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I. Introduction

THE RECOGNITION that the steroid, thyroid, and ret-
inoid receptors constituted only a small subset of a

large number of related gene products is around 10 yr old
(1). The year 1988 witnessed the identification of the first
cDNA clones encoding polypeptides with structural fea-
tures suggestive of cryptic steroid hormone receptors (2),
and at that time one could identify about a dozen or so
distinct nuclear receptor-like proteins. There are now
more than 50 identified in various species and, mainly
through the various genome-sequencing projects, the
number is now increasing at a rapid pace. Because the
discovery of all these putative nuclear receptors had not
been anticipated by previous physiological studies and
therefore not linked with the biological effects of a par-
ticular hormone or ligand, these new gene products were
referred to as orphan nuclear receptors. That the activity
of orphan nuclear receptors could be potentially regulated
by natural ligands led to the tantalizing suggestion that
new hormone response systems remained to be discovered
(2). Interest in orphan nuclear receptor research was also
stimulated by the knowledge that classic members of the
superfamily of nuclear receptors and their ligands play
crucial roles in development, homeostasis, and disease.
The possibility that nuclear receptors’ activity might be
regulated by the direct action of natural and synthetic
compounds makes orphan receptors good targets for drug
discovery. Therefore, the existence of a large number of
potential new receptors offers the exciting opportunity to
develop novel therapeutic agents, even in the absence of
known natural ligands. Recent advances in the field have
shown that such drugs could be used to treat a variety of
illnesses, including diabetes, lipid disorders, and cancer.
For these reasons, the study of orphan nuclear functions
has regrouped scientists from a wide variety of fields, and
consequently the information being generated on this
subject is vast, diversified, and often very confusing. In
this review, I will attempt to regroup some of this
information in a format accessible to nonspecialists and
specialists alike. I will also try to demonstrate how the
study of orphan nuclear receptors has revealed new modes
of action for nuclear receptors that often challenged
previous dogma and highlights the discovery of new hor-
mone response systems as well as regulatory pathways
controlling cell fate, organogenesis, and basic metabolic
functions.
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II. Nuclear Receptors: General Concepts

Nuclear receptors provide multicellular organisms with a
means to directly control gene expression in response to a
wide range of developmental, physiological, and environ-
mental cues. It is now recognized that nuclear receptor ac-
tivity can be controlled by at least three distinct mechanisms:
1) binding of a small lipophilic ligand by the receptor or its
partner in heterodimer complexes; 2) covalent modification,
usually in the form of phosphorylation regulated by events
at the cellular membrane or during the cell cycle; and 3)
protein-protein interactions, generally through contacts with
other transcription factors including nuclear receptors them-
selves. All three mechanisms can either work individually or
in concert with each other to modulate a specific signal (Fig.
1). It should also be noted that some nuclear receptors me-
diate nongenomic effects that are too rapid to involve
changes in gene transcription. This subject has been reviewed
recently in this journal (3).

To place current studies on orphan nuclear receptors into
their proper context, this review begins with a brief overview
of the structural features and molecular mechanisms shared
by nuclear receptors.

A. Anatomy of nuclear receptors

Nuclear receptors are composed of four independent but
interacting functional modules (Fig. 2A). These are the mod-
ulator domain, the DNA-binding domain (DBD), the hinge
region, and the ligand-binding domain (LBD). For some nu-
clear receptors, the sequence of the protein extends beyond
the LBD at the carboxy-terminal end, but no specific role has
been assigned to these additions when present.

1. Modulator domain. The modulator domain, also referred to
as the A/B domain, displays the most variability both in
terms of length and primary sequence. A large number of

transcriptional units encoding nuclear receptors use alter-
native splicing, different promoters, and distinct transla-
tional start sites to generate multiple modulator domains,
leading to the expression of many receptor isoforms from a
single gene (Fig. 2B). This phenomenon is best exemplified
by the family of retinoic acid receptors for which three genes
produce at least eight receptors with similar DNA- and li-
gand-binding properties but distinct biological functions (re-
viewed in Refs. 4 and 5). The modulator domain usually
contains a transcriptional activation function, referred to as
AF-1. Studies of the estrogen and progesterone receptors
have clearly demonstrated that the modulator domains pos-
sess promoter- and cell context-dependent activities (6–8),
suggesting that the amino-terminal region of nuclear recep-
tors may interact with cell-specific cofactors. Although no
significant amino sequence homology exists between any
members of the superfamily within this domain, unrelated
modulator domains have been shown to confer similar prop-
erties to distinct receptors. For example, while the amino
termini of estrogen receptor a and b share little sequence
similarity, AF-1 activity of both receptors is enhanced
through phosphorylation by the mitogen-activated protein
kinase (MAPK) (9–11). In contrast, the domain confers re-
sponsiveness to the mixed agonist/antagonist 4-hydroxyta-
moxifen to ERa (12), while basal ERb activity is unaffected
by the synthetic compound (11, 13). In addition to MAPK,
both cyclin-dependent protein kinase (14–16) and pp90rsk1

(17) have also been shown to phosphorylate the amino-ter-
minal domains of specific nuclear receptors. The modulator
domain can also interact directly with steroid receptor co-
activators (SRCs) (see below) to enhance the activity of the
receptor complex (18–21).

2. DBD. Nuclear receptors bind DNA as monomers, ho-
modimers, and heterodimers (Fig. 3A) (reviewed in Ref. 22).
While most heterodimeric complexes contain one of the ret-

FIG. 1. Signaling pathways regulating
genomic actions of nuclear receptors.
Nuclear receptor activity can be regu-
lated by direct binding of small li-
pophilic ligands, protein-protein inter-
actions with other transcription factors,
or by covalent modification such as
phosphorylation after stimulation of
cell surface receptors or by cyclin-de-
pendent kinases.
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inoid X receptors (RXRs) as a common partner (23) (see
below), alternative heterodimeric interactions between nu-
clear receptors have been reported and may be of physio-
logical significance (24–32). Nuclear receptor DNA recogni-
tion sites, referred to as hormone response elements (HREs),
contain one or two consensus core half-site sequences. For
dimeric HREs, the half-sites can be configured as inverted,
everted, or direct repeats. Steroid receptors recognize the
half-site consensus sequence AGAACA while the estrogen
receptors and other nuclear receptors bind to the half-site
consensus sequence AGGTCA. For monomeric HREs, a sin-
gle half-site is preceded by a 59-flanking A/T-rich sequence.
Half-site sequences can deviate quite considerably from the
consensus sequences, especially for dimeric HREs in which
a single conserved half-site is usually sufficient to confer
high-affinity binding to the homo- or heterodimer com-
plexes. Natural HREs rarely contain two perfect consensus
half-sites.

The DBD of nuclear receptors is the most conserved do-
main. It is composed of two zinc finger modules encoded by
66–70 amino acid residues and a carboxy-terminal extension
(CTE) that spans approximately 25 residues (Fig. 3B). On the
basis of mutagenesis experiments, the DBD has been further
divided into subdomains involved in direct recognition of
the core half-site sequences (P-box) (33) and dimerization
determinants (D- and DR-boxes) (34, 35). However, the crys-
tal structure of the RXRa-thyroid hormone (T3) receptor b
(T3R b) DBD complex and computer modeling have shown
that each heterodimeric complex may utilize partner-specific
dimerization determinants (36). The CTE plays dual roles in
providing both protein-DNA and protein-protein interfaces
(36, 37). Finally, due to the asymmetric nature of direct repeat
HREs, RXR and its partner bind DNA in a fixed orientation.

In T3R-, vitamin D receptor (VDR)-, and all-trans-retinoic acid
(atRA) receptor (RAR)-RXR heterodimer complexes, RXR
occupies the upstream half-site and its partner the down-
stream half-site (34, 38–41). The site occupied by a receptor
on a direct repeat HRE may regulate its ability to recognize
its ligand (42).

3. The hinge region. This region of the nuclear receptors is also
highly variable in both length and primary sequence: as its
name indicates, its main function is to serve as a hinge be-
tween the DBD and LBD. The hinge has to be very flexible
to let the DBD rotate 180° to allow some receptors to bind as
dimers to both direct and inverted HREs (22). Recent studies
have also demonstrated that the hinge region may serve as
a docking site for corepressor proteins (43, 44).

4. LBD. The LBD is a multifunctional domain that mediates
ligand binding, dimerization, interaction with heat shock
proteins, nuclear localization, and transactivation func-
tions. Although quite variable in primary sequence, nu-
clear receptor LBDs can be defined by a signature motif
overlapping with helix 4 (45). In addition, ligand-depen-
dent transactivation is dependent on the presence of a
highly conserved motif, referred to as activation func-
tion-2 (AF-2), localized at the carboxy-terminal end of the
LBD (Fig. 2A). X-ray crystallographic experiments suggest
that LBDs have similar structures: they are formed by the
folding of 11–13 a-helices into three layers that bury the
ligand-binding site within the core of the LBD (46 –52).
Ligand-dependent transactivation involves the recruit-
ment of coactivators (see below), a process in which the
AF-2 plays an obligatory role. Comparison of holo- and
apo-LBD structures has led to the mouse trap model in

FIG. 2. Anatomy of nuclear receptors and typical gene structure. A, Nuclear receptors are composed of independent functional domains that
include the DBD and LBD, the primary functions of which are to recognize specific DNA sequences and ligands, respectively. Nuclear receptors
generally possess two transcription activation functions (AF-1 and -2) located at the amino and carboxy termini. The division of nuclear receptors
into domains A–F is based on the degree of amino acid sequences conservation between the same receptor in different species. B, Schematic
representation of the exon-intron organization of a typical nuclear receptor gene. The modulator domain is usually encoded by one or two exons.
Distinct modulator domains can be generated by alternative promoter usage (arrows) and splicing (linked exons). The two zinc finger modules
are generally encoded by distinct exons while the hinge and LBD are encoded by 6 to 10 exons. Additional alternative splicing may generate
nuclear receptors with modified LBDs.
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which ligand binding induces a conformational change in
the LBD allowing coactivators to bind (48). In this model,
the AF-2 motif folds back against the core LBD upon ligand
binding, closing the ligand-binding pocket and forming a
novel interface involving residues from the AF-2 itself and
at least three other helices (53). While transcriptionally
competent interfaces are induced by receptor agonists,
binding of antagonists to the LBD leads to the formation
of a nonfunctional interface preventing interaction be-
tween the nuclear receptor and coactivator proteins (49).

B. Mechanisms of action

The textbook model of nuclear receptor action is often
represented by an inactive cytoplasmic receptor in a complex
with heat shock proteins which, upon ligand binding, trans-
locates to the nucleus and activates gene expression. Al-

though this model is valid for some steroid receptors (54),
most nuclear receptors are constitutively nuclear and often
bound to DNA in the absence of their ligand. It is also now
widely recognized that in the absence of ligands, many nu-
clear receptors can act as a strong repressor of gene expres-
sion (43, 44, 55–58). To modulate transcription of their target
genes, nuclear receptors interact with coregulatory proteins.
Nuclear receptors have been shown to associate with various
components of the general transcription machinery, core-
pressors, coactivators, and the cointegrator CBP (CREB-bind-
ing protein)/p300 (reviewed in Refs. 59–63). Corepressor
proteins may function by recruiting histone deacetylases, an
activity that keeps the chromatin in a repressive state (64–
66). Upon ligand binding, the repressor complex dissociates
from the receptor, which is then free to interact with the
coactivator complex. The receptor-coactivator complex may

FIG. 3. DNA binding by nuclear recep-
tors. A, Nuclear receptors can bind DNA
as monomers, homodimers, and RXR
heterodimers. Nuclear receptor binding
sites are composed of one or two half-
core motifs, generally AGGTCA or a
close variant that could be preceded by
a 59-flanking A/T-rich sequence. The
half-core motifs and 59-flanking A/T-
rich sequences are recognized by the
first zinc module and the CTE, respec-
tively. Half-core sequences in dimeric
sites can be arranged as inverted,
everted (not shown), or direct repeats.
Intra- and intermolecular protein-pro-
tein interactions can influence DNA
binding specificity and receptor dimer-
ization. B, Schematic structure of a nu-
clear receptor DBD. The two zinc finger
modules as well as the CTE are identi-
fied. Residues in black have been shown
to make direct contacts with DNA.
Closed and open symbols linked to cer-
tain residues represent residues that
have been shown to mediate dimeriza-
tion in distinct receptor complexes.
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contain one or more coactivators, including an RNA coacti-
vator referred to as SRA (67), p/CAF (p 300/CBP-associated
factor), CBP/p300, and other uncharacterized components.
SRC-1, p/CAF, and CBP have been shown to possess intrin-
sic histone acetylase activity leading to a derepression of the
chromatin structure (68–73). Taken together, these results
delineate a new model for transcriptional regulation by nu-
clear receptors that includes three chromatin states: 1) nor-
mal chromatin in the absence of receptor that displays basal
levels of histone acetylation and transcription; 2) repressive
chromatin with deacetylated histones and no transcription in
the presence of the unliganded receptor; and 3) active chro-
matin with high levels of histone acetylation and transcrip-
tion in the presence of liganded receptor (reviewed in Ref.
74). However, chromatin disruption alone is not sufficient for
transcriptional activation, indicating that additional interac-
tions between nuclear receptors and the general transcription
machinery are required to regulate gene expression (75).

