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SUMMARY

Nurr1, NGFI-B and Nor1 (NR4A2, NR4A1 and NR4A3, respectively) belong to the NR4A

subfamily of nuclear receptors. The NR4A receptors are orphan nuclear receptors, which

means that activating or repressing ligands for these receptors have not been found. NR4A

receptors are immediate early genes; their expression is rapidly induced in response to various

stimuli including growth factors and the parathyroid hormone (PTH). The studies concerning

the NR4A receptors in the central nervous system have demonstrated that they have a major

role in the development and function of the dopaminergic neurons of the midbrain and in

regulating hypothalamus-pituitary-adrenal-axis. However, the peripheral functions of the

NR4A family are largely unknown.

Cultured mouse primary osteoblasts, a preosteoblastic cell line and several

osteoblastic cell lines were used to investigate the role of NR4A receptors in osteoblasts.

NR4A receptors were shown to directly bind to and activate the promoter of the osteopontin

gene (OPN) in osteoblastic cells, thus regulating its expression. OPN is a major bone matrix

protein expressed throughout the differentiation of preosteoblastic cells into osteoblasts. The

activation of the OPN promoter was shown to be dependent on the activation function-1

located in the N-terminal part of Nurr1 and to occur in both monomeric and RXR

heterodimeric  forms  of  NR4A  receptors.  Furthermore,  PTH  was  shown  to  upregulate  OPN

expression through the NR4A family. It was also demonstrated that the fibroblast growth

factor-8b (FGF-8b) induces the expression of NR4A receptors in osteoblasts as immediate

early genes. This induction involved phosphatidylinositol-3 kinase, protein kinase C, and

mitogen activated protein kinase, which are all major pathways of FGF signalling. Nurr1 and

NGFI-B were shown to induce the proliferation of preosteoblastic cells and to reduce their

apoptosis. FGF-8b was shown to stimulate the proliferation of osteoblastic cells through the

NR4A receptors. These results suggest that NR4A receptors have a role both in the

differentiation of osteoblasts and in the proliferation and apoptosis of preosteoblast.

The NR4A receptors were found to bind to the same response element on OPN

as the members of the NR3B family of orphan receptors do. Experiments focussing on their

joint functions on OPN promoter were conducted. NR4A receptors and NR3B receptors were

overexpressed in several cell lines to study their activity in reporter assays. Mutual repression

was observed between the NR4A receptors and the NR3B receptors. This repression was

shown to be dependent on the DNA-binding domains of both receptor families, but to result

neither from the competition of DNA binding nor from the competition for coactivators. As
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the repression was dependent on the relative expression levels of the NR4As and NR3Bs, it

seems likely that the ratio of the receptors mediates their activity on their response elements.

Rapid induction of the NR4As in response to various stimuli and differential expression of the

NR3Bs can effectively control the gene activation by the NR4A receptors.

NR4A receptors can bind DNA as monomers, and Nurr1 and NGFI-B can form

permissive heterodimers with the retinoid X receptor (RXR). Permissive heterodimers can be

activated with RXR agonists, unlike non-permissive heterodimers, which are formed by RXR

and retinoic acid receptor or thyroid hormone receptor (RAR and TR, respectively). Non-

permissive heterodimers can only be activated by the agonists of the heterodimerizing partner.

The mechanisms behind differential response to RXR agonists have remained unresolved. As

there are no activating or repressing ligands for the NR4A receptors, it would be important to

find out, how they are regulated. This study aimed at revealing the mechanisms regulating the

expression and activity of NR4A receptors and their RXR heterodimers. Chimeras created

between the non-permissive RAR and the permissive Nurr1 were used in reporter assays.

Permissiviness of Nurr1/RXR heterodimers was linked to the N-terminal part of Nurr1 ligand-

binding domain. This region has previously been shown to mediate the interaction between

NRs and corepressors. Non-permissive RAR and TR, permissive Nurr1 and NGFI-B, and

RXR were  overexpressed  with  corepressors  silencing  mediator  for  retinoic  acid  and  thyroid

hormone receptors (SMRT), and with nuclear receptor corepressor in several cell lines. Nurr1

and NGFI-B were found to be repressed by SMRT. The interaction of RXR heterodimers with

corepressors was weak in permissive heterodimers and much stronger in non-permissive

heterodimers. Non-permissive heterodimers also released corepressors only in response to the

agonist of the heterodimeric partner of RXR. In the permissive Nurr1/RXR heterodimer,

however, SMRT was released following the treatment with RXR agonists. Corepressor

release in response to ligands was found to differentiate permissive heterodimers from non-

permissive ones. Corepressors were thus connected to the regulation of NR4A functions.

In summary, the studies presented here linked the NR4A family of orphan

nuclear receptors to the regulation of osteoblasts. Nurr1 and NGFI-B were found to control

the proliferation and apoptosis of preosteoblasts. The studies also demonstrated that cross-talk

with the NR3B receptors controls the activity of these orphan receptors. The results clarified

the mechanism of permissiviness of RXR-heterodimers. New information was obtained on the

regulation and functions of NR4A receptors, for which the ligands are unknown.
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ABBREVIATIONS

ACTH adrenocorticotropic hormone

AF-1 activation function 1

AF-2 activation function 2

ALP alkaline phosphatase

AR androgen receptor

CBP CREB-binding protein

CNS central nervous system

Col1A1 collagen type I alpha 1

CTE c-terminal extension

DBD DNA-binding domain

DR direct repeat

ER estrogen receptor

ERE estrogen response element

ERR estrogen-related receptor

ERRE ERR response element

FGF fibroblast growth factor

FGFR fibroblast growth factor receptor

FXR farnesoid X receptor

GR glucocorticoid receptor

GST glutathione S-transferase

HAT histone acetyl transferase

HDAC histone deacetylase

HPA hypothalamus-pituitary-adrenal axis

HRE hormone response element

LBD ligand-binding domain

LXR liver X receptor

MAPK mitogen activated protein kinase

NBRE NGFI-B response element

NCoR nuclear receptor corepressor

NGFI-B nerve growth factor inducible B

Nor1 neuron derived orphan receptor 1

NR nuclear receptor
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NTD amino-terminal domain

Nurr1 nur-related factor 1

NurRE nur-responsive element

OCN osteocalcin

4-OHT 4-hydroxytamoxifen

OPN osteopontin

PGC-1 peroxisome proliferator activated receptor  coactivator-1

PI-3K phosphatidylinositol-3 kinase

PKA protein kinase A

PKC protein kinase C

Pol II RNA polymerase II

POMC pro-opiomelanocortin

PPAR peroxisome proliferators-activated receptor

PR progesterone receptor

PTH parathyroid hormone

PTHR1 parathyroid hormone receptor 1

RANK receptor activator of nuclear factor- B

RANKL receptor activator of nuclear factor- B ligand

RAR retinoic adic receptor

Runx2 runt-related transcription factor-2

RXR retinoid X receptor

SMRT silencing mediator for retinoic adic and thyroid hormone receptors

SRC steroid receptor coactivator

SRM selective receptor modulator

TH tyrosine hydroxylase

TR thyroid hormone receptor

VDR vitamin D3 receptor
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REVIEW OF THE LITERATURE

1. Nuclear receptor signalling

1.1 Superfamily of nuclear receptors

A living organism is capable of responding to signals that it receives from the surrounding

environment. In a multicellular organism, the signalling molecules are secreted by endocrine

organs, the surrounding cells, or by the target cell itself. There are several types of signalling

molecules, such as small peptides, polypeptides and lipids. Some molecules, e.g. fatty acids

and plant derived phytochemicals, are obtained via food intake. The signalling molecules,

ligands, are bound by several specific receptors. These receptors are located either on the cell

surface or inside the cells. The binding of a ligand to a cell surface receptor usually leads to

the activation of kinases. Kinases activate a cascade of phosphorylations, which leads to

activation or repression of transcription factors and to upregulation or downregulation in the

transcription of target genes, respectively. Nuclear receptor (NR) ligands are lipid-soluble

compounds that can penetrate through the cell membrane and bind to their compatible

intracellular receptors (Gronemeyer et al. 2004). NRs are devided into families and

subfamilies based on their structure and evolution (Escriva et al. 2004). Steroid receptors

belong to the superfamily of nuclear receptors, and include the receptors for androgens,

estrogens, progestins, mineralocorticoids and glucocorticoids (Mangelsdorf et al. 1995,

Aranda and Pascual 2001). Non-steroidal NRs include the receptors for thyroid hormones,

retinoids and vitamin D (Aranda and Pascual 2001). In addition, several other NRs are

controlled with ligands of varied structure (Hummasti and Tontonoz 2008). The nuclear

receptor superfamily also includes a group of structurally similar proteins with no identified

or natural ligands. These receptors are called orphan receptors (Laudet 1997, Giguere 1999).

The family of nuclear receptors regulates multiple and diverse functions

connected to development, growth, reproduction, and homeostasis (Novac and Heinzel 2004).

The NR family consists of receptors that bind specific sequences on DNA to regulate

transcription. In addition to NRs themselves, many other proteins are involved in the NR-

mediated regulation of transcription. Some coregulators, namely coactivators and
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corepressors, bind to the receptor containing complexes and enhance or inhibit the

transcriptional effects by the receptor, respectively (Aranda and Pascual 2001).

1.2 Structure of nuclear receptors

The  majority  of  the  NR  superfamily  members  have  the  same  structure;  they  are  formed  by

successive domains with different functions (fig. 1, Mangelsdorf and Evans 1995). The

amino-terminal domain (NTD) is the most variable domain among different NRs, both in

length and sequence. It includes a ligand-independent activation function-1 (AF-1) region

(Evans and Hollenberg 1988, Tora et al. 1989, Simental et al. 1991) and can interact with

coregulators (Ikonen et al. 1997, Hittelman et al. 1999, Aranda and Pascual 2001).

The DNA-binding domain (DBD) is the most conserved domain in NRs. The

DBD interacts with DNA and is involved in receptor dimerization and interactions with

coregulatory proteins (Baumann et al. 1993, Lee et al. 1993, Berglund et al. 1997). It is also

required for cross-talk with other transcription factors such as NF- B and AP-1 (Aarnisalo et

al. 1999, Björnström and Sjöberg 2002).

Fig. 1. The modular structure of nuclear receptors. NTD, the amino-terminal domain; DBD, the DNA-

binding domain; H, the hinge; LBD, the ligand-binding domain. The main functions of each domain

are shown. AF-1, the activation function-1; AF-2, the activation function-2.

The ligand-binding domain (LBD) is formed of 12 helices (H1-H12). It contains

a pocket-like structure between the folded helices, the ligand-binding pocket, needed for

ligand binding. LBD also contains a dimerization surface and a second activation function

region, AF-2 (Moras and Gronemeyer 1998).

NTD HDBD LBD COOHNH2

AF-1
coregulator binding

DNA binding
dimerization

ligand binding
dimerization
AF-2

coregulator binding
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The hinge domain serves as a hinge between the DBD and LBD and allows the

rotation  of  the  LBD with  respect  to  DBD.  In  many cases,  the  hinge  also  includes  a  nuclear

localization signal and residues that are involved in corepressor interaction (Hörlein et al.

1995, Daury et al. 2001, Nascimento et al. 2006, Haelens et al. 2007).

The conserved structure and amino acid content of NRs has led to theory that all

NRs have evolved from one or very few ancestral NRs (Owen and Zelent 2000, Escriva et al.

2004). All NRs also share the basic mechanisms of action, and all multicellular organisms

possess some kind of NR activity (Owen and Zelent 2000). The NR superfamily is further

divided into subfamilies consisting of closely related NRs (see fig. 2). Mutations during the

evolution of organisms have also changed the sequence and functions of NRs. This has

enabled more complex regulation of a more complex organism.

Fig. 2. Nuclear receptors are divided into subfamilies based on the structural similarities of DBD and

LBD. Subfamilies are further divided into groups. Group members are usually named using Greek

symbols. This figure shows the division of selected NRs. Modified from Nuclear receptor

nomenclature committee 1999.

Thyroid hormone receptor TR NR1A1

TR NR1A2

Retinoic acid receptor RAR NR1B1

RAR NR1B2
RAR NR1B3

Retinoid X receptor RXR NR2B1

RXR NR2B2
RXR NR2B3

Estrogen receptor ER NR3A1

ER NR3A2

Glucocorticoid receptor GR NR3C1

Estrogen receptor-related receptor ERR NR3B1

ERR NR3B2

ERR NR3B3

NGF-induced factor B NGFI-B NR4A1

Nur related factor 1 Nurr1 NR4A2

Neuron-derived orphan receptor 1 Nor1 NR4A3

Thyroid hormone

receptor-like

Retinoid X

receptor-like

Estrogen

receptor-like

Nerve growth

factor IB-like

Subfamily Group Trivial
name

Gene
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1.3 Nuclear receptor ligands

The classical NRs are regulated by ligands. The regulatory system composed of hormones,

receptors and their functions is complex, and it has taken time to understand the basic events.

At the beginning of the 20th century, hormones were isolated based on their abilities to

control development, cell differentiation and organ physiology (Mangelsdorf et al. 1995).

Radiolabeled ligands helped to recognize the proteins that were affected by the ligands and

translocated to the nucleus (Jensen et al. 1966). Later, these proteins were found to be nuclear

receptors (Yamamoto 1985). After the cDNAs of the glucocorticoid receptor and estrogen

receptor (GR and ER, respectively) were solved in 1985, more nuclear receptors have been

found based on the similarities between the sequences and, in particular, those of the DBD

(Mangelsdorf et al. 1995). Some of these receptors have been identified as the targets for

known hormones, but many were classified as orphan receptors, because their

hormones/ligands were unidentified at the time (Giguere et al. 1988). Since NRs have major

roles in controlling the metabolism, reproduction, and well-being of a person, pharmaceutical

studies targeting NR functions have been extensive. Studies concerning drug design have also

advanced the knowledge of NR functions and helped in the search for natural ligands. Several

ligands have been identified by analyzing receptor activity after treating cells with tissue

extracts, pharmacological compounds or natural chemicals (Heyman et al. 1992, Bocos et al.

1995, Willy et al. 1995, Lambe and Tugwood 1996, Tremblay et al. 2001). Also other

methods, such as scintillation proximity assay and fluorescence resonance energy transfer,

have been used to identify NR ligands (Nichols et al. 1998, Zhou et al. 1998). Over 10 % of

the medically usefull drugs act by binding the LBDs of NRs (Goodwin and Moore 2004).

NR ligands can be natural or synthetic. Examples of natural and synthetic NR

ligands are given in fig. 3. Steroid hormones are synthesized from cholesterol and

iodothyronine hormones from tyrosine. Steroid and thyroid hormones are sythesized in

specialized cells, for example testosterone in the Leydig cells of the testis, and

triiodothyronine by the follicular cells of the thyroid gland. Inactive forms of vitamin A and D

are  obtained  via  food  intake,  vitamin  D  prescursor  can  also  be  synthesized  in  the  skin.

Retinoic acids are formed by oxidations from dietary vitamin A by non-specialized cells

(Hardikar and Suchy 2005 p. 1001), and the active form of vitamin D, calcitriol, is formed in

the liver and kidneys by successive hydroxylations of the inactive vitamin D (Barret and

Barret 2005 p. 1095).
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Fig. 3. Examples of NR ligands. N, natural; S, synthetic; SERM, selective estrogen receptor

modulator. Additional abbreviations and references are in the text.

Nuclear receptors bind agonists and antagonists, i.e. activators and repressors,

respectively. Inverse agonists are compounds that bind to the receptors and stabilize the

inactive conformation of the receptor, thus having repressing effect on the basal

transcriptional activity (Gronemeyer et al. 2004). Selective receptor modulators (SRMs) are

ligands that have an agonistic or antagonistic character in a cell and tissue context dependent

manner. It is suggested that the agonistic or antagonistic character is due to different

coregulator pools present in different cells (Smith and O’Malley 2004).

