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Abstract

Highway driving can be more safe and reliable when maps contain lane-level de-

tailed cartographic information. Such maps are a resource for driving-assistance sys-

tems, enabling them to provide human drivers with precise lane-by-lane advice.

This paper proposes new aerial image analysis algorithms that, from highway ortho-

images, produce lane-level detailed maps. We analyze screenshots of road vectors to

obtain the relevant spatial and photometric patterns of road image-regions. We then

refine the obtained patterns to generate hypotheses about the true road-lanes. A road-

lane hypothesis, since it explains only a part of the true road-lane, is then linked to

other hypotheses to completely delineate boundaries of the true road-lanes. Finally,

some of the refined image cues about the underlying road network are used to guide a

linking process of road-lane hypotheses.

We tested the accuracy and robustness of our algorithms with high-resolution, inter-

city highway ortho-images. Experimental results show promise in producing lane-

level detailed highway maps from ortho-image analysis – 89% of the true road-lane

boundary pixels were successfully detected and 337 out of 417 true road-lanes were

correctly recovered.
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1 Introduction

Maps are important for human navigation. Given a route, a route-guidance system

consults maps to provide human drivers with turn-by-turn directions to their destina-

tions. Such guidance helps us safely drive through familiar and even entirely foreign

terrains. Route-guidance systems work particularly well because those systems rely on

exceptional human perception capabilities. For example, when a route’s direction is

given, a human driver steers his vehicle along a particular road-lane while taking note

of geometric shapes of the roads, the posted rules, and road-lane boundaries.

However, such route guidance can be very confusing when, due to a lack of infor-

mation, a guidance system does not detail the actual road geometries. For example, a

person driving in the far left lane of a four-lane highway will not be able to exit a ramp

on the right immediately after being advised to do so. If the cartographic database

serving the guidance system has lane-level detailed information, the route-guidance

will surely be more reliable.

This paper proposes new aerial image analysis algorithms that, from highway ortho-

images, produce a map of road-lanes that appear on a given highway ortho-image. A

road-lane (or a lane), in this paper, refers to the part of a road built for controlling and

guiding a single line of vehicles. The output of this procedure is cartographic informa-

tion about road-lanes in a set of pixel coordinates of road-lanes’ centerlines and lateral

road-widths. Such lane-level detailed highway maps with traffic rules and accurate

coordinates can be prepared in advance to facilitate the guiding of highway driving.

To extract such lane-level detailed information from a given aerial image, pix-

els along road-lane boundaries must be visually and computationally accessible. To

meet this requirement, we choose ortho-images with 15-centimeter ground resolution

in which lane boundaries can be observed by the naked eye and can potentially be

processed computationally. Because the normal longitudinal pavement markings on

highways are 4-6 inches wide (10.16-15.24 centimeters) [24], there is at least one pixel

for laterally delineating a part of lane-markings. Highways appearing in our target im-

ages are inter-city (or arterial) highways built for facilitating transportation between

cities [22].

Since our target images are depicted in high-resolution, such image objects as lane-

markings and road image-regions contain significant variations in their appearances,

such that an object appears differently based on the condition of an image acquisition

process and road surface materials. For example, even in a given arterial highway im-

age, road surfaces may be covered with different materials, such as asphalt or concrete.

Such variation in road surfaces cause an inconsistency in the color and texture of lane-

markings and road-regions. Another example of appearance variation is occlusions

caused by man-made structures such as buildings, over-hanging traffic signs, as well as

overpasses and their shadows. These structures make parts of roads partially or com-

pletely unobservable. The geometry of arterial highways also makes it difficult to de-

lineate a lane’s boundary. Ramps with circular paths have high curvatures that require

a boundary-following process that tracks non-linear paths. Road-lane junctions near

an overpass require extra care due to the complex traffic directions. Road-boundary

tracking must also be carefully done at a bifurcation point, where one splits into two,

because one of the multiple tracking lanes might disappear.
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To effectively tackle these challenges, we develop a hierarchical approach to three

tasks: gathering road boundary image cues, generating road-lane hypotheses, and link-

ing the hypotheses. To this end, we first scrutinize input images, to harvest two types

of image cues about the underlying roads: road image-regions and the geometry of un-

derlying road-lanes. Knowledge of road image-regions are useful in specifying where

to look for road-lane boundaries. To obtain the information of road image-regions,

we formulate this image segmentation problem as a binary classification. Another im-

portant image cue we collect is the geometry of the underlying roads. To obtain this

information, we extract lines and analyze the screenshot image of the road-vector to es-

timate the legitimate driving direction and to identify relevant road structures, such as

overpasses. These collected image cues about road surface and geometry will provide

strong evidences of the true road-lanes. In particular, these cues facilitate a road-lane

hypothesis generation and guide a linking of these hypotheses to build an accurate map

of road-lanes. For the problem of linking road-lane hypotheses, we formulate it as a

min-cover problem [25]. We look for a set of hypotheses about the unknown true road-

lanes to maximally cover the estimated road image-regions with a minimum sum of

costs.