Finally, nuclear receptors can also regulate gene transcrip-
tion via direct interactions with other transcription factors, a
process that does not depend on DNA binding by the nuclear
receptor (reviewed in Refs. 76 and 77). In particular, the
glucocorticoid receptor (GR) has been shown to antagonize
AP-1 and nuclear factor-kB activities via transcriptional in-
terference (78–82). Recent in vivo experiments that used re-
verse genetics to engineer a mutant mouse carrying a DNA-
binding deficient GR have demonstrated that development
and survival of mice do not require HRE-mediated gene
regulation (83). These observations emphasize the multifac-
eted control of nuclear receptor activities and the indepen-
dence of each functional domain in carrying out physiolog-
ical roles.

III. Orphan Nuclear Receptors

A. Definition

Classic members of the superfamily of nuclear receptors
were originally cloned on the basis that known hormones
were transducing their physiological functions through
binding to proteins referred to as receptors (1, 84). This is true
for cortisol and aldosterone, estradiol, progesterone, and tes-
tosterone, vitamin D, T3, and, to a certain extent, for atRA, for
which the mechanism of action had been postulated to re-
semble that of steroid hormones (85), and for the insect
hormone ecdysone (86). Therefore, the existence of these
receptors was well recognized, and the combined efforts of
biochemical and cloning experiments revealed their common
structure and mode of action as defined above. Once inves-
tigators realized that nuclear receptors shared extensive ho-
mology at the amino acid and nucleotide sequence levels, a
search for new members was undertaken using low-strin-
gency screening of cDNA libraries with well conserved DBD
fragments as probes. This cloning exercise led to two unex-
pected results. First, individual ligands, such as T3 and atRA,
were shown to regulate development and physiology
through multiple receptors. This finding was first exempli-
fied by the characterization of a second receptor for T3 (87)
and later by the cloning of three RAR genes, each encoding
multiple isoforms (reviewed in Refs. 4 and 5). The recent

identification of a second estrogen receptor in various species
(11, 88, 89) demonstrates that even for classic ligands, the
hunt for new receptors is still very active. Second, the search
for new members of the superfamily led to the isolation of
multiple cDNAs encoding proteins with structural features
found in nuclear receptors. However, since ligands could not
be linked to these putative receptors based on structural
studies alone, these and other new members of the super-
family identified using various cloning strategies were re-
ferred to as “orphan nuclear receptors.” For the purpose of
this review, orphan nuclear receptors are defined as gene
products that embody structural features of nuclear recep-
tors that were identified without any prior knowledge of
their association with a putative ligand. Using this definition,
orphan nuclear receptors remain in this category even after
the subsequent identification of specific ligands.

B. Nomenclature

The element of randomness associated with the cloning of
orphan nuclear receptors led to a great diversity in the nam-
ing of these new genes. No common nomenclature or even
a basic naming scheme was ever followed, and often the
same receptors cloned in different species or by different
groups were given unrelated names. Recently, a unified no-
menclature system for the nuclear receptor superfamily has
been adopted (90). The nomenclature is based on the well
known system used for the cytochrome p450 superfamily. In
this system, the gene subfamilies are designated by Arabic
numerals, groups by capital letters, and individual genes by
a second set of Arabic numerals. Receptor isoforms gener-
ated from the same gene by alternative promoter usage or
differential splicing are designated by a lowercase letter at
the end of the name. The introduction of this nomenclature
system is not designed to replace the use of trivial names, but
only to clearly identify which nuclear receptor was studied
in a particular set of published experiments. The use of this
system should be enormously helpful to both nuclear recep-
tor aficionados and nonspecialists in attributing functional
properties to each receptor.

A list of known vertebrate orphan nuclear receptors is
presented in Table 1. In this table, orphan nuclear receptors
are first classified in seven groups (0 to VI) according to the
molecular phylogeny analysis performed by V. Laudet (91).
Each group is divided into families referred to by their most
commonly used trivial names, and each family member is
identified by a Greek letter. Receptor isoforms generated
from a single gene are identified by an Arabic numeral. Each
receptor is then identified by its official name, and a list of
other known trivial names is also provided. In this review,
for simplicity and clarity, orphan nuclear receptors will be
referred to by their family names (most commonly used
trivial names), and subtypes will be referred to by a Greek
letter. Readers are asked to use Table 1 as a guide to relate
these names to other trivial names and to the official no-
menclature.

Table 2 displays a list of published Drosophila orphan nu-
clear receptors together with their corresponding vertebrate
homologs, when identified. Note that each group contains at
least one Drosophila gene. Invertebrate orphan nuclear re-
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ceptors will be mentioned in this review only to make points
relevant to the functions of vertebrate receptors. Readers
particularly interested in the functions of orphan nuclear
receptors in Drosophila are referred to recent reviews on the
subject (92–94).

C. Structural and functional diversity

The vast majority of orphan nuclear receptors possess all
the functional domains that characterized classic nuclear re-
ceptors (Fig. 4). Some receptors have a very short modulator
domain, and therefore lack an AF-1, while Rev-Erba and -b
lack the conserved AF-2. In addition, the nuclear receptor
superfamily includes members possessing either a conserved
DBD or LBD, but not necessarily both in the same molecule.
Both DAX-1 and SHP lack a nuclear receptor-like DBD, while

Drosophila EGON, KNIRPS, and KNRL, as well as numerous
nuclear receptor-like gene products encoded in the Caeno-
rhabditis elegans genome show no homology with nuclear
receptors in their LBDs (95–103). However, these proteins
can bind DNA or a ligand using these unrelated domains.
DAX-1 has been shown to bind hairpin loop structures in
DNA via its unique amino-terminal domain (104), while
other intracellular receptors (e.g., aryl hydrocarbon receptor)
and serum and cellular binding proteins (such as retinol-
binding protein, cellular retinoic acid-binding proteins) bind
small lipophilic ligands using structures unrelated to the
LBD of the nuclear receptors.

With the exception of DAX-1, orphan nuclear receptors
recognize specific HREs through their well conserved DBD
in a manner similar to that of classic nuclear receptors (37,

TABLE 1. Vertebrate orphan nuclear receptors

Groups Families Subtypes Isoforms Nomenclature Trivial names Speciesa References

I PPAR a NR1C1 PPARa h, m, r, l, g, x (176, 182, 214, 569–573)
b NR1C2 PPARb, PPARd, NUC1, FAAR h, m, r, l, x (181, 182, 572, 574–576)
g 1, 2 NR1C3 PPARg h, k, b, p, m, r, l, x (182, 577–581)

Rev-Erb a NR1D1 RevErbAa, EAR-1 h, r (370, 371)
b NR1D2 RVR, RevErbAb, BD73, HZF2 h, m, r, c (110, 372–375, 582)

ROR a 1, 2, 3, 4 NR1F1 RORa, RZRa h, m (109, 342, 391, 412)
b NR1F2 RORb, RZRb m, r, c (111)
g 1, 2 NR1F3 RORg, TOR h, m (392, 393, 396)

LXR a NR1H3 LXRa, RLD1 h, r (148, 271)
b NR1H2 LXRb, UR, NER, RIP15, OR1 h, m, r (272–275)

FXR NR1H4 FXR, RIP14, HRR1 h, m, r (274, 281)
PXR 1, 2 NR1I2 PXR.1, PXR.2, SXR, ONR1,

xOR6, BXR
h, m, x (257, 258, 264)

CAR a NR1I3 hCAR1, MB67 h (266)
b NR1I4 mCAR1 m (267)

II HNF4 a NR2A1 HNF4 h, m, r, x (287–289, 291, 583–585)
b NR2A3 HNF4b x (289, 290)
g NR2A2 HNF4g h (291)

RXR a NR2B1 RXRa h, m, c, x, f (125–128, 586–588)
b NR2B2 RXRb, H2RIIBP h, m, r, x, f (127, 128, 589–592)
g 1, 2 NR2B3 RXRg h, m, r, x, c, f (127, 128, 132, 587, 593)

TR2 a NR2C1 TR2, TR2-11, xDOR2, aDOR1 h, m, x, a (426, 594, 595)
b NR2C2 TR4, TAK1, TR2R1 h, m, r (427, 428, 596, 597)

TLX NR2E1 T1x, TLL, xTLL h, m, c, x, f (443, 444, 598, 599)
COUP-TF a NR2F1 COUP-TFI, COUPTFA, EAR3,

SVP44
h, m, r, x, f (447, 453, 600–602)

b NR2F2 COUP-TFII, COUPTFB ARP1,
SVP40

h, m, r, c, x, f (448, 449, 451, 454, 499, 603)

g NR2F4 xCOUP-TFIII, COUP-TFg x (450, 451, 601, 604)
NR2F5 SVP46 f
NR2F6 EAR2 h, m, r

III ERR a NR3B1 ERRa, ERR1 h, m (2, 511, 605)
b NR3B2 ERRb, ERR2 h, m, r (2, 509)
g NR3B3 ERRg h (504)

IV NGFI-B a NR4A1 NGFI-B, NUR77, N10, TR3,
NAK1, TIS1

h, d, r, m, x (514–516, 522, 606, 607)

b NR4A2 NURR1, NOT, RNR1, HZF-3,
TINUR, TR3b

h, m, r (518, 527, 528, 546, 608, 609)

g NR4A3 NOR-1, MINOR, TEC, CHN h, m, r (520, 529, 530, 610, 611)

V FTZ-F1 a ELP1, 2, 3 NR5A1 FTZ-F1, SF1, ELP, AD4BP h, b, m, r, c (339–341, 612–616)
b NR5A2 FTF, LRH1, PHR1, CPF,

FFLR, FF1rA
h, m, c, x, f (342–344, 613, 616–618)

VI GCNF NR6A1 GCNF, RTR h, m, x (552, 619–623)

0 DAX NR0B1 DAX1, AHCH h, p, m, r (367, 624)
SHP NR0B2 SHP h, m, r (566, 567)

a h, Human; k, monkey; b, bovine; p, pig; l, rabbit; d, dog; m, mouse; r, rat; g, guinea pig; c, chicken; f, fish; a, axololt; x, Xenopus laevis.
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105). Functional studies of orphan nuclear receptors have
considerably changed previously held dogma on how nu-
clear receptors can bind DNA. First, the identification of RXR
led to the discovery that a large subset of classic and orphan
nuclear receptors bind DNA as heterodimers (reviewed in
Ref. 23). Second, several orphan nuclear receptors can bind
DNA with high affinity as monomers (105–116). Monomeric
nuclear receptors utilize the CTE (Fig. 3) to recognize distinct
A/T-rich sequences located upstream of a single core half-
site. The CTE-DNA interactions provide additional protein-
DNA contacts in monomeric sites necessary for specific and
high-affinity binding (107, 108, 113, 117, 118). The distinct
amino-terminal domains contained in orphan nuclear recep-
tor RORa (RAR-related orphan receptor) have been shown
to interact with a common CTE to regulate the receptor’s
binding site specificity. The hinge and amino-terminal do-
main appear to orient the zinc finger modules and the CTE
relative to each other and are required to achieve proper
interactions with the core AGGTCA half-site and the specific
A/T-rich moiety (109, 113, 118). The observations that mu-
tations in the amino-terminal domain of the T3R change the
DNA-binding specificity of this receptor (119) and that the
CTE contributes to the specificity and polarity of PPAR (per-
oxisome proliferator-activated receptor) binding to DNA
(120) suggest that the participation of these two domains in
DNA recognition could be widespread among nuclear re-
ceptors.

All vertebrate orphan nuclear receptors possess a highly
recognizable LBD (Fig. 5). The presence of a conserved LBD
is often interpreted as a strong indication that all vertebrate
orphan nuclear receptors possess the intrinsic ability to bind
a specific ligand. However, since the LBD mediates multiple
functions (such as dimerization and coactivator interaction),
its presence may only be required for these activities, which
could be regulated via covalent modifications or protein-
protein interactions (see above). Moreover, widely phyloge-
netically divergent receptors can bind similar ligands, sug-
gesting that the ligand-binding function of nuclear receptors
has evolved independently several times during evolution

(121). This hypothesis implies that a certain number of or-
phan nuclear receptors may never have acquired the ability
to bind ligands. However, this hypothesis would also imply
that the LBD possesses the intrinsic ability to bind ligands,
and that only a few mutations would be necessary to modify
an ordinary transcription factor into a ligand-modulated one.
The reverse hypothesis seems more plausible, i.e., the an-
cestral nuclear receptor was a ligand-dependent transcrip-
tion factor and that mutations during the course of evolution
changed the ligand-binding specificity of novel nuclear re-
ceptors generated through gene duplication according to the
increasing needs of more complex organisms. Some nuclear
receptors may have lost their ligand-binding properties dur-
ing evolution, but more drastic changes in their primary
structures may have been expected, such as the loss of the
AF-2 domain involved in ligand-dependent transactivation.
While evolutionary studies are useful for stimulating spec-
ulative debates, well designed biochemical, molecular, and
physiological experiments are more likely to provide an-
swers on the roles and functions of orphan nuclear receptors
and their putative ligands.