The theory that all NRs are evolved from one ancestral receptor is supported by

the evidence indicating that ligands are partially conserved. For instance, the same ligand, 9-

cis retinoic acid, binds its receptor with same the specificity in jellyfish as in humans

(Kostrouch et al. 1998). Biosynthesis of steroid hormones is composed of successive

enzymatic steps. Steroid receptors and converting enzymes are to some degree found in

primitive water vertebrates, but more complete system is present in land vertebrates (Baker

2004). ER has been reported to be the most ancient steroid receptor and other steroid

receptors have evolved from it by series of duplications (Baker 2004). The  volume  of  the

natural ligands is also suggested to be conserved. For example, the volumes of estradiol,

+/
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RAR

AR
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FXR
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4-OHT
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testosterone, cortisol, thyroid hormone, and retinoic acids are very much alike, even though

these ligands have varying molecular weights (Bogan et al. 1998).

1.4 Ligand-binding domain and ligand-dependent activation of nuclear receptors

The  studies  on  the  crystal  structures  of  the  LBDs  of  various  nuclear  receptors  have

demonstrated that the LBDs have a common structure. The LBD consists of 12 -helices (H1

to H12) and one -turn arranged in an antiparallel -helical sandwich forming a structure that

buries the ligand-binding pocket within the core of the LBD (Wurtz et al. 1996, Wang et al.

2003). Ligand binding alters the conformation of the LBD and results in altered localization

of NR and changes in the associated proteins (Togashi et al. 2005).

To activate gene transcription, nuclear receptors have to be in the nucleus. The

cellular localization prior to ligand binding varies among different steroid receptors. GR is

mostly located in the cytoplasm, and the ligand induces the dissociation of the heat shock

proteins and GR is transported to nucleus (Picard and Yamamoto 1987, Sackey et al. 1996).

In contrast to GR, unliganded ER and the progesterone receptor (PR) seem to be mostly

nuclear (Htun et al. 1999, Lim et al. 1999). Non-steroidal receptors, such as the retinoic acid

receptor,  retinoid  X receptor,  and  vitamin  D receptor  (RAR,  RXR,  and  VDR,  respectively),

bind DNA but do not activate transcription in the absence of ligands, they rather repress it

(Aranda and Pascual 2001).

NR LBDs without a ligand are in an open apo conformation, and ligand binding

induces a change into a closed holo conformation (Egea et al. 2000). Upon binding of an

agonistic ligand, H10, H11 and H5 are repositioned. This leads to “closing” of the ligand-

binding pocket formed by the LBD with H12 (Renaud et al. 1995). The ligand-induced

repositioning of H12 provides the surface(s) for coactivator interactions and generates the

active  AF-2.  In  cases  of  constitutively  active  receptors,  such  as  Nurr1,  NGFI-B  and  ERR

(estrogen-related receptor ), the H12 is constantly in an active position (Greschik et al. 2002,

Wang et al. 2003, Sablin et al. 2003, Suino et al. 2004). The binding of an antagonistic ligand

induces a conformation distinct from the agonist-induced conformation; in the antagonist-

induced conformation, H12 is placed in an "antagonist position", which means that the

receptor adopts an inactive conformation. In this conformation, coactivators cannot interact

with the receptor (Egea et al. 2000). The crystal structure of the peroxisome proliferators-
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activated receptor  (PPAR ) LBD bound to an antagonist and a corepressor SMRT

(silencing mediator for retinoic adic and thyroid hormone receptors) shows that the

antagonist-bound receptor adopts a conformation which favours the binding of corepressors

(Xu et al. 2002). The crystal structure of ER  LBD complexed with the partial antagonist

raloxifen shows that ER  has the antagonistic conformation (Brzozowski et al. 1997). In

contrast, in the ER  LBD bound to a pure ER antagonist ICI 164,384 the H12 is highly

mobile and the AF-2 structure is inactivated (Pike et al. 2001). It has been suggested that a

pure estrogen antagonist also flips H12 to a position that disturbs the activity of AF-1 (Pike et

al. 2001). In conclusion, the binding of ligands induces conformational changes in the LBDs,

affecting the H12 in particular, thus regulating the AF-2 and the binding of coregulators.

1.5 The DNA-binding domain

Nuclear receptors activate transcription by binding to hormone response elements (HREs)

usually located upstream of the transcription initiation site (Chandler et al. 1983, Ham et al.

1988, Pascussi et al. 2003, Wulf et al. 2008). NRs generally interact with the major groove of

DNA, as it is wider and thus exposes more functional groups than the minor groove

(Khorasanizadeh and Rastinejad 2001). The DBDs of NRs consist of three helices that form

two zinc-finger modules, each with four cysteines arranged around zinc2+ ions (Kellenbach et

al. 1991). The first helix extends from the C-terminal part of the first zinc-finger to the region

between the two zinc-fingers and contains the amino acids responsible for the sequence-

specific recognition of the DNA (Claessens and Gewirth 2004). Five amino acids in the base

of the first zinc finger termed the “P-box” are are especially important for the recognition of

the HRE sequence (Carson-Jurica et al. 1990). The amino acids in the first helix, responsible

for the sequence-specific DNA binding (CGSCKVF), are 100% conserved among all but one

of  the  steroid  hormone  receptors  (Tsai  and  O’Malley  1994).  The  “D-box”  (amino  acids

CRGSKD) of the base of the second zinc finger partly mediates the DNA binding-dependent

dimerization of certain receptors, like GR and ER (Freedman 1992). The third helix stretches

from the C-terminal end of the second zinc-finger into the C-terminal extension (CTE) of the

DBD. CTE contains an A-box which is responsible for recognizing the sequence preceding

the  classical  response  element  (Wilson  et  al.  1992).  CTE  also  contains  a  T-box  which  is

important for HRE recognition of nuclear receptor dimers (Zechel et al. 1994).
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1.6 Response elements on DNA

HREs consist of consensus sequences. When NRs bind DNA as dimers, usually two closely

situated HREs, half-sites, are needed. The identity of an HRE resides in three features: the

sequence of the base pairs in the half-sites, the number of base pairs between the half-sites,

and the relative orientation of the two half-sites (Glass 1994, Zechel et al. 1994, Umesono et

al. 1991). Each receptor dimer that binds DNA has to recognize the sequences, spacing and

orientation of the half-sites within their HREs (Claessens and Gewirth 2004). In a widely

accepted model, HREs typically contain two consensus hexameric half-sites. Steroid receptors

recognize the half-site consensus sequence AGAACA, while ERs and other NRs bind to the

half-site consensus sequence AGGTCA (Glass 1994, Umesono et al. 1991). RXR seems to

recognize specifically only 3 of the 6 bases of the half-site, and it has been suggested that

RXR is more relaxed in HRE specificity (Zhao et al. 2000). Monomeric (single) NRs bind to

a  single  half-site  (Glass  1994).  Most  receptors  bind  HREs  as  homodimers  (a  dimer  formed

between two similar NRs, eg. steroid receptors) or heterodimers (a dimer formed between two

different NRs, eg. non-steroidal receptors). Interfaces formed by the D-box are responsible for

the spacing distance between the two half-sites of the palindromic HRE (Freedman 1992).

Dimeric receptors bind to response elements containing two half-sites that can be arranged as

direct repeats (DRs) with zero to five spacing bases (Glass 1994). DRs separated by 3, 4, or 5

bases mediate preferentially regulation by vitamin D, thyroid hormone, and retinoic acid,

respectively (Umesono et al. 1991), but other DRs are also acceptable (see fig. 4).

Dimerization and flexibility in HRE binding add complexity to gene regulation.

1.7 Dimerization of nuclear receptors

Dimerization of nuclear receptors is mostly mediated by the LBD (Perlmann et al. 1996), but

also  to  some  extent  by  DBD.  The  dimerization  process  of  ER  has  been  studied  in  detail

(Brzozowski et al. 1997). In ER, dimerization is mediated by the H11 helices of each receptor

that interact via a stretch of conserved residues at their aminoterminal ends. Additional dimer

interactions are provided by regions of H8, the loop between helices H9 and H10, and H10

(Brzozowski et al. 1997). This way of forming dimers appears to be common for NRs, as
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similar arrangements are observed for the unliganded RXR and for both the unliganded and

liganded PPAR  (Bourguet et al. 1995, Nolte et al. 1998).

Steroid  receptors  form  homodimers,  with  the  exception  of  ER.  ER  has  two

isoforms, ER  and ER , which can form heterodimers with each other (Cowley et  al.  1997,

Whitfield et al. 1999). Many non-steroidal nuclear receptors, such as the thyroid hormone

receptor (TR) bind DNA as monomers, homodimers or as heterodimers with RXR (Rastinejad

2001). TR can form heterodimers also with RAR (Glass et al. 1989, Lee and Privalsky 2005).

Formation of different homodimers or heterodimers alters the functions and

transcriptional activity of the receptors. ER /ER  heterodimers activate transcription more

efficiently than ER  homodimers but less efficiently than ER  homodimers (Cowley et al.

1997). In the case of TR, the favoured response element of the DNA changes when it binds as

a monomer, homodimer or heterodimer. As a monomer, TR  barely binds response elements,

but as a homodimer the binding is rather strong. The binding is enhanced even further upon

heterodimerization with RXR or RAR (Lee and Privalsky 2005, Velasco et al. 2007).

TR/RXR and TR/RAR heterodimers activate response elements efficiently (Lee and Privalsky

2005, Velasco et al. 2007). In addition, binding of triiodothyronine changes the dimerization

of TRs and affects DNA binding (Andersson et al. 1992).

Some orphan nuclear receptors (e.g. Nor1 and the retinoid-related orphan

receptors) regulate transcription only as monomers, whereas other orphan receptors can also

form homodimers or heterodimers (Giguere 1999). Orphan nuclear receptors can form

heterodimers either with RXR (Giguere 1999) or among their own subfamily or group

members (Maira et al. 1999, Huppunen and Aarnisalo 2004). Some orphan NRs form

heterodimers with both RXR and subfamily members (Maira et al. 1999). In conclusion,

monomeric, homodimeric and heterodimeric receptors bind DNA differently, bind to response

elements, and regulate gene expression.

1.7.1. RXR as a dimerization partner

RXR  was  first  identified  due  to  its  similarity  with  RAR  (Mangelsdorf  et  al.  1990).  Shortly

after its identification it was recognized that this protein was forming heterodimers with VDR,

TR  and  RAR  on  their  HREs  and  was  required  for  high  affinity  DNA  binding  of  these

receptors (Yu et al. 1991, Kliewer et al. 1992a, Kliewer et al. 1992b). Since then, these and
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several other non-steroidal nuclear receptors have been shown to heterodimerize with RXR,

including Nurr1, NGFI-B, PPARs, LXR (liver X receptor) and FXR (farnesoid X receptor;

Rastinejad 2001). Non-steroidal receptors heterodimerize with RXR more often than form

homodimers. Heterodimers formed between TR and RXR are activated by low TR agonist

concentrations more efficiently than by TR alone, and their activity is greatly enhanced by

low concentrations of retinoic acid (Zhang et al. 1992). In general, RXR heterodimers are

more  potent  activators  than  monomers  or  homodimers  (Umesono  et  al.  1991,  Zhang  et  al.

1992, Forman et al. 1995). As mentioned earlier, the RXR-heterodimeric partners are

separated from RXR on DNA by bases according to the 1-to-5 rule (see fig. 4, Glass 1994).

This means that the number of bases between the half-sites can vary from one to five and that

the preferred dimerization partner changes as the number of bases changes. Each base

between the half sites changes the distance and binding angle between the partners. The

dimerization surfaces that RXR uses for heterodimerizing with different partners are partly

selective (Lee et al. 2000, Aarnisalo et al. 2002).  In addition, the binding of RXR to DNA is

flexible (Holmbeck et al. 1998, Zhao et al. 2000). The heterodimerizing surface of RXR is

different  from that  of  any  other  mammalian  NR,  as  it  has  unique  structures  in  H9 and  H10

(Gampe et al. 2000), and, indeed, RXR is the only mammalian NR capable of

heterodimerizing with multiple partners.

RXR heterodimers are classified into two major groups, non-permissive and

permissive heterodimers (see fig. 4, Mangelsdorf and Evans 1995, Forman et al. 1995). Non-

permissive heterodimers are only activated by the ligands of the heterodimerizing partner

receptor. Permissive heterodimers are activated by the ligand of the partner, but they allow

effective  activation  by  RXR  ligands  as  well.  On  the  basis  of  the  crystal  structures  of  non-

permissive RAR/RXR and permissive PPAR /RXR heterodimers it has been concluded that

PPAR  H12 interacts with helix 7 of RXR LBD. This interaction is lacking in RAR/RXR

heterodimer (Gampe et al. 2000, Bourguet et al. 2000). The interaction could stabilize the

PPAR  H12 in a position that permits interactions with coactivators even in the absence of a

PPAR  agonist and may provide a structural basis for the permissivity of PPAR /RXR

heterodimers (Gampe et al. 2000, Bourguet et al. 2000). The binding of corepressors, the

conformation  of  RXR,  the  specific  ligand  itself,  and  the  precise  nature  of  the  HRE are  also

likely to play a role in the regulation of permissiveness (Niessen et  al.  1996, DiRenzo et  al.

1997, Ahuja et al. 2003). The spacing between the half-sites does not seem to influence to

permissiviness (fig. 4).
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Fig. 4. Schematic illustration of the direct repeat (DR) binding sites of RXR heterodimers, the specific

dimerization  partners  on  each  DR,  and  the  permissiviness  (+,  permissive;  -,  non-permissive)  of  the

heterodimers. n represents any base in between the half-sites.

Coregulators seem to function differently in permissive and non-permissive

RXR heterodimers. Permissive partner receptors are bound to the corepressors in the absence

of their own agonist (Direnzo et al. 1997). In the absence of RXR agonist, RXR does not bind

coactivators nor corepressors (Zhang et al. 1999). It has been suggested that in permissive

RXR heterodimers coactivators are bound to RXR or the partner receptor in response to either

RXR or partner agonist. Agonist binding to both receptors in the permissive dimer can result

in synergistic effect and further enhance the binding of coactivators (Ahuja et al. 2003).

Furthermore, it seems that the binding of an RAR ligand to RAR/RXR heterodimers blocks

the coactivator binding triggered by RXR agonist (Germain et al. 2002). There are also non-

classical RXR heterodimers, since the heterodimers formed by RXR and the constitutive

androstane  receptor  seem to  be  either  permissive  or  non-permissive  depending  on  the  HRE
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(Tzameli  et  al.  2003).  The  role  of  corepressors  in  regulating  the  permissiviness  of  RXR

heterodimers has remained unclear.

1.8 Transcriptional regulation by nuclear receptors

The DNA of a cell is packaged into a protein/DNA structure, chromatin. Chromatin consists

of DNA bound to histones, and DNA can be either inaccessible or accessible to transcription

factors depending on the state of the chromatin. Heterochromatin means tightly packed,

inaccessible chromatin, euchromatin is loose and accessible to transcription. Chromatin can

be made accessible in different ways, e.g. by ATP-dependent remodelling, ubiquitination,

and, most importantly, the the actions of histone acetyl transferases (HATs) which acetylate

the lysines in histones’ tails (see fig. 5). Acetylation decreases the interaction between

histones and DNA, and results in loosened euchromatin (Struhl 1998, Verdone et al. 2005,

Kinyamu et al. 2005, Choundary and Varga-Weisz, 2007).

NRs can  bind  specific  DNA elements  both  in  the  absence  (non-steroidal  NRs)

and presence (steroid receptors) of ligands. Upon ligand binding, NRs are released from

corepressors or heat shock protein-complexes, and coactivators can bind to the receptor and

activate the AF-2 (Greshik and Moras 2003). When activating transcription, NRs loosen the

chromatin to euchromatin with the help of coactivators with HAT activity (see below). Once

the chromatin is loosened and the DNA is “open” and accessible to transcription, the basal

machinery  of  transcription  forms  the  preinitiation  complex  (Kumar  et  al.  2004).  Genes  are

transcribed to mRNA and to new proteins. After transcription, chromatin is packed to

heterochromatin again by histone deacetylases (HDACs, Struhl 1998). HDACs are recruited

to NR by corepressors. NRs therefore control gene expression by loosening and unloosening

the chromatin. NRs do this by HATs and HDACs present in the coregulatory proteins.
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1.9 Corepressors and coactivators

NR activity is modulated by interactions with corepressors and coactivators, and these

interactions inhibit or enhance the transcriptional activity of NRs, respectively. Antagonists

recruit corepressors to the LBD, resulting in a complex that repsesses transcription, whereas

agonists enable the binding of coactivators and activate transcription (Dotzlaw et al. 2003).