In what follows, we briefly review the related work. We detail the methods of

harvesting low-level features, the methods of converting these low-level features into

meaningful mid-level features, and the methods of generating road-lane hypotheses

and of linking them, so as to generate a map of road-lanes in a given image.

2 Related Work

Guiding humans to their destinations, a map is an essential component for reliable and

safe navigation. In the GIS community aerial image analysis has played a crucial role

in maintaining existing cartographic databases [1, 2, 3, 6]. Despite being potentially out

of date, the geometric relations among spatial objects (e.g., intersection between road

segments) appearing on aerial images are invariant over a long period of time, even af-

ter natural disasters [20]. To delineate the underlying road network’s geometry, struc-

tural top-views of interesting areas on aerial images provide better vantage points than

those of perspective sensor measurements (e.g., vision sensors and range finders). This

provides an alternative way of maintaining existing cartographic databases without vir-

tually going out to the regions of interest. The clear difference between these work

and ours is the ground resolution. Most of these work analyzed low-resolution aerial

images in which the ground resolution was greater than one meter [1, 2, 3, 7, 8, 11].

We detect interesting road structures, such as intersections and overpasses, to iden-

tify potentially complex road geometry. For example, knowing the boundary (or a

location) of an overpass is useful in correctly understanding a hierarchical spatial or-

der among road-lanes passing thru the overpass. To recover such 3-dimensional road

structures, researchers have directly accessed a road vector or utilized 3D data such as

air-borne point clouds [13, 16, 17].
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3 Harvesting Road-Boundary Image Cues via Bootstrap-
ping

(a) An input highway ortho-image with 15 centimeters per pixel ground resolution.

(b) A screenshot of the road-vector of the input image.

Figure 1: Two input images for our lane-level map building are shown.

This section explains how to analyze input images to extract low-level image fea-

tures and how to refine such features to produce task-specific image features that can

be directly used to execute other sub-tasks. Our algorithms take two images as the

input: highway ortho-image and the input image’s road-vector screenshot. Figure 1(a)

shows an example of a highway ortho-image and Figure 1(b) shows an example of a

road-vector screenshot image.

A road-vector screenshot is a screencapture image that depicts, with distinctive

colors, the underlying road-network of a highway scene. When a road-vector image

is overlaid with an ortho-image, road-regions in the ortho-image are labeled with real-

world cartographic information. One might think that the road-vector screenshot image

would trivialize the task of identifying boundaries of road-lanes. Such is not the case.

First, the sketches of road-vectors are just parts of images, meaning they do not possess
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any information about road-vectors, which are directly accessible in a computational

form. Second, the road-vector sketches are not entirely overlapped with images of

road-regions, resulting in cases where some road-regions remain uncovered. From

a pattern recognition perspective, this is a very confusing signal in that some image

regions of true road-lanes are marked as “non-road” and vice versa. Thus, when using

a screenshot of a road-vector, one should take extra care.

We first parse two input images, to extract low-level features, such as lines and

superpixels. As a preprocessing step, we apply a histogram equalization to normal-

ize intensity, a bilateral filter [21] to preserve natural edges, and then compute image

gradients. For line extraction, we first run Canny edge detector on image gradients,

link those pixels based on their gradient orientations, and fit a line using eigendecom-

position [9, 19]. To obtain a superpixel image, we apply the watershed segmentation

algorithm to the gradients of the image to obtain a coarse segmentation. We then reit-

erate this process until the dimensions of individual superpixels are large enough [10].

We terminate this iteration when the number of superpixels is less than or equal to the

predefined proportion (e.g., 15%) of the initial number of segments produced by the

watershed algorithm. Figure 2(a) shows an example of a superpixel image.

To extract the useful geometric information of the underlying roads from a road-

vector screenshot, we first extract image regions of road-vector sketches, i.e., yellow

or yellowish paintings in Figure 1(b), and produce a binary image. This image con-

tains only those fragments of road-vectors without any map-symbols. We then further

analyze each of the road-vector fragments, to obtain their geometric properties, such

as extremity and bifurcation points. Figure 2(b) shows a result of such analysis. Each

(green) polygon represents road-vector fragments where “+” indicates a ridge point,

“+” with a triangle is an extremity point, and “+” with a circle is a bifurcation point.