IV. Novel Hormone Response Systems: RXR and Its
Heterodimeric Partners

It has now been demonstrated that RXR and its het-
erodimer partners, with the exception of nerve growth factor
induced gene B (NGFI-B), are liganded (122–124). The next
section will review how the search for ligands associated
with orphan nuclear receptors, a concept now referred to as
“reverse endocrinology,” has led to the discovery of novel
hormone response systems.

A. RXR: rexinoids

RXRa was originally cloned as a result of its homology
with the RARa DBD (125). Three RXR gene products referred
to as RXRa, -b, and -g were identified in mammals (125–128),
as well as a Drosophila homolog, ultraspiracle (129–131).
RXRs as a family are ubiquitously expressed, although in-
dividual RXR genes display unique but overlapping pattern
of expression during development and in adult tissues (127,
132–134).

RXRa could be activated by supraphysiological doses of
atRA, suggesting that the natural ligand for RXRa might be
a metabolite of atRA (125). Starting with this hypothesis, two
groups independently identified 9-cis-retinoic acid (9cRA) as
the RXR ligand (Fig. 6) (135, 136). The identification of 9cRA
as the natural RXR ligand was the first demonstration of
reverse endocrinology, where the discovery of a receptor
leads to the identification of a novel hormone. As 9cRA was
also found to be a high-affinity ligand for RAR (136), several
groups began a search for natural and synthetic RXR-specific
ligands. Two noncyclic terpenoids, methoprene acid and
phytanic acid, were found to bind and activate RXRs in a
specific manner (137–139). Phytanic acid is a natural chlo-
rophyll metabolite present in normal human diet, while
methoprene acid is an environmental contaminant. While
both ligands have the potential to regulate or disrupt natural
RXR responses, the physiological significance of these find-

TABLE 2. Drosophila orphan nuclear receptors

Group Trivial names Official name Vertebrate References

I E75 NR1D3 Rev-Erb (625, 626)
E78 NR1E1 Rev-Erb (626)
DHR3 NR1F4 ROR (627)
ECR NR1H1 LXR (628)
DHR96 NR1J1 VDR (629)

II DHNF4 NR2A4 HNF4 (630)
USP NR2B4 RXR (129–131)
DHR78 NR2D1 TR2 (629)
TLL NR2E2 TLX (631)
DSF NRE3 TLX (632)
SVP NR2F3 COUP-TF (633)

III DERR NR3B4 ERR (634)
IV DHR38 NR4A4 NGFI-B (629)

V FTZ-F1 NR5A3 FTZ-F1 (635, 636)
DHR39 NR5B1 FTZ-F1 (637, 638)

0 KNI NR0A1 (96)
KNRL NR0A2 (95, 97)
EGON NR0A3 (97)
TRX NR0A5 (639)
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ings remains to be proven, especially in view of the relative
low affinities of these compounds for RXRs. Several synthetic
compounds have now also been characterized that bear the
characteristics of RXR-selective ligands, including both ago-
nists and antagonists (140–144).

As introduced above, RXRs participate in a wide range of
hormone response systems via their association with other
nuclear receptors as heterodimeric partners. Two types of
RXR heterodimeric complexes exist: nonpermissive het-
erodimers that can be activated only by the partner’s ligand

FIG. 4. Schematic representation of vertebrate orphan nuclear receptors. One member of each family is shown. The presence of a ligand-
dependent AF-2 domain is indicated in black. Atypical sequences in DAX-1 and SHP are represented by a dotted domain.
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FIG. 5. Sequence alignment of vertebrate orphan nuclear receptor LBDs. The putative secondary structure adopted by nuclear receptors is
represented by a-helices and b-strands according to crystal structure of PPARg (52).
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FIG. 6. Representative ligands and activators shown to modulate the activity of RXR and its heterodimeric partners.
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(42, 145, 146), and permissive heterodimers that can be ac-
tivated either by RXR or by the partner’s ligand (147–150).
Nonpermissive heterodimers include RAR/RXR, T3R/RXR,
and VDR/RXR, although RXRs are only completely silent in
the T3R/RXR and VDR/RXR complexes. Both RAR and RXR
ligands can activate the RAR/RXR complex (151, 152); how-
ever, RXR ligands are effective only in the presence of a RAR
ligand (146, 153, 154). The ability of each heterodimeric com-
plex to allow RXR ligand binding may be explained in part
by distinct intermolecular interactions between the RXR
AF-2 domain with the coactivator-docking site of its partner
(154). Since RXR-selective compounds can elicit a response
from both retinoid- and non-retinoid-related pathways, the
term rexinoids is now being used to distinguish RXR-specific
activators from other vitamin A derivatives and synthetic
analogs acting as RAR ligands. The development of rexinoids
has considerably extended the therapeutic repertoire of vi-
tamin A derivatives. Rexinoids have recently been shown to
inhibit the growth of atRA-resistant human breast cancer
cells (155), act as chemopreventive agents and even cause
regression of mammary carcinoma in the rat (156), and sen-
sitize diabetic and obese mice to insulin (157, 158).

Because RXRs play a dual role in nuclear receptor signal-
ing (as receptor for 9cRA and as a heterodimer partner for
several nuclear receptors), it has been difficult to assess the
precise contribution of RXR-selective pathways in develop-
mental and physiological processes. Two lines of evidence
point to the fact that RXR could act as a specific receptor in
its own right. First, 9cRA binding to RXRs promotes the
formation of RXR homodimers (159), demonstrating that
RXRs can function independently of other signaling path-
ways when bound to a DR-1 HRE (160). Second, transgenic
mice expressing a chimeric RXR protein in which the RXR
LBD was fused to the DBD of the yeast activator Gal4, to-
gether with a b-galactosidase reporter gene driven by Gal4
upstream-activated sequences, showed a receptor-specific
activation pattern in the developing spinal cord consistent
with a role for endogenous RXR ligands in vivo (161). This
technique offers the potential to investigate the activation
pattern of any nuclear receptors and should be particularly
useful in studying orphan nuclear receptor functions.

Genetic ablation experiments have revealed that RXRa
plays a primary role in placenta, heart, and eye morphogen-
esis (162–170). The putative functions of RXRa in adult an-
imals are unknown due to the embryonic lethal phenotype.
RXRb mutant mice have abnormal spermatogenesis (171),
while RXRg null mice are apparently normal (172). While
generation of RXR and RAR compound mutants have clearly
demonstrated that the RXR/RAR heterodimer complex
transduces the retinoid signal for a number of RA-dependent
processes during development (162, 173, 174), surprisingly,
there is no genetic evidence yet available indicating that
RXRs actively participate in other hormone response path-
ways in vivo.

B. PPAR: multiple ligands, multiple functions

Three PPAR genes generating a number of isoforms have
been identified in mammals: PPARa, -b, and -g (Table 1)
(reviewed in Ref. 175). The members of the PPAR family have

been cloned by techniques including screening of a cDNA
library with a mixture of oligonucleotides directed against a
conserved region of the DBD, low-stringency screening, ex-
pression library screening using radiolabeled HREs, and
DNA affinity purification and microsequencing of nuclear
proteins. The primary sequences of PPARa, -b, and -g are
more divergent than members of other families, reflecting a
rapid evolution from the ancestral PPAR gene. Each PPAR
gene displays a distinct expression pattern during develop-
ment and in adult animals. PPARa is highly expressed in
heart, liver, kidney, intestine, and brown fat, tissues that
demonstrate high rates of fatty acid b oxidation (176, 177).
Hepatic PPARa expression levels have been observed to vary
widely in individual animals (177), possibly due to hormonal
modulation of PPARa expression by glucocorticoids (178),
physical stress (179), or changes in serum insulin levels (180).
PPARb is more widely expressed in adult tissues: high levels
of PPARb transcripts are detected in the brain, kidney, small
intestine, and Sertoli cells (177, 181). Interestingly, PPARg
isoforms are expressed in a tissue-specific fashion: PPARg1
transcripts are abundantly expressed in the spleen, intestine,
and white adipose tissue (177), while the PPARg2 isoform is
preferentially expressed in white and brown fat.

PPARs bind to DR1 HREs as a heterodimer with RXR (147,
182, 183). However, analysis of natural PPREs has clearly
shown that nucleotides that are present 59 of the two con-
sensus half-sites regulate the efficiency with which specific
PPAR isoforms recognize PPREs (120, 184, 185). PPREs have
been identified in genes controlling all aspects of carbohy-
drate and lipid metabolism (147, 182–184, 186–211). In ad-
dition to directly binding to their cognate response element,
it has been suggested that PPARs may regulate gene expres-
sion by forming heterodimers with other nuclear receptors
such as T3Rb and liver X receptor (LXRa) (27, 212, 213).

The initial characterization of PPARa led to the observa-
tion that peroxisome proliferators, a group of structurally
unrelated compounds that cause proliferation of hepatic per-
oxisomes, liver hyperplasia, and hepatic malignancies in ro-
dents (reviewed in Refs. 175 and 203), could stimulate its
activity when employed at pharmacological doses (176). A
search for more potent and natural PPARa activators first
demonstrated that fatty acids could activate PPAR (214).
PPARa activity was subsequently shown to be induced by
eicosanoids (215), carbaprostacyclin (216), nonsteroidal anti-
inflammatory drugs (NSAIDs) (217), and leukotriene b4
(LTB4) (218). Although PPARb and -g can be activated by
common PPAR ligands such as docosahexenoic acid and
certain prostaglandins (215), PPARg was shown to specifi-
cally bind to thiazolidinediones (TZDs), a class of antidia-
betic drugs (219, 220). Other PPARg ligands include the
natural prostaglandin metabolite 15-deoxy-D12,14-prosta-
glandin J2 (PGJ2) (219, 221), polyunsaturated fatty acids
(222), and NSAIDs such as ibuprofren (223). Specific syn-
thetic PPARb ligands have been identified by screening bi-
ased chemical libraries (224); however, a natural high-affinity
PPARb ligand has yet to be characterized. Representative
PPAR ligands and activators are shown in Fig. 6. In addition
to direct activation by PPAR ligands, PPAR-RXR het-
erodimers can be activated by RXR-specific ligands. Tran-
sient transfection studies showed that maximal activation of
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a PPRE-containing gene promoter was achieved by simul-
taneous treatment with the synthetic PPAR ligand WY14,643
and 9cRA (225). As mentioned above, this synergism is also
observed in vivo, where the efficacy of TZDs in reducing
fasting hyperglycemia and hypertriglyceridemia in db/db
obese mice is potentiated by dual treatment with rexinoids
(157). Finally, PPARg isoforms display isoform-specific
transactivation potential due to their distinct ligand-inde-
pendent AF-1 domain (226, 227). In particular, the PPARg2
AF-1 domain contains a consensus MAPK site, and phos-
phorylation of that site after stimulation of the MAPK path-
way by epidermal growth factor, and insulin inhibits the
adipogenic potential of liganded PPARg2 (226, 228), pre-
sumably because phosphorylation of this site reduces ligand-
binding affinity via an intramolecular communication be-
tween the AF-1 and the LBD (229). The PPARg2 AF-1 domain
has also been shown to interact with a coactivator protein
termed PGC-2 (230). Ectopic expression of PGC-2 in prea-
dipocytes leads to an increase in fat cell differentiation, sug-
gesting that PGC-2 may be a limiting cofactor for the adi-
pogenic action of PPARg2.

