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Abstract

Bacterial and Archaeal cells use selenium structurally in selenouridine-modified tRNAs, in proteins
translated with selenocysteine, and in the selenium-dependent molybdenum hydroxylases (SDMH).
The first two uses both require the selenophosphate synthetase gene, selD. Examining over 500
complete prokaryotic genomes finds selD in exactly two species lacking both the selenocysteine and
selenouridine systems, Enterococcus faecalis and Haloarcula marismortui. Surrounding these orphan
selD genes, forming bidirectional best hits between species, and detectable by Partial Phylogenetic
Profiling vs. selD, are several candidate molybdenum hydroxylase subunits and accessory proteins.
We propose that certain accessory proteins, and orphan selD itself, are markers through which
new selenium-dependent molybdenum hydroxylases can be found.

Reviewers: This article was reviewed by Arcady Mushegian and Kira Makarova.

Findings

A considerable number of selenoproteins are known, in
which the sulfur (S) atom of the cysteine side chain is
replaced by the analogous but much scarcer element sele-
nium (Se), typically at an enzyme active site. This substi-
tution improves enzyme characteristics [1], such that one
in four prokaryotic genomes carries a selenocysteine
(SeCys) incorporation system [2,3]. SeCys is incorporated
during translation at specific UGA codons as the twenty-
first amino acid in a system that requires a signal from
mRNA secondary structure, a special tRNA (selC), the selA
(in bacteria), selB, and selD genes [4], and some means of
selenium uptake. Species that make even one SeCys-con-
taining protein often make several, with twelve found in
Carboxydothermus hydrogenoformans [5]. This pattern sug-
gests that the system may be hard to acquire or maintain,
in evolutionary terms, but relatively easy to reuse. SelD

makes the activated form of selenium, selenophosphate,
and is required also in a fundamentally different system,
tRNA modification with selenouridine [4,6]. We find the
marker specific to that system, 2-selenouridine synthase,
in 59% of genomes with SeCys systems but just 11% of
those without. Such overlapping usage patterns for selen-
ophosphate could mask additional roles for selD.

We searched for orphan (unexplained) selD genes in the
first 500 complete prokaryotic genomes and found two
instances, one in the bacterium Enterococcus faecalis V583
and one in the archaeon Haloarcula marismortui ATCC
43049. Surrounding the orphan selD genes in both species
were proteins related by bi-directional best hits (BBH)
between the two genomes. These BBH pairs included
homologs to subunits of a class of molybdenum cofactor-
containing enzymes termed the molybdenum hydroxy-
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lases (MH), plus additional uncharacterized proteins and
possible maturations proteins. This finding immediately
suggested a biological role for the orphan selD genes, as
there are a few known examples of enzymes with a labile
selenium atom, which is contributed not by SeCys but
through some unknown mechanism. Such enzymes
belong to the MH class, and are designated selenium-
dependent molybdenum hydroxylases (SDMH) [7-10].
We noted that various other species carried homologs to
several of these BBH hit pairs, typically colocalized with
each other, and always in species carrying selD. This obser-
vation suggests that the SelD protein, orphan or other-
wise, may activate selenium for SDMH maturation. Three
SDMH activities have been characterized from two spe-
cies: nicotinic acid hydroxylase and xanthine dehydroge-
nase from Eubacterium barkeri [9,10], and xanthine
dehydrogenase and purine hydroxylase from Clostridium
purinolyticum [7,8]. These species also incorporate SeCys;
their genome sequences are unavailable, but must carry
selD.

The MH contain a catalytically essential, labile (cyanolyz-
able) sulfur atom, and require shared accessory proteins
for enzyme maturation [11]. The labile selenium of the
SDMH may have a like need. The few known SDMH act
on varied substrates. They may be more similar in
sequence to their closest selenium-free homologs than to
each other, but likely would share certain selenium inser-
tion proteins. Such accessory proteins, if identified, could
serve as genome markers for species producing SeCys-
independent selenoenzymes. Several BBH gene pairs in
the regions of the two orphan selD genes lack homology
to any mature enzyme subunit and are candidate SDMH
accessory proteins.