Since these low-level features contain only basic information about road-lanes ap-

pearing on the input image, we need to refine these features, making them more rele-

vant and useful in executing our task of producing road-lane maps. These new features

include a segmentation of a road image-region, an estimation of some legitimate driv-

ing directions of roads appearing on the input image, a lane-marking detection, and

locations of interesting road-structures, such as intersections and overpasses.

3.1 Road-Image Region Segmentation

Having knowledge of road image regions would help one know where to look for road-

lane boundaries. Acquiring knowledge of road image-regions is carried out through

an image segmentation task that divides an input image into two image sub-regions:

road- and non-road-region. We tackle this image segmentation problem as a binary

classification problem that takes superpixels as input and assigns each superpixel with

one of two class labels: road or non-road. We utilize one of the inputs, a road-vector

screenshot image, to prepare, without human intervention, training data. In particular,

we treat a superpixel as a positive example if its area is significantly overlapped (e.g.,

more than 90%) with road-vector paintings; otherwise we treat it as a negative example.

Notice that the sketches (or drawings) of road-vectors are not entirely overlapped with

image road-regions, resulting in some of road-region superpixels being treated as non-

road regions.
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(a) A superpixel image. The elongated green polygons (or blobs) are fragments of a road-vector screenshot.

(b) An analysis of road-vector fragments is performed to obtain their geometric properties.

Figure 2: An intensive image analysis results in two low-level image features. These

figures are best viewed in color.

To execute the superpixel classification, we first represent each of the superpixels

as a feature vector. A feature vector consists of color and texture information. We use a

histogram to represent color values in a superpixel and a texton [12] to represent texture

values. To handle the initial noisy superpixels’ class assignments based on road-vector

screenshots, we learn a classifier, a Gaussian Mixture Model (GMM), to probabilis-

tically assign individual superpixels with class labels. To smooth out the potentially

inconsistent outputs of the GMM, we run pairwise Markov Random Fields (MRF) and

infer the most probable segmentation of the input image using loopy belief propaga-

tion. Figure 3(a) shows a result of image road-region segmentation. Results of the

road-region segmentation define image regions of interest where all of the remaining

tasks for building lane-level highway map have been executed.
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(a) Results of road image region segmentation. The blue regions represent identified road image-regions

and the red regions represent non-road image-regions. Although some non-road image-regions are labeled as

road, for the most part segmentation results correctly depicted road image-regions.

(b) Results of driving direction estimation. The blue lines indicate the estimated driving direction of a grid

cell and the non-drivable regions are depicted by red circles.

Figure 3: Two of the four task-specific image features: road image region segmentation

and driving direction estimation results are shown. Viewed best in color.

3.2 Driving-Direction Estimation

The goal of our task is to extract boundaries of individual road-lanes in the given image.

This requires tracking boundary pixels of road-lanes that appear in the given image.

Thus knowing the driving direction at any given image location is useful for tracking

road-lanes boundaries.

To approximate the driving direction from a given image, we use line extraction

results that each of the extracted lines partially explain as the contour of roads in a

given image. It is undesirable to approximate the driving direction at a pixel level

because of all the noise that must be handled. Instead we partition the input image into

a number of grid cells. For each grid cell, we identify extracted lines which pass by it

and use them to approximate the driving direction of the grid cell. Suppose there are
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m number of lines identified as passing the ith grid cell. We compute the direction of a

grid cell, i, by using the vector sum method, θ̂i = tan−1(y, x), where x =
∑m

j cos(θj)

and y =
∑m

j sin(θj), where θj is the orientation of the jth line. The orientation of a

grid cell is mostly homogeneous to its neighboring cells, particularly in road image

regions. To enforce such a constraint, we run an MRF to infer the most probable

driving direction of the input image as a whole. Our method of approximating driving

direction is motivated by the method proposed in [4] where the authors extract lines

from laser-scan data and run an MRF to infer the driving direction homogeneous to a

given parking lot image. They use a combination of Canny edge detection and Hough

transform to extract lines from a laser scan image. We also tried this combination but

found the extracted lines too short to use. Figure 3(b) shows a result of driving-direction

estimation.

3.3 Lane-Marking Detection

Lane-markings are one of the most important photometric cues for extracting road-

lane boundaries. In fact, our goal would be easier met if we had a perfect lane-marking

classification on a given ortho-image.

Lane-markings are a type of road-marking that depicts boundaries of road-lanes.