The identification of ligands and target genes linked to
lipid metabolism greatly facilitated the analysis of PPARg
functions. Numerous in vitro studies have provided strong
support for a crucial role for PPARg in adipogenesis (re-
viewed in Refs. 203, 231, and 232). In particular, differenti-
ation of fibroblasts into adipocytes is accompanied by in-
creased expression of PPARg (233), and overexpression of
PPARg2 is sufficient to induce fibroblasts to undergo adi-
pocyte differentiation in the presence of ligands (234). It has
been shown that activation of PPARg induces cell growth
arrest in fibroblast cell lines, which suggests that PPARg may
play an important role in cell cycle withdrawal during ad-
ipogenesis in vivo (235). Although PPARg was first thought
to be an adipocyte-specific modulator (236), PPARg tran-
scripts have now been detected in many tissues including
normal mammary epithelia and breast adenocarcinomas
(237), colon (238–241), and macrophages (242, 243). Remark-
ably, treatment of human breast cancer cells with TZDs led
to a series of molecular and morphological changes that are
associated with a more differentiated state and to the induc-
tion of apoptotic pathways, suggesting that PPARg-induced
cell differentiation may offer a novel therapeutic approach to
breast tumors (237, 244). A small clinical trial involving three
patients with advanced liposarcoma also suggests that tro-
glitazone (Parke-Davis, Ann Arbor, MI) could be effective at
promoting the differentiation of this type of solid tumor
(245). PPARg ligands have also been demonstrated to slow
the growth and induce the differentiation of human colon
cancer cells in culture or implanted tumors (246). Somatic
PPARg mutations that impaired the function of the protein
were also found in sporadic colon cancers, suggesting that
loss of function of PPARg may contribute to the etiology of
human colon cancer (247). However, mice genetically sus-
ceptible to develop polyps in the colon treated with PPARg
ligands show an increased frequency of colon adenocarci-
nomas (240, 241). These apparently contradicting results may
reflect a distinct role for PPARg in the context of normal colon
epithelium (proliferation) and tumor cells (growth arrest)
(248). These observations raise a warning flag to long-term

use of TZDs and beg for additional investigation of the role
of PPARg in normal and abnormal colon physiology. PPARg
has also recently been indirectly implicated in the regulation
of monocyte functions (reviewed in Ref. 249). At relatively
high doses, PPARg ligands were shown to be effective in
reducing the levels of inflammatory cytokines and produc-
tion of nitric oxide by isolated monocytic cells (242, 250). In
addition, PPARg appears to be involved in the maturation of
monocytes along the macrophage lineage, more specifically
in the conversion of monocytes to foam cells, which can be
induced upon exposure of monocytes to oxidized LDL. It has
been proposed that two oxidized derivatives of linoleic acid
present in LDL, 9- and 13-hydroxyoctadecadienoic acid (9-
and 13-HODE), can act as PPARg ligands once internalized
into foam cells by oxidized LDL receptor-mediated endocy-
tosis (243, 251). PPARg activation by 9- and 13-HODE then
leads to foam cell maturation and directly enhances the ex-
pression of the CD36 lipoprotein scavenger receptor gene
promoter, resulting in increased macrophage LDL and oxi-
dized LDL uptake, which promotes cholesterol deposition in
atherosclerotic plaques. Again, both findings have direct im-
plications for use of TZDs as therapeutic agents. On one
hand, TZDs, which are well tolerated in patients with non-
insulin-dependent diabetes mellitus, could replace the less
well tolerated NSAIDs to treat inflammatory diseases. In
contrast, prolonged use of TZDs could accelerate the forma-
tion of atherosclerotic plaques and increase cardiovascular
diseases.

The study of PPARa null mice have revealed three im-
portant functions for PPARa in vivo (198). First, it has been
demonstrated that PPARa is an essential mediator of the
hepatic response to peroxisomal proliferators such as Wy-
14,643, clofibrate, and DHEA-S (198, 252). However, PPARa
is not essential for peroxisome biogenesis as normal numbers
of hepatic peroxisomes are present in PPARa2/2 mice. Sec-
ond, PPARa appears to orchestrate the expression of genes
encoding mitochondrial, peroxisomal, and cytochrome P450
enzymes involved in cellular fatty acid utilization in re-
sponse to changes in intracellular levels of fatty acid metab-
olites (209, 253, 254). Third, PPARa null mice show a pro-
longed inflammatory response when challenged by its
natural ligand, LTB4 (218). It has been proposed that the
prolonged response to LTB4 is due to the disruption of the
normal feedback mechanism controlling the degradation of
this chemotactic inflammatory agent, implying that liganded
PPARa regulates transcription of genes involved in this cat-
abolic pathway. Finally, PPARa ligands have been shown to
inhibit the inflammatory response of aortic smooth muscle
cells in vivo, which participate in plaque formation and post-
angioplasty restenosis (255). Thus, in contrast to PPARg li-
gands, activators of PPARa may have beneficial vascular
effects in atherosclerosis.

While the role of the widely expressed PPARb remains
elusive, studies using cyclooxygenase-2 (COX2) null mice
suggest that the essential role played by the COX2-derived
prostacyclin PGI2 in implantation and decidualization is
transduced by this receptor in the uterus (256). PPARb,
RXRa, COX2, and PGI synthase are coexpressed in stromal
cells surrounding the implanting blastocysts, and PPARb
agonists (PGI2, carbaprotacyclin, and L, 165,041) that can
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specifically promote PPARb/RXRa heterodimerization and
transactivate the receptor complex in vitro restore implanta-
tion and decidualization in COX2 null mice. Once again, the
potential role of PPARb ligands in implantation suggests that
the development of PPAR-directed drugs should be vigi-
lantly monitored to avoid unwanted side effects.

C. PXR: pregnanes, xenobiotic compounds, and benzoate
derivatives

The characterization of PXR may well represent the first
identification of a steroid hormone-based response system in
many decades. Murine PXR was identified through a com-
puter search of expressed sequence tags (ESTs) derived from
a liver cDNA library (257). PXR is predominantly expressed
in the liver and intestine of embryos and adult animals and
is most closely related to the VDR at the structural and amino
acid sequence levels. Using a Gal4-PXR chimeric protein to
perform an initial search for PXR activators, Kliewer et al.
(257) found that synthetic pregnanes (C21 steroids) and both
glucocorticoid agonists and antagonists were potent induc-
ers of PXR activity. Interestingly, some of these compounds,
in particular dexamethasone and pregnenolone 16a-carbo-
nitrile (PCN), were well known to induce the expression of
the cytochrome p450 CYP3A gene in rodent liver and intes-
tine and cultured hepatocytes (see Refs. 257 and 258). CYP3A
is involved in the hydroxylation of steroid hormones as well
as various toxic xenobiotics. Induction of CYP3A and other
members of the rodent p450 3A family is believed to confer
protection against drugs and toxic xenobiotics by increasing
their catabolism (259). Like its close relative VDR, PXR was
found to recognize DR-3 HREs as a heterodimer with RXR,
and a DR-3 motif previously demonstrated to be responsible
for the activation of the CYP3A promoter by dexamethasone
and PCN (260–262) was also found to mediate PXR activa-
tion of the CYP3A promoter by these compounds (257). In-
terestingly, mouse and human PXR display important dif-
ferences in their activation profile by certain drugs (258, 263).
While PCN acts as a potent inducer of mouse PXR, it has only
a weak inductive effect on human PXR. Conversely, rifam-
picin is a strong activator of human PXR but has very little
activity on mouse PXR. These species-specific activation pro-
files were not entirely unexpected as marked interspecies
differences had been observed in the induction of CYP3A
genes. The comparative analysis of human and mouse PXR
function provide an elegant molecular explanation for these
species-specific responses. Taken together, these results pro-
vide convincing evidence that PXR is responsible for the
induction of CYP3A genes in response to treatments with
PCN, dexamethasone, and various xenobiotic agents. How-
ever, these are synthetic compounds that must mimic the
action of endogenous steroids whose normal physiological
role could be to regulate steroid and sterol metabolism in
liver and intestine. Based on the finding that PXR is best
activated by pregnenolone and its derivatives, Kliewer et al.
(257) proposed that the natural ligand for PXR is likely to be
a pregnane; hence, the name pregnane X receptor (PXR). The
broader activation profile and low affinities for human PXR
activators has also been interpreted to mean that PXR could
function as a steroid and xenobiotic sensor that directly reg-

ulates the activity of catabolic p450 enzymes in response to
the presence of their substrates (123, 263). If this hypothesis
is correct, a high-affinity ligand for PXR may not be required.
Regardless of which hypothesis turns out to be correct, the
first direct application to spring from these discoveries is
likely to be the development of more rapid and accurate
PXR-based assays to screen for the ability of drugs to induce
CYP3A genes, an important component of the drug devel-
opment process (258).

The Xenopus PXR ortholog, referred to as BXR (264) and
xONR1 (265), appears to play a completely different role in
that organism. BXR is expressed early during Xenopus de-
velopment, and biochemical purification of transcriptionally
competent embryonic extracts tested in a BXR-dependent
activation assay led to characterization of endogenous ben-
zoate metabolites as BXR ligands (Fig. 6) (264). While the
exact role of these compounds in vertebrate development is
unknown, their identification as orphan nuclear receptor
ligands suggests that this class of molecules may participate
in previously unrecognized morphogenetic signaling path-
ways.

D. CAR (constitutive androstane receptor): androstanes
and phenobarbital

Study of CAR function has recently introduced another
new concept in nuclear receptor action. CAR was originally
identified through screening of a cDNA library with a de-
generate oligonucleotide based on a conserved region of the
nuclear receptor DBDs (266). CAR was found to bind DR-5
HREs as a heterodimer with RXR, sites previously shown to
be regulated by RAR-RXR complexes in the presence of reti-
noids or rexinoids. However, CAR was found to activate
reporter genes driven by promoters containing DR-5 HREs
(266, 267) or a complex HRE present in the CYP2B gene (268)
in the absence of retinoids, rexinoids, or any other exog-
enously added ligands. Thus, the name CAR was referring
to constitutively active receptor. Despite its constitutive be-
havior, the likelihood that CAR activity could be regulated
by a ligand was considered high, mainly on the basis of its
association with RXR. The search for a ligand revealed that
CAR is, in fact, a steroid receptor for androstenol and an-
drostanol (Fig. 6), but contrary to previous dogma concern-
ing steroid receptor action, these ligands switch the activity
of CAR off instead of on (269). A biochemical analysis of CAR
function suggests that the two steroids act as inverse ago-
nists, not antagonists, since addition of these ligands induces
the dissociation between CAR and a coactivator protein in
vitro. A legitimate question to ask is whether androstenol and
androstanol are the best ligands for CAR. The affinities of
both compounds for CAR (.400 nm) are well below normal
physiological levels found in the plasma. Nonetheless, this
discovery should stimulate studies on this previously un-
recognized androstane-related signaling pathway and pro-
vide a new model to investigate the molecular and structural
mechanisms underlying nuclear receptor activation and re-
pression.

While the constitutive activity of CAR can be suppressed
by androstanes, various phenobarbital-type inducers have
been shown to reverse the negative effect of androstanes on
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the human cytochrome P450 (CYP) 2B6 promoter (270). Phe-
nobarbital is the prototype for xenochemicals that induce
CYP2B genes. This observation suggests that CAR, together
with PXR and PPARa, may participate in a nuclear receptor-
based regulatory pathway controlling the expression of CYP
genes in response to exogenous xenochemicals and endog-
enous compounds such as steroids and lipids.

E. LXR: control of cholesterol metabolism by oxysterols

LXRa was so named based on its initial isolation from a
human liver cDNA library and the observation that its ex-
pression is enriched in that tissue (148). LXRa is also ex-
pressed at significant levels in other organs such as the in-
testine, kidney, and spleen (148, 271). A second member of
the family, LXRb, is ubiquitously expressed (272–275). Both
LXRa and -b recognize DR-4 HREs as heterodimers with
RXR (148, 271, 272, 274). LXR binding sites, referred to as
LXREs, preferentially contain nonconsensus half-sites
(AGTTCA). LXRa has also been found to heterodimerize
with PPARa: this interaction does not lead to the formation
of a transcriptionally active complex and has not yet been
shown to be physiologically relevant (213). The LXR-RXR
complex belongs to the class of permissive heterodimers as
the RXR ligand 9cRA was found to be a potent activator of
LXR transcriptional activity (148). Interestingly, RXR was
shown to occupy the 59-half-site on the LXRE, a position that
does not allow ligand binding in other heterodimeric com-
plexes. This suggests that RXR-ligand activation potential is
not exclusively dictated by receptor binding polarity on
DNA (42) but is rather dependent on the RXR partner and
primary sequence of the HRE (150). Furthermore, activation
of the LXR-RXR complex by 9cRA requires the LXR but not
the RXR AF-2 domain, suggesting that ligand binding by one
receptor induces conformational changes in its partner that
lead to transcriptional activation (150, 276). Similar conclu-
sions were reached in studies using the synthetic rexinoid
LG100754, which can activate the nonpermissive RAR-RXR
heterodimer via the unliganded RAR (277). This phenome-
non was referred to as the phantom ligand effect.

The search for LXR ligands led to the discovery that en-
dogenous oxysterols are potent and selective LXR activators
(149). The most active compounds identified were 22(R)- and
24(S)-hydroxycholesterol, 24(S),25-epoxycholesterol, and 7a-
hydroxycholesterol (Fig. 6) (149, 223, 278). Oxysterols are
oxidized derivatives of cholesterol that serve as intermediary
substrates in the rate-limiting steps of steroid hormone and
bile acid synthesis (279). One prediction from these findings
is that liganded LXRa could act as a sensor of cholesterol and
regulate its metabolism. The phenotype of mice carrying a
targeted null mutation in the LXRa gene confirmed this
hypothesis (280). The absence of LXRa results in a block of
cholesterol catabolism, leading to accumulation of hepatic
cholesterol in mice fed a high cholesterol diet (2%) associated
with mysregulation of CYP7A, which encodes a key regu-
latory step involved in bile acid synthesis. LXRa mutant mice
also display abnormal fatty acid synthesis. A role for LXRa
as a cholesterol sensor is strongly supported by the obser-
vation that LXRa knock-out mice do not up-regulate bile acid
synthesis or diminish their cholesterol uptake in response to

high cholesterol levels. However, since the phenotype is
observed only when the mice are exposed to very high levels
of cholesterol in their diet, the role of LXRa under normal
physiological conditions remains to be elucidated. Nonethe-
less, these discoveries will certainly lead to the search for
possible mutations in the LXRa gene in patients with defects
in cholesterol metabolism as well as the development of
therapeutic agents targeting the oxysterol response pathway.