The selD gene is relatively uncommon, occurring in about
30% of completed prokaryotic genomes. Finding only
selD-positive genomes far down a list of BLAST matches
would strongly suggest a role in selenium metabolism.
Recently, we introduced the method of partial phyloge-
netic profiling (PPP) [12], which can read this signal. PPP
is a means to identify rapidly those protein families
closely related in their patterns of distribution to a pheno-
type, a defined protein family, or a calculated Genome
Property [2,3]. Phylogenetic profiling techniques, though
very powerful in principle [13], rely on good protein fam-
ilies; PPP adjusts the size of each candidate protein family
dynamically to find the best match to a profile. For every
protein in a query genome, it scores a profile only as large
as the working family size (hence "partial") vs. the refer-
ence profile, and chooses the size that gives the greatest
statistical significance. All genes from a query genome are
tested, and ordered according to their individually opti-
mized scores. This method can efficiently rediscover many
entire biological systems, such as histidine biosynthesis
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genes, given a profile based on any one marker gene for
the system.

We applied PPP [12] to both the E. faecalis [14] and H.
marismortui [15] genomes, vs. the profile for selD, using a
skew parameter that favors families containing subsets
rather than supersets of the species with selD [16]. The top
hit in E. faecalis, other than selD itself, was the adjacent
gene EF_2566. Though uncharacterized, it shares N-termi-
nal homology (see Pfam model PF01206) [17] with the
sulfurtransferase SirA. The selD-dependent species distri-
bution (21 of 21 species) and colocalization with selD in
five species strongly suggest that this protein acts in sele-
nium metabolism, though its function remains unknown.
Its family is now represented by TIGRFAMs model
TIGR03527. The next hit, EF_2568, homologous to
cysteine desulfurases and selenocysteine lyases, probably
is a selenocysteine lyase. The second hit in H. marismortui,
pNG7234, annotated as a phosphate transporter subunit,
probably transports selenate as well [18]. These findings
show protein families likely involved in selenium metab-
olism, probably prior to selenophosphate synthesis, and
are not pursued further here.

However, the fifth hit in E. faecalis, EF_2563, and the top
hit in H. marismortui, pNG7241, are members of the same
protein family, TIGR03309. They are found close to selD
and form a BBH pair between the two genomes. The
archaeal protein is actually a fusion protein, with its N-ter-
minal half homologous to a xanthine dehydrogenase
maturation factor, XdhC [19]. All members of
TIGR03309, including YqgeB from Escherchia coli, are from
species with selD, but then a sharp fall-off in scores occurs
before the next set of homologs is encountered, largely
from species that lack selD. Reexamination vs. an
expanded protein database that includes whole genome
shotgun data now confirms that TIGR03309 occurs only
in selD-positive genomes. Even after removing redundant
sequences with greater than 45% sequence identity, 26
species remained, leading to vanishingly small odds that
TIGR03309 is not closely connected to selenium metabo-
lism. The additional species include a third with an
orphan selD gene, Clostridium phytofermentans, a cellulose-
degrading, ethanol and hydrogen-producing bacterium
[20]; the seID and TIGR03309 genes are one gene apart.

The restriction of the TIGR03309 protein family to selD-
positive genomes, frequent fusion with domains homolo-
gous to the maturation factor XdhC, and recurring loca-
tion in extended MH loci suggest that TIGR03309
members mark a broadly distributed biological system
connected to SDMH. To search for components of that
system, we applied the PPP algorithm to the profile of
TIGR03309 distribution. In each genome tested, most of
the top hits fell within a single extended locus. Ten of the
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eleven top hits fall within a 23-gene purine catabolism
[21] and selenate reduction [22] region in Escherichia coli.
Similarly, the eleven top hits in Aeromonas hydrophila sit
together, as do six of the top seven in H. marismortui, seven
of nine in Clostridium difficile, etc. These regions typically
include two additional uncharacterized families,

http://www.biology-direct.com/content/3/1/4

TIGR03310 (Ygf] in E. coli) and TIGR03172 (YqeC in E.
coli). We propose that these families are also SDMH acces-
sory proteins, possibly for a smaller subset of SDMH than
for TIGR03309. Table 1 shows how well the top 25 hits by
PPP vs. the TIGR03309 profile mark regions of conserved