On an ortho-image, we can, readily with the naked eye, distinguish lane-markings

because they have whitish (or yellowish) colors, relatively higher intensity than their

neighboring background pixels. However, these salient features are not always avail-

able for image processing because the actual values of lane-marking pixels vary based

on image acquisition conditions.

To effectively address the challenge of appearance variation of lane-marking pix-

els’, we formulate the lane-marking detection task as a binary classification problem

of discriminating non lane-marking pixels from true lane-marking pixels. To this end,

we first downloaded 20 highway ortho-images separated from the images for generat-

ing lane-level highway map and sampled 47,640 pixels as a lane-marking classification

data. These consisted of 15,204 lane-marking (positive) pixels and 32,436 non lane-

marking (negative) pixels. We converted some of these sampled pixels into features,

to learn a binary classification model of lane-marking pixels’ photometric variations.

For the feature representation, we look into the contrast of intensity values between a

lane-marking pixel and its neighboring pixels. In fact, to generate a feature vector of

the pixel, we use the local binary pattern (LBP) [15] and four different statistics, such

as entropy, smoothness, uniformity, and variance of a target pixel and its neighboring

pixels. Note that this is the only place we use manually labeled data for training a part

of our system.

To find the best one for our lane-marking detection task, we first set aside a por-

tion (about 30%, 14,292) of the labeled pixel data as testing data and used the rest of

them to train a classifier. We tried six different classification setups and found that the

AdaBoost outperformed all others – AdaBoost with a feature representation without

color information produced 0.98 precision and 0.97 recall rates on average. Figure 4(a)

shows a result of lane-marking detection.
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(a) Lane-marking detection results. Because the outputs of our lane-marking classification are probabilistic,

the results are shown in a heat-image where the color closest to red represents the highest probability.

(b) Results of overpass detection. A red parallelogram represents the boundary of the detected overpass, and

two (blue and cyan) lines inside the polygon depict two principal axes.

Figure 4: Other two task-specific image features: lane-marking detection and overpass

detection results are shown. Viewed best in color.

3.4 Interesting Road-Structure Detection

To accurately delineate a road-lane’s boundaries, it is necessary to recognize road-

structures such as overpasses and intersections that may indicate complex road geome-

tries. For example, a presence of an overpass suggests the fact that multiple roads pass

each other in the same image region.

The input of the overpass detection algorithm is the road-vector screenshot. As

described earlier, the road-vector screenshot image is analyzed and converted into a set

of road-vector fragments. Each of the road-vector fragments contains the geometric

characteristic of parts of the underlying roads. For each of the road-vector fragments,

we extend each of the extremity points in the direction of the fragment and identify

any intersection with other fragments if their intersection angle is greater than a given

threshold (e.g., π/3). A potential overpass is localized by investigating intersections of
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these extended lines.

To finalize the overpass detection process, it is necessary to identify the boundary

of a localized potential overpass. To this end, we search for any of the closest ex-

tracted lines that intersect with any of the two lines from the overpass localization and

are greater than the same threshold used earlier. Figure 4(b) shows the final result of

overpass detection. The bounding box of a detected overpass lets other sub-tasks of ex-

tracting lane-level highway information know of the existence of an overpass and that

the road geometry around this bounding box has more than one direction. Our method

of detecting an overpass is much simpler than those relying on 3-dimensional data of

road vector databases [16, 17]. In particular, our method require no 3-dimensional

geometry-related computation.

We describe how we obtain four mid-level image features. Aside from the lane-

marking detection in which we used some human-labeled data to train a lane-marking

classifier, we obtain, without human intervention, three other important cues – road-

region segmentation, driving direction estimation, and overpass detection.

In the next section we detail how these four mid-level features are used to generate

road-segment hypotheses and how to link them to build lane-level detailed highway

maps.

4 Road-Lane Hypotheses

The previous steps of extracting image cues about the true road-lanes provide us a

better understanding of road-lanes appearing in the input image. In particular, we

know which image sub-regions are most probably road-regions, which pixels within the

road-regions are likely parts of lane-markings, how the roads are laid out, and where

overpass structures occur. Based on this understanding, we are generating road-lane

hypotheses and linking them, in order to delineate road-lane boundaries.

4.1 Generating Hypotheses about the True Road-Lanes

A road-lane is modeled by a piecewise linear curve that consists of multiple control

points along the centerlines of the road-lane and their properties, such as lateral width

and orientation. Thus, generating a hypothesis about a true road-lane would be equiva-

lent to identifying these (control) points’ locations. However, given that the boundary

location of road-lanes are unknown, it is difficult to localize the centerlines of road-

lanes. Instead we investigate pixels of lane-marking detection results (or lane-marking

pixels). No lane-marking pixels along the true centerlines of road-lanes are available,

but one can interpolate the centerline locations from a set of regularly-spaced, lane-

marking pixels.