SMRT and NCoR are related corepressors that interact with HDAC-3, a member

of the histone deacetylace family. The complexes formed by NRs, corepressors, and the

HDAC-3 tighten the chromatin by deacetylations, thus repressing transcription (fig. 5,

Heinzel et al. 1997, Guenther et al. 2000, Wen et al. 2000, Li et al. 2000).

Fig. 5. Corepressor and coactivator complexes are bound to NR and tighten or loosen chromatin with

their  HDAC  and  HAT  activities,  respectively.  Pol  II  is  recruited  to  loosened  DNA  by  NR  or

coactivator complex, and the gene is transcribed to mRNA (adapted from Dilworth and Chambon

2001, Lonard and O’Malley 2007)

SMRT and NCoR seem to be responsible for the repressing effect of unliganded, DNA bound

RAR  and  TR  (Hörlein  et  al.  1995,  Glass  and  Rosenfeld  2000).  NCoR  and  SMRT  are  also

recruited by antagonist-bound steroid receptors (Lavinsky et al. 1998).

Coactivators, such as CREB-binding protein (CBP) and steroid receptor

coactivator (SRC) -1, -2, and -3, are suggested to mediate transcription in two major modes.

They modify the chromatin structure with their HAT activity. Additionally, they may interact

with basal transcription factors and with polymerase II (Pol II; Wärnmark et al. 2003). Pol II

is responsible for the transcription of genes to mRNA. Coactivators thus bridge the NRs to the

transcriptional machinery (Kwok et al. 1994, Nakajima et al. 1997, Chen et al. 1999, Dilworth

HRE

NR NR

Corepressors

Coactivators

Gene

transcription

SMRT

HDAC

NCoR

Histone

deacetylation

PGC-1

Histone

acetylation

HAT
CBP

PolII

DNA



24

and Chambon 2001). CBP is also capable of interacting with SRCs through its C-terminal

domain  (Yao et  al.  1996).  PGC-1 (PPAR  coactivator-1)  is  a  coactivator  that  interacts  with

CBP and SRCs to obtain HAT activity to the NR complex. It also interacts with the Mediator,

a large activating complex formed by numerous proteins that enhances transcription by

further interacting with Pol II (Malik and Roeder 2000, Finck and Kelly 2006).

1.10 Non-classical functions of nuclear receptors

1.10.1 Ligand-independent activation of nuclear receptors

The functions of nuclear receptors are also regulated in a ligand-independent manner. This

means that NRs are activated, bind to their HRE and initiate transcription without ligand

binding (Weigel and Zhang 1998). In this respect, post-translational modifications play a

major role. Most of the members of the nuclear receptor family are phosphoproteins (Weigel

1996) and they can be activated by phosphorylation, regardless of ligand binding. PR was

found to be activated by phosphorylation in a ligand-independent manner in 1990. This was

found to derive from the activation of the protein kinase A (PKA) pathway (Denner et al.

1990). Since then, several nuclear receptors including ER, androgen receptor (AR) and

PPAR  have been shown to be activated in a ligand-independent manner by e.g.

phosphorylations, sumoylations, or methylations (Darne et al. 1998, Patrone et al. 1998,

Poukka et al. 2000, Sadar et al. 2000, Schreihofer et al. 2001, Al-Rasheed et al. 2004, Pierson-

Mullany and Lange 2004, Al-Ghnaniem et al. 2007). Phosphorylation can occur on distinct

parts of the receptor (Gioeli et al. 2002), but it has been suggested that it mainly functions to

regulate, either activate or repress, the AF-1 (Miller et al. 2005, Thomas et al. 2008). In

addition, it has been suggested that phosphorylations and other post-translational

modifications also regulate the functions of HSPs and coactivators thus regulating

transcriptional activity of NRs (Weigel and Zhang 1998, Ueda et al. 2002, Saporita et al.

2007).

Orphan nuclear receptors have also been shown to be modulated by post-

translational modifications in ligand-independent manner (Hammer et al. 1999, Khan et al.

2005, Lee et al. 2005). For example, the orphan nuclear receptor TR2 was found to be
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phosphorylated at two different serines by the PKC pathway. Phosphorylation of the more C-

terminal serine was found to be critical for the activity of TR2 (Khan et al. 2005). The orphan

nuclear receptor COUP-TFI (chicken ovalbumin upstream promoter transcription factor I) has

been shown to be phosphorylated by two different pathways, resulting in differential

outcomes on its activity (Gay et al. 2002). Post-translational modifications could thus provide

an important ways of controlling the activity of orphan nuclear receptors.

1.10.2 Non-genomic functions of nuclear receptors

In the classical model of NR action, ligand binding leads to a conformational change in the

NR structure and results in binding of coactivators and/or releasing of corepressors. The

ligand-receptor complex binds the HREs of the target genes and this leads to the regulation of

gene transcription (Aranda and Pascual 2001). The genomic effects of NRs usually have

response times from hours to days. There have been implications of a much more rapid,

seconds to minutes, response for ligands. The rapid response can be seen even in the presence

of specific inhibitors of transcription or translation. These responses are termed non-genomic

effects (Lösel and Wehling 2003). Non-genomic effects are regulated by binding of a ligand

to a receptor, which leads to activation of signalling cascades and to changes in cell function,

but does not involve DNA-binding of the receptor (Lösel and Wehling 2003).

Steroids have a wide range of non-genomic functions in different cell types

(Schwartz et al. 1996, Baldi et al. 1998, Whiting et al. 2000). Non-genomic effects can be

regulated in two ways. Firstly, steroid receptors present on the plasma membrane can transmit

the signal into the cell. Secondly, large concentrations of steroids produce non-genomic

effects by altering membrane fluidity without receptor binding (Wehling 1997, Rauch and

Flint 2008). All the major signalling pathways (PKA, protein kinase C, PKC;

phosphatidylinositol-3 kinase, IP-3k; mitogen activated protein kinase, MAPK) and transport

systems  seem  to  have  a  role  in  mediating  the  non-genomic  effects  of  different  ligands

(Migliaggio et al. 1996, Kousteni et al. 2003). It has been suggested that at least ERs may be

present at the cell surface (Norfleet et al. 1999, Taleghany et al. 1999, Powell et al. 2001).

Small amounts of ER are located at the cell membrane (Zhang et al. 2002) and these receptors

can mediate the effects of different growth factors (Levin 2003). It seems that non-genomic

effects of steroids are more prevalent than originally assumed.
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2. Orphan nuclear receptors

In addition to ligand-regulated NRs, there is a large group of proteins termed orphan nuclear

receptors. These receptors were first recognized based on their resemblance to classical NRs

and their ligands were unknown (Giguère 1999). Since their identifications, some orphan NRs

have been found to respond to synthetic or natural ligands (see fig. 3). For example, PPAR

has been shown to bind several natural (e.g. fatty acids and eicosanoids) and synthetic ligands

(e.g. thiazolidinediones and 5-aminosalicylic acid, Desvergne and Wahli 1999, Toth et al.

2007). Some of the orphan nuclear receptors are still devoid of known ligands.

2.1 NR4A subfamily of orphan nuclear receptors

The NR4A subfamily consists of three members, the nerve growth factor inducible B, (NGFI-

B, also known as NR4A1, Nur77, TR3), nur-related factor 1, (Nurr1, NR4A2, TINUR, NOT)

and neuron derived orphan receptor 1 (Nor1, NR4A3, MINOR, Milbrandt 1988, Law et al.

1992, Ohkura et al. 1996). NGFI-B was found to be induced when cells were treated with the

nerve growth factor (Milbrandt 1988), and Nurr1 and Nor1 were cloned due to their

resemblance to other nuclear receptors (Law et al. 1992, Ohkura et al. 1996). Based on their

sequence homology, NGFI-B, Nurr1 and Nor1 were suggested to form a subfamily (Law et

al. 1992, Ohkura et al. 1996, Giguere 1999). A Drosophila homolog DHR38 and a C. Elegans

homolog CeNHR-6 also belong to this group (Sutherland et al. 1995, Maglich et al. 2001).

Some reviews have set the NR4A receptors as an evolutionary lineage of their own among all

NRs (Escriva-Garcia et al. 2003). Some identify the ERRs as close relatives and the other

orphan receptors as more distinct ones (Benoit et al. 2006).

2.1.1 Structure of NR4A receptors

The structure of the NR4As is similar to that of ligand-regulated NRs. They share high

homology in the DBD, moderate in the LBD, and the N-terminus has more differencies (fig.
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6,  Maruyama  et  al.  1997).  The  crystal  structures  of  Nurr1  and  NGFI-B  LBDs  have  been

resolved and show that they both consist of 12 helices and that the ligand-binding pocket is

filled with bulky sidechains from residues that are conserved in the family. This suggests that

these receptors do not bind lipophilic ligands in the classical way (Wang et al. 2003, Flaig et

al. 2005).

Fig. 6. The structure and sequence homology of NR4A receptors. The similarity between different

domains compared to those of NGFI-B are given in prosentage. AF-1, activation function-1; AF-2,

activation function-2; NTD, N-terminal domain; DBD, DNA-binding domain; H, hinge domain; LBD,

ligand-binding domain.

2.1.2 NR4A receptor expression

Nurr1 is expressed at high levels in the central nervous system (CNS), especially in the

dopaminergic neurons of the midbrain (Saucedo-Cardenas and Conneely 1996, Zetterström et

al. 1996a, 1996b). It is also detected in peripheral tissues such as adrenals, liver, and bone

(Scearce et al. 1993, Honkaniemi et al. 2000, Tetradis et al. 2001a). NGFI-B is widely

expressed in peripheral tissues including lung, liver, kidney, adrenals, and bone (Davis and

Lau 1994, Ohkubo et al. 2002, Shin et al. 2004, Pirih et al. 2005). Nor1 expression is high in

the pituitary gland and lower in kidney, skeletal muscle and adrenals (Ohkura et al. 1996,

Marayama et al. 1997). During development, NGFI-B expression starts at E16,5 (Milbrandt

1988), Nurr1 and Nor1 expression can be seen already at E7 (Cheng et al. 1997, DeYoung et

al. 2003).
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The expression of the receptors of the NR4A subfamily is strongly induced by

external stimuli. NR4As are expressed as immediate early genes (stress response genes) with

maximum induction after only 30 to 60 minutes after stimulation in tissues such as adrenals

and bone (Honkaniemi et al. 2000, Tetradis et al. 2001a, 2001b). The range of physiological

signals that induce the expression of NR4A receptors is wide, from fatty acids and peptide

hormones to stress and magnetic field (Maxwell and Muscat 2006).

The induction of the NR4A receptors has been shown to involve several

pathways, including MAPK, PKC and PKA pathways (Kovalovsky et al. 2002, Darragh et al.

2005, Bourhis et al. 2008). Phosphorylation of many transcriptional activators, such as NF-

B, Sp1, AP-1, and CREB has been implicated in the transcriptional regulation of NR4A

expression (Yoon and Lau 1994, Saucedo-Cardenas et al. 1997, Chen et al. 1998, Ichinose et

al. 1999, Fass et al. 2003). Nurr1 promoter also contains the binding sites for these

transcription factors (Saucedo-Cardenas et al. 1997).

2.1.3 Gene regulation by NR4A receptors

NR4A family members bind as monomers to the consensus DNA sequence AAAGGTCA.

This element is termed NBRE (NGFI-B response element, see fig. 7). The A-box of the DBD

is responsible for recognizing the AA sequence preceding the classical response element of

non-steroidal nuclear receptors (AGGTCA, Wilson et al. 1992, Meinke and Sigler 1999).

NGFI-B, Nurr1 and Nor1 have been shown to bind DNA as homodimers and as heterodimers

with  each  other  on  the  NurRE  (nur-response  element,  AAAT(G/A)(C/T)CA),  which  is  an

inverted repeat of two slightly converted NBRE half-sites (Philips et a. 1997a, fig. 7). NGFI-

B activates NurRE much more potently than NBRE (Philips et al. 1997a). The Nurr1/NGFI-B

and Nor1/NGFI-B heterodimers activate NurRE much more potently than Nurr1/Nor1

heterodimers (Maira et al. 1999). Heterodimers formed within the NR4A family also bind

NurRE much more efficiently than monomeric or homodimeric NR4As (Philips et al. 1997a,

Maira et al. 1999). It has been shown that NGFI-B bound to a NurRE recruits coactivators of

the  SRC  family  to  the  AF-1  (Maira  et  al.  2003).  NGFI-B  bound  to  NBRE  does  not  recruit

SRCs. Maybe differential expression of the NR4A receptors can influence the abundance in

which the highly active and less active NR4A heterodimers are present in the cell. In addition,

the amounts of homodimers and monomers may be affected. The promoters of different genes
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can be activated depending on the expression levels of Nurr1, NGFI-B and Nor1. Gene

activation is also dependent on the differential activity of NurRE and NBRE on target genes.

Fig. 7. Response elements of the NR4A family. NBRE, NGFI-B response element; NurRE, nur-

response element; DR5, direct repeat separated by 5 nucleotides.

Nurr1 and NGFI-B bind DNA as heterodimers with the RXR on DR5 elements

(fig. 7). Nurr1/RXR heterodimers are also formed on NBREs without RXR binding to DNA

(Forman et al. 1995, Aarnisalo et al. 2002, Sacchetti et al. 2002). Heterodimerization with

unliganded RXR represses Nurr1 transactivation on the NBRE-reporter (Forman et al. 1995).

Nurr1/RXR and NGFI-B/RXR heterodimers are permissive and therefore efficiently activated

by RXR agonists, such as natural 9cis-RA and synthetic LG69 and SR11247 (Forman et al.

1995, Aarnisalo et al. 2002). RXR agonists have been shown to promote the survival of

neurons by affecting Nurr1/RXR heterodimers (Wallén-McKenzie et al. 2003).

Heterodimerization with RXR and agonistic regulation of these heterodimers thus seem to

have physiological importance, although an endogenous target promoter for Nurr1/RXR or

NGFI-B/RXR heterodimers has not been reported. The role of RXR and heterodimerization in

the functions of Nurr1 and NGFI-B need clarification.

Nurr1 transactivates target genes constitutively and ligand-independently. AF-1

and AF-2 both have a role in transactivation, and their activity is also dependent on the cell

type (Castro et al. 1999, Wansa et al. 2002, Nordzell et al. 2004). The LBDs of Nurr1, NGFI-

B, and the Drosophila homologue DHR38 are constantly in a conformation that is similar to

that of other NRs in the ligand-bound state with the AF-2 in active conformation (Wang et al.

2003, Baker et al. 2003, Flaig et al. 2005). In Nurr1, the active AF-2 conformation is

AAAGGTCA

TGATATTTACCTCCAAATGCCA

GGTTCACCGAAAGGTCADR5

NurRE
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homodimer/NR4A heterodimer

RXR heterodimer
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stabilized by intramolecular interactions in the absence of ligands. The transcriptional

activities of Nurr1 and NGFI-B have been shown to differ from each other (Castro et al. 1999,

Flaig et al. 2005). For example, in the human embryonic kidney derived 293 cells, Nurr1

efficiently activates the NBRE-reporter, whereas NGFI-B does not. Mutation analysis showed

that the differences may be due to the H12s of Nurr1 and NGFI-B being slightly shifted in

relation  to  one  another.  Exchange  between  the  H12s  of  Nurr1  and  NGFI-B  or  smaller

mutations of the H12 caused exchanging of the transcriptional properties (Flaig et al. 2005).

The structural and mutagenesis studies of the Nurr1 LBD show that the classical

coactivator binding cleft seen in other NRs is missing in Nurr1 (Castro 1999, Wang et al.

2003). This may be the reason, why interactions between classical coactivators, for example

SRC-1, and Nurr1 AF-2 located in the LBD, have not been seen (Castro et al. 1999, Wansa et

al. 2002, Wang et al. 2003). The recruitment of coactivators to the AF-1 region has been

shown to be important in the ligand-independent transcriptional activity of NRs (Hammer et

al. 1999, Tremblay et al. 1999). NGFI-B and Nurr1 have been shown to recruit coactivators

AF-1-dependently (Wansa et al. 2002, Maira et al. 2003).