F. FXR: bile acids receptor

FXR is most closely related to the Drosophila EcR and binds
to EcRE (IR-1) and DR-4 HREs in a complex with RXR (274,
281). Transactivation assays have shown that rat FXR can be
activated by high concentrations of farnesol (281). Farnesol
is an isoprene intermediate in the mevalonate biosynthetic
pathway and most likely activates FXR via its conversion into
a higher affinity derivative (Fig. 6). However, the activity of
the highly homologous mouse FXR (RIP14) is not induced by
farnesol but rather can be stimulated by atRA and the syn-
thetic retinoid TTNPB (282). As observed for the action of
farnesol on rat FXR, high concentrations of atRA are required
to activate mouse FXR, and no evidence of direct binding by
atRA and TTNPB was obtained, again suggesting that FXR
could serve as a receptor for an unknown metabolite of these
activators. Because farnesol and retinoids share common
metabolic pathways, it is expected that the activating com-
pound would be a retinoid metabolite.

More recently, however, FXR was shown to be a receptor
for bile acids (283–285). The combined results of three groups
demonstrate that several bile acids are potent inducers of
FXR transcriptional activity and promote FXR interaction
with a coactivator at physiological concentrations. Bile acid
activated FXR was also shown to enhance transcription from
the intestinal bile acid binding protein (IBABP) promoter and
inhibit transcription from the CYP7A promoter, most likely
via antagonism of LXRa action. Taken together, these results
suggest that FXR is a general regulator of bile acid metab-
olism, acting both at the level of the liver through suppres-
sion of CYP7A to reduce synthesis and at the level of the
intestine through activation of IBABP to increase recycling of
bile acids (reviewed in Ref. 286).

V. Orphans in Search of a Home

While functional studies of nuclear receptors in the ab-
sence of ligands are intrinsically more limited in scope and
pharmacological relevance, extensive usage of modern mo-
lecular, biochemical, and genetic tools have allowed inves-
tigators to obtain a first glance of the biological functions
associated with many unliganded orphan nuclear receptors.
Below is a brief summary of current knowledge on the mo-
lecular mechanisms and functions associated with these pu-
tative receptors.

A. HNF4: diabetes and possible regulation by acyl-coenzyme
A (CoA) thioesters

HNF4 (hepatocyte nuclear factor 4) represents one of two
orphan nuclear receptors not associated with RXR for which
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an association with a putative ligand has been proposed.
HNF4a was initially identified as a transcription factor re-
quired for liver-specific gene expression (287). To date, three
genes encoding HNF4 subtypes have been identified in ver-
tebrates: two in human and rodents (HNF4a and -g) (287–
289) and one in Xenopus (HNF4b) (290). Each gene product
differs significantly in its expression pattern and transacti-
vation potential (288, 289, 291). HNF4a is expressed at high
levels in liver, kidney, intestine, and pancreas and at low
levels in the testis (287, 291, 292). HNF4g transcripts are not
expressed in liver but can be found at low levels in the
kidney, intestine, and pancreas (291). During development,
HNF4a is expressed in primary endoderm at 4.5 days post-
coitus (d.p.c.) and in visceral endoderm between 5.5 d.p.c.
and 8.5 d.p.c. (293). Hepatic expression of HNF4a is detected
in the liver primordia by 8.5 d.p.c. and during all subsequent
stages of development. HNF4a expression in other tissues
begins at 9.5 d.p.c. in the gut and at 10.5 d.p.c. in the devel-
oping pancreas and the mesonephric tubules (293, 294).
HNF4 subtypes bind as homodimers to DR-1 HREs (295) and
regulate the expression of genes involved in cholesterol, and
xenobiotic and amino acid metabolism, as well as all aspects
of carbohydrate and lipid metabolism and various liver spe-
cific-genes (201, 292, 296–322).

HNF4a is a constitutive inducer of gene expression that
interacts with steroid hormone coactivators and p300 (323),
suggesting that its activity may be regulated by an endog-
enous ligand present in most cell types (287). Recently, long-
chain fatty acyl-CoA thioesters have been shown to modulate
gene activation by binding directly to HNF4a (324). Long-
chain fatty acyl-CoA thioesters are amphiphilic molecules
that play important roles in the regulation of energy metab-
olism through direct interaction with a variety of cellular
enzymes (reviewed in Ref. 325). High intracellular fatty acyl-
CoA concentrations, which sometime result from prolonged
fasting or diabetes mellitus, have been shown to inhibit the
activity of glycolytic enzymes resulting in fatty acid oxida-
tion replacing glycolysis as the primary cellular energy
source (325, 326). The observation that long-chain fatty acyl-
CoA thioesters could also regulate the transcription of genes
implicated in these metabolic pathways is of considerable
interest. However, long-chain fatty acyl-CoA thioesters dis-
played marked differences in their ability to regulate HNF4a
transcriptional activity: poly- and monounsaturated acyl-
CoAs inhibited the constitutive activity of HNF4a, while
different saturated acyl-CoAs activated HNF4a over its nor-
mal activity (palmitoyl-CoA) or inhibited (stearoyl-CoA) it.
In addition, treatments with long-chain fatty acyl-CoA thio-
esters never resulted in more than a 2-fold change in HNF4a
activity measured in transcriptional assay (324). Since a mix-
ture of long-chain fatty acyl-CoA thioesters may have mu-
tually antagonistic effects on HNF4a function, it may be
difficult to demonstrate the importance of these ligands as
modulators of HNF4a in vivo. Another caveat to this obser-
vation is the previous finding that long-chain fatty acyl-CoA
thioesters may also regulate gene expression by interfering
with T3R signaling (327). Nonetheless, if confirmed by ad-
ditional physiological studies, the identification of long-
chain fatty acyl-CoA thioesters as natural HNF4a ligands
could lead to the development of more specific synthetic

HNF4a ligands, which could be used to differentiate the
effects of these compounds mediated by HNF4a from those
mediated by direct enzyme inhibition.

Insights into HNF4a function in vivo have come from both
population and reverse genetics. Recently, a locus linked to
maturity-onset diabetes of the young (MODY1) has been
associated with mutations in the human HNF4a gene (328–
331). The association between MODY1 and HNF4a is prob-
ably specific to this form of diabetes, as HNF4a mutations
have not been identified so far in patients with other forms
of noninsulin-dependent diabetes mellitus (332). Further-
more, disruption of the HNF4 binding site in the HNF1
promoter has been identified in an Italian family with
MODY, providing an unusual example of patients whose
disease state likely results from a combined impairment of
HNF4a and HNF1 function (333). Of particular interest,
HNF4a mutations identified in MODY1 patients can alter the
cellular localization of HNF4a or reduce its activity in tran-
scriptional assays, providing strong support for a direct link
between reduced HNF4a function and the MODY pheno-
type (331, 334, 335). On the other hand, gene targeting ex-
periments have not been informative with regard to possible
HNF4a functions in liver development or metabolic control
in adult animals. Ablation of the Hnf4a gene results in ap-
optosis of embryonic ectoderm at 6.5 d.p.c, followed by ab-
normal mesoderm differentiation and embryonic death
(336). However, Hnf4a ablation in either ES cells or 8.5 d.p.c.
embryos is associated with significantly reduced expression
of glycolytic enzymes as well as glucose and fatty acid trans-
port proteins (334).

B. FTZ-F1 (fushi tarazu-factor 1): steroidogenesis and
sexual development

FTZ-F1a was initially characterized as an adrenal gland-
specific factor (SF-1) able to bind to conserved AGGTCA
consensus motif in the proximal promoter regions of steroid
hydroxylases CYP11A, CYP11B2, and CYP21 genes, suggest-
ing that this factor was a member of the nuclear receptor
superfamily (337). FTZ-F1 was eventually cloned from an
adrenal gland cDNA library based on its homology to the
RXRb DBD (338). The FTZ-F1 gene generates several distinct
isoforms through alternative splicing and promoter usage
(339–341). A second closely related gene, FTZ-Fb, has also
been identified and may be an important regulator of the
a-fetoprotein locus and the CYP7A gene (342–344). During
development, FTZ-F1a expression is first detected at
9.0 d.p.c. in the urogenital ridge (345). At 10–10.5 dpc, FTZ-
F1a expression is associated with the precursors of adrenal
steroidogenic tissue and gonadal steroid-producing cells.
FTZ-F1a expression is also detected in the ventromedial hy-
pothalamic nucleus (VMH) after 11.5 d.p.c. and in the pitu-
itary gland after 13.5 d.p.c. Pituitary FTZ-F1a expression
precedes the onset of FSH expression in gonadotropes, sug-
gesting that FTZ-F1a might either directly regulate FSH gene
transcription or regulate gonadotrope differentiation (346).
In adult mice, FTZ-F1a expression is highest in steroid-
secreting cells of the adrenal gland and gonads; lower level
expression is present in the spleen and pituitary gonado-
tropes (340). FTZ-F1a is a monomeric receptor that binds to

October, 1999 ORPHAN NUCLEAR RECEPTORS 703

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/20/5/689/2530880 by U

.S. D
epartm

ent of Justice user on 17 August 2022



HREs with the consensus sequence TCAAGGTCA (see Ref.
108). FTZ-F1a target genes include steroidogenic enzymes
(reviewed in Ref. 337), Müllerian inhibiting substance (MIS)
and its receptor (347, 348), the pituitary glycoprotein a-sub-
unit (349), the LH b-subunit (350), the ACTH receptor (351),
the steroidogenic acute regulatory protein (StAR) (352–354),
oxytocin (355), and the orphan nuclear receptor DAX-1 (356,
357), all supporting an important role for FTZ-F1a in steroid
metabolism and sexual differentiation.

FTZ-F1a usually constitutively activates gene expression,
and its activity is regulated by phosphorylation: in vitro,
protein kinase A-induced phosphorylation of FTZ-F1a re-
duces the receptor’s DNA-binding affinity, while in vivo,
FTZ-F1a phosphorylation may regulate cAMP-dependent
gene induction (358–360). In addition, phosphorylation of
the AF-1 domain (located in the hinge region) leads to in-
creased SF-1 transcriptional activity via direct recruitment of
the coactivator GRIP-1 (361). These observations suggest a
way by which peptide hormones such as ACTH could reg-
ulate steroid synthesis via ligand-independent activation of
SF-1. However, recent studies have shown that certain ox-
ysterols, distinct from those regulating the activity of LXRa,
increase FTZ-F1a transcriptional activity (362). The oxysterol
25-hydroxy-cholesterol is the most efficacious FTZ-F1a in-
ducer (EC50 5 mm), while 26-hydroxy-cholesterol (EC50 5 mm),
27-hydroxy-cholesterol (EC50 5 mm), and 21-hydroxy-preg-
nenolone (EC50 11 mm) are less efficient FTZ-F1a activators,
and the potent LXR activator 22(R)-hydroxycholesterol does
not alter FTZ-F1a activity. Although oxysterol treatment re-
sults in increased FTZ-F1a activity, direct binding has not yet
been demonstrated. In addition, oxysterol stimulation of
FTZ-F1a activity has not been observed in all cell types (353),
suggesting that further metabolism of these compounds may
be required for the synthesis of the natural high-affinity
FTZ-F1a ligand.

Gene knockout experiments have provided strong evi-
dence for a direct role for FTZ-F1a in regulating mammalian
sexual development as well as the differentiation of steroi-
dogenic tissues (363–366). FTZ-F1a null mutants are viable at
birth, but die during the first 8 days of life due to adreno-
cortical insufficiency. As suggested by FTZ-F1a expression
studies, gonadal development is also dramatically affected in
the null mutant embryos. In that respect, the FTZ-F1a knock-
out phenotype is comparable to the phenotype of patients
affected by X-linked adrenal hypoplasia congenita (AHC).
This syndrome, which results from mutations within the
nuclear orphan receptor DAX-1 locus (discussed in more
detail below), is characterized by adrenal hypoplasia, often
associated with reduced serum gonadotropin levels and ab-
normal gonadal development (367, 368). FTZ-F1a null mice
also display abnormal hypothalamic and pituitary develop-
ment. Finally, isoforms of the Wilms’ tumor 1 (WT-1) gene
have been shown to markedly increase FTZ-F1a transacti-
vation of the MIS promoter through a direct interaction with
FTZ-F1a (369). WT-1 gene mutations are commonly associ-
ated with male genital ambiguity or male pseudohermaph-
roditism, suggesting that WT-1 may regulate FTZ-F1a ac-
tivity during mammalian sexual differentiation (369).

