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Abstract

Identifying homology relationships between sequences is fundamental to biological research. Here we provide a

novel orthogroup inference algorithm called OrthoFinder that solves a previously undetected gene length bias in

orthogroup inference, resulting in significant improvements in accuracy. Using real benchmark datasets we demonstrate

that OrthoFinder is more accurate than other orthogroup inference methods by between 8 % and 33 %. Furthermore,

we demonstrate the utility of OrthoFinder by providing a complete classification of transcription factor gene families in

plants revealing 6.9 million previously unobserved relationships.

Background and rationale
Identifying homology relationships between sequences is

fundamental to all aspects of biological research. In

addition to the pivotal role these inferences play in

furthering our understanding of the evolution and diver-

sity of life, they also provide a coherent framework for

the extrapolation of biological knowledge between or-

ganisms. In this context, orthology inference underpins

genome and transcriptome annotation and provides the

foundation on which synthetic and systems biology is

built. Given the importance of this process to biological

research there has been a rich heritage of methodology

development in this area with the production of several

effective orthology databases and algorithms.

The most widely used methods for orthology inference

can be classified into two distinct groups. One group of

methods approaches the problem by inferring pairwise

relationships between genes in two species, and then

extending orthology to multiple species by identifying

sets of genes spanning these species in which each gene-

pair is an orthologue. Popular methods that adopt this

approach include MultiParanoid [1] and OMA [2]. A

confounding factor to these approaches is that gene dupli-

cations cause orthology relationships that are not one-to-

one [3] and so orthology is not a transitive relationship

(for example, if gene A is an orthologue of gene B, and

gene B is an orthologue of gene C, it is not necessarily true

that gene A is an orthologue of gene C) [4]. This lack of

transitivity means that to capture all pairwise orthology

relationships individual genes must be allowed to be

members of more than one set [2], or the gene sets must

be restricted to subsets of species that share the same last

common ancestor [1]. Methods that adopt these pairwise

approaches have high levels of precision in recovering

orthologues, however, they suffer from low rates of recall

in discovering the complete orthogroup due to these

complications arising from gene duplications.

The second group of methods do not adopt this pair-

wise strategy but rather attempt to identify complete

orthogroups; an orthogroup is the set of genes that are

descended from a single gene in the last common ances-

tor of all the species being considered [2, 5–9]. Here an

orthogroup by definition contains both orthologues and

paralogues, and in this context is frequently used as a

unit of comparison for comparative genomics [10–12].

In this work we follow this latter approach as it is a

logical extension of orthology to multiple species. The

most widely used orthogroup inference method is

OrthoMCL [13] (usage assessed by citations n = 870

Scopus citations at the time of writing this article).

OrthoMCL uses BLAST [14] to compute sequence simi-

larity scores between sequences in multiple species and

then uses the MCL clustering algorithm [15] to identify
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highly-connected clusters (groups of highly similar se-

quences) within this dataset.

In addition to the approaches discussed above, several

methods have also been developed that incorporate gene

synteny/co-linearity information to assist in the inference

of orthogroups [16, 17]. For groups of organisms such as

the Kinetoplastids, where gene synteny/co-linearity is well

conserved [18] it can provide valuable additional informa-

tion. However, synteny is not conserved over large evolu-

tionary distances and thus can provide little assistance to

the identification of related genes between distantly re-

lated groups such as plants and metazoa. Moreover,

synteny is unavailable for de novo assembled transcrip-

tomes and for fragmented, low-coverage genome assem-

blies. Thus there is a need to have accurate methods of

orthogroup inference that do not require gene synteny

information.

Here we present OrthoFinder, a novel method that in-

fers orthogroups of protein coding genes. It is fast, easy

to use and scalable to thousands of genomes. In tests

using real benchmark datasets OrthoFinder outperforms

all other commonly used orthogroup inference methods

by between 8 % and 33 %. We further demonstrate the

utility of OrthoFinder through the inference and analysis

of plant transcription factor orthogroups. Here we use

phylogenetic methods to validate the orthogroups and

show that using OrthoFinder to infer orthogroups iden-

tifies millions of previously unobserved relationships.

Further information about the algorithm can be found at

[19] and a standalone implementation of the algorithm

is available under the GPLv3 licence at [20].