Corepressors SMRT and NCoR bind Nurr1 very weakly compared to their

binding to other NRs (Codina et al. 2004). SMRT has also been shown to interact with NGFI-

B (Sohn et al. 2001). SMRT binds Nurr1 LBD to a site near the AF-2 (Codina et al. 2004),

and same area has been suggested to function as a coregulator surface in NGFI-B (Flaig et al.

2005). This binding site has been suggested to bind both corepressors and coactivators (Sohn

et al.  2001, Codina et  al.  2004) by a mechanism similar to that of other NRs. However,  the

differencies in coactivator and corepressor binding compared to other nuclear receptors are

likely to explain partly the constitutive activity of the NR4A receptors and the permissive

nature of Nurr1/RXR and NGFI-B/RXR heterodimers. The precise mechanism of

permissiviness has remained partly unclear.

In addition to dimerization, several mechanisms have been described to control

the  transcriptional  activity  of  the  NR4A  receptors  (Pekarsky  et  al.  2001,  Kovalovsky  et  al.

2002, Galleguillos et al. 2004, Chintharlapalli et al. 2005). NR4As are regulated by

phosphorylations. Phosphorylation can either enhance or repress the transcriptional activities

of  the  NR4A  receptors.  For  example,  the  MAPK  pathway  phosphorylates  NGFI-B  and

enhances its transactivation on POMC (pro-opiomelanocortin) promoter (Kovalovsky et al.

2002). Nurr1 is phosphorylated by MAPK at sites near the AF-1. These phosphorylations

upregulate its activity on tyrosine hydroxylase (TH) promoter (Zhang et al. 2007).

Phosphorylation of serine 350 in the NGFI-B DBD has been shown to decrease its binding to
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NBRE (Hirata et al. 1993), thus offering another possible target for regulation by

phosphorylation, in addition to the modulation of AFs. Nurr1 has also been shown to possess

two putative sumoylation sites at lysines 91 and 577. Mutational analyses have shown that

sumoylation at position 91 can repress the transcriptional activity of Nurr1, and sumoylation

at position 577 can enhance it (Galleguillos et al. 2004). Ubiquitination or methylation of the

receptors of the NR4A family have not been reported.

Although Nurr1 and NGFI-B lack the classical ligand-binding pocket found in

the other NRs, putative ligands have been identified. 6-mercaptopurine has been shown to

activate Nurr1, NGFI-B, and Nor1. Activation of Nor1 by 6-mercaptopurine was found to be

regulated by the first 150 amino acids of its N-terminal and linked to the AF-1 region.

Phosphorylation was thought to be the mechanism of action, but no direct phosphorylation

site was found (Wansa et al. 2003). Prostaglandin A2 was found to activate Nor1 and to bind

directly to the LBD of Nor1. However, this work did not present any mechanism of activation

connected to coregulatory proteins or phosphorylations (Kagaya et al. 2005). Selected 1,1-

Bis(3'-indolyl)-1-(p-substituted phenyl)methanes increased DNA binding by NGFI-B. These

compounds are studied for their anticarcinogenic activities. Coactivators SRC-1 and PGC-1

were  shown  to  interact  with  NGFI-B  LBD  more  efficiently  when  cancer  cells  were  treated

with different 1,1-Bis(3'-indolyl)-1-(p-substituted phenyl)methanes (Chintharlapalli et al.

2005). In addition, benzamidizoles, compounds used as parasiticides and fungicides, have

been reported to be ligands for Nurr1 (Dubois et al. 2006). It seems that these compounds

regulate the activity of Nurr1 and NGFI-B in a manner similar to NRs regulated with ligands

(ie. by recruiting coactivators or by phosphorylations), although the ligand-binding pocket is

unavailable for ligand binding. However, the H12 of Nurr1 and NGFI-B is in active position

in the absence of any ligand. The crystal structure of Nurr1 or NGFI-B bound to one of these

compounds should be resolved to obtain more information. The biological functions of the

ligands should also be studied. As Nurr1 and NGFI-B can be controlled by synthetic ligands,

it is possible that an endogeneous ligand also exists.

2.1.4 Localization of NR4A receptors

NR4A receptors are usually located in the nucleus (Davis et al. 1993). Katagiri et al. (2000)

have studied the pathways mediating the localization of NGFI-B. They have demonstrated
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that in NGFI-B, there are two nuclear localization signal sequences in the DBD and three

nuclear export signal sequences in the LBD. They have shown that the nerve growth factor

can induce NGFI-B relocalization to the cytoplasm by phosphorylating serine 105 in the A-

box. This phosphorylation was shown to be regulated by the MAPK pathway. In their studies,

the nerve growth factor also induced relocalization of RXR as a heterodimer with NGFI-B

(Katagiri et al. 2000). Relocalization of NGFI-B to cytoplasm has also been observed in

response to apoptotic factors (Li et al. 2000). Cytoplasmic NGFI-B was found to associate

with mitochondria which led to depolarization of the mitochondrial membrane and release of

cytochrome c (Li et al. 2000). It was further demonstrated that these events were the result of

interaction with an anti-apoptotic protein Bcl-2 and that the interaction changed the nature of

Bcl-2 from anti- to pro-apoptotic (Lin et al. 2004). It seems that the cytoplasmic NGFI-B has

functions that are distinct from the nuclear NGFI-B.

2.1.5 Biological functions of NR4A receptors

NR4A receptors have been shown to be involved in inflammation, steroidogenesis, and

energy metabolism (Maxwell and Muscat 2006). NR4A receptors are also linked to functions

of smooth muscle cells and atherogenesis and to the regulation of apoptosis in certain tumour

types (Maxwell and Muscat 2006). NR4A receptors therefore have varied functions in

controlling multiple physiological events.

The fact that the NR4A receptors regulate genes involved in the dopamine

synthesis and dopamine transporter links them to dopamine system. Overexpression of Nurr1

facilitates pluripotent embryonic stem cells to differentiate to dopamine cells (Chung et al.

2002). Mice with targeted deletion of the Nurr1 gene die after birth, propably due to problems

with the control of respiratory functions (Zetterström et al. 1997, Castillo et al. 1998, Nsegbe

et al. 2004). The homozygous mice lack TH, L-aromatic amino decarboxylase, and other

dopamine markers from the midbrain area, as the dopamine cells of the midbrain are not

developed and properly migrated (Zetterström et al. 1997, Castillo et al. 1998). These results

prove that NR4A receptors control the development and functions of the dopaminergic cells

of the midbrain. In the study by Chu and others (2002) it was demonstrated that the Nurr1

expressing neurons of the midbrain were reduced with aging. In this study, the expression of

TH  was  similarly  reduced.  The  quantity  of  TH  is  the  limiting  step  of  the  synthesis  of
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dopamine (Bear et al. 2001 p. 143). Chu and others suggest that the reduction of the Nurr1

expressing neurons leads to reduced expression of TH and therefore reduced dopamine

synthesis. Reduction in dopamine synthesis has been linked to disturbance of motorical

functions and loss of cognitive abilities, and to many age-related diseases, such as

Parkinson’s, Huntington’s, and Alzheimer’s diseases (Bäckman et al. 2006). Disturbed

function of Nurr1 has also been linked to Parkinson’s disease (Olson et al. 1998, Grimes et al.

2006) and to Alzheimer’s disease (Chu et al. 2006). Reduced levels of Nurr1 and NGFI-B

proteins have been linked to severe disorders of the CNS (Buervenich et al. 2000, Xing et al.

2006). The expression levels of the NR4As in CNS have been shown to be incfluenced by

antipsychotic drugs (Maheux et al. 2005). It seems that Nurr1 is involved in several age-

related and other pathological conditions of the midbrain area.

NR4A  receptors  are  key  players  in  the  regulation  of  the  HPA  (hypothalamic-

pituitary-adrenal) axis (Okabe et al. 1998, Philips et al. 1997a, Philips et al. 1997b, Fernandez

et al. 2000). Nurr1 and NGFI-B induce the expression of the corticotrophin releasing hormone

secreted by the hypothalamus of the brain (Murphy and Conneely 1997, Murphy et al. 2001).

Nurr1 also activates the POMC promoter, resulting in the production of adrenocorticotropic

hormone (ACTH) from the anterior pituitary (Murphy and Conneely 1997). ACTH stimulates

the secretion of additional hormones, glucocorticoids such as cortisol, from the adrenals.

NR4A receptors thus participate in the regulation of the secretion of different hormones.

Glucocorticoids are involved in many functions, e.g. in the regulation of blood glucose levels

and in anti-inflammatory reactions. Nurr1 expression is high in inflammatory arthritis and can

be downregulated with glucocorticoids (Murphy et al. 2001). Mouse lines overexpressing

NGFI-B  show  improper  maturation  of  the  thymocytes  and  almost  complete  lack  of  T  cells

(Kuang et al. 1999). Nor1 overexpressing mice are small and their body weight is only half of

that of wild type mice, their thymus and spleen are also atrophic (Kagaya et al. 2005). Based

on this evidence, it seems that NGFI-B and Nor1 are essential in controlling the tissues

connected with the immunological system. There have also been reports of cross-talk between

GR and NR4A receptors (Philips et al. 1997b, Martens et al. 2005). Cross-talk with other NRs

have not been reported.

Two different lines of Nor1-deficient mice have been generated and studied in

separate laboratories. In the first line, Nor1 knock outs are viable, but have dysfunctions in the

inner ear and in the CNS (Pönniö et al. 2002, Pönniö and Conneely 2004). In the other line,

knock outs die during development due to improper development of the anterior mesoderm

and defects in gastrulation (DeYoung et al. 2003).
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Crawford et al. (1995) studied NGFI-B knock-out mice. They seem to have

normal overall physiology which is surprising, since NGFI-B has been linked with major

regulatory pathways (Maxwell and Muscat 2006). NGFI-B knock-out mice are hyperactive

and their dopamine neurons function abnormally (Gilbert et al. 2006). It has been shown that

the amount of induced Nurr1 in lipopolysaccharide treated NGFI-B knock out mice is three

times higher than in normal mice (Crawford et al. 1995). It has also been shown that the basal

expression  levels  of  Nurr1  in  NGFI-B  knock-outs  is  higher  in  certain  areas  of  the  brain  of

these mice compared to normal mice (Gilbert et al. 2006). Nurr1 could compensate for the

loss of NGFI-B, since they both have been linked with similar functions and their expression

is partially overlapping.

NR4A receptors have been shown to have an inhibiting role in the formation of

atherosclerotic lesions (Bonta et al. 2006, 2007). They inhibit the functions of macrophages,

and NGFI-B inhibits the proliferation of smooth muscle cells of the vascular wall,

simultaneously promoting differentiation (Bonta et al. 2007). The physiological importance of

NR4A receptors as protective mediators of vascular functions needs more clarification.

2.2 NR3B subfamily of orphan nuclear receptors

Estrogen-related receptors – the NR3B subfamily of orphan nuclear receptors, see fig. 1 –

include three members: estrogen-related receptor  (ERR ), estrogen-related receptor

(ERR ), and ERR  (NR3A1, NR3A2 and NR3A3, respectively, Giguere 1999). ERR  and

ERR  were identified based on their similarity with ER  (Giguère et al. 1988), as they show

high  similarity  in  their  DNA binding  domain  (68  % for  ER  compared  with  ERR ).  ERR

was found by Hong et al. (1999) when studying proteins that interacted with the coactivator

glucocorticoid receptor interacting protein 1, and also by Eudy et al. (1998) while they studied

a specific locus of chromosome 1.

Crystal structure studies have shown that the ligand-binding pockets of ERR

and ERR  are very small (Greschik et al. 2002, Kallen et al. 2004), but that synthetic ligands

of ERR  and ERR  can force amino acids to rearrange so that a larger ligand will fit into the

pocket (Wang et al. 2006, Kallen et al. 2007). Endogeneous ligands for ERRs have not been

found, but synthetic ligands, such as inverse ER agonists diethylstilbestrol (Coward et al.

2001), 4-hydroxytamoxifen (4-OHT, Coward et al. 2001),  and 4-hydroxytoremifene
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(Huppunen et al. 2004) have been reported. XCT790 has been specifically developed for

ERR  (Busch et al. 2004, Willy et al. 2004). Synthetic agonists have also been reported for

ERR  and ERR  (Zuercher et al. 2005).

The unliganded ERR  is constanly in the active conformation and can interact

with coactivator proteins (Greschik et al. 2002). Diethylstilbestrol and 4-OHT displace H12 of

ERR , which leads to reduced binding of coactivators (Greschik et al. 2004, Wang et al.

2006). Thus, in contrast to NR4A receptors, NR3B receptors can be regulated with synthetic

ligands, perhaps also with natural ones.

ERRs bind to a half-site consensus sequence TnAAGGTCA referred to as

ERRE (ERR element, n being any base) and to estrogen response elements (ERE,

AGGTCAnnnTGACCT, Yang et al. 1996, Johnston et al. 1997). ERRs bind DNA as

monomers  or  homodimers  and  can  also  form  heterodimers  with  each  other  as  well  as  with

ER  (Yang et al. 1996, Johnston et al. 1997, Huppunen and Aarnisalo 2004). Dimerization

has been shown to modulate the transcriptional activity of ERR . Homodimerization increases

the activity of ERR , whereas heterodimerization with ERR  inhibits its activity (Huppunen

and Aarnisalo 2004). The meaning of the formation of ER-ERR heterodimers is still unclear.

2.2.1 Expression and biological functions of NR3B receptors

The ERR isoforms are expressed ubiquitously (Tremblay and Giguère 2007). All ERRs are

expressed  at  elevated  levels  in  tissues  that  need  a  lot  of  energy,  such  as  the  heart  and  the

kidneys, and their functions have been strongly linked to the regulation of energy metabolism

(Luo et al. 2003, Carrier et al. 2004, Tremblay and Giguère 2007). Recent studies have

revealed more than 500 possible target genes for ERRs, many connected with the functions of

the heart and regulatory networks (Tremblay and Giguere 2007). ERR target genes include

TR , PPAR , monoamine oxidase B, and apolipoprotein A4 (Vanacker et al. 1998, Carrier et

al. 2004, Huss et al. 2004, Willy et al. 2004, Zhang et al. 2006).

ERR  expression is especially high in the intestine, brown adipose tissue and

skeletal muscles, and its expression levels in the liver, uterus and bone have been shown to

vary according to circadian rhythm (Horard et al. 2004, Tremblay and Giguère 2007). Mice

with targeted disruption of the ERR  gene have reduced body weight and peripheral fat

deposits (Luo et al. 2003) as well as altered expression of several genes involved in lipid
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metabolism (Luo et al. 2003, Carrier et al. 2004). ERR  is mainly expressed during

embryogenesis, and ERR  knock-out mice die at E10,5 (Luo et al. 1997). ERR  is also

expressed in the adult heart and kidneys (Bookout et al. 2005). ERR  expression can be seen

particularly in the brain stem and spinal cord (Tremblay and Giguère 2007). ERR  knock-outs

die shortly after birth due to problems in the mitochondrial oxidative metabolism (Alaynick et

al. 2007).

Interestingly, many NRs are up or downregulated in the cardiac ventricles of the

E18,5 ERR  null mice (Alaynick et al. 2007). These NRs include LXR (up), NGFI-B (down),

and ERR  and ERR  (down). This links ERR  to biological mechanisms controlled by other

NRs.

ERRs are also linked to cancer. In breast and prostate cancers, ERR  has been

shown to be a negative prognosis indicator, as ERR  is considered as a better prognosis

indicator (Tremblay and Giguère, 2007). ERRs thus seem to be involved in the regulation of

many biological functions.

3. Orphan nuclear receptors and fibroblast growth factors in bone tissue

3.1 Bone tissue

Bone is a complex and constantly changing tissue. Bone tissue server many bodily functions.

The skeleton and muscles together allow vertebrates to move and maintain posture. Bone

tissue serves as a reserve of calcium and phosphate (Saladin 2001 p. 231). Bone has also

haematological functions, as bone marrow inside the bone cavity produces erythrocytes,

leukocytes and thrombocytes (Saladin 2001 p. 686). Specialized populations of bone cells

form, maintain and remodel bone tissue. Bone is remodelled constantly in response to

hormonal stimuli and mechanical loading (Hadjidakis and Androulakis 2006).
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3.1.1 Bone structure and cell types

Bones are composed of cortical and trabecular bone. Cortical bone consists of cylinder-

shaped, tightly packed units called osteons, while trabecular bone is more porous and does not

contain osteons. The bone matrix has an organic component, primarily type I collagen, which

gives it tensile strength. In addition, the bone matrix has an inorganic component, primarily

hydroxyapatite (Ca10(PO4)6(OH)2), which gives it stiffness to compression (Saladin 2001 p.