C. Rev-Erb: singular members of the superfamily

The two members of the Rev-Erb family are best known for
their unusual features. First, the original member of this
family, the Rev-Erba gene, was so named because it is en-
coded on the opposite strand of the T3Ra (370, 371). The
Rev-Erbb gene, simultaneously cloned by several groups by
homology screening (110, 372–375), is also closely linked to
the T3Rb gene but apparently not encoded by an overlapping
locus. Second, Rev-Erbs can bind DNA with affinity as both
monomers and homodimers (110, 373, 376–378). The Rev-
Erb monomeric consensus site is GAATGTAGGTCA in
which the T at position 21 and A at 24 relative to the
AGGTCA are essential for high-affinity binding (110, 376).
The Rev-Erb homodimeric site is a DR-2, but unlike RAR-
RXR, Rev-Erb binding requires the monomeric 59-flanking
A/T-rich sequence located upstream of the first half-site
(377). x-Ray structure analysis of the Rev-Erba DBD bound
to a DR-2 HRE confirmed the importance of the role played
by the CTE in the recognition of 59-flanking A/T-rich se-
quence by nuclear receptors and revealed a additional role
for the CTE in establishing productive protein-protein con-
tacts in the homodimer complex (37). Third, the Rev-Erb
LBDs lack an AF-2 domain, and this feature may be linked
to the observation that Rev-Erbs are constitutive repressors
of gene transcription (110, 372, 373, 377, 378). Transcriptional
repression by Rev-Erbs is mediated through direct interac-
tions with the nuclear receptor corepressors N-CoR, SMRT
(silencing mediator for RAR and thyroid hormone receptor),
and SUN-CoR (379–383). Stoichiometric studies have led to
the suggestion that Rev-Erba can repress transcription only
via DR-2 HREs, but not from monomeric sites, as binding of
N-CoR appears to require two receptor carboxyl termini
(382). However, both Rev-Erba and -b were shown to repress
basal transcription via monomeric sites contained within the
natural regulatory sequences of the ApoA-1 and N-Myc
genes, respectively (384, 385). Repression on monomeric sites
may occur through a passive mechanism, such as competi-
tion for positive transcription factors or for components of
the basal transcriptional machinery, or through an active
mechanism independent of N-CoR.

Little is known about the potential developmental and
physiological function of Rev-Erba and -b. Studies using the
C2C12 myoblasts differentiation model have indirectly im-
plicated Rev-Erba and -b as negative regulators of myogen-
esis (386, 387). However, the combined observations that
both putative receptors are widely expressed during devel-
opment and in adult tissues (110, 372–374, 388) and that
Rev-Erbb is a strong repressor of N-Myc expression (384)
suggest that these two proteins may play a more general role
in the control of cell proliferation and organ physiology.
Rev-Erba expression in liver has been shown to be stimu-
lated by fibrates via PPARa, suggesting that Rev-Erba could
also play a role in lipid metabolism (389). Finally, it is in-
teresting to note that the Rev-Erb homolog in C. elegans,
referred to as SEX-1, determines sex in nematodes by re-
pressing the transcription of the sex determining gene xol-1
(390). Given the tissue distribution of Rev-Erb transcripts and
their chromosomal localization, it is unlikely that the two
Rev-Erbs are implicated in sex determination in mammals.
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However, in contrast to Rev-Erbs, SEX-1 possesses an AF-2
domain, suggesting that the ancestral Rev-Erb gene product
may have been responsive to a ligand. Based on these ob-
servations, it may be possible to find a ligand for members
of the Rev-Erb family.

D. ROR: neuronal development and T cell selection

The ROR family contains three genes, RORa (109, 342,
391), -b (111), and -g (392–394). The human RORa gene
encodes at least four distinct isoforms (RORa1, -2, -3, -4),
which differ solely in their N-terminal domain (109, 111). The
RORa1 and -4 isoforms have also been isolated from mouse
brain and muscle cDNA libraries (391, 395). A thymus-spe-
cific isoform of RORg containing a truncated N-terminal
domain has also been identified (396). The three ROR pro-
teins are closely related to each other both in their DBD and
LBD, although RORg is evolutionarily more distant. The
mouse RORa gene is ubiquitously expressed. However,
higher levels of expression have been observed in the Pur-
kinje cells of the cerebellum, retina, lens, spleen, skeletal
muscle, and testis (110, 391, 395, 397–399). The RORb gene is
abundantly expressed in the retina, brain, pineal gland, and
spleen (111, 400–403). The RORg transcripts can be detected
at high levels in skeletal muscle and thymus, but are also
present at low levels in most tissues studied (392, 393, 396).

Structure/function analysis of the RORa isoforms show
them to have unique DNA-binding properties (109, 113, 118).
RORa isoforms bind DNA as monomers to HREs composed
of a 6-bp A/T-rich sequence immediately preceding a half-
site core motif AGGTCA. The ROR DBD is bipartite, and the
two DBD subdomains bind to the same face of the DNA helix.
By analogy with steroid hormone receptors (404), the first
conserved first zinc finger module contacts the major groove
of the AGGTCA element. The CTE interacts with the adjacent
minor groove and makes specific contacts with the 59-A/T-
rich element of the RORE, making contacts likely to be anal-
ogous to those observed for Rev-Erba binding to the DR-2
HRE as a homodimer (37). The close similarity in DNA bind-
ing properties between ROR and Rev-erb is exemplified by
the observation that substitution of only four amino acid
residues within the RORa DBD to those present in Rev-Erba
is sufficient to confer RORa with the ability to form ho-
modimer complexes on a DR-2 element (405). This study
clearly demonstrated that only a few changes are required for
a receptor to acquire novel DNA binding characteristics such
as conversion from monomeric to homodimeric DNA bind-
ing, thus providing a simple mechanism for receptor evo-
lution. In a manner somewhat unique to the ROR family, the
distinct RORa isoforms display different binding specifici-
ties despite sharing the same DBD. It has been shown that the
distinct amino-terminal domains encoded in the human
RORa1 and 2 isoforms cause slight structural changes that
fine tune the interactions between the CTE and the 59 A/T-
rich sequences. The distinct contacts between the CTE and
the amino-terminal domains result in the observed different
binding specificities between each RORa isoform (118).

ROR binding sites have been found in the regulatory re-
gions of numerous genes (109, 114, 211). However, direct
transcriptional regulation by RORs has been demonstrated

only for gF-crystallin (406), N-myc (384), laminin B1 (407),
ApoA-1 (408), Purkinje cell protein 2 (PCP2) (409), and pro-
saposin (410). Given the broad physiological functions cov-
ered by potential ROR target genes, it is difficult to assign
precise roles to these receptors on that basis. On the other
hand, genetic studies have revealed that both RORa and -b
play a role in the development of the central nervous system,
and remarkably, both receptor genes are associated with
previously described genetic lesions in mice. The RORa locus
on chromosome 9 (411) is disrupted in staggerer mice (395,
412), whereas mutation of the RORb locus by homologous
recombination leads to vacillans phenotype in mice (413).
Staggerer mice show tremor, body imbalance, and hypotonia
as well as small size and die shortly after weaning (414). The
cerebellar cortex of staggerer mice exhibits a cell-autonomous
defect of the Purkinje cells, and failure of synaptic contact
between Purkinje cell dendrites and granule cell parallel
fibers leads to granule cell loss (415, 416). Although the
staggerer mice express a truncated RORa protein, complete
disruption of the RORa locus by gene targeting experiments
mimics the cerebellar defects of staggerer (417, 418). Since the
premature death of RORa mutant mice does not correlate
with the well studied cerebellar defects, it is expected that a
more complete investigation of the phenotypic abnormalities
present in these mice will reveal additional roles for RORa
in development and physiology. In this regard, staggerer mice
bred in a C57BL/6 background and given special care
(mashed food and maintained at 25 C) can be kept alive for
up to 12 weeks. Under these conditions, staggerer mice fed a
high-fat diet develop severe atherosclerosis and hypoalphali-
poproteinemia, suggesting that RORa could regulate plasma
HDL level and susceptibility to atherosclerosis (419). The
phenotype associated with disruption of the RORb locus in
mice includes juvenile ataxia, duck-like gait, circadian ac-
tivity deviations, retinal degeneration, and delayed onset of
male fertility (413). This phenotype is reminiscent of the
abnormalities observed in vacillans, a spontaneous mouse
mutant first described more than 40 yr ago and now believed
to be extinct (420). Taken together, these results suggest that
at least two members of the ROR family (a and b) are im-
portant regulators of cell survival in the central nervous
system, and identification of target genes will be crucial in
furthering our understanding of ROR cellular functions.
While the phenotype of the RORg null mice has not been
reported to date, cell-based studies suggest that RORg may
play a role in thymocyte development (396). The apparent
role of RORg in the thymus is to suppress the expression of
the Fas ligand and interleukin-2 secretion in immature
CD41/CD81 thymocytes during the process of negative
and positive selection.

Finally, a major controversy has surrounded the claim that
melatonin and a specific class of TZDs active in suppressing
inflammation could act as ROR ligands (421–424). Unfortu-
nately, experiments demonstrating that melatonin is a ROR
ligand could not be replicated in a number of laboratories
(211, 406, 425), and the current consensus among investiga-
tors in the field is that this claim should be ignored until
further studies prove otherwise.

October, 1999 ORPHAN NUCLEAR RECEPTORS 705

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/20/5/689/2530880 by U

.S. D
epartm

ent of Justice user on 17 August 2022



E. TR2: the testis receptors

The two members of the TR2 family were so named be-
cause of their high levels of expression in the testis (426–431).
TR2s bind DNA as homodimers or heterodimers between the
two subtypes with broad specificity to HREs composed of
direct repeats of core half-sites separated from 1 to 5 bp
(432–439). Transfected TR2s function as repressors of gene
transcription on various promoters (434, 440–442), although
these putative receptors possess an AF-2 domain and could
act as activators in the presence of a ligand. Their roles in
development and physiology remain to be elucidated.

F. TLX: forebrain development

Vertebrate TLX has been identified based on its related-
ness to the Drosophila gene tailless (443). TLX displays a
unique DNA-binding property: due to the substitution of a
conserved lysine residue in the P-box of the DBD, TLX mono-
mers or homodimers show a marked preference for the con-
sensus half-site AAGTCA in which the conserved guanine at
position 2 is replaced by an adenine (443). TLX is predom-
inantly expressed in the developing forebrain (443, 444), and
disruption of tlx by gene targeting in mice results in impaired
development of a subset of forebrain-derived structures, in-
cluding the olfactory, infrarhinal and entorhinal cortex,
amygdala, and dante gyrus (445). Both male and female
animals displayed abnormal aggressive behavior, and fe-
male mice failed to nurse their offspring. As observed for the
RORs, it is likely that TLX is required for the proliferation
and/or survival of specific neuronal cells.

G. COUP-TF: neurogenesis, angiogenesis, and heart
development

Members of the COUP-TF (chicken ovalbumin upstream
promoter transcription factor) family are, with the exception
of the liganded PPARs, the most extensively studied orphan
nuclear receptors. Since the COUP-TF family has been the
subject of a recent review in this journal (446), only salient
and novel features will be described here. COUP-TFa owed
its name to the fact that it was initially identified as a tran-
scription factor required for expression of the chicken
ovalbumin gene (447). COUP-TFb was simultaneously
cloned by homology screening (448) and characterized as a
factor regulating expression of the ApoA-I gene (449) while
the more distant COUP-TFg was identified by low-strin-
gency screening of cDNA libraries (450). During murine de-
velopment, COUP-TFs are preferentially expressed in the
central nervous system (451–455) and in mesenchyme, par-
ticularly in organs whose development depends on interac-
tions between the mesenchyme and other epithelial layers
(451, 452). In adult animals, COUP-TFs are widely expressed
but at reduced levels (449, 450, 456, 457). Expression of
COUP-TFa has also been reported in specific types of adrenal
tumors (458, 459).

COUP-TFs exist in solution as homodimers and bind DNA
to a wide variety of HREs composed of direct, inverted, and
everted repeats of the AGGTCA core motif (447, 460, 461).
COUP-TFs can also form heterodimeric complexes with RXR
on DNA (460, 462, 463) and NGFI-Ba in solution (464).

COUP-TFs are potent transcriptional repressors that antag-
onize transcriptional activation mediated by nuclear recep-
tors PPAR (465), HNF-4 (301), RXR (462), and ER (466, 467)
as well as RAR, VDR, and T3R (468). Proposed mechanisms
for COUP-TF-mediated repression include both passive and
active mechanisms: competition for binding sites, competi-
tion for RXR and formation of inactive receptor-receptor
complexes, and active repression mediated by amino- and
carboxyl-terminal repression domains and interactions with
corepressors (see Ref. 446 for references and Refs. 469 and
470). Given the wide range of HREs recognized by COUP-
TFs in vitro, it is not surprising that these receptors have been
identified as potential regulators of the expression of a large
number of genes (298, 300, 302, 303, 305, 309, 310, 314–316,
318, 357, 449, 452, 462, 463, 465, 466, 471–498). However, a
direct role for COUP-TFs in the regulation of these potential
target genes has not yet been demonstrated in vivo.