Problem definition, method evaluation and comparison

to other approaches

Gene length bias in BLAST scores affects the accuracy of

orthogroup detection

The inference of orthogroups across multiple species

requires a fast method to measure pairwise sequence

similarity between all sequences in the species being

considered. BLAST [14] is the most widely used method

to identify and measure similarity between sequences

and thus it underpins the majority of orthologue identifi-

cation methods [9, 13, 21–23]. Analysis of the pairwise

BLAST scores that are produced when the full set of

protein sequences from one species is BLAST searched

against those from another species revealed that there is

a clear length dependency in the scores that are obtained

(Fig. 1a and b). Short sequences cannot produce large

bit scores or low e-values (Fig. 1a and b, respectively),

whereas long sequences produce many hits with scores

better than those for the best hits of short sequences

(Fig. 1a and b). Thus, methods that construct orthogroups

by evaluation of BLAST scores in the absence of gene

length information should result in a large number of

missing genes (low recall) from orthogroups that contain

short genes and a large number of incorrectly clustered

genes (low precision) in orthogroups that contain long

genes.

To determine if this was the case we assessed the

performance of OrthoMCL using the OrthoBench data-

set [5]. OrthoBench is the only publicly available bench-

mark dataset of manually curated orthogroups. The

dataset consists of 70 orthogroups of protein coding

genes covering 12 species within the Metazoa where

each orthogroup contains all the genes derived from a

single gene in the last common ancestor of the 12 spe-

cies considered. For further details concerning the

construction, species range and complexity of each

orthogroup see [5]. The recall and precision of

OrthoMCL was assessed as a function of gene length in

this dataset. This revealed that there were strong de-

pendencies between the performance characteristics of

OrthoMCL and the length of the gene that was being

Fig. 1 Analysis of gene length dependency of BLASTp scores. a

BLAST log10(bit score) for all hits between Homo sapiens

(Homo_sapiens.GRCh37.60.pep.all, 21,841 sequences) and Mus

musculus (Mus_musculus.NCBIM37.60.pep.all, 23,111 sequences). b

–log10(e-value) for all hits between and Homo sapiens and Mus

musculus. To avoid infinite values, BLAST scores of zero have been

replaced with the lowest obtainable value 10−180. The heat map in

both cases goes from blue (lowest density of hits) to red (highest).

c The F-score (red), recall (blue) and precision (green) of orthogroup

inference using OrthoMCL plotted as a function of sequence length.

The sequences were sorted according to length and divided into four

bins with the same number of sequences in each. The F-score, recall

and precision were calculated for each bin and the scores plotted

against the geometric mean of the length of the sequences in each

bin. The error bars show the lower and upper limits of sequence

lengths for the shortest and longest sequences in each bin and the

dot shows the geometric mean of these lengths. d Histogram of all

protein-coding gene lengths in Homo sapiens is provided for reference
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clustered (Fig. 1c, Additional file 1: Table S1). Specifically,

short sequences suffer from low recall rate (that is, many

short sequences fail to be assigned to an orthogroup) and

long sequences suffer from low precision (that is, many

long sequences are assigned to the incorrect orthogroup)

as predicted from the analysis of BLAST scores above. To

put these results in perspective the distribution of protein

lengths in Homo sapiens is provided in Fig. 1d.

A novel score transform eliminates gene length bias in

orthogroup detection

Given that orthogroup inference shows a clear gene

length dependency, we sought to develop a transform of

the BLAST scores that would reduce the impact of gene

length on clustering accuracy. To do this we developed a

novel method that determines the gene length depend-

ency of a given pairwise species comparison from an

analysis of the bit scores from an all-versus-all BLAST

search between the two species. Bit scores were used in

place of e-values as the e-value calculation enforces a

limit of 1×10−180 and thus all scores below this floor are

given the same value (that is, 0) (Fig. 1b) and thus length

bias in e-values is non-uniform and irreversible. As bit

scores do not have a threshold value, and they have been

previously shown to be capable of facilitating accurate

inference of phylogenetic trees [24], they were selected

as the raw data for the development of a novel score

transform.