231).

There are four types of bone cells based on their locations, morphology and

functions: preosteoblasts, osteoblasts, osteocytes and osteoclasts. Preosteoblasts are formed

from mesenchymal stem cells located in the bone marrow. Preosteoblasts differentiate further

into bone-forming osteoblasts. Osteocytes are formed from osteoblasts trapped inside newly

formed bone. Osteoclasts have a separate stem cell line, blood-borne monocytes, and they

resorb bone (Hadjidakis and Androulakis 2006, Saladin 2001 p. 231).

3.1.2 Differentiation of osteoblasts

Bone marrow stroma contains mesenchymal stem cells, which have both significant

proliferation capacity and ability to differentiate into chondrocytes, myoblasts, neurons,

adipocytes, or osteoblasts (Porada et al. 2006). Mesenchymal stem cells are committed to

osteoblast lineage by induction of the runt-related transcription factor-2 (Runx2, Banerjee et

al. 1997, Ducy et al. 1998). Stem cells proceed to mature osteoblasts in three stages:

proliferation, extracellular matrix development and maturation, and mineralization (Aubin

and Triffith 2002). Other transcription factors, such as Wnt, osterix and Indian hedgehog,

control Runx2 function or act downstream to regulate the expression of several genes

(Karsenty and Wagner 2002, Yoshida et al. 2004). The coordinate expression of these

transcription factors results in the expression of several genes that are important for the

differentiation and function of preosteoblasts and mature osteoblasts, such as alkaline

phosphatase (ALP), type I collagen, osteopontin (OPN), osteonectin, bone sialoprotein, and

osteocalcin (OCN). These proteins are expressed sequentially during the process of

osteogenesis (Aubin and Triffitt 2002). OPN is expressed highly in early preosteoblasts and

remains highly expressed in mature osteoblasts, while OCN is expressed only in mature

osteoblasts (Liu et al. 2003).
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3.1.3 Bone remodelling

Osteoclasts are large multinucleated cells that are formed by fusions of mononuclear

monocytes from the bone marrow (Väänänen et al. 2000). The receptor activator of nuclear

factor- B (RANK) and RANK ligand (RANKL) play important roles in the differentiation

and activation of osteoclasts (see fig. 8). Osteotropic factors, such as parathyroid hormone

(PTH), 1,25(OH)2D3 (vitamin D), and fibroblast growth factor-2, stimulate osteoblasts to

produce RANKL. It has been suggested that the initiation of RANKL production is the key

step in bone remodelling (Hsu et al. 1999, Hadjidakis and Androulakis 2006). RANKL binds

to  its  receptor  RANK  on  the  cell  surface  of  the  osteoclast  precursor.  This  activates  the

osteoclasts to resorp bone material (Lacey et al. 1998, Hadjidakis and Androulakis 2006).

Osteoclasts resorp bone by dissolving hydroxyapatite from bone tissue and

breaking down the organic matrix enzymatically (Silver et al. 1988, Väänänen et al. 2000).

After degradation by osteoclasts, osteoblasts fill the formed cylindrical canal, and new osteon

is formed (Hadjidakis and Androulakis 2006).

Fig. 8. Bone remodelling. Osteoblasts are stimulated by PTH, mechanical loading, and additional

factors. Osteoclasts degrade bone in response to RANKL secreted by active osteoblasts.

3.1.4 Parathyroid hormone in bone

Parathyroid hormone (PTH) is secreted from the parathyroid. Most traditional actions of PTH

are mediated by binding to the G-protein linked receptor, PTHR1 (PTH receptor 1). In bone,
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PTHR1 is present mostly in osteoblasts (Gardella and Jüppner 2001, Potts 2005) and also

detected in osteoclasts in certain pathological conditions (Langub et al. 2001). PTH controls

the  levels  of  calcium and phosphate  in  the  blood.  In  hypocalcemia,  the  secretion  of  PTH is

increased. This increases calcium absorption from the intestine by stimulating the synthesis of

active vitamin D, and increases the reabsorption of calcium in the kidneys. PTH also

mobilizes calcium from bone. PTH stimulates osteoblasts to activate osteoclasts with

RANKL. Osteoclasts, by bone resorption, degrade bone and release calcium to blood (Potts

2005).

Continuous administration of PTH decreases bone mass (Tam et al. 1982).

Intermittent  administration  of  PTH,  however,  increases  bone  mass  (Hock  et  al.  1988).  This

type of PTH administration also reduces the incidence of fractures in postmenopausal women

and elderly men (Neer et al. 2001), and is therefore used to treat osteoporosis. Intermittent

PTH has been shown to reduce the apoptosis of osteoblasts and to stimulate their proliferation

by activating the PKA-pathway (Jilka 2007). Intermittent PTH increases the expression of

RUNX2 protein (Krishnan et al. 2003). In addition, PTH treatment has been connected to

increased osteoblastogenesis (Bellido et al. 2005). This suggests PTH a role in differentiation

of osteoblasts. PTH also stimulates bone growth and improves fracture healing (Krishnan et

al. 2003, Tsiridis et al. 2007, Barnes et al. 2008). PTH thus has a major role in controlling the

formation and maintenance of bone tissue.

The differences in the outcome of intermittent and continuous administration of

PTH have remained poorly understood. Intermittent and continuous PTH treatments have

been shown to regulate differentially gene expression in rat femurs after 7 days of

administration (Onyia et al. 2005). Jilka (2003) suggests that intermittent PTH could activate

short bursts of survival signalling by mediating factors like Bad and BCL-2. According to his

theory, during continuous administration of PTH the negative feedback loop remains active,

thus preventing subsequent anti-apoptotic signals. It has also been suggested that in

intermittent administration the PTH pulse is long enough to stimulate bone growth, but too

short to activate bone resorption (Potts 2005).
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3.2 Fibroblast growth factors and their receptors in bone

3.2.1 Fibroblast growth factors and their receptors

Fibroblast growth factors (FGFs) are a family of small polypeptide growth factors that control

the proliferation and differentiation of various cell types (Powers et al. 2000, Xu et al. 2005,

Monfils et al. 2006, Kim et al. 2007, Araki et al. 2007, Ng et al. 2008). Up to date, 23

members of the family have been identified in humans and mice (Fukumoto 2008).

FGFs produce their effects by signalling through transmembrane tyrosine kinase

receptors, FGF receptors (FGFRs). There are four known FGF receptors (FGFR-1 through

FGFR-4), and in humans seven principal receptor isoforms (Powers et al. 2000). Alternative

splicing of FGFR1, FGFR2, and FGFR3 results in two functional receptor isoforms, the –b

and –c receptors, which have different ligand-binding properties (Powers et al 2000,

Eswarakumar et al. 2005). FGFs activate FGF receptors by inducing receptor dimerization

(Ornitz et al. 1992, Spivak-Kroizman et al. 1994). This dimerization leads to

transphosphorylation of the receptors and activation of several signalling pathways leading to

a variety of biological functions including angiogenesis and development (Powers et al.

2000).

3.2.2 Fibroblast growth factors and their receptors –functions in bone

FGFs and FGFRs play important roles in skeletal development. In mice, the mutations or

altered expression levels of FGF-2, -3, -4, -9, and -18 result in many skeletal disorders (Ornitz

and Marie 2002). FGFR-2 is needed for osteoblast proliferation and mice lacking FGFR-2

have dwarfism phenotype and reduced bone density (Yu et al. 2003). FGFR-3 is considered as

negative regulator of bone growth (Deng et al. 1996). In humans, different mutations in FGFR

genes result in many skeletal dysplasias (Ornitz and Marie 2002, Marie et al. 2005). FGFs

mediate limb formation and control osteogenesis (Cohn et al. 1995, Lewandoski et al. 2000,

Moore et al. 2002, Mina et al. 2007, Zhou and Armstrong 2007). At least FGF-2, -4, -6, -8, -9,

-18, and -23 have been linked to the regulation of osteoblastic cells (Marie 2003, Fakhry et al.

2005, Bosetti et al. 2007, Kawata et al. 2007). FGF-2, -4, and -8 have been shown to stimulate

Runx2 expression in bone marrow cells and/or in osteoblasts (Zhou et al. 2000, Zhang et al.
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2002, Kim et al. 2003), thus promoting preosteoblast formation. FGF-23 suppresses

osteoblast differentiation and mineralization in calvarial osteoblasts and parietal bone cultures

(Wang et al. 2008). FGF-2 has been shown to stimulate osteoclast formation and late

differentiation and bone resorption (Zuo et al. 2004). The FGF family therefore seems to

control the differentiation and mineralization of osteoblasts as well as bone turnover.

FGFRs have been shown to have important roles in bone. FGFR-mediated

signaling in osteoblasts involves MAPK, PI-3K, PKC, phospholipase C , and SRC-kinase

pathways (Debiais et al. 2001). FGFR-1 is needed when undifferentiated bone marrow cells

differentiate to osteogenic lineage (Ng et al. 2008). FGFR-2 is required for osteoblast

proliferation and for the maintenance of osteogenesis (Yu et al. 2003). Targeted knock-out of

FGFR-2c resulted in delayed bone ossification, dwarfism, and misshapen skull. FGFR-2c is

also required for normal expression of Runx2 (Eswarakumar et al. 2002). Targeted knock-out

of FGFR-3, on the other hand, caused bone over-growth, as the long bones and tails grew

more and for a longer time than those of the wild type littermates (Deng et al. 1996). Thus,

multiple FGFRs mediate the signalling by the FGFs in bone.

3.2.3 Fibroblast growth factor-8

FGF-8 was originally identified as a gene encoding two secreted androgen-induced growth

factors that were responsible for the androgen dependent growth of the SC-3 mammary

carcinoma cell line (Tanaka et al. 1992). Alternative splicing of the FGF-8 gene can result in

eight different isoforms, FGF-8a through -8h, and FGF-8a, -8b, -8e and -8f are expressed in

humans (Gemel et al. 1996, Valve et al. 2001). Of these, FGF-8b has the greatest ability to

activate FGFRs in mitogenic assays as well as transform NIH-3T3 cells (MacArthur et al.

1995, Blunt 1997). FGF-8 can bind to and activate several of the FGFRs, namely FGFR-2c,

FGFR-3c and FGFR-4 (Ornitz et al. 1996, Blunt et al. 1997).

Mutagenesis studies have shown that mice lacking FGF-8 die at E8,5 due to

defective gastrulation (Meyers et al. 1998). During development, FGF-8 has important roles

in the development of both the limb bud and the dopaminergic cells of the midbrain (Crossley

and Martin 1995, Zhou et al. 2007). Nurr1 has a key role in the development of the same

dopaminergic cells (Zetterström et al. 1997), and is expressed in the developing limb buds

(Zetterström et al. 1996a). In addition, Nor1-deficient mice show similar defects in

gastrulation as those seen in the FGF-8-deficient mice (Sun et al. 1999, DeYoung et al. 2003).
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It is possible that NR4A receptors and FGF-8 regulate common processes during

development.

In the normal adult, FGF-8b is only expressed in certain cells involved in

spermatogenesis and oogenesis (Valve et al. 1997). However, it is expressed in human breast,

ovarian and prostate cancer (Tanaka et al. 1998, Valve et al. 2000, Ruohola et al. 2001). FGF-

8 overexpression in prostate cancer is associated with decreased survival (Dorkin et a. 1999),

and  the  expression  of  FGF-8b  has  been  shown  to  correlate  with  the  tumor  stage  and  grade

(Gnanapragasam et al. 2003). Furthermore, proliferation of the S115 mammary carcinoma

cell line is increased in cells stably overexpressing FGF-8b (Mattila et al. 2001). FGF-8b is

therefore linked to tumour malignancy and proliferation of tumour cells.

FGF-8b treatment increases proliferation of mesenchymal stem cells and

stimulates their differentiation to osteoblasts when cultured in the presence of osteogenic

compounds (Valta et al. 2006). Thus, FGF-8 seems to have a role in the regulation of bone

cell proliferation and differentiation.

3.3 The NR4A and NR3B orphan nuclear receptors in bone

During development, Nurr1 is expressed in hind limbs at E11,5 (Zetterström et al. 1996). In

the adult, Nurr1, NGFI-B and Nor1 are expressed in long bones and in calvaria (Pirih et al.

2006). Their basal expression in bone is relatively low compared to that in e.g. brain tissue

and adrenals  (Bookout  et  al.  2005).  However,  PTH treatment  induces  the  expression  of  the

members of the NR4A-subfamily as immediate early genes in primary mouse osteoblasts

through the PKA pathway in vitro (Tetradis et al. 2001a, 2001b, Pirih et al. 2003). The NR4A

family has also been shown to be induced in vivo in calvariae and long bones when PTH is

injected to mice daily (Pirih et al. 2005). In addition to PTH, also other activators of PKA and

PKC upregulate the expression of Nurr1 in osteoblasts (Pirih et al. 2004).

The  role  of  NR4A  receptors  in  bone  has  not  been  studied  until  recently.  In  a

study by Lee and others (2006) Nurr1 siRNA was used to downregulate Nurr1 expression in

osteoblasts. Reduced expression of Nurr1 resulted in downregulation of the osteoblastic

differentiation markers OCN and collagen type I alpha 1 (Col1A1) and in reduced ALP

activity. OCN and Col1A1 expression and ALP activity are also downregulated in cultured

primary osteoblasts from Nurr1 null mice. Nurr1 has been shown to bind to and activate an
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NBRE element in the promoter of the OCN gene (Pirih et al. 2004). These findings suggest

the NR4A receptors an important role in bone metabolism and in differentiation of

osteoblasts. Other possible target genes and the biological functions of NR4A receptors in

bone tissue remain to be solved.

Mouse ERR  has been shown to be expressed in developing long bones in the

ossification centers at E15,5 and in bones formed by intramembranous ossification. In

addition, ERR  is expressed in osteoblasts and osteoblastic cell lines (Bonnelye et al. 1997,

Bonnelye et al. 2001). ERR  is also present in proliferating and differentiating osteoblasts and

regulates bone formation (Bonnelye et al. 2001, Bonnelye and Aubin 2002). Downregulation

of ERR  inhibits the formation of bone and cartilage (Bonnelye et al. 2001, Bonnelye et al.

2007). ERR  target genes in bone tissue include lactoferrin, TR, and aromatase (Yang et al.

1996, Vanacker et al. 1998, Yang et al. 1998). The role of ERR  in mediating OPN promoter

activity  is  still  somewhat  unclear,  but  it  seems  that  the  OPN  promoter  contains  several

possible binding sites and that these functions are cell type specific (Vanacker et al. 1998,

Zirngibl et al. 2008).
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AIMS OF THE STUDY

The NR4A subfamily of orphan nuclear receptors consists of three constitutively active ligand

independent members. This study addressed the functions of NR4A receptors in osteoblasts,

and how the activity of NR4A receptors could be regulated.

The aims of the study were the following:

- To identify osteoblastic genes that are regulated by the NR4A receptors

- To find out if NR4A receptors participate in regulating the proliferation of osteoblastic cells

- To study how PTH and FGF-8b regulate the expression and functions of the NR4A

receptors in osteoblasts

- To examine how the transcriptional activity of NR4A receptors can be controlled in the

absence of ligands
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MATERIALS AND METHODS

Detailed descriptions of the materials and methods used in this study are found in the original

publications according to Table 1.