A true lane-marking pixel has many neighboring lane-marking pixels regularly-

spaced longitudinally and laterally (or orthogonal to the longitudinal direction). Be-

cause two true lane-markings located at each other’s side can be used to accurately

measure the width of a road-lane at that location, we are looking for lane-marking

pixels that have strong supportive (or neighboring) patterns in longitudinal and lateral

directions of the roads.
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(a) Resulting road-width cues. A dumbbell-like symbol is a road-width cue where the two circles at the ends

of a line indicate lane-marking pixel locations with strong longitudinal and lateral neighboring lane-markings.

(b) The road-lane hypothesis generation process produces 99 hypotheses about the 10 true road-lanes.

Figure 5: Results of road-lane hypothesis generation process. Viewed best in color.

While searching for lane-marking pixel candidates, we can also utilize our prior

knowledge of the legitimate road-width of a normal highway. Given that we know the

minimum width of a highway lane (i.e., 12 feet) in the U.S.[23] and the ground res-

olution of our test image, we can remove any pairs of lane-marking pixels that have

lateral support (i.e., neighboring lane-marking pixels found at orthogonally to the es-

timated driving direction) shorter than 24 pixels (24 × 15cm = 3.75meters) or longer

than any maximum values. However, care must be taken before incorporating such

prior knowledge because road-widths vary – on arterial highway images, some of the

road-lanes may have wider or narrower lateral distances. We empirically found that 22

to 35 pixels worked best for the variation in road-widths.

From the road-region segmentation results and lane-marking detection results, we

already have a good sense of which image sub-regions are likely to be parts of roads

and which part of estimated road-regions are probably lane-markings. To make the

search of these road-width cues efficient, we begin with superpixels that belong to
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the segmented road-regions. For each superpixel, we investigate whether each of the

lane-marking pixels has a sufficient number of neighboring lane-marking pixels in lon-

gitudinal and lateral directions on the roads. Any lane-markings with more than the

predefined threshold remain in the candidate list for generating road-lane hypotheses.

Figure 5(a) shows the results of a road-width cue search. A road-width hypothesis is

represented by a numeral width value and two lane-marking pixels.

After we find a set of road-width cues, the next step is to generate a set of road-

lane hypotheses. This process is executed in a similar manner to that of the road-width

cue search. For each road-width cue (or road-width hypothesis), we draw two lines,

longitudinally, from the center of the two lane-marking locations and group together

any road-width cues within extending line segments. This forms a road-lane hypoth-

esis. The longitudinal direction corresponds to the driving direction estimated earlier

from extracted lines. This search results in grouping the neighboring road-width cues

around the input road-width hypothesis. Figure 5(b) shows a set of resulting road-lane

hypotheses.

4.2 Linking Road-Lane Hypotheses for Delineating Road Bound-
ary

By searching for road-width cues and linking the identified cues, we generate a set of

road-lane hypotheses. To extract boundary lines of true road-lanes, we need to link

road-lane hypotheses. We formulate the problem of linking hypotheses as a min-cover

problem in which we search for a set of road-lane hypotheses to maximally cover the

estimated road regions with a minimum sum of costs. In particular, we are looking for

a new set of road-lane hypotheses, X = {L1, ..., Lk}, which link the generated road-

lane hypotheses based on the previously obtained local evidences of the unknown true

road-lanes with a minimum sum of linking costs. While linking road-lane hypotheses,

the new set of road-lane hypotheses should maximally cover the estimated road image-

regions.

X∗ = argmin
X

Cost(X)

Cost(X) =
∑

Li∈X

C(Li)

where C(Li) is the cost of linking any two road-lane hypotheses, Hr and Hs. Our

formulation is motivated by two previous studies [5], [27]. For our case, we generate

a set of hypotheses about unknown true road-lanes to cover approximated true road

image regions. The previous studies generated hypotheses to delineate object contours

[5] and to cover road regions in a LIDAR intensity image [27].

To find approximate solutions to these cost functions, we devise two linking func-

tions. The first linking function considers a potential connection between any two hy-

potheses purely following geometric constraints. And the second function investigates

any photometric constraints of a potential link.