In brief, for each species-pair in turn, the all-vs-all

BLAST hits (Fig. 2a) were divided into equal sized bins

of increasing sequence length according to the product

of the query and hit sequence lengths. The top 5 % of

hits in each bin (ranked according to BLAST bit score)

were used to represent ‘good’ hits for sequences of that

length bin between the given species pair (Fig. 2b). A

linear model in log-log space was used to fit a line to

these scores using least squares fitting (Fig. 2b). All of

the BLAST bit scores that were obtained from each

species-pair all-vs-all BLAST search are then trans-

formed using this model so that the best hits between

sequences in this species pair have equivalent scores that

are independent of sequence length (Fig. 2c and d).

Following the transform the poor quality hits for longer

sequences were no longer better than the best quality

hits for short sequences (Fig. 2c). This normalisation

procedure is applied to each pairwise species compari-

son independently as the behaviour of the BLAST scores

is different for each pairwise species comparison

(Additional file 2: Figure S1). Importantly, this pairwise

length normalisation between species also normalises for

phylogenetic distance between species (See ‘Gene length

and phylogenetic distance normalisation’ & Additional

file 2: Figure S1). Specifically, the normalisation ensures

that the best scoring hits between distantly related

species achieve the same scores (on average) to the best

scoring hits between closely related species (Additional

file 2: Figure S1). These length and phylogenetic distance

normalised scores were then used as the measure of se-

quence similarity on which all subsequent analysis and

clustering were performed.

Application of this novel score transform prior to clus-

tering of the OrthoBench dataset resulted in a dramatic

reduction in the length dependency of the clustering

results (Fig. 3). Unlike OrthoMCL (Fig. 3a), neither

precision, recall nor F-score displayed any dependency

on gene length (Fig. 3b). Moreover, precision was sub-

stantially increased over the entire range of sequence

lengths (Fig. 3b).

An improved method for orthogroup delimitation

improves overall accuracy

Given that we had reduced gene length bias and that

precision was high but recall was low, we assessed

whether a method that could identify a higher propor-

tion of cognate gene-pairs prior to clustering could

produce an overall increase in clustering accuracy. Many

orthology assignment methods make use of reciprocal

Fig. 2 The gene length and phylogenetic distance normalisation

procedure for a single species pair. a BLAST bit scores for all hits

between Homo sapiens and Mus musculus. b BLAST bit scores for

the top 5 % of BLAST hits with least-squares fit of the equation

log10Bqh = a log10Lqh + b., where Bqh is the bit score for the hit

between sequence q and sequence h and Lqh is the product of the

gene lengths (measured in amino acids). c Gene length and

phylogenetic distance normalised BLAST bit scores. Note that

there are a large number of poor scoring hits for long sequences

due to these hits exceeding the BLAST search e-value cutoff. d

The same top 5 % of BLAST hits as shown in (b) after normalisation

for reference
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best BLAST hit (RBH) as it is widely regarded as a

high precision method for the identification of ortho-

logues gene-pairs [25–27]. Therefore we also sought

to use reciprocal best BLAST hits using our new

length-normalised score to assist in construction of

the orthogroup graph. Henceforth, we refer to a

reciprocal best hit that is obtained using the length-

normalised score as an RBNH (reciprocal best nor-

malised hit).

In brief, for each gene that had successfully identi-

fied one or more RBNHs, the scores for these RBNHs

were used to delimit an inclusion threshold (see

methods). As all scores are normalised for gene

length and phylogenetic distance, hits to other genes

(in any species) that had scores above this inclusion

threshold were included as putative cognate gene-

pairs and added to the orthogroup graph that was

subjected to MCL clustering (for further details see

methods). This novel data selection criterion resulted

in a dramatic improvement in overall clustering ac-

curacy while maintaining gene length independence

(Fig. 3c). The overall results for OrthoFinder, were

0.85 precision, 0.81 recall and 0.83 F-score.