Table 1. Methods used in this study.

detection of apoptosis IV

electrophoretic mobility shift assay I, II

GST-pull down assay III

immunocytochemistry I, II, III

in vitro transcription and translation I, II, III

mammalian cell culture I, II, III, IV

plasmid construction and recombinant DNA

technology I, II, III

proliferation assay IV

quantitative real-time PCR IV

reporter gene assay I, II, III

rt PCR I

SDS-PAGE and immunoblotting III

transfection of mammalian cells I, II, III, IV
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RESULTS AND DISCUSSION

1. Regulation of the expression of NR4A receptors by FGF-8b (Paper IV)

FGF-8b has functions in proliferating and differentiating osteoblastic cells and

in developing dopaminergic cells (Ye et al. 1998, Valta et al. 2006). NR4A receptors have

previously been shown to be induced by different growth factors (Lau and Nathans 1985, Liu

et al. 2003, Roussa et al. 2006). As Nurr1 has been shown to be involved in the development

and differentiation of dopaminergic neurons (Zetterström et al. 1997, Castillo et al. 1998,

Chung et al. 2002), and there are observations that NR4A receptors have functions also in

osteoblast (Pirih et al. 2004, Lee et al. 2006), we asked if FGF-8b could be one of the factors

that induce the NR4As as immediate early genes and hypothesized that there is a connection

between them in osteoblast regulation.

We studied whether NR4A expression could be stimulated by FGF-8b in

osteoblastic cells. We used preosteoblastic MC3T3-E1 (hereafter referred to as MC3T3) cells

from a subclone that is capable of bone nodule formation. The cells were treated with FGF-8b

for different time periods, and subsequently total the RNA was isolated and studied for NR4A

family expression by quantitative PCR. FGF-8b was found to stimulate the expression of

Nurr1, NGFI-B and Nor1 as immediate early genes. The expression was detectable after 30

min and the expression of Nurr1 and NGFI-B peaked at 1h and then rapidly declined to and

below the basal level at 2h and 4 h, respectively. The expression of Nor1 remained elevated

until  2h  and  then  declined  to  the  basal  level  by  4h.  The  expression  of  Nor1  was  stimulated

more (16 fold) than that of Nurr1 (6) and NGFI-B (8). Regarding Nurr1 and NGFI-B, the

mRNA expression was markedly increased already at a dose of 2,5 ng/ml and 5 ng/ml of

FGF-8b, respectively, and further stimulated with higher concentrations. Nor1 mRNA

expression was markedly increased with a higher concentration, 25 ng/ml of FGF-8b. 25

ng/ml of FGF-8b resulted in maximal induction of all NR4A receptors. At higher

concentrations the induction was slightly diminished.

FGF-8b binds to FGFRs on the cell surface and regulates gene expression

through several signalling pathways. We used different inhibitors to investigate which

signalling pathways were responsible for the induction of the expression of NR4A receptors.
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Inhibitors of the MAPK, PI-3K and PKC pathways blocked the stimulating effect of FGF-8b

efficiently. Our results suggest that all major FGFR signalling pathways are involved in

mediating the effects of FGF-8b on the NR4A family of orphan nuclear receptors (fig. 9). The

expression levels of NR4A receptors have previously been shown to be regulated via PKA,

PKC, calmodulin kinase II, MAPK, and PI-3K pathways (Song et al. 2001, Tetradis et al.

2001a, 2001b, Kovalovsky et al. 2002, Pirih et al. 2003). Our observation that several

signaling pathways are involved in mediating the induction of the NR4A receptor expression

by FGF-8b is thus in line with the previous reports on the induction of NR4A receptors.

Fig. 9. Proposed model for signalling triggered by FGF-8b in preosteoblastic cells. FGF-8b binds to

FGFR and activates several signalling pathways. Yet unidentified mechanism induces the expression

of NR4A receptors that in turn affect the expression of downstream proteins. This eventually leads to

increased proliferation of preosteoblasts.

We  did  not  study  whether  the  blockage  of  one  or  several  signalling  pathways  affects  the

biological outcome of FGF-8b treatment (i.e. increased proliferation) or which binding site(s)

on NR4A promoters is/are utilized for the induction. These questions remain to be solved.

Several pathways induce the NR4A receptors in osteoblasts. This could be an

explanation to the rapid and high induction of the mRNAs of these proteins in response to

FGF-8b  and  other  stimuli,  as  many  pathways  simultaneously  stimulate  the  NR4A  mRNA

FGF-8b

FGFR

PKC

PI-3K

MAPK

NR4A

?

?

proliferation
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production. The tumour necrosis factor  has been linked to Nurr1 function and it can block

the PKC pathway (Lee et al. 2000, O’Kane et al. 2008). Our results suggest that in situations

in which one or more of the NR4A induction mediating pathways are blocked, the induction

of NR4A receptors is not blocked completely.

Nor1 cannot heterodimerize with RXR (Perlmann and Jansson 1995,

Zetterström et al. 1996b), and it also functions differently also in cross-talk with ERRs (see

below). Nor1 is expressed more potently, but also more slowly as compared to the expression

of Nurr1 and NGFI-B. The Nor1 expression also requires higher concentrations of FGF-8b.

The  NR4A receptors  induced  by  PTH also  show differential  responses  with  respect  to  time

and concentration (discussed in Pirih et al. 2003). These differences could be of importance

when regulating different biological functions mediated by NR4A receptors.

Following PTH treatment of osteoblasts, Nurr1 is induced primarily through the

PKA pathway (Tetradis et al. 2001a). Nervina and coworkers have shown (2006) that the

Nurr1 coactivator PGC-1 is rapidly induced after PTH treatment, and that this induction is

also mediated by PKA. They also demonstrated that PGC-1 can be induced by PKC

activation, although this does not result from PTH treatment. Rapid induction of relevant

coactivators further potentiates the functions of induced NR4A receptors (Nervina et al.

2006). Whether FGF-8b also induces PGC-1 or other potential coactivators in preosteoblastic

cells remains to be clarified.

2. New biological functions for NR4A receptors (Papers I, IV)

2.1 Osteopontin, new target gene for NR4A receptors

To clarify the role of NR4A receptors in bone, we studied the genes that NR4As regulate in

osteoblastic cells. We screened promoter regions of several osteoblastic genes for potential

NBREs. Two were found in the promoter area of the OPN gene. When U2-OS and MC3T3

osteoblastic cells were transiently transfected with Nurr1, the expression of OPN was

increased, suggesting that OPN could be a target gene for the NR4As.

OPN is important for bone homeostasis. OPN is present in non-mineralized

bone and it is suggested to act as a binding agent between the collagen proteins and to
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regulate the growth and directions of hydroxyapatite crystals (Sodek et al. 2000).

Overexpression of OPN in bone marrow-derived osteoblasts resulted in higher a expression of

other differentiation markers and also in increased bone nodule formation (Kojima et al.

2004). Thus OPN seems to be involved in triggering the differentiation of osteoblasts. OPN

knock-out mice seem to have normal skeleton. However, in these mice postmenopausal bone

resorption was inhibited (Yoshitake et al. 1999). These mice were also resistant to PTH-

induced bone resorption, possibly due to impaired RANKL functions (Ihara et al. 2001). In

OPN deficient mice, intermittent PTH treatment also enhanced the improvement of bone

mineral density and cortical bone mass compared to wild type mice (Kitahara et al. 2003). It

seems that OPN acts as a suppressor of PTH signalling-induced increase of bone mass (Ono

et al. 2008). These results link PTH signalling to OPN functions.

PTH  has  both  anabolic  and  catabolic  effects  in  bone.  As  PTH  induces  the

expression of NR4A receptors (Tetradis et al. 2001a, 2001b, Pirih et al. 2003), and as it seems

that OPN might be a target gene for the NR4As, we studied whether PTH regulated OPN

expression  through  the  NR4A  receptors.  Treatment  of  the  cells  with 100 nM PTH induced

Nurr1 mRNA expression as an immediate early gene in osteoblastic cells. Eight hours later,

OPN mRNA expression was also increased. The dominant-negative Nurr1 variant (Nurr1 DN,

Castro et al. 1999) binds to DNA as the wild type Nurr1 and represses promoter activity.

While binding DNA, the dominant negative Nurr1 also diminishes the DNA binding of all

members of NR4A receptors, thus blocking their activating functions. An increase in the

expression of OPN after PTH treatment could be inhibited by transfecting the cells with Nurr1

DN. These results suggested that NR4A receptors had a role in mediating PTH-induced OPN

expression.

The  OPN  promoter  was  found  to  contain  two  putative  NBRE  elements.

Therefore, the -857/+191 region of the mouse OPN promoter was cloned upstream of the

luciferase reporter gene. To see whether the NR4As regulated OPN promoter activity directly,

we performed reporter gene assays in transiently transfected osteoblastic cells (U2-OS,

SaOS2, and MG63 cells). Nurr1, NGFI-B and Nor1 transactivated the OPN promoter in

several osteoblastic cell lines but not in kidney-derived cells. This demonstrates that OPN

promoter activation was osteoblast specific. To find out if this transactivation was due to

direct binding of NR4A receptors to the OPN promoter, we used mutated Nurr1 constructs.

The mutations were introduced in the first zinc finger (Nurr1 C283G) and in the A-box

(Nurr1 R334A, Castro et al. 1999), which prevent the DNA binding of Nurr1. These mutants

were not able to transactivate the OPN promoter, suggesting that Nurr1 binds directly to the
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OPN  promoter.  The  OPN  promoter  contains  two  putative  response  elements  for  NR4A

receptors that have previously been named as the S1 and S2 elements (Vanacker et al. 1998).

We used wild type and mutated S1 and S2 elements in electromobility shift assay (EMSA) to

examine, whether Nurr1 directly bound to these sites. Nurr1 was found to bind directly to the

S1  but  not  to  the  S2  site.  In  reporter  assay,  Nurr1  was  found  to  activate  the  OPN  reporter

when S2 was mutated. Nurr1 did not activate the OPN promoter that was mutated at the S1

site.  These  results  confirm  that  Nurr1  binds  directly  to  the  S1  element  of  the  OPN  gene

promoter and transactivates it. This result together with our transfection data confirm that

OPN is a target gene for the NR4A subfamily of orphan nuclear receptors (see fig. 10).

Since Nurr1 and NGFI-B can heterodimerize with RXR, we studied whether

they transactivated the OPN promoter as monomers or as heterodimers with RXR. We used a

mutated Nurr1 that lacks the ability to heterodimerize with RXR (Nurr1 KLL554-556AAA,

Aarnisalo et al. 2002). This mutant was able to transactivate the OPN promoter as effectively

as the wild type Nurr1. This suggests that Nurr1 does not have to heterodimerize in order to

activate the OPN promoter. Our result is in line with the findings that Nor1, which does not

heterodimerize with RXR, was also able to transactivate the OPN promoter. However, when

the cells were transfected with the wild type Nurr1 and treated with the RXR agonist

SR11237, the treatment efficiently increased the transactivation of the OPN promoter. This

suggests that Nurr1 can also bind to the OPN promoter and transactivate it as a heterodimer

with RXR (fig. 10).

As Nurr1 has been shown to regulate genes in an AF-1 or AF-2-dependent

manner depending on the cell type and the promoter (Castro et a. 1999, Sohn et al. 2001,

Wansa et al. 2002, Maira et al. 2003), we tested whether the AF-1 or AF-2 was responsible

for the Nurr1-mediated transactivation of the OPN promoter in U2-OS cells. We used a Nurr1

variant mutated at both AFs (Nurr1 1-84/D589A, Castro et al. 1999). This mutant lacks the

N-terminal region shown to contain the AF-1. In addition, the AF-2 is mutated. The

transactivation by Nurr1 was abolished completely. We then used Nurr1 variants with

separately mutated AF-1 and AF-2 (Nurr1 1-84 and Nurr1D589A, respectively, Castro et al.

1999). The OPN promoter was shown to be activated by the AF-2 mutated Nurr1 as

efficiently as by the wild type Nurr1. In contrast, the Nurr1 mutant lacking the AF-1 was less

effective in activating the OPN promoter.
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Fig. 10. PTH regulates OPN synthesis via NR4A receptors. PTH signaling induces NR4A receptors

primarily through PKA pathway and propably by affecting the cAMP responsive element (CRE) on

Nurr1 promoter (Tetradis et al. 2001a, 2001b). NR4A receptors then bind S1 element on OPN

promoter and stimulate OPN production. Heterodimerization with RXR is not required, but treatment

with RXR agonist enhances stimulation.

These results suggest that the transactivation by Nurr1 is mostly AF-1 dependent on this

promoter and in this cell line. Previously it has been suggested that a character between the

amino acids 1 and 160 of Nurr1, which includes the AF-1, is responsible for the specific

activation of different promoters and also for binding of coactivator SRC-2 (Wansa et al.

2002).A coactivator is probably linked to AF-1-dependent, NR4A mediated regulation of the

OPN-promoter. SRC-2 and PGC-1 have been linked to the functions of the NR4A receptors

(Wansa et al. 2002, Nervina et al. 2006). The role of these coactivators in the OPN gene

activation by NR4A receptors should be further investigated.

Vitamin D is involved in bone homeostasis, and VDR can be found in

osteoblasts, osteoclast precursors and mature osteoclasts (Mee et al. 1996, Johnson et al.

1996, Langub et al. 2000). Addition of 1,25(OH)2D3 to a primary culture of human bone

marrow stromal cells results in increased expression of ALP and OPN suggesting that

1,25(OH)2D3 has a role in regulating the differentiation of osteoblasts (Beresford et al. 1994).

VDR has  been  shown to  bind  the  OPN promoter  at  a  vitamin  D responsive  element  at  761
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PTHR1
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RXR
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bases upstream of the OPN start codon (Noda et al. 1990). To study whether Nurr1 and VDR

co-operated  in  OPN  promoter  regulation,  we  transfected  cells  with  Nurr1  and  treated  them

with vitamin D. The combined effect of Nurr1 and vitamin D was synergistic. When the S1

site was mutated, vitamin D was still able to increase the activity of the OPN promoter. This

suggests that Nurr1 and vitamin D bind and activate the OPN promoter at distinct sites.

In vivo, PTH is cleared from circulation in 2-3 hours (Jilka 2007). In cell culture

conditions, PTH is degraded slowly, as it takes more than 24 hours (Ishizuya et al. 1997). In

the study by Ishizuya and others (1997), it was demonstrated that the length of the PTH

exposure is crucial for bone nodule formation. They treated primary osteoblasts with PTH for

3 and 6 hours during every 48 hour cycle. In one experimental group, the PTH-containing

medium was left on cells for the whole 48 hours, but no PTH was added to cells during this

48 hour period. Differences in the bone nodule formation were dramatic. No bone nodules

were formed in the dishes where the PTH-containing medium was not changed. Nodule

formation was most efficient on dishes treated with PTH for 3 or 6 hours.  In addition, short

term (4 hours vs 12 or 24 hours) PTH treatment has also been shown to upregulate unique

genes (Partridge et al. 2006). Our results on OPN induction were obtained in conditions

between intermittent and continuous PTH treatment, as the PTH containing medium was not

removed after exposure. On the other hand, the maximum exposure time was eight hours. If

we had replaced the PTH containing medium after 1-3 hours of exposure, the response in the

induction of OPN could have been different.

In bone, PTH has been shown to upregulate the expression of many genes, such

as type 1 collagen and bone sialoprotein (Thiébaud et al. 1994, Yang and Gerstenfeld 1996).

PTH  has  also  been  shown  to  activate  the  OCN  reporter  in  osteoblastic  cells  (Yu  and

Chandasekhar 1997). The evidence indicates that both PTH and NR4A receptors are linked to

many important proteins of bone besides OPN, suggests NR4As a major role in the regulation

of bone homeostasis. Since the NR4A receptors are immediate early genes, their expression is

rapidly increased by different stimuli, and their expression is rapidly decreased after the offset

of the original stimulation. The suggestion that that short, intermittent PTH treatment

activates bone formation but does not have time to activate bone resorption (Potts 2005),

implies  that  NR4A  receptors  could  be  mediators  of  the  anabolic  effects  of  short  term  PTH

treatment.

After our results were published, another group reported that also the OCN

promoter is regulated by PTH via Nurr1 (Pirih et al. 2004). Their work demonstrated that

PTH induces Nurr1 mRNA and results in increased binding of Nurr1 on the OCN promoter in
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mouse primary osteoblasts. In addition, Nurr1 was shown to bind the OCN promoter alone,

not as a heterodimer with RXR. Later, the same group published an observation that

intermittent  administration  of  PTH  for  1  week  increased  the  expression  of  OPN  and  OCN

mRNA in vivo in calvariae and long bones (Pirih et al. 2005). PTH also induces the

expression of coactivator PGC-1  as an immediate early gene (Nervina et al. 2006). PGC-1

in turn enhances the activity of Nurr1 on the OCN promoter in mouse primary osteoblasts. In

our studies, PGC-1 did not stimulate Nurr1 activity. We used U2-OS cells in our experiments

with  PGC-1.  Later  it  was  revealed  that  U2-OS  cells  do  not  contain  endogenous  PGC-1

(Rajalin A, personal communication). The fact that we did not observe PGC-1 stimulation of

Nurr1 is probably due to different regulatory systems present in different cell lines. Nurr1 has

also been linked to the differentiation of osteoblasts in studies using the siRNA technique to

knock down Nurr1 expression. In these studies, Nurr1 siRNA prevented the expression of

OCN and Col1A1, inhibited ALP activity, and decreased the number of bone nodules in

differentiating MC3T3 cells (Lee et al. 2006).