Expression of COUP-TFs is regulated by two important
morphogenetic signals involved in neuronal development,
atRA and sonic hedgehog (451, 499, 500), giving additional
support to the hypothesis that COUP-TFs play essential func-
tions in neurogenesis. Indeed, gene targeting experiments
have recently demonstrated that COUP-TFa plays a crucial
role in the development of the peripheral nervous system
(501). COUP-TFa null mice have difficulties in suckling and
swallowing and die shortly after birth apparently from star-
vation and dehydration. This phenotype appears to result, in
large part, from a defective morphogenesis of the glosso-
pharyngeal ganglion and nerve, which innervate the phar-
ynx and the root of the tongue. On the other hand, COUP-
TFb null mutants die in utero around 10 d.p.c. due to defects
in angiogenesis, vascular remodeling, and heart develop-
ment (502). Since embryonic expression of COUP-TFb local-
izes in the mesoderm, these results suggest that COUP-TFb
may be required to sustain the necessary cross-talk between
endothelial cells and the surrounding mesenchymal cells for
correct development of the vascular system and heart.

H. ERR: placenta development and control of lipid
metabolism

The ERR family contains three closely related members.
ERRa and -b were the first orphan nuclear receptors iden-
tified during a search for genes related to the estrogen
receptors (2). ERRa was subsequently identified as a mam-
malian protein that bound to the SV40 major late promoter
and repressed its activity, implicating ERRa in regulation
of the early-to-late switch of SV40 gene expression (503).
The third member of the family, ERRg, was recently iso-
lated during a search for the gene responsible for Usher
syndrome located on chromosome 1q41 (504). However,
analysis of the locus has shown that ESRRG is not the
USH2a gene (505).

ERRa is widely expressed during murine development
(116, 506, 507). Expression of embryonic ERRa is first
detected at 8.5 d.p.c. in the trophoblast, mesoderm cells of
the visceral yolk sac, the primitive heart, and the neural
tube. ERRa expression is detected later in development in
the brain and spinal cord, pituitary gland, heart, intestinal
mucosa, and bone, as well as the premuscular mass of the
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limb bud and brown adipose tissue. During late fetal de-
velopment and early postnatal life, ERRa is most promi-
nently expressed in organs demonstrating a high capacity
for fatty acid b-oxidation or activation, suggesting that
both ERR isoforms may play a role in regulating energy
metabolism (116). ERRb expression is more restricted dur-
ing development (508, 509). ERRb transcripts are first de-
tected in a subset of cells in extraembryonic ectoderm at
5.5-d.p.c. that appear to be a precursor of the chorion,
where ERRb is specifically expressed at 7.5 d.p.c. As fusion
of the chorion and ectoplacental cone progresses at
8.5 d.p.c., ERRb expression is extinguished in all but the
free margin of the chorion, while ERRa becomes up-reg-
ulated in the remaining trophoblast cells (508). Human
ERRg transcripts were detected at very high levels in fetal
brain, and at lower levels in kidney, lung, and liver (504).
In adults, the ERRg transcript is widely expressed and can
be observed in brain, lung, bone marrow, adrenal and
thyroid glands, trachea, and spinal cord.

ERRs bind as monomers to the extended half-site TNAAG-
GTCA (115, 116, 510), which is also recognized by FTZ-F1
(see above), and as homodimers to the consensus estrogen-
responsive element (509). Therefore, ERR targets potentially
include all genes regulated by either FTZ-F1 or by the es-
trogen receptors. ERRa has been shown to regulate activity
of the lactoferrin (511), MCAD (medium-chain acyl CoA
dehydrogenase) (116, 512), osteopontin (506), and TRa (507)
promoters in cotransfection assays. ERRa generally re-
presses gene transcription in these assays (116), as well as in
cell-free systems (115, 503), and has also been shown to
antagonize the action of GR via an unknown mechanism
(513). The lack of ERR transcriptional activity observed in
most transfection experiments may be due to the absence of
its cognate ligand. However, it has also been reported that
ERRa can display significant constitutive activity under cer-
tain conditions (510), and that activity is dependent on a
serum compound that is withdrawn by charcoal treatment.
This latter observation suggests that a ERR ligand could be
present in certain serum preparations but not in others. If this
assumption is correct, the active serum could be potentially
used to extract and identify the ERR ligand. Although ERRs
display significant homology to the estrogen receptors, they
do not bind estrogen and its derivatives in vitro or respond
to them in cotransfection assays (2, 511). However, the crystal
structure of the liganded ERa (49) indicates that most amino
acid residues shown to be critical for recognition of estradiol
are conserved between members of the ER and ERR families,
suggesting that ER and ERR ligands should be structurally
related.

Examination of ERRb expression during embryogenesis
defined for the first time a subset of extraembryonic ec-
toderm that subsequently forms the dome of the chorion,
suggesting that ERRb may play a role in early placental
development. ERRb null embryos generated by targeted
disruption of the Estrrb gene have severely impaired pla-
cental formation and die from an apparent lack of nutri-
ents by 10.5 d.p.c. (508). The ERRb knockout embryos
display abnormal chorion development associated with an
overabundance of trophoblast giant cells and a severe
deficiency of diploid trophoblast. The phenotype can be

rescued by aggregation of Estrrb mutant embryos with
tetraploid wild-type cells that contribute exclusively to
extraembryonic tissues. Since the ERRb phenotype occurs
in tissues that do not express the putative receptor during
development, the observed phenotype suggests that an
inductive signal originating from or modified by the cho-
rion is required for normal trophoblast proliferation and
differentiation (508).

The observations that ERRa is expressed in tissues which
preferentially metabolize fatty acids and that ERRa can con-
trol the expression of MCAD in vitro suggest that ERRa may
play an important role in regulating cellular energy balance
in vivo (116, 512). Preliminary phenotypic analysis of ERRa
null mice revealed intrauterine growth deficiency and ab-
normal adult body composition, but otherwise the ERRa null
mice develop normally and appear to have normal repro-
ductive function. These mutant mice will therefore provide
a model for identifying possible physiological processes reg-
ulated by ERRa as well as potential ERRa target genes.

I. NGFI-B: hypothalamus-pituitary axis (HPA), T cells, and
dopaminergic neurons

NGFI-B was initially identified as a factor whose expres-
sion was up-regulated in NGF-stimulated PC12 pheochro-
mocytoma cells (514). The NGFI-B family contains three
members known under a wide variety of names (see Table
1 for references). NGFI-B and its related family members are
highly expressed in the adult nervous system where they are
induced as part of the immediate early response to stimuli
such as growth factors, membrane depolarization, and sei-
zures (515–521). Their pattern of expression outside the ner-
vous system is broad. In adult rodents, NGFI-Ba is expressed
in the adrenal, thyroid, and pituitary glands, as well as the
liver, testis, ovary, thymus, muscle, lung, and ventral pros-
tate (514, 516, 522–524). NGFI-Ba expression is up-regulated
in T cells undergoing apoptosis (525, 526). NGFI-Bb is ex-
pressed in the adult liver (527) as well as the pituitary gland,
thymus, and osteoblasts (524, 528). NGFI-Bg is expressed at
high levels in the pituitary gland and at intermediate or low
levels in the adrenal glands, heart, skeletal muscle, thymus,
kidney, epididymis, and submandibular glands (529–531).
Renal expression of all three members of the family is up-
regulated during early stages of antigen-induced glomeru-
lonephritis (532), while hepatic NGFI-Ba and -b expression
increases in liver as it regenerates after partial hepatectomy
(527).

NGFI-B family members have been shown to bind DNA
as monomers, as homodimers, or as heterodimers with RXR.
NGFI-Ba binds to monomeric response elements (NBREs)
containing the 59-extended core motif (AAAGGTCA) (106).
As discussed above, NGFI-B site specificity is determined by
DNA-protein contacts between nucleotides located 59 to the
core motif contained in the NBRE and the CTE (108, 113, 117).
Homodimer binding by NGFI-Ba was also observed on the
POMC gene promoter (533). The homodimer binding site
consists of two inverted NBREs spaced by 6 bp that confer
high responsiveness to NGFI-Ba. No ligand has yet been
identified for members of the NGFI-B family. However,
NGFI-Ba and -b (but not -g) can bind to DR5 response ele-
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ments as heterodimers with RXR and, on these elements, the
heterodimer complex is efficiently induced by rexinoids (521,
534). Rexinoids have also been reported to induce transcrip-
tion of NGFI-Bb-RXR heterodimers when synthetic reporters
containing multiple copies of the monomeric NBRE are used
in cotransfection assays (146). In this case, activation by the
heterodimer complex occurs in the absence of direct DNA
binding by the RXR moiety. The demonstration that rexi-
noids can activate NGFI-B:RXR heterodimers suggests that
rexinoids could enhance the response to growth factors ini-
tiated by the rapid induction of expression of these orphan
receptors (146, 534). In addition, the activity of NGFI-B family
members appears to be regulated by posttranslational mod-
ification, which could possibly be induced via ligand-inde-
pendent pathways triggered by growth factors. NGFI-Ba
nuclear localization, DNA-binding affinity, and transcrip-
tional activity can be modulated by phosphorylation of the
receptor protein (535–539). As exemplified by the PPAR and
LXR families, regulation of the NGFI-B heterodimeric com-
plexes activity by rexinoids and covalent modifications does
not exclude the existence of NGFI-B-specific ligands.

In vitro and in vivo studies have suggested that NGFI-Ba
plays important signaling functions in the HPA and in T cells.
NGFI-Ba expression in the paraventricular nucleus and ad-
renal cortex is induced by stress, and ACTH treatment
strongly up-regulates NGFI-Ba and -b expression in the ad-
renal gland and in Y-1 adrenocortical carcinoma cells (540,
541). In addition, NGFI-Ba was shown to regulate the steroid
21-hydroxylase (CYP21) and steroid 17-hydroxylase (CYP17)
gene promoters (493, 540). More recently, the positive action
of CRH on the POMC promoter was shown to be modulated
via NGFI-Ba and b (533, 542), with the feedback repression
of the HPA by glucocorticoids at the level of the pituitary
mediated by direct nonproductive GR-NGFI-B interactions
(543). However, a role for NGFI-Ba in regulating the func-
tions of the HPA has not yet been demonstrated in vivo.
NGFI-Ba null mice have no discernible phenotype, display
no evidence of adrenal or gonadal dysfunction, and show
normal basal and stimulated CYP21 expression levels (544).
Since more than one member of the NGFI-B family appear to
be involved in regulating the HPA, redundant functions
between family members may explain the lack of phenotype
in knockout mice. A similar redundant NGFI-B-based mech-
anism may also function in T cells (545, 546). While it has been
shown that the expression of NGFI-Ba is induced in T cell
hybridomas or in thymocytes undergoing apoptosis and that
blocking its activity by antisense and dominant-negative
constructs prevents T cell receptor-mediated apoptosis in T
cell hybridomas (525, 526, 547, 548), thymic and peripheral
T cell death is unimpaired in NGFI-Ba null mutant mice
(549). Unfortunately, mice lacking NGFI-Bb died soon after
birth and do not provide a model in which to study HPA and
T cell functions in adult animals. However, NGFI-Bb mutant
mice fail to generate midbrain neurons with a dopaminergic
phenotype, and midbrain dopamine precursor cells degen-
erate as brain development progresses (550, 551). Since loss
of midbrain dopaminergic neurons is associated with the
etiology of Parkinson’s disease, the use of putative NGFI-B
ligands or specific rexinoids could provide a novel thera-
peutic avenue for the treatment of this disease.

J. GCNF: one of a kind

GCNF (germ cell nuclear factor) was originally cloned by
low-stringency screening (552). GCNF is not closely related
to any other nuclear receptor and is therefore isolated in its
own family of one. Mouse and human GCNFs are expressed
a very high levels in developing germ cells in male and
growing oocytes in female animals (553–555). GCNF pref-
erentially binds DNA as a homodimer to DR0 elements and,
in the absence of a putative ligand, repress transcription (556,
557). The potential physiological role played by GCNF in
gametogenesis is at present unknown.

K. DAX-1: adrenal development and sex determination

The DAX-1 (dosage-sensitive sex reversal, AHC critical
region on the X chromosome, gene 1) gene was identified
through a search for gene(s) linked to AHC, a disease af-
fecting the normal development of the adrenal cortex and
often associated with hypogonadotropic hypogonadism
(367, 368). Analysis of DAX-1 showed it to encode an atypical
orphan nuclear receptor possessing only the conserved LBD
but not the nuclear receptor-like DBD. However, DAX-1
appears to bind DNA via an alternative mechanism: it rec-
ognizes DNA hairpin structures (104). It is not clear whether
the DAX-1 DNA binding function plays a role in the etiology
of AHC since all types of mutations in DAX-1 resulting in
AHC localize to the LBD (558).