OrthoFinder outperforms all other methods from the

OrthoBench analysis

Given that OrthoFinder exhibited high accuracy on the

benchmark dataset we sought to determine the relative

performance to other commonly used methods for

orthogroup inference. OrthoFinder outperformed all

other methods that have been applied to OrthoBench [5]

as measured by F-score (Fig. 3d), performing 8 % better

than TreeFam (the next best method) 25 % better than

OrthoMCL (the most widely used method), and 33 %

better than OMA (the lowest scoring method in this

test). Importantly, the precision and recall of OrthoFin-

der were balanced, demonstrating that the method is not

biased towards over- or under-clustering of sequences. It

should be noted that OMA exhibits a low recall in this

test as its goal is to identify orthologues instead of

complete orthogroups and thus paralogues will be ab-

sent from the orthologue groups identified by this

method. OMA is included here for completeness as it

was included in the original OrthoBench analysis [5].

In addition to accuracy, a number of other criteria

were used to compare the performance of the different

inference methods in the OrthoBench paper. These
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criteria included the percentage of orthogroups pre-

dicted without any errors, the number of erroneously

assigned genes (that is, false positives, and thus also cap-

tured by the precision) and missing genes (that is, false

negatives, and thus also captured by recall) in the assign-

ment of genes to orthogroups and the proportion of

orthogroups affected by these false positive and false

negatives. The results for OrthoFinder according to

these criteria are reported in Additional file 3: Figure S2

and are consistent with the increased accuracy of Ortho-

Finder compared to other methods. Additionally, the 70

orthogroups that make up the OrthoBench dataset com-

prise 40 that represent particular biological or technical

challenges and 30 randomly chosen orthogroups. Add-

itional file 4: Figure S3 shows the F-scores for these two

categories separately to illustrate the difference in per-

formance of the method for ‘randomly selected’ and

‘difficult’ orthogroups. OrthoFinder outperformed all

other methods in both categories and achieved an F-

score of 81 % and 90 % on the difficult and randomly

selected orthogroups, respectively.

OrthoFinder is suitable for the analysis of incomplete

datasets

As many research groups are producing partial genome

assemblies and transcriptome resources it is to be ex-

pected that sequence datasets will be missing genes due

to incomplete assembly, low expression or errors in gene

prediction. To demonstrate the suitability of OrthoFin-

der for analysing these incomplete datasets we assessed

the performance of OrthoFinder with between 5 % and

60 % of genes deleted at random from the OrthoBench

input sequences. This revealed that the accuracy of

OrthoFinder is robust to missing data and that it

achieved an F-score of over of 0.75 even when 60 % of

the genes were missing from the input dataset

(Additional file 5: Figure S4). Thus OrthoFinder is suit-

able for orthogroup inference from partial and incom-

plete datasets.

OrthoFinder is fast and scalable

The number of species for which genome or transcrip-

tome sequence resources are available is increasing rap-

idly and there is a corresponding need to be able to infer

orthogroups using these datasets as they emerge. To

keep pace with these increasing demands the algorithm

utilises sparse matrices as the central data structure and

performs many steps using matrix operations. For

example, starting from pre-computed raw BLAST scores

the identification of orthogroups for the OrthoBench

dataset (12 species, 235,033 sequences) takes 14 min 20

s using OrthoFinder on a single core of an Intel Core i7-

4770 3.4GHz CPU. For comparison, OrthoMCL takes 20

h 12 min to perform the same operation using the same

CPU and MySQL for its relational database management

system. As the number of genomes that must be ana-

lysed increases, the scalability of the methods used

becomes increasingly important. To demonstrate the

scalability performance of OrthoFinder, the full set of

sequenced plant genomes from Phytozome version 9.0

(n = 41 [28]) were clustered and the results are shown in

Fig. 4. Plant genomes were selected for this test as they

are large with an average of 30,731 protein coding genes

per species in Phytozome version 9.0 and thus they

represent a stringent assessment of the scalability of

OrthoFinder. The memory (RAM) requirements in-

crease linearly with the number of species clustered

(Fig. 4a). This is despite the fact that the number of

BLAST hits increases quadratically with the number of

species (Fig. 4c). This linear scaling is achieved by pro-

cessing the BLAST hits for each species sequentially and

independently within OrthoFinder. Though the memory

requirements increase linearly, the time requirements

starting from pre-computed raw BLAST scores increases

quadratically with the number of species (Fig. 4b). This

is to be expected as the number of BLAST hits that

must be processed also increases quadratically. For ex-

ample, identifying the orthogroups for all 41 plant spe-

cies from Phytozome requires approximately 4 GB of

RAM and took approximately 3 h on a single CPU core.