While implementing the first linking function, we refer to the geometry of actual

highways where the geometric shape of the road is highly correlated with its speed lim-

its. In other words, it is easy to observe a low curvature road-shape on highways due
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Figure 6: The collected image cues and prior information about arterial highways

imposes geometric constraints on finding a potential linking of any two road-lane hy-

potheses.

to its higher speed limits. Another piece of useful knowledge for linking hypotheses

based on geometric constraints is to observe driving direction between two road-lane

hypotheses. It is highly unlikely for any two hypotheses to be linked to each other when

a path of homogeneous driving direction is absent. Figure 6 illustrates an example of

geometry-based hypotheses linking, where a road-lane hypothesis, u, is searching for

a good candidate hypothesis with which to link. Due to the fact that our target roads

are highways, any hypotheses located behind an input hypothesis should be discarded.

We compute one-to-many dot-products between an input hypothesis and all remaining

hypotheses. We do this to filter out any hypotheses located behind the input hypothesis.

In the example shown in Figure 6, the hypothesis, vl, is removed from the candidate

list, v1 and vk, remain in the candidate list for further consideration. For each of the

hypotheses in the candidate list, we compute the value of geometric linking poten-

tial based on three geometric properties: curvature, intersection angle, and Euclidean

distance.

The second linking function investigates whether sufficient image photometric cues

are present (i.e., lane-marking pixels) on a potential path linking any two hypotheses.

We assume that an optimal link always exists between two consecutive control points

that maximizes photometric constraints around the link. The second linking function

thus searches for the locally optimal link between two vertices along a potential path
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(a) The obtained photometric image cues provide strong evidence of potential links among the generated

road-lane hypotheses. A tracking of photometric cues among any potential, geometrically plausible, links is

conducted before actual linkings are established. Red dots represent lane-marking pixels and a blue rectangle

represents a road-lane hypothesis.

(b) The result of photometric cue tracking illustrated in Figure 7(a). The road-lane hypothesis labeled 82 was

successfully, through a high-curvature path, linked to another road-lane hypothesis labeled 62.

Figure 7: These figures illustrate how two linking functions find the best potential

links among road-lane hypotheses. Viewed best in color.
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between two road-lane hypotheses. A connection between all these locally optimal

links would result in an optimal approximation of a true road-lane. The incremental

examination of consecutive links will be terminated when the next potential move in-

tersects with either another road-lane hypothesis or one of the image bounds. While

tracking the locally optimal path, the direction of tracking is initially set to the direction

of the hypothesis, but after the initial step, the direction is adjusted by looking at the

estimated driving direction.

Figure 7(a) illustrates such tracking of road-lane boundary cues. In this example,

the tracking is about to begin at the vertex (v2) of a road-lane hypothesis and search

for a locally optimal link for the next point. Currently, it examines one of the possible

links to a point, p1, within the yellow rectangle where lane-marking pixels on the left

side of the tracking direction are marked with magenta circles and lane-marking pixels

on the right side are marked with blue circles. We use two line segments to collect road

boundary cues: a longitudinal line, l1 = p1−v2 and a lateral line, l2 = p2−p3. We first

project all lane-marking (magenta and blue) pixels onto these two lines. Let us denote

p(b) as a projected point of a lane-marking pixel p. The projected point p(b) on line l1,

for example, can be expressed as p(b) = v2+ b(p1− v2), where b = (P−v2)T (p1−v2)
(p1−v2)T (p1−v2) .

p(b) is projected on the line segment l1 if it satisfies b ∈ [0, 1]. Using these projected

points, the second linking function evaluates the quality of a potential link to the next

control point (e.g., a line segment between v2 and p1). In general, the optimal link has

a wide spread projection on the longitudinal line and a narrow spread projection on the

lateral line.

Figure 7(b) shows the result of a photometric road-lane boundary cue tracking.

This linking function based on tracking is similar to work that traces road image cues

to extract road-networks from low-resolution aerial images. In particular, Zhou et al.

used for their road cue tracking an extended Kalman filter [26] and Movaghati and

his colleagues utilized an unscented Kalman filter [14]. The primary difference is the

ground resolution of testing images. Most of the variations in object appearances,

imperative to analyzing high-resolution ortho-images, fail to appear in low-resolution

aerial images.

In summary, the linking function based on local geometric constraints searches for

the potential links that maximally satisfy geometric cues. The link function based on

photometric constraints searches for a potential link that maximally complies with the

spatial patterns of the detected lane-marking pixels. The optimal link between two

road-lane hypotheses would be one that locally minimizes these two constraint func-

tions. Unlike previous work of the min-cover algorithm applications [5],[27], where

their solutions were explicitly searching for a sequence of hypotheses, we look for a

set of hypothesis pairs such that their potential, geometrically plausible, links are se-

quentially traced by photometric image cues to cover road image-regions.