These results together demonstrate a new role for the NR4A family in mediating

bone-related genes. More studies need to be carried out in order to find out the extent of the

NR4A regulated events in bone development and remodelling.

2.2 Nurr1 and NGFI-B stimulate the proliferation of preosteoblastic cells

The members of the NR4A subfamily have been shown to act both in an apoptotic and anti-

apoptotic manner depending on the cell type, and also to affect the proliferation of different

cell types (Cheng et al. 1997, Li et al. 1998, Kolluri et al. 2003, Nomiyama et al. 2006). FGF-

8b has been shown to stimulate the proliferation of bone marrow cells (Valta et al. 2006). As

we had demonstrated that FGF-8b induces the NR4A receptors in preosteoblasts, we decided

to study whether the NR4A receptors are involved in FGF-8b stimulated proliferation.

In our experiments, overexpression of Nurr1 and NGFI-B increased the

proliferation of preosteoblastic MC3T3 cells. Nor1 did not stimulate proliferation. Also FGF-

8b treatment for 20 hours stimulated proliferation. When the cells were transfected with Nurr1

DN, FGF-8b treatment had no effect on proliferation. This suggests that FGF-8b induces the

NR4A family members and then Nurr1 and NGFI-B act to stimulate proliferation (fig. 9).

Nor1 is not capable of forming heterodimers with RXR. As overexpression of Nor1 did not
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stimulate proliferation, we tested whether RXR heterodimerization was involved. We used 1

M RXR agonist SR11237 to activate the endogeneous RXR in Nurr1, NGFI-B and Nor1

overexpressing cells. However, this had no effect on proliferation, suggesting that RXR

heterodimerization is not involved. It therefore remains unclear which properties of Nurr1 and

NGFI-B are responsible of the stimulation of proliferation.

To  study  the  effect  of  NR4A  receptors  and  FGF-8b  on  apoptosis  of

preosteoblasts, we overexpressed Nurr1, NGFI-B and Nor1 in MC3T3 cells. The

overexpression of Nurr1 and NGFI-B decreased apoptosis significantly, whereas Nor1 had no

effect. However, the treatment of cells with FGF-8b affected the apoptosis of neither the non-

transfected nor NR4A overexpressing cells. It therefore seems that Nurr1 and NGFI-B reduce

apoptosis independently of FGF-8b. Our results suggest that Nurr1 and NGFI-B increase cell

growth by both increasing proliferation and reducing apoptosis simultaneously.

Our results demonstrate that overexpression of Nor1 does not regulate the

proliferation or apoptosis of preosteoblastic cells. However, a study using Nor1 knock-out

animals showed that Nor1 is required for the proliferation of aortic smooth muscle cells

(Nomiyama et al. 2006). The Study by Pönniö et al. (2002) with a Nor1 knock-out model

showed that Nor1 is essential  for the proliferation of nonsensory epithelial  cells  of the inner

ear. Disruption of Nor1 did not affect the apoptosis of these cells. It has also been shown that

constitutive overexpression of Nor1 results in massive apoptosis in thymocytes (Cheng et al.

1997). Nor1 therefore controls proliferation and apoptosis differently in different cell types

and in different organs.

FGF-8b is expressed in breast and prostate tumours (Tanaka et al. 1998,

Ruohola et al. 2001). Breast and prostate tumours also frequently metastasize to bone. These

metastases can be either osteolytic (bone degrading), osteoblastic (bone forming), or have

characters from both osteolytic and osteoblastic forms (Mundy 2002). It has been suggested

that osteolytic metastases are caused by osteoclast-activating factors that are released from the

tumour cells. Osteoblastic metastases could be caused by factors produced by the cancer cells

that stimulate osteoblast proliferation and differentiation (Mundy 2002). The FGF-8b that is

produced and secreted by breast and prostate tumour cells may induce the expression of the

NR4A receptors in the neighbouring osteoblasts. This signalling could have a major role in

the regulation of the proliferation of osteoblastic metastases in bone.

Nurr1 expression can be seen in developing hind limbs at E11,5 (Zetterström et

al. 1996a). As FGF-8 signalling is also linked with limb development (Vogel et al. 1996), the

co-operation of the NR4A family and FGF-8b should be further studied in developing bone.
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OPN is expressed through proliferational and differentiational stages of osteoblasts and is

considered a protein associated with active proliferation, as it is thought to regulate and

prevent mineralization (Aubin et al. 1995, Sodek et al. 2000). The NR4A family could also

activate other genes that stimulate proliferation. OCN is mainly expressed by osteoblasts in

the late differentiational stages (Aubin et al. 1995). Coll1a1 is a marker for advanced

differentiation and has been shown to harbour several potential Nurr1 binding sites (Lee et al.

2006). In the study by Lee and others (2006), Nurr1 promoted the differentiation of MC3T3-

E1  cells.  It  is  possible  that  FGF-8b  regulates  osteoblast  proliferation  and  differentiation  by

inducing the NR4A subfamily, thus triggering the expression of OPN and OCN. Further

studies are needed to investigate whether the other osteoblast differentiation markers could

also be target genes for the NR4A family.

In bone, OPN has been shown to suppress the proliferation and differentiation of

a MC3T3 cell subclone capable to bone nodule formation (Huang et al. 2004). It has also been

demonstrated that in these subclones, the expression of OPN is increased at higher passage

numbers and correlates with weakened nodule formation (Huang 2001). PTH is capable of

inducing the proliferation of osteoblasts (Datta et al. 2007, Pettway et al. 2008). This

proliferation was linked to the non-confluent stage of culture, and the phenomenom was

reported in MC3T3 cells capable of bone nodule formation (Datta et al. 2007). It seems that

the differentiational status and the level of maturation affect the outcome of different

treatments of osteoblastic cells. In our FGF-8b experiments, we used mesenchymal stem cells

capable of forming nodules, preosteoblastic MC3T3 cells capable of forming nodules,

MC3T3 cells not capable of forming nodules, and osteoblastic U2-OS cells not capable of

forming nodules. Of these, FGF-8b induced NR4A receptors only in cells capable of forming

nodules. This suggests that NR4A receptors are not induced by FGF-8b in more mature

osteoblastic cells. It is possible that the FGF-8b-induced NR4A receptors are linked to

increased OPN expression in maturing osteoblasts. FGF-8b, NR4A receptors, and OPN could

successively regulate the proliferation and differentiation of osteoblastic cells. This

hypothesis needs further experiments.

Our studies have linked FGF-8b to the regulation of NR4A expression. In

addition to osteoblasts, NR4A receptors have also been linked to the functions of

dopaminergic neurons (Zetterström et al. 1997, Castro et al. 2001, Chung et al. 2002). In a

study by Chung and others (2002), Nurr1 was overexpressed in pluripotent embryonic stem

cells, and this overexpression was shown to potentiate the formation of dopaminergic

neurons. Combined FGF-8 treatment was found to further increase differentiation to
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dopaminergic neurons, potentiating the stimulating effect that Nurr1 had alone. Dopaminergic

neurons of the midbrain are involved, among others, in learning, reward, and in the regulation

of movement, (Robbins and Everitt 1996, Hollerman and Schultz 1998, Jankovic et al. 2005).

These cells are lost in patients with Parkinson’s disease (Stoessl 2008). The connection

among FGF-8b signalling, the NR4A family, and the development and regulation of

dopamine neurons should be further addressed.

3. Cross-talk with the receptors of the NR3B group represses the activity of

NR4A orphan receptors (Papers I, II)

NR4A receptors and ERR  have been proposed to bind to the same S1 response element on

the OPN promoter and to activate it (Vanacker et al. 1998, Vanacker et al. 1999). ERR  has

also been shown to bind the S2 element. Our results in paper I showed that NR4A receptors

bind to the S1 element on the OPN promoter. We examined if the NR4A receptors and

NR3Bs co-operate in controlling OPN promoter activation.

When ERR  and ERR  were transfected to SaOS-2 cells, the OPN-luc reporter

was not activated in contrast to previous results (Vanacker et al. 1998). However, when

overexpressed together with Nurr1, ERR  and ERR  were able to repress the transactivation

of OPN caused by Nurr1. This repression was dependent on the ratio of transfected plasmids,

as  increasing  amounts  of  ERR  resulted  in  more  efficient  repression.  ERR  and ERR  also

repressed the activating effects of Nurr1 on the NBRE element. ERR  did not have the same

effect, not even with increasing amounts of transfected ERR  plasmid. When the NR4A

receptors were overexpressed in osteoblastic cells with the ERR  and OPN-luc reporter, only

the  activity  of  Nurr1  was  efficiently  repressed,  whereas  the  activities  of  NGFI-B  and  Nor1

were only slightly repressed.

We then transfected Nurr1, NGFI-B and Nor1 to the osteoblastic cells with the

ERR  and ERRE-LUC element. NGFI-B repressed efficiently the activating effects of ERR

on ERRE, whereas Nor1 repressed ERR  slightly and Nurr1 had no effect. Again, increased

amounts of NGFI-B resulted in a more efficient repression. NR4A receptors and NR3Bs were

found to mutually repress each other’s ability to activate target elements.
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It  is  of  interest  that  not  all,  but  one  or  two members  of  the  NR4A and NR3B

families take part in the observed mutual repression (i.e. only Nurr1 acitivity is repressed by

ERR , ERR  does not repress Nurr1 activity, and only NGFI-B represses effectively ERR

activity). These differential repressions could have an important role in the tissues expressing

different  sets  of  NR4A  receptors  and  ERRs.  Furthermore,  when  the  NR4A  and  NR3B

receptors were cotransfected in osteoblastic cells, ERR  and ERR  repressed the ability of

Nurr1 to activate both NBRE and OPN reporters. ERR  failed to repress the activity of NR4A

receptors. This could originate from ERR  is propably not being expressed in the adult bone.

In humans, ERR  has been shown to be expressed in adults in tissues such as breast, prostate,

testis and kidney, but its most important functions take place during development (Luo et al.

1997, Zhou et al. 2006). In mice, ERR  has not been shown to be expressed in bone tissue

(Bookout et al. 2005). However, NR4A receptors and ERR  could have important cross-talk

during development.

To investigate which part of the receptors contained the property needed for the

mutual repression, we used mutated NGFI-B and ERR  constructs in reporter assays. The

mutations abolishing the DNA binding ability of ERR  (C125G; first zinc finger, and R176A;

A-box, Huppunen et al. 2004) lacked the ability to repress the activation of OPN by Nurr1.

Similarly, mutation in the NGFI-B DBD (C252G; first zinc finger) did not repress the binding

of  ERR to  ERRE.  Our  results  thus  suggest  that  intact  DBD is  needed  for  the  repression.  In

order to study the involvement of DNA binding in repression, we used EMSA to investigate

the binding of DNA by NR4A receptors and NR3Bs. 32P-labelled OPN S1 element, NBRE,

and ERRE were used as probes. Both ERR  and ERR  bound to the OPN S1 and S2 elements

and NBRE, although much less efficiently than Nurr1. In a competition assay, ERR  and

ERR  were found not to compete for DNA binding with Nurr1 on the NBRE or OPN S1

elements. ERRs could still be binding the S2, therefore repressing the activating effect of

Nurr1  simultaneously  bound  to  S1.  When  the  OPN  S2  element  of  the  OPN  reporter  was

mutated and used in transfections with Nurr1 and ERR , repression was not blocked. This

indicates that ERR  does not inhibit OPN activity by binding to S2 element.

Nurr1 and NGFI-B were shown not to bind ERRE in EMSA, and increasing

amounts  of  NGFI-B  did  not  have  effect  on  the  binding  of  ERR  to  the  ERRE  element.  In

addition, the repressive effect that Nurr1 DN had on the basal level of the NBRE reporter was

not abolished by ERR . This implies that ERR  does not interfere with the DNA binding of

Nurr1. We also conducted an experiment in which transfected cells were treated with 4-OHT.

4-OHT is an inverse agonist of ERR  that does not reduce ERR  DNA binding but has been
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shown  to  release  coactivator  SRC-1  (Coward  et  al.  2001).  4-OHT  treatment  of  the  cells

abolished the repressive effect of ERR  on Nurr1. These results together suggest that

alterations in the DNA binding of Nurr1 are not involved in the repression of its ability to

activate target elements.

In addition to DNA binding properties, DBD also contains sequences important

for the subcellular localisation of the receptors (Cadepond et al. 1992, Black et al. 2001), and

localization has been shown to be connected to NR4A functions. We observed no altered

localization when Nurr1 and ERR  were cotransfected into U2-OS cells. This suggests that

the repression of NR4As and NR3Bs abilities to activate target elements is not due to changes

in the localization.

NRs can form heterodimers that can inhibit or stimulate their transactivation

(Zhang et al. 1992, Cowley et al. 1997, Maira et al. 1999, Huppunen and Aarnisalo 2004).

The formation of heterodimers often involves the I-boxes of the LBD (Perlmann et al. 1996b),

and Nurr1 uses this interface when heterodimerizing with RXR (Aarnisalo et al. 2002). We

used ERR  constructs mutated at the I-boxes (ML-AA, R390A, L398A, Huppunen et al.

2004), and these mutants failed to repress the ability of Nurr1 to activate the OPN promoter.

Also, an I-box mutant of NGFI-B (GKL522-524AAA) repressed the ability of ERR  to

activate the ERRE reporter only modestly. This implies that the dimerization of NR4As and

NR3Bs could be involved in the mutual repression. In mammalian two-hybrid assay,

however, no interaction between the LBDs of Nurr1 and ERR  was observed. Furthermore,

no dimeric bands were detected in EMSA, and dimer formation was not observed in co-

immunoprecipitated samples. This suggests that the mutual repression is probably not due to

the formation of inactive heterodimers.

Competition for coactivators could be the cause for mutual repression between

NR4As and NR3B. The involvement of coactivators was assessed using ERR  mutated at the

AF-2 (E429A, Huppunen et al. 2004). This mutation had no effect on the repression of Nurr1.

PGC-1  is  a  coactivator  shown  to  modulate  the  activity  of  both  NR4A  and  NR3B  receptors

(Huppunen et al. 2004, Nervina et al. 2006), in addition, PGC-1 has also been shown not to

require AF-2 to activate ERR  (Huppunen et al. 2004). In our experiments, PGC-1 was not

able to coactivate Nurr1 in U2-OS cells. Thus it seems that at least PGC-1 was not the

coactivator the NR4As and NR3Bs are competing for in osteoblastic cells.

Based on our results, it seems that the mutual repression between NR3B and

NR4A receptors is dependent of three factors: 1) The properties present at the I-box. 2) The

properties  present  in  the  DBD.  3)  The  relative  expression  levels  of  these  receptors.  Further
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analyses are needed to investigate whether mutual repression is caused by competition for

other coactivators present in different cell lines. Also PGC-1 could be involved in different

cell lines or in primary osteoblasts. As both PGC-1 and NR4A receptors are induced by PTH

treatment  (Nervina  et  al.  2006),  it  is  possible  that  the  upregulation  of  PGC-1 takes  place  to

secure the amount of correct coactivator in gene regulation process by NR4A receptors.

There have not been many reports of ligands controlling the activity of NR4A

receptors. However, our results show that 4-OHT can be used to control Nurr1 activity

through ERR . 4-OHT treatment of osteoblastic cells overexpressing Nurr1 resulted in a

slightly enhanced activation of the OPN-promoter. When Nurr1 and ERR  were co-expressed

in cells and treated with 4-OHT, the repression caused by ERR  was blocked effectively. In

situations in which Nurr1 activity is decreased, 4-OHT could induce activity partly by

blocking the repressing ability of ERR .