Fitting the data to a line and extrapolating we estimate

that approximately 450 plant sized genomes can be clus-

tered on a linux computer with 64GB of RAM (Fig. 4a).

Thus OrthoFinder is capable of large analyses on con-

ventional computing resources. It should be noted here

that the BLAST searches incur the largest computational

cost in any orthogroup inference analysis and that this

cost is the same for all inference methods that use BLAST.

In summary OrthoFinder is fast and scalable to hundreds

of species on conventional computing resources.

Inference of high accuracy plant transcription factor

orthogroups

Given that OrthoFinder has increased accuracy over

other methods and that gene length bias has been elimi-

nated from orthogroup inference, we sought to provide

an additional demonstration of the utility of OrthoFinder

for the inference of orthogroups. To do this we selected

plant transcription factors as they are short genes and

will thus suffer from low rates of recall in assignment to

orthogroups in the absence of gene length bias correc-

tion. Moreover transcription factor genes are preferen-

tially retained following whole genome duplication

events [29, 30] and thus transcription factor orthogroups

are larger than average and contain multiple independ-

ent duplication events in multiple independent lineages

that can cause some inference methods to fail. Finally,
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previous efforts to define transcription factor orthogroups

have utilised OrthoMCL [31]. Thus current transcription

factor orthogroups will have low recall resulting in frag-

mented orthogroups spanning few species.

Using established rules for the identification and clas-

sification of transcription factors [31] we identified and

typed all of the transcription factors present in the 41

genomes present in Phytozome v9. The complete pre-

dicted proteomes from these 41 genomes were then

subject to clustering using OrthoFinder and OrthoMCL

and the distribution of transcription factors in the result-

ant orthogroups were analysed. OrthoMCL was used

here as it is the method by which all transcription factor

families are currently classified [31]. Consistent with the

increased recall rate for OrthoFinder, analysis of the

resulting orthogroups revealed that 8.5 % more tran-

scription factors were placed in orthogroups using

OrthoFinder than OrthoMCL (Fig. 5a, 97.6 % and 89.1

%, respectively, n = 52,744). Also consistent with the

increased recall rate is that these orthogroups were less

fragmented than those that were produced by OrthoMCL

(Fig. 5b, 897 and 3,024 orthogroups, respectively). Import-

antly, the orthogroups inferred using OrthoFinder were

missing fewer RBHs (Fig. 5c, 2.15 % and 5.77 %, respect-

ively) and clustered more of the same type of transcription

factor together (Fig. 5d and e). A major difference between

those orthogroups inferred using OrthoFinder and

OrthoMCL is that those produced by OrthoFinder en-

compass a larger number of species than those recovered

by OrthoMCL (Fig. 5f), thus orthogroups produced by

OrthoFinder encompass greater phylogenetic distances.

As OrthoFinder clustered the transcription factors to-

gether into far fewer orthogroups than OrthoMCL (897

versus 3024) we sought to demonstrate that it was cor-

rect in doing so. To do this we used gene-tree/species-

tree reconciliation to determine if the orthogroups were

true orthogroups if they incorrectly clustered sequences

that are separated by a gene duplication event that

occurred before the last common ancestor of the species

in the analysis. Overall, 858 of the 897 OrthoFinder

orthogroups (96 %) consisted entirely of genes that were

correctly clustered together and only 39 contained some

genes that were separated by a duplication prior to the

last common ancestor (Additional file 6: Table S2 and

Additional file 7: Table S3). Of the 897 OrthoFinder

orthogroups, 210 were identical to ones from OrthoMCL

and 471 OrthoFinder orthogroups were strict supersets of

2,271 OrthoMCL orthogroups (Additional file 6: Table S2

and Additional file 7: Table S3). Of these, 90 % (425) were

true orthogroups that each encompassed on average four

OrthoMCL orthogroups (1,709 in total).

