as 

it is possible to write a bad program in any language. 

Nevertheless, Orleans consciously encourages successful cloud 

design patterns: 

 Cloud services achieve high throughput by processing 

multiple, independent requests concurrently. Orleans supports 

this style of computation by providing a programming model 

with strong isolation between grains, to prevent interference, 

and transactions spanning the grains processing a request, to 

ensure consistency among pieces of a single computation. 

 Shared memory parallelism can reduce the latency of 

processing a request, but threads, locks, and concurrency are 

fertile sources of errors. Orleans supports a simple, single-

threaded model within a grain, but permits parallelism 

between grains, albeit limited to message passing. In practice, 

nothing in the design or implementation of Orleans precludes 

internal parallelism, but it has not proved necessary yet. 

 Computers and networks fail in distributed systems, so error-

handling and recovery code is fundamental. Promises, by 

propagating errors equivalently with values, permit error-

handling code to be concentrated in one place, much like an 

exception handler, rather than spread across all of the 

delegates invoked by promises. In addition, the transactions 

that wrap external requests provide the capability to roll-back 

and re-execute a failed computation with no explicit 

application code. 

 Cloud applications must respond to varying and unpredictable 

workloads. Grain replication offers a simple, mostly 

transparent mechanism that permits Orleans to allocate more 

computing resources at bottlenecks in an application, without 

explicit decisions or actions by the application. Replicating a 

computation replicates its state and so introduces consistency 

problems, which Orleans handles with transactions and a 

multi-master, branch-and-merge update data model. Grain 

isolation also permits them to be migrated between servers, 

providing another mechanism for automatic load balancing. 

Orleans is currently being used by several projects inside 

Microsoft Research. It is too early to report on our experience, 

except to note that Orleans’ mechanisms and patterns are effective 

when used, and that training and education remains an important 

aspect of cloud software development. 
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