5 Experiments

This section details experiments conducted to investigate the robustness of our ap-

proach to extracting a lane-level highway map and the accuracy of the resulting maps.
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In what follows, we first explain the experimental setup and evaluation methods, then

show experimental results, and finally discuss the findings.

5.1 Experimental Settings

From Google’s map service1, we collected 50 ortho-images that are sampled from the

route between the Squirrel Hill Tunnel to the Pittsburgh International Airport. We also

saved road-vector screenshots of the ortho-images and manually drew boundary lines

of individual road-lanes in each of the collected images for the ground truth.

Although the number of our testing images might seem insufficient, the images con-

tain a sufficient level of difficulty, which, had we increased the number, we would have

been challenged to overcome. For example, on 18 out of 50 images 23 ramps with high

curvatures appear. When two lanes merge, one of the tracked lanes must, to produce

a correct road geometry, disappear. From 27 images, we observed 39 lane-mergings.

Variations in road-surface materials were observed from 33 out of 50 images.2

5.2 Experimental Results

In this section we discuss the findings from testing our algorithms. To the best of

our knowledge, no prior work or image data was available on extracting road-lane

boundaries that we could have used for comparison. Hence, we had to come up with

reasonable ways of evaluating our results. We evaluate resulting road-lane boundary

delineation in two-ways: accuracy of matching between output and ground truth pix-

els and counting the number of correctly recovered road-lanes in the final outputs.

Matching pixel to pixel aims at investigating the performance of our approach at the

micro-level; counting the number of road-lanes aims at revealing the accuracy of the

resulting geometries.

To evaluate our results at a pixel-to-pixel level, we utilized the method from eval-

uating performance of object boundary detection [12]. Similar to [12], we regard the

extraction of road-lane boundaries as a classification problem of identifying boundary

pixels and of applying the precision-recall metrics using manually labeled road-lane

boundaries as ground truth. Precision is manifested in the fraction of outputs that are

true positives; recall is the fraction of correct outputs over true positives. Each of the

output pixels is evaluated by whether it detects true positive pixels. Once we obtain

such correspondence between output pixels and ground truth pixels, computing the

precision and recall is straightforward.

While resolving this correspondence problem, we must carefully consider a local-

ization error that accounts for the (Euclidean) distance between an output pixel and

a ground truth pixel. Indeed, localization errors are present even in the ground truth

images. For resolving the correspondence between output pixels and ground truth pix-

els, we utilized the Berkeley Segmentation Engine’s 3 performance evaluation scripts.

1http://maps.google.com
2The complexity analysis of and the complete experimental results of these 50 test images are available

from [18].
3The BSE and related information are available at http://www.cs.berkeley.edu/˜fowlkes/

BSE/
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These scripts solve, using Goldberg’s Cost Scaling Algorithm (CSA) package, the cor-

respondence problem as a minimum cost bipartite assignment problem. We also used,

as a baseline method, BSE’s probabilistic boundary detection outputs. BSE was devel-

oped to detect generic object boundaries, not road-lane boundaries. In addition, since

training BSE with our image data is impossible, it may fall short of being a fair com-

parison. But since anyone can think of such probabilistic boundary outputs as a starting

point of delineating road-lane boundary lines, we compared it with our output. Table

1 presents an averaged performance difference between the two outputs over fifty test

images.

F-measure Precision Recall

Ours 0.82 0.77 0.89

BSE’s 0.44 0.38 0.54

Table 1: An averaged precision-recall measure of micro-level performance between

the two outputs.

In achieving our goal, the performance evaluation by a pixel-to-pixel matching for

road-lane boundary extraction outputs might be insufficient. The pixel-to-pixel mea-

sure counted a match when an output boundary pixel was located to a true boundary

pixel within a predefined distance threshold (e.g., 10 pixels). Therefore a collection

of boundary pixels would not necessarily correspond to a road-lane boundary. To be

useful, these detected boundary pixels must be interpreted as parts of a road-lane. In

other words, the desirable output for our purpose, is one that treats a road-lane as a

polygon, bounded by a closed path and image boundaries, where we can estimate lat-

eral road widths, curvature, and other interesting geometric properties along the cen-

terline of a road-lane polygon. To measure such macro-level performance, we first

visually inspected our outputs and the input image to resolve the correspondence be-

tween the resulting road-lanes and true road-lanes appearing on the input image. We

then counted the number of correct and incorrect output road-lanes and missed true

road-lanes. If the area of overlap between a road-lane output and a true road-lane was

roughly greater than 80%, then we counted it a correct match. This counting resulted

in a two-contingency table for the performance of each test image. Table 2 shows

a macro-level performance that is obtained by merging individual contingency tables

over fifty test images. An averaged performance was then computed by using this ta-

ble, precision = 0.792 = 337
337+88 , and recall = 0.771 = 337

337+100 , meaning that 79% of

the resulting road-lanes were correct and 77% of true road-lanes appearing on the test

images were correctly recovered.