Table I: Conserved clustering of top Partial Phylogenetic Profiling results

E. coli gene Putative protein name

PPP rank E. colilocus PPP rank E. faecalis locus PPP rank H. maris. locus PPP rank C. difficile locus

xdhA

xdhB

xdhC

ygeV

ygeW
ygeX

ygeY
ygeZ

yqeA
yqeB

yqeC

yef]
yefK

yefL

y&fM

yefN

ygfO

selD

xanthine
dehydrogenase, Mo-
binding subunit
xanthine
dehydrogenase, FAD
binding subunit
xanthine
dehydrogenase, Fe-S
binding subunit
sigma(54)-dependent
activator

carbamoyl transferase
diaminopropionate
ammonia-lyase
hydrolase, peptidase
M20 family
phenyl-hydantoinase
carbamate kinase
SDMH accessory
protein TIGR03309
SDMH accessory
protein TIGR03172
SDMH accessory
protein TIGR03310
selenate reductase, Fe-
S subunit

selenium metabolism
protein SsnA
TIGRO3314

selenate reductase,
FAD-binding subunit
selenate reductase,
Mo-binding subunit

xanthine/uracil family
permease
sulfurtransferase-
related protein
TIGR03527
selenophosphate
synthase
selenocysteine lyase
TIGROI1977

19
18

b2866

b2867

b2868

b2869

b2870
b2871

b2872
b2873
b2874
b2875
b2876
b2877
b2878

b2879

b2880

b288I

b2882

b1764

14

EF_2570 5 CD2087
(cD2101)
(EF_2570) (CD2088)
EF_2577
EF_2579 7 CD2085
EF_2578 (CD2084)
(EF_2580) 6 pNG7258
EF_2575
EF_2563 I pNG7241 1 CD3478
EF_2564 2 pNG7237 2 CD2071
EF_2569 pNG7236
EF_258|
EF_2582 8 pNG7259
(EF_2570) 3 pNG7246 3 (CD2099)
5 (PNG7244) 4 CD2073

5 (CD2079)
(EF_2573)
EF_2566 pNG7238 CD3667
EF_2567 pNG7239 CD2496
EF_2568 CD3670

Partial Phylogenetic Profiling results for Escherichia coli, Enterococcus faecalis, Haloarcula marismortui, and Clostridium difficile vs. the profile of the
putative SDMH accessory protein family TIGR03309. The first seventeen rows show a contiguous gene region in E. coli, and the last three a region
in E. faecalis. The first two columns show E. coli gene symbols and putative protein names. The third, fifth, seventh, and ninth columns represent rank
by PPP for E. coli (out of 4243 proteins), E. faecalis (3277 proteins), H. marismortui (4240 proteins — all loci found are on plasmid with 362 proteins),
and C. difficile (3873 proteins); missing values show that the protein did not score in the top twenty-five. Locus tags shown in columns 6, 8, and 10
mark genes with bi-directional best hits vs. the corresponding E. coli locus in column 4 and co-clustered in their respective species, so not all of the
top 25 hits appear in the table; locus tags in parentheses are unidirectional best hits from the E. coli gene. The row for putative SDMH accessory
protein family TIGR03309 is in boldface. The putative C. difficile ortholog to the C. purinolyticum xanthine dehydrogenase molybdenum-binding
subunit is in italicized boldface.
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gene clustering between E. coli,E. faecalis, H. marismortui,
and C. difficile.

TIGR03309 clearly is connected both to selenophosphate
synthase activity and to molybdenum hydroxylases. In
theory, the connection might be that TIGR03309 repre-
sents an accessory protein to an apparent selenate reduct-
ase found nearby in E. coli, in a selenium detoxification
system that requires activation by SelD. Searching for
homologs to selenate reductase subunits, however, pulls
in few genomes with both TIGR03309 and SelD before
hitting large numbers of genomes with neither. Therefore
it seems more likely that the selenate reductase helps fur-
nish selenide to SelD in select species, while TIGR03309
family members contribute to SDMH maturation. While
no complete genome sequence is available for either
genome with characterized SDMH, N-terminal sequences
are available for C. purinolyticum selenium-dependent
xanthine dehydrogenase (XDH) subunits, from which we
identify putative orthologs in the nearly complete genome
of C. difficile. The top hit there, after the TIGR03309 and
TIGR03172 family putative SDMH accessory proteins, is
the apparent ortholog to the characterized XDH molybde-
num-binding subunit. This last observation appears to
cement the connection of SDMH with both TIGR03309
and selD, and suggests a means to discover new selenium-
dependent molybdenum hydroxylases. This class of
enzyme may be more common than previously appreci-
ated, and may involve purine catabolic systems in gut bac-
teria such as E. coli. This notion is intriguing because a
defect in purine metabolism causes gout; human health
therefore may be affected by selenium availability to gut
bacteria.