Consistent with its role in controlling the development of
the HPA and in sex determination, DAX-1 is expressed in the
hypothalamus, pituitary, adrenal gland, and gonads (559–
561). Interestingly, this pattern of expression overlaps with
that of FTZ-F1a, an observation that led to the suggestion
that both receptors may cooperate in the development of the
HPA. In addition, the phenotype of mice lacking FTZ-F1a
closely resembles AHC in humans, and a functional binding
site for FTZ-F1a was found in the DAX-1 promoter (356, 357).
However, while DAX-1 was shown to physically interact
with FTZ-F1a, DAX-1 paradoxically inhibits FTZ-F1a-me-
diated transactivation (562) via recruitment of the nuclear
receptor corepressor N-CoR to the DAX-1-FTZ-F1a complex
(563). The paradoxical antagonistic activity of DAX-I and
FTZ-F1a observed ex vivo may simply result from the absence
of ligands, which when present in vivo at the appropriate time
during development could easily transform the repressive
complex into a transcriptionally active one. DAX-1 was also
shown to antagonize the action of the sex-determining gene
Sry in a transgenic mouse model (564), although the under-
lying molecular mechanism remains to be elucidated. Taken
together, these data suggest that DAX-1, FTZ-F1a, and SRY
may act in overlapping functional complexes to regulate sex
determination and gonadal development (reviewed in Ref.
565).

L. SHP: a promiscuous and inhibitory heterodimeric
partner

SHP (small heterodimeric partner) was originally cloned
in a two-hybrid screen set up to identify potential partners
for the orphan receptor CAR (566). As previously observed
for DAX-1, SHP lacks a typical nuclear receptor DBD. SHP
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heterodimerizes with a wide variety of nuclear receptors
including RXR, RAR, TR, PPAR, HNF4, and ER (566, 567),
often in a ligand-dependent manner. The interactions be-
tween SHP and its partners result in an inhibition of the
transcriptional activity of these receptors via two distinct
mechanisms: SHP inhibits the DNA binding activity of its
partners and directly represses gene transcription via its
inherent repressor function located near the amino terminus
of the LBD (566, 568). Because SHP preferentially interacts
with liganded receptors, it has been suggested that the role
of SHP may be to dampen expression of hormone-induced
genes (568). However, the SHP LBD contains an AF-2 do-
main, indicating that SHP has the potential to become an
activator under a physiologically relevant context.

VI. Concluding Remarks

During the course of the last decade, the identification and
functional characterization of close to 40 vertebrate orphan
nuclear receptors have led to the realization that nuclear
receptor actions are not limited to basic endocrine systems
but probably play a role in the development, maintenance,
and physiological functions of all organs. Most importantly,
the study of orphan nuclear receptors has led to the discovery
of novel hormone response systems. The functional reper-
toire of orphan nuclear receptor ligands appears to be wide,
ranging from morphogens to intracellular regulators of basic
metabolism, which may explain why their existence has not
previously been uncovered by classical physiological exper-
imentation.

It is clear that despite the vast amount of knowledge ac-
cumulated so far in this field of research, much more remains
to be elucidated. In particular, most identified ligands and
activators can still be regarded as promising leads rather than
actual physiological ligands. Likewise, many hypotheses on
the putative physiological role of orphan receptors currently
based on activation studies in cell culture and other in vitro
experiments may not stand the test of more rigorous in vivo
investigations. Nonetheless, these initial studies have dem-
onstrated how important orphan nuclear receptor functions
are in development and homeostatic control.

Finally, the most important outcome of these studies is the
discovery that orphan nuclear receptors and their ligands
have direct links with known diseases such as diabetes, ath-
erosclerosis, and cancer. These findings have opened many
new therapeutic avenues for the management of these dis-
eases and demonstrated that orphan nuclear receptors con-
stitute excellent targets for drug development.
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38. Kurokawa R, Yu V, Näär A, Kyakumoto S, Han Z, Silverman S,
Rosenfeld MG, Glass CK 1993 Differential orientations of the
DNA binding domain and C-terminal dimerization interface reg-
ulate binding site selection by nuclear receptor heterodimers.
Genes Dev 7:1423–1435

39. Predki PF, Zamble D, Sarkar B, Giguère V 1994 Ordered binding
of retinoic acid and retinoid X receptors to asymmetric response
elements involves determinants adjacent to the DNA-binding do-
main. Mol Endocrinol 8:31–39

40. Zechel C, Shen X-Q, Chen J-Y, Chen Z-P, Chambon P, Grone-
meyer H 1994 The dimerization interfaces formed between the
DNA binding domains of RXR, RAR and TR determine the binding
specificity and polarity of the full-length receptors to direct repeats.
EMBO J 13:1425–1433

41. Schrader M, Nayeri S, Kahlen JP, Muller KM, Carlberg C 1995
Natural vitamin D-3 response elements formed by inverted pal-
indromes: polarity-directed ligand sensitivity of vitamin D3 recep-
tor-retinoid X receptor heterodimer-mediated transactivation. Mol
Cell Biol 15:1154–1161

42. Kurokawa R, DiRenzo J, Boehm M, Sugarman J, Gloss B, Rosen-
feld GM, Heyman RA, Glass CK 1994 Regulation of retinoid
signalling by receptor polarity and allosteric control of ligand bind-
ing. Nature 371:528–531

43. Horlein AJ, Naar AM, Heinzel T, Torchia J, Gloss B, Kurokawa
R, Ryan A, Kamel Y, Soderstrom M, Glass CK, Rosenfeld MG
1995 Ligand-independent repression by the thyroid hormone re-

ceptor mediated by a nuclear receptor co-repressor. Nature 377:
397–404

44. Chen JD, Evans RM 1995 A transcriptional co-repressor that in-
teracts with nuclear hormone receptors. Nature 377:454–457

45. Wurtz JM, Bourguet W, Renaud JP, Vivat V, Chambon P, Moras
D, Gronemeyer H 1996 A canonical structure for the ligand-bind-
ing domain of nuclear receptors. Nature Struct Biol 3:87–94

46. Bourguet W, Ruff M, Chambon P, Gronemeyer H, Moras D 1995
Crystal structure of the ligand-binding domain of the human nu-
clear receptor RXR-a. Nature 375:377–382

47. Wagner RL, Apriletti JW, McGrath ME, West BL, Baxter JD,
Fletterick RJ 1995 A structural role for hormone in the thyroid
hormone receptor. Nature 378:690–697

48. Renaud J-P, Rochel N, Ruff M, Vivat V, Chambon P, Gronemeyer
H, Moras D 1995 Crystal structure of the RAR-g ligand-binding
domain bound to all-trans retinoic acid. Nature 378:681–689

49. Brzozowski AM, Pike ACW, Dauter Z, Hubbard RE, Bonn T,
Engström L, Greene GL, Gustafsson J-Å, Carlquist M 1997 Mo-
lecular basis of agonism and antagonism in the oestrogen receptor.
Nature 389:753–758

50. Williams SP, Sigler PB 1998 Atomic structure of progesterone
complexed with its receptor. Nature 393:392–396

51. Uppenberg J, Svensson C, Jaki M, Bertilsson G, Jendeberg L,
Berkenstam A 1998 Crystal structure of the ligand binding domain
of the human nuclear receptor PPARg. J Biol Chem 273:31108–
31112

52. Nolte RT, Wisely GB, Westin S, Cobb JE, Lambert MH, Kuro-
kawa R, Rosenfeld MG, Willson TM, Glass CK, Milburn MV
1998 Ligand binding and co-activator assembly of the peroxisome
proliferator-activated receptor-g. Nature 395:137–143

53. Feng W, Ribeiro RCJ, Wagner RL, Nguyen H, Apriletti JW, Flet-
terick RJ, Baxter JD, Kushner PJ, West BL 1998 Hormone-depen-
dent coactivator binding to a hydrophobic cleft on nuclear recep-
tors. Science 280:1747–1749

54. Pratt WB, Toft DO 1997 Steroid receptor interactions with heat
shock protein and immunophilin chaperones. Endocr Rev 18:306–
360

55. Damm K, Thompson CC, Evans RM 1989 Protein encoded by
v-erbA functions as thyroid-hormone receptor antagonist. Nature
339:593–597
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R 1989 Structure, mapping and expression of a growth factor in-
ducible gene encoding a putative nuclear hormonal binding re-
ceptor. EMBO J 11:3327–3335

517. Watson MA, Milbrandt J 1990 Expression of the nerve growth
factor-regulated NGFI-A and NGFI-B genes in the developing rat.
Development 110:173–183

518. Law SW, Conneely OM, DeMayo FJ, O’Malley BW 1992 Identi-
fication of a new brain-specific transcription factor, NURR1. Mol
Endocrinol 6:2129–2135

519. Williams GT, Lau LF 1993 Activation of the inducible orphan
receptor gene nur77 by serum growth factors: dissociation of im-
mediate-early and delayed-early responses. Mol Cell Biol 13:6124–
6136

520. Hedvat CV, Irving SG 1995 The isolation and characterization of
MINOR, a novel mitogen-inducible nuclear orphan receptor. Mol
Endocrinol 9:1692–1700

521. Zetterstrom RH, Solomin L, Mitsiadis T, Olson L, Perlmann T
1996 Retinoid X receptor heterodimerization and developmental
expression distinguish the orphan nuclear receptors NGFI-B,
Nurr1, and Nor1. Mol Endocrinol 10:1656–1666

522. Nakai A, Kartha S, Sakurai A, Toback FG, DeGroot LJ 1990 A
human early response gene homologous to murine nur77 and rat
NGFI-B, and related to the nuclear receptor superfamily. Mol En-
docrinol 4:1438–1443

523. Lim RW, Yang WL, Yu H 1995 Signal-transduction-pathway-spe-
cific desensitization of expression of orphan nuclear receptor TIS1.
Biochem J 308:785–789

524. Bandoh S, Tsukada T, Maruyama K, Ohkura N, Yamaguchi K
1997 Differential expression of NGFI-B and RNR-1 genes in various
tissues and developing brain of the rat: comparative study by
quantitative reverse transcription-polymerase chain reaction.
J Neuroendocrinol 9:3–8

525. Liu Z-G, Smith SW, McLaughlin KA, Schwartz LM, Osborne BA
1994 Apoptotic signals delivered through the T-cell receptor of a
T-cell hybrid require the immediate-early gene nur77. Nature 367:
281–284

526. Woronicz JD, Calnan B, Ngo V, Winoto A 1994 Requirement for
the orphan steroid receptor nur77 in apoptosis of T-cell hybrid-
omas. Nature 367:277–280

527. Scearce LM, Laz TM, Hazel TG, Lau LF, Taub R 1993 RNR-1, a
nuclear receptor in the NGFI-B/Nurr77 family that is rapidly in-
duced in regenerating liver. J Biol Chem 268:8855–8861

528. Mages HW, Rilke O, Bravo R, Senger G, Kroczek RA 1994 NOT,
a human immediate-early response gene closely related to the
steroid/thyroid hormone receptor NAK1/TR3. Mol Endocrinol
8:1583–1591

529. Labelle Y, Zucman J, Stenman G, Kindblom LG, Knight J, Turc-
carel C, Dockhorndworniczak B, Mandahl N, Desmaze C, Peter
M, Aurias A, Delattre O, Thomas G 1995 Oncogenic conversion of
a novel orphan nuclear receptor by chromosome translocation.
Hum Mol Genet 4:2219–2226

530. Ohkura N, Hijikuro M, Yamamoto A, Miki K 1994 Molecular
cloning of a novel thyroid/steroid receptor superfamily gene from
cultured rat neuronal cells. Biochem Biophys Res Commun 205:
1959–1965

531. Maruyama K, Tsukada T, Bandoh S, Sasaki K, Ohkura N,
Yamaguchi K 1997 Expression of the putative transcription factor
NOR-1 in the nervous, the endocrine and the immune systems and
the developing brain of the rat. Neuroendocrinology 65:2–8

532. Hayashi K, Ohkura N, Miki K, Osada S, Tomino Y 1996 Early
induction of the NGFI-B/Nur77 family genes in nephritis induced
by anti-glomerular basement membrane antibody. Mol Cell En-
docrinol 123:205–209

533. Philips A, Lesage S, Gingras R, Maira MH, Gauthier Y, Hugo P,
Drouin J 1997 Novel dimeric Nur77 signaling mechanism in en-
docrine and lymphoid cells. Mol Cell Biol 17:5946–5951

534. Perlmann T, Jansson L 1995 A novel pathway for vitamin A sig-
naling mediated by RXR heterodimerization with NGFI-B and
NURR1. Genes Dev 9:769–782

535. Fahrner TJ, Carroll SL, Milbrandt J 1990 The NGFI-B protein, an
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