An illustrated example showing an OrthoFinder

orthogroup and its constituent OrthoMCL orthogroups is

provided in Fig. 6. Here the OrthoFinder orthogroup (la-

belled bHLH 8 in Additional file 6: Table S2) contains all

known type IVc bHLH transcription factors [32]. Type

IVc bHLH transcription factors have previously been

shown to be conserved from green algae to land plants

and thus span the complete taxonomic range contained

in this analysis [32]. The OrthoFinder orthogroup cor-

rectly united eight paraphyletic OrthoMCL orthogroups

and included 36 transcription factors (highlighted in grey)

that were not clustered into any orthogroups by

OrthoMCL (Fig. 6). The phylogenetic tree shows that

there are no genes present in this OrthoFinder orthogroup

that were the product of a gene duplication event prior to

the divergence of the last common ancestor of all species

in the analysis. This is only one example and the complete

set of phylogenetic trees for each OrthoFinder transcrip-

tion factor orthogroup are provided in Additional file 6:

Table S2 along with the OrthoMCL subsets that comprise

Fig. 4 Memory and time requirements of OrthoFinder. Sub-samples

of between two and 41 plant genomes from Phytozome version 9.0

given pre-calculated BLAST results. The average number of genes

per species was 30,731. a Maximum RAM requirements. b Time

requirements. c The number of BLAST hits that must be processed

for a given number of species (provided to place the time and

RAM requirements into context)
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these groups where appropriate. Also contained in this

table are the results of the gene-tree/species-tree recon-

ciliation for each tree inferred from an OrthoFinder

orthogroup.

Taken together, using OrthoFinder to cluster transcrip-

tion factor genes resulted in the identification 687 (897

less the 210 that were the same) novel orthogroups of

transcription factors across 41 different species compris-

ing 7.7 million pairwise relationships (of which 6.9 mil-

lion are not detected by OrthoMCL). Thus using

OrthoFinder to cluster transcription factors has provided

significant new insight into the relationship of tran-

scription factor genes across plants. The number of

orthogroups for each transcription factor type is pro-

vided in Fig. 5g and the full classification including all

constituent accession numbers is provided in Additional

file 6: Table S2.

Algorithm implementation and evaluation criteria

OrthoFinder is an algorithm that infers orthogroups

across multiple species. The method does not classify

the pairwise relationships that exist between genes

within these orthogroups. The method does not require

synteny information and is thus equally suitable for

clustering protein sequences predicted from genome or

transcriptome datasets. OrthoFinder is run with a sin-

gle command and requires as input a directory contain-

ing one protein sequence FASTA file per species to be

clustered. OrthoFinder does not require preprocessing

of FASTA files (such as filtering of sequences) and does

not require knowledge or use of any relational database

management system such as MySQL. It outputs

orthogroups in two file formats: the Quest for Orthologs

community standard OrthoXML [33] and in plain text

format with one orthogroup per line.

There are two common problem definitions used by the

majority of homology inference algorithms. One is to pre-

dict pairs of orthologues (pairs of genes from two different

species descendent from a single gene in the last common

ancestor of the two species) and pairs of recent, within-

species paralogues (genes-pairs arising from a duplication

event since the last speciation event for that species). The

other approach, and the one used here for OrthoFinder, is

to predict orthogroups. An orthogroup is the set of genes

derived from a single gene in the last common ancestor of

all the species under consideration. This is the approach

used by OrthoMCL [13] and eggNOG [34]. OrthoFinder

follows this second approach to produce orthogroups of

protein coding genes as this is a logical extension of

Fig. 5 Inference of orthogroups of plant transcription factors. In all cases dark grey bars indicate the results for OrthoFinder and light grey bars

indicate the results for OrthoMCL. a Comparison of the fraction of transcription factors that are assigned to orthogroups by OrthoFinder and by

OrthoMCL. b Comparison of the number of transcription factor orthogroups identified using each method. c The percentage of RBNH/RBH (for

OrthoFinder/OrthoMCL) hits that are not contained in orthogroups identified using each method. d The number of transcription factors of the

same type that each transcription factor is connected to in the orthogroups produced by OrthoFinder. e as in (d) but for OrthoMCL. f Comparison of

species coverage for transcription factor orthogroups identified by each method. g The number of orthogroups for each transcription factor type

identified by OrthoFinder
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orthology to multiple species as it groups all genes

descended from a single gene in the last common ancestor

of all species being considered.