Competing interests
The author(s) declare that they have no competing inter-
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Reviewers' comments

Reviewer I: Arcady Mushegian, Stowers Institute for
Medical Research

The note reports several observations that are of interest. |
recommend the following modifications.

1. As it is currently written, the report is mostly chronolog-
ical; it starts with the observations were made first, follows
with other observations they led to, etc. I suppose that the
notes on computational prediction may benefit from fol-
lowing a different plan, which is a bit more formal: first
state all predictions that you are making, then show what
is the evidence supporting these predictions, and then tell

http://www.biology-direct.com/content/3/1/4

why alternative explanations of the same evidence are less
likely than the initial hypothesis. This will make the logic
much easier to follow.

2. This work: Lobanov AV, Hatfield DL, Gladyshev VN.
Selenoproteinless animals: Selenophosphate synthetase
SPS1 functions in a pathway unrelated to selenocysteine
biosynthesis. Protein Sci. 2008 Jan;17(1):176-82. -
appears to be directly relevant. Please consider discussing
it.

3. Ygf] is quite clearly a nucleotidyltransferase of dinucle-
otide sugar transferase Rossmanoid fold (verify by PSI-
BLAST or HHPred). This can be worked into the pathway
reconstruction.

Authors' response

The highly compressed format of the Discovery Note
departs somewhat from the style of longer papers. We
have clarified the discussion of the most likely alternative
hypothesis, namely that TIGR03309 members are acces-
sory proteins for molybdenum hydroxylases that detoxify
selenate in a process that further requires activation by
SelD, rather than accessory proteins for molybdenum
hydroxylases that contain selenium. This alternative
hypothesis does not seem strong because the molybdop-
terin-containing enzymes that accompany TIGR03309 are
varied and do not lead to the identification of protein
families exclusively in SelD-positive genomes; only our
putative accessory protein families, TIGR03309 in partic-
ular, do that. On the other hand, our proposed role for
TIGR03309 in SDMH maturation suggests a labile sele-
nium-dependent enzyme in E. coli, something not yet
observed, so alternative hypotheses must be considered.

The note on animals with selenophosphate synthetase but
no selenocysteine is consistent with several scenarios, the
most likely being a role in the selenouridine modification
to tRNA, which does occur in animals. A selenium-
dependent molybdenum hydroxylase system is possible,
but TIGR03309 and other putative SDMH markers hit no
animal proteins.

The molybdenum-containing cofactors in selenium-
dependent and other molybdenum hydroxylases are
molybopterin derivatives, complex in their structure and
variable between enzymes. In the SDMH nicotinic acid
hydroxylase from E. barkeri, for example, Gladyshev and
Lecchi identified molybdopterin cytosine dinucleotide. A
nucleotidyltransferase role is therefore fully consistent
with a role for Ygf] and other members of TIGR03310 as
SDMH accessory proteins.
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Reviewer 2: Kira S. Makarova, National Center for
Biotechnology Information

In this manuscript several considerations are described in
support of the hypothesis that selenophosphate synthase
SelD is not only the necessary component of selenourid-
ine and selenocysteine systems but is also involved in for-
mation of (or activation the selenium for) molybdenum
hydroxylases, some of which are shown experimentally to
be selenium-dependent.

The observation that two (out of ~500 analyzed) organ-
isms with completely sequenced genomes contain the
selD-like gene but neither genes for selenouridine and
selenocysteine systems prompted the authors to investi-
gate the neighborhood of these "orphan" selD in these
two genomes in order to find a system where the SelD pro-
tein may function in these organisms. In the close vicinity
of selD gene the homologs of the selenium dependent
molybdenum hydroxylases (SDMH) can be found in both
genomes suggesting a possible link between SelD and
SDMH in these two genomes. This led the authors to
hypothesis that these enzymes are likely selenium-
dependent and SelD might be involved in the selenium
activation for these enzymes.

One way to further support this hypothesis is to consider
the inferred operon organization of the SelD-SDMH
genome neighborhood. If selD could be predicted to co-
transcribe with SDMH genes it would lend additional
weight to the author's arguments. However these genes
are co-directed and separated by a short (<100 bp) inter-
genic spacers only in E. faecalis while the neighborhood
pattern in H. marismortui is incompatible with co-tran-
scription and/or co-regulation. This lack of conservation
of the selD-SDMH neighborhood weakens the evidence of
their functional connection. It will be interesting to check
all other genomes containing both selD and SDMH genes
if there are any other cases where these genes might be
inferred as co-transcribed or co-regulated.