In their recent study Zirngibl and others (2008) showed that ERR  repressed the

activity of the OPN promoter in osteoblastic ROS17/2.8 cells. Vanacker and others (1998)

have shown that ERR  activates the OPN promoter in ROS17/2.8 cells. In our studies, in

osteoblastic  SaOS2  cells,  ERR  did  not  stimulate  nor  inhibit  the  OPN  promoter.  The

repression of OPN by ERR  seen in the study by Zirngibl and others, did not require DNA

binding  of  ERR  as  in  the  cross-talk  with  NR4A.  Furthermore,  Zirngibl  and  others  showed

that ERR  does not regulate the OPN promoter by binding to any of the suggested S1 to S6

binding elements. There can be another binding site for ERR , or ERR  could in some other

way regulate the OPN promoter and this mechanism may be the explanation for the repression

we observed. The role of ERR  in different osteoblastic cells needs more clarifying.

Mutual repression has also been reported between the receptors of the NR4A

family and GR in pituitary cells (Philips et al. 1997b, Martens et al. 2005). This repression is

mediated in a manner similar to what we have seen between NR4A receptors and the NR3Bs,

i.e. by a feature present in the DBD of Nurr1 and NGFI-B. Furthermore, the repression

reported between NR4As and GR it does not require formiation of NR4A/GR dimers

(Martens et al. 2005). As in the case of the NR4As and NR3Bs, this mutual repression has

also been shown to vary depending on the relative expression levels of the receptors (Philips

et  al.  1997b).  In  adrenal  cells,  however,  Nurr1  has  been  shown to  be  stimulated  by  a  direct

interaction with GR (Carpentier et al. 2008). It has been suggested that there are cell specific

cofactors that control the activating and repressing qualities of the NR4A-GR interaction.

Transcriptional activity of NR4A receptors may thus be controlled by the number of receptors

in relation to other factors present in the cells at a certain moment.
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ERR  overexpression has been shown to suppress the proliferation of prostate

cancer cell lines and to decrease the colony formation capability of these cells (Yu et al.

2007). This phenomenon was shown to be linked to the DBD, as the deletion of the first zinc

finger  of  ERR  abolished  the  suppression.  Tumour  formation  was  shown  to  be  reduced

significantly when ERR  was overexpressed. In addition, it was shown that ERR  agonist

decreased the proliferation of prostate cancer cells. Nurr1 and NGFI-B have also been linked

to proliferation by us in paper IV and by others (Castro et al. 2001, Kolluri et al. 2003,

Mullican et al. 2007). This suggests that ERR  has a common pathway with Nurr1 and NGFI-

B in  the  regulation  of  proliferation.  A higher  relative  expression  of  ERR  could  repress  the

stimulating effect of Nurr1 and NGFI-B on proliferation and thus suppress proliferation. This

suggestion requires further studies.

NR4As and NR3Bs could jointly mediate several biological functions by

regulating common, known or yet unknown, target promoters in a manner dependent on their

relative expressions. Several tissues, such as the brain, express both NR4As and NR3Bs. It is

possible that the transcriptional activities of NR4A receptors are regulated in a complex

manner by regulating the levels of expressions of NR4As, NR3Bs, and other cofactors. This

cross-talk should be investigated with respect to other cell types, such as the dopaminergic

cells, and other promoter areas besides OPN, such as OCN.

4. The mechanism of permissiviness of Nurr1-RXR heterodimers (Paper

III)

Permissiviness of NRs in RXR heterodimers has been linked to the LBDs (Gampe et al. 2000,

Germain et al. 2002). We investigated how permissiviness is determined. We started by

studying which part of the LBD is mediating the permissiviness of Nurr1/RXR heterodimers.

We created chimeric constructs that contain parts of the permissive Nurr1 and non-permissive

RAR LBDs (fig. 11, constructs A, B, C and D). We then examined their activity on a reporter

gene driven by RE, a DR5 type of HRE, and treated the cells with RXR agonist SR11237.

RAR chimera containing the Nurr1 LBD (construct A, fig. 11) was found to form permissive

heterodimers with RXR in reporter assays, thus confirming the previous results of

permissiviness being linked to the LBD.
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Fig. 11. Schematic presentation of the Nurr1/RAR chimeras and locations of RAR and RXR

mutations.

Chimeras containing the dimerization area of RAR LBD (C) as well as the AF-2 area of RAR

LBD (D) were found in reporter assays to form permissive RXR heterodimers. However,

when  the  whole  LBD  of  Nurr1  was  replaced  with  RAR  LBD  (B),  permissiviness  was  lost.

These results suggest that the N-terminal part of the LBD is crucial for permissiviness. This

part of the LBD has been shown to be important for the binding of corepressors (Hu and

Lazar 1999). Using SMRT and NcoR, we to investigated, whether corepressors are involved

in permissiviness.

In reporter gene assays, the ability of Nurr1 to induce NBRE was repressed

when cotransfected with SMRT, suggesting that Nurr1 may interact with SMRT. The

interaction of Nurr1 and SMRT was demonstrated in mammalian two hybrid assay.

Mammalian two hybrid assays also showed that this interaction was very weak compared to

the interactions between RXR, RAR, TR and SMRT. Similar results were obtained with

NCoR. SMRT interacted also with NGFI-B. This interaction was more efficient than with

Nurr1. This is in line with previous results showing that SMRT interacts more potently with

NGFI-B than with Nurr1 (Sohn et al. 2001). Permissiviness has been previously suggested to

be linked to weak binding of corepressors (Germain et al. 2002). Our results show that
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permissive RXR heterodimerization partners bind corepressors more weakly than non-

permissive partners.

To find out how Nurr1/RXR heterodimers interacted with SMRT, we performed

GST pull-down (glutathione S-transferase pull-down) assays. Both RXR and SMRT alone

interacted with Nurr1 LBD. When Nurr1 LBD, RXR and SMRT were incubated together,

Nurr1 interacted with both RXR and SMRT. Nurr1/RXR heterodimers also seemed to bind

SMRT  more  efficiently  than  the  Nurr1  monomer.  To  further  study  the  effect  of

heterodimerization on the interaction between Nurr1 and SMRT, we performed reporter gene

assays. Interaction between SMRT and Nurr1/RXR heterodimer was stronger than the

interaction between SMRT and Nurr1 monomer. This increase was abolished when using the

RXR mutant unable to heterodimerize with Nurr1 (A416K, Lee et al. 2000). Thus the

Nurr1/RXR  heterodimer  seemed  to  interact  more  efficiently  with  SMRT  than  the  Nurr1

monomer did. The finding that the RXR mutant unable to bind corepressors (L294R,

Aarnisalo et al. 2002) did not, as the wild type, evoke an increase in Nurr1-SMRT interaction

implies that RXR recruits SMRT to the Nurr1/RXR heterodimer.

Ligand binding can release corepressors from NRs (Xu et al. 1999, White et al.

2004).  To  study  whether  there  is  a  difference  as  to  how  ligands  control  the  activity  of

permissive and non-permissive RXR heterodimers with recpect to corepressors, we treated

transiently transfected cells with RXR ligands. In the cells transfected with Nurr1 and RXR,

RXR agonists (synthetic SR11237 and natural 9-cis-retinoic acid (9-cis-RA)) inhibited the

repression of the reporter gene caused by SMRT. However, these ligands failed to inhibit the

repression of the reporter gene by SMRT in the cells transfected with RAR and RXR or TR

and  RXR.  Only  the  agonists  for  RAR  and  TR  (TTNPB  and  T3,  respectively)  were  able  to

inhibit the repression by SMRT in these cells (see fig. 12). These results suggest that the

interaction between NR dimers and SMRT is regulated differently by RXR agonists in

permissive and non-permissive heterodimers.  Reporter gene assays performed with chimeric

Nurr1/RAR constructs supported these results.

We studied the release of SMRT from RXR heterodimers in more detail. Direct

interaction between RXR and SMRT was abolished by SR11237 even when cotransfected

with Nurr1. We then transfected cells with RXR, SMRT, and RAR. In mammalian two hybrid

assay, RXR/RAR interacted with SMRT. This interaction was even increased when the cells

were treated with SR11237. This increase of interaction was blocked when RAR was mutated

at the site important for corepressor binding (V242R, Hu and Lazar, 1999). This suggests that

the increased interaction between RAR/RXR heterodimers and SMRT is due to a stronger
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interaction between RAR and SMRT. Taken together, it seems that in the permissive

Nurr1/RXR heterodimer, SMRT interacts with RXR. In the non-permissive RAR/RXR

heterodimer, SMRT interacts mostly with RAR.

In  addition  to  corepressor  binding,  it  seems  that  also  coactivators  mediate  the

permissive characteristics of RXR heterodimers (DiRenzo et al. 1997, Yang et al. 2000,

Germain et al. 2002, Kassam et al. 2003). In permissive PPAR/RXR heterodimers, both

PPAR and RXR agonist Induce the binding of a coactivator to the heterodimer. In non-

permissive RAR/RXR heterodimers, RAR agonist induces binding of a coactivator, whereas

RXR agonist has no effect on coactivator binding (DiRenzo et al. 1997, Yang et al. 2000).

RXR agonist can not release SMRT from the RAR/RXR heterodimer (Germain et al. 2002),

which  is  in  line  with  our  results.  It  has  also  been  shown  that  the  ratio  of  corepressors  and

coactivators can affect the activity caused by a ligand (Smith et al. 1997, Liu et al. 2002).

Differential release of corepressors from permissive and non-permissive heterodimers could

affect the cofactor pools in a cell and have a role in mediating the effects of NRs and their

ligands.

Fig. 12. Corepressor release is differentially regulated in permissive and non-permissive RXR

heterodimers. In the permissive Nurr1/RXR heterodimer, the corepressor SMRT is recruited to the

dimer  by  RXR,  and  released  in  response  to  RXR  agonist.  In  the  non-permissive  RAR/RXR

heterodimer, SMRT is recruited by RAR, and released only in response to the agonist of RAR.
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It has been shown that the expression levels of RAR and PPAR determine which

partner,  RAR or  PPAR,  will  heterodimerize  with  RXR (DiRenzo et  al.  1997).  This  implies

that there is competition for the RXR molecules present in a cell at a particular time. The

amount of the Nurr1 and NGFI-B and, on the other hand, of RXR and its other

heterodimerization partners could affect the number of different heterodimers formed in the

cell. Nurr1 and NGFI-B could have an advantage in the formation of heterodimers when

stress or growth factors induce their expression as immediate early genes. Heterodimerization

with unliganded RXR could repress the transcriptional activities of NGFI-B and Nurr1 when

no activity is needed. Heterodimerization with RXR could also repress the excessive activity

of sudden a induction of Nurr1 and NGFI-B. However, Nor1 can perform its functions

regardless of RXR, other heterodimerization partners, or RXR ligands, as it does not form

RXR heterodimers. Nor1 can therefore perform the functions of the NR4A subfamily alone if

Nurr1 and NGFI-B are blocked in RXR heterodimers. In addition, the monomeric and

heterodimeric functions can be separately controlled.

Our  studies  show  that  SMRT  interacts  with  Nurr1  and  represses  its  activating

functions  on  the  NBRE  element.  SMRT  interacts  with  monomeric  Nurr1,  as  proved  by  the

GST pull-down assay. However, SMRT interacts with Nurr1/RXR heterodimer more

efficiently. Based on our results, the OPN promoter is activated by both monomeric and

RXR-heterodimeric Nurr1. How SMRT interacts with Nurr1 and regulates its activity on the

OPN promoter remain to be solved.

5. Future prospects

This study has provided insight to how the expression or activity of the NR4A subfamily of

orphan nuclear receptors is regulated.

We have shown that FGF-8b treatment of osteoblasts induces NR4A expression

in preosteoblasts (IV). In addition, we have demonstrated that Nurr1 and NGFI-B stimulate

the proliferation of preosteoblasts. They also mediate the proliferative effects of FGF-8b (IV).

We have presented evidence on how NR4A receptors take part in mediating the downstream

effects of PTH treatment by targeting the OPN gene (I). The transcriptional activity of NR4A

receptors is controlled by inhibiting cross-talk with NR3B receptors (I, II). The inhibiting
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effect of NR4A-NR3B cross-talk can be blocked by 4-OHT (I). We have also presented data

on how corepressor release separates permissive heterodimers (formed by Nurr1 and NGFI-B

with RXR) from non-permissive RXR heterodimers (III).

Our studies and other recent investigations have demonstrated that NR4A

receptors have a role in bone metabolism. These studies have revealed definite, such as OPN

and OCN, and putative, such as Col1a1 and ALP, target genes for the NR4As (I, Pirih et al.

2004, Lee et al. 2006). The downregulation of Nurr1 has already been demonstrated to inhibit

the formation of bone nodules (Lee et al. 2006). The role of NR4A receptors in osteoblastic

differentiation and bone remodelling needs more clarification. The expression of NR4A

receptors in differentiating osteoblasts should be examined. In addition, the phenotypes of the

osteoblasts in NR4A deficient mice should be studied in detail. We and others have

demonstrated that NR4A receptors are quickly and transiently induced in response to PTH

treatment (I, Tetradis et al. 2001a, 2001b, Pirih et al. 2003). As intermittent administration of

PTH  is  used  for  the  treatment  of  osteoporosis,  the  expression  and  activity  of  NR4As  in

osteoporotic bone should be determined both before and after the PTH treatment.

It  is  of  importance  to  clarify  the  role  of  Nurr1  and  NGFI-B in  proliferation  of

osteosarcoma cells or other cancerous cell lines. Since also ERR  have been linked to

proliferation of prostate cancer cells (Yu et al. 2007), the combined influences of NR4A

expression and ERR  should be examined. In addition, the roles of ERR  agonists should be

studied in this respect. The expression and activity of NR4A receptors should be studied in

ERR null mice and vice versa.

We have demonstrated that the activity of Nurr1 on the NBRE element can be

repressed  by  corepressor  SMRT  (III).  Whether  SMRT  also  interacts  with  and  represses  the

activity of NR4A receptors on HREs, as it does on the NBRE element, needs more

clarification. Further studies should be conducted to determine whether there are more

mechanisms and perhaps other NRs and their ligands regulating NR4A receptors.
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CONCLUSIONS

The NR4A subfamily of nuclear receptors consists of orphan nuclear receptors with no known

activating or repressing ligands. The functions of these receptors in bone tissue have not been

studied in detail. This work characterizes their functions in osteoblasts and evaluates the

mechanisms regulating their transcriptional activity.

Nurr1 and NGFI-B control preosteoblastic cells both by increasing proliferation and

decreasing apoptosis. In addition, they mediate the proliferative stimulation by FGF-

8b (see fig. 13). It is noteworthy that Nor1 does not have these effects. The biological

functions of the closely related NR4A receptors are therefore different.

The increased expression of OPN in osteoblasts in response to PTH is partly mediated

by NR4A receptors. NR4A receptors are thus linked to the regulation of a major bone

matrix protein.

The transcriptional activity of NR4A receptors can be regulated by cross-talk with

NR3B receptors. The activity of NR4A receptors is increasingly repressed when cells

express increasing amounts of ERR  and ERR . The transcriptional activity of NR4A

receptors can be enhanced by blocking ERR  activity with 4-OHT, a synthetic

inhibitor of ERR . Cross-talk with other nuclear receptors may serve as an important

regulator of constitutively active NR4A receptors.

The expression of NR4A receptors is rapidly induced by FGF-8b. The NR4A

receptors being rapidly induced by many external stimuli suggests that their

expression level is, in fact, an important mechanism in regulating the transcriptional

activity they relay. When strongly and briefly induced, the expression of NR4A

receptors can overcome the repressing effect of NR3Bs in the cell.

In non-permissive RXR heterodimers, the corepressors are strongly bound to the

dimer, whereas in permissive Nurr1/RXR and NGFI-B/RXR heterodimers the binding

of corepressors is very weak. In permissive heterodimers, the corepressors are released
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in response to the binding of RXR agonists. In non-permissive heterodimers, in

contrast, the corepressors are released in response to the partner’s agonist.

Fig. 13. Summary of results obtained in this study combined with previous findings by others. In this

summary the question marks point at matters that require further studies. The results concerning

proliferation, apoptosis, and heterodimerization with RXR are only valid for Nurr1 and NGFI-B. For

abbreviations see page 7. References are in the text.
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