Examples of resulting maps are shown in Figure 8. Figure 8(a) shows some of

the most accurate results with all of the true road-lanes appearing on test images re-

covered correctly. While processing these images, our approach successfully tracked

high-curvature ramps, correctly connected road-lane boundaries around overpasses, ef-

fectively handled variations in road-surface materials, and partial image distortions.

Figure 8(b) shows some reasonable results where most of the true road-lanes were

recovered correctly. However, not all the true road-lanes have been recovered and some

of the geometry of the resulting road-lanes is incorrect. Our approach was unable to
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(a) Highly accurate results of highway map generation.

(b) Near-perfect results of highway map generation.

(c) Near-failure case of highway map generation.

Figure 8: Some of resulting maps. There are two sub-figures in each row. The figure

on the left is a test image and the figure on the right is our output, where each road-lane

output is depicted in a different color and the background is depicted in blue. These

figures are best viewed in color.

17



Ground Truth

Road-lane Not road-lane

Output
Road-lane 337 88

Not road-lane 100 ×

Table 2: A contingency table is used to measure the macro-level performance of our

highway map generation methods.

correctly produce road-lane maps from the testing images in Figure 8(b) because these

images contained more challenging image characteristics. For example, the overpass

in the first row was successfully detected. But, the underestimated boundary of the de-

tected overpass resulted in inaccurate linkages of road-lanes at the edge of the overpass.

For the examples in the second row, there was a false positive around the ramp. This

happened because our method identified the road-shoulder image-regions as a road-

lane. In the testing image in the third row, the shadow of the overpass covers most of

road-lanes located to the left of the overpass. Even with a successful detection of the

overpass, due to a relatively high curvature, our approach failed to correctly identify

the direction of road-lanes.

Figure 8(c) shows near-failure cases where some of the true road-lanes are not re-

covered and where some of the true road-lanes are incorrect. The test image shown

in the first row posed the most significant challenge in our test image collection. The

road-lanes appearing on the left of the image are significantly distorted and a cascade

of overpasses makes it even harder to analyze. Although our approach recovered some

parts of the true road-lanes, most of them were inaccurate and the linkages among them

were incorrectly determined. In the second example, our approach failed to link road-

lane hypotheses due to the presence of the bridge’s suspension span and was unable

to complete the linkage of road-lanes near the overpass at the bridge-entering region.

Testing images shown in the third showed complicated road geometries. Image distor-

tions appearing on overpasses made it even harder to track road-boundary image cues.

Our lane-marking detector failed to detect road-boundary cues from the road surface of

the overpass in the last example and was unable to correctly delineate road-lane bound-

aries, resulting in incorrect linkages of road-lane hypotheses around the overpass.

6 Conclusion

This paper presented a new approach to extracting lane-level detailed highway maps

from a given ortho-image. We chose high-resolution, inter-city highway ortho-images

as target images because pixels along road-lane boundaries must be visually and com-

putationally accessible. To effectively address photometric variations in interesting

object appearances, we developed a hierarchical approach to three tasks: to collecting

road boundary image cues via bootstrapping, to generating hypotheses about the un-

known true road-lanes, and to linking hypotheses with respect to the photometric and

geometric constraints imposed by the collected image cues and prior information. To

minimize human intervention for analyzing given ortho-images, we analyzed screen-
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shots of road vectors to obtain the relevant spatial and photometric patterns of road

image-regions. We then refined the obtained patterns to generate hypotheses about the

true road-lanes. A road-lane hypothesis, since it explains only a part of the true road-

lane, was then linked to other hypotheses to completely delineate boundaries of the true

road-lanes. Finally, some of the refined image cues about the underlying road network

were used to guide a hypothesis-linking process.

We tested our algorithms with 50 challenging arterial highway images. The results

were evaluated according to two aspects: pixel-to-pixel matching and counting correct

and incorrect outputs. Our approach demonstrated promising results in that, overall,

79% of the resulting road-lanes were correct and 77% of true road-lanes appearing on

the test images were correctly recovered.

Although we believe our test images pose sufficient challenges for the task of pro-

ducing lane-level detailed highway maps, for future work, we would like to test our

algorithms with more challenging aerial images.
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