Co-occurrence is another way to predict a functional link
between genes, but it is particularly hard to use this evi-
dence for functional linking of protein families, especially
for those with large number of paralogs. The authors
admit that the Phylogenetic Profiling methods rely on
"good" protein families, but do not provide any consider-
ations if the families or subfamilies investigated here are
"good" or "bad". In this respect it is better not to go into
details describing the advantages or drawbacks of the par-
ticular method but rather make a safe statement that PPP
results are used essentially for enriching the set by the
genes with possible functional link for further analysis.
The parameters of the PPP search which can be used for
reproducing the reported results are however of interest.

http://www.biology-direct.com/content/3/1/4

It should be explicitly stated why the authors do not show
all the top 25 results of Partial Phylogenetic Profiling but
only some selected subset. Apparently they do not believe
that the omitted genes are relevant to selenium metabo-
lism. Ideally, both the original data and the author's
rationale for including or discarding a gene should be
available to readers.

The strongest evidence that is presented in the paper is the
notion that TIGR03309 is found only in the genomes con-
taining SelD. Since the genomes that encode for
TIGR03309 family proteins belong to a variety of bacterial
clades there is a little doubt that the connection between
SelD and TIGR03309 family is real and strong. But is this
connection direct or indirect? If most of these organisms
share an ecological niche or lifestyle it is possible that they
would share a number of functionally unrelated genes
due to shared physiologic requirements or simply physi-
cal proximity.

The authors explain the observed connection between
SelD and TIGR03309 family by hypothesizing that
TIGR03309 proteins recruit selenophosphate for use in
SDMH system. Are there other reasonable alternative
hypotheses? How do the authors discriminate between
them?

I believe however that despite the relatively weak support,
the hypothesis described here is interesting, entirely rea-
sonable and is an excellent starting point for further inves-
tigation by both experimental and computational means.

Authors' response

Dr. Makarova is correct to point out that the circumstan-
tial evidence supporting TIGR03309 as a marker for sele-
nium dependent molybdenum hydroxylases, though
substantial, is not yet sufficient to eliminate doubt. We
formed our hypotheses based on the number of genomes
we could investigate with PPP, a tool that exploits pre-
computed all-vs.-all BLAST comparison results. We
waited, however, until more whole genome shotgun
sequences became available so we could test TIGR03309
against SelD to a much greater depth in non-redundant
sequences. These added genomes include Clostridium
phytofermentans ISDg, the third instance of an orphan SelD
genome, taxonomically quite different from the other
two. In genomes with either selenocysteine or selenourid-
ine systems, selD sits far from the TIGR03309 family gene,
but in C. phytofermentans, the three occur in the gene order
selD — TIGR03527 - TIGR03309, and once again near xan-
thine dehydrogenase homologs. This is the third different
arrangement for selD and TIGR03309 in three orphan
SelD genomes (one gene between, three genes between,
and adjacent but converging), but they are always close.
We are not troubled by the lack of conserved operon struc-
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ture because there is no reason to expect similar expres-
sion levels of SelD and TIGR03309 to be required. We
have somewhat expanded the discussion of C. phytofer-
mentans.

The taxonomies of TIGR03309-containing species are
quite diverse, but so are their environmental niches. Sev-
eral represent human intestinal bacteria, while others
include a Dead Sea halophilic archaeon, a carbon monox-
ide-metabolizing thermophile, a ubiquitous water-borne
mesophile, a metal-reducing delta proteobacterium, etc.
We think it unlikely the link to SelD represents an indirect
link to a common environmental factor.

We agree with Dr. Makarova's assertion (except for top
hits with stand-out statistical significance) that the PPP
algorithm does not guarantee a meaningful link between
a protein family and a biological process, but rather
enriches for proteins likely to be relevant. PPP results may
reflect both false-positives and false-negatives for proteins
that are not simultaneously required for and restricted to
the occurrence of a system in a genome. Table 1 therefore
cleans the signal slightly by imposing two requirements.
Proteins are shown if they are identifiable as parts of con-
served gene regions shared with E. coli (top 17 rows) and
E. faecalis (bottom 3 rows), and their PPP rank is shown
if in the top 25. We have tried to make the legend for table
1 clearer.
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