Methodological overview of the OrthoFinder algorithm

An overview of the algorithm in shown in Fig. 7, it pro-

ceeds in five phases corresponding to sections b-f in the

figure:

1. BLAST all-versus-all search (Fig. 7b). Protein

BLAST (blastp) with an e-value threshold of 10−3 is

used so as to avoid discarding putative good hits for

very short sequences. A relaxed threshold is used at

this stage of the method as subsequent steps filter

out false positive hits using stringent, orthogroup-

specific criteria for inclusion (described below).

2. Gene length and phylogenetic distance

normalisation of the BLAST bit scores (Fig. 7c).

This step models the all-vs-all BLAST hits for each

pairwise comparison between species to identify and

remove the gene similarity dependency on gene

length and phylogenetic distance. This is done so
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Fig. 6 A bootstrapped maximum likelihood phylogenetic tree of the OrthoFinder orthogroup containing the type IVc bHLH transcription factors

(bHLH 8). The OrthoMCL orthogroups that are subsets of the OrthoFinder orthogroup are indicated by different coloured fonts. Thirty-six of the

OrthoFinder clustered genes (coloured grey) failed to be clustered in any OrthoMCL orthogroup. The tree was inferred using RAxML using the

PROTGAMMAAUTO model (the JTT was model was selected as having the highest likelihood) with 100 bootstrap replicates. Scale bar indicates

the number of substitutions per site. Percentage bootstrap support values are indicated by coloured circles shown at internal nodes
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that the best hits between all species achieve the

same scores regardless of sequence length or phylo-

genetic distance.

3. Delimitation of orthogroup sequence similarity

thresholds using RBNHs (Fig. 7d). This step uses

information from RBNHs (Reciprocal Best length-

Normalised hit) to define the lower limit of

sequence similarity for putative cognate genes of

each query gene. To be included in the orthogroup

graph a gene-pair must be an RBNH or produce a

hit that is better scoring than the lowest scoring

RBNH (irrespective of species) for either gene.

4. Constructing an orthogroup graph for input into

MCL (Fig. 7e). Putative cognate gene-pairs are

identified as above and are connected in the

orthogroup graph with weights given by the

normalised BLAST bit scores.

5. Clustering of genes into orthogroups using MCL

(Fig. 7f ).

The steps 2 to 4 are the novel parts of our algorithm

and are described in detail below.

Gene length and phylogenetic distance normalisation

The aim of this normalisation procedure is to remove

gene length bias from BLAST bit scores and to normal-

ise for phylogenetic distance between species. MCL con-

verts sets of similarity scores into clusters by breaking

apart clusters of genes that have low similarity scores

(and therefore are unlikely to be orthogroups) and pre-

serving clusters of sequences that have high similarity

scores. If the similarity scores between long sequences

are inherently larger than the similarity scores between

short sequences then the clustering will preferentially

Fig. 7 Overview of the steps in the OrthoFinder algorithm for two example orthogroups of genes from three species. a The unknown orthogroups

that the algorithm must recover, shown as a gene tree. b BLAST search of all genes against all genes. c Gene length and phylogenetic distance

normalisation of BLAST bit scores to give the scores to be used for orthogroup inference. d Selection of putative cognate gene-pairs from normalised

BLAST scores. e Construction of orthogroup graph, genes are nodes in the graph and pairs of genes are connected by an edge with edge weights

given by the normalised bit score. f Clustering of genes into discrete orthogroups using MCL

Emms and Kelly Genome Biology  (2015) 16:157 Page 9 of 14



break apart clusters of short sequences while preserving

clusters of long sequences. This effect can be clearly seen

in the results of a typical OrthoMCL cluster. Here, long se-

quences are placed in overly large clusters leading to low

precision, and short sequences remain un-clustered leading

to low recall (Fig. 3a). The species-wise normalisation im-

plemented by OrthoFinder similarly ensures that ortholo-

gues from more distant species (that have inherently lower

similarity scores due to phylogenetic distance) are not pref-

erentially discarded and is similar to a step that is per-

formed in OrthoMCL wherein all scores are divided by the

average score between a given species pair [13].

Previous methods have exploited BLAST e-values (ra-

ther than bit scores) as a measure of similarity between

sequences. However, as can be seen in Fig. 1b the use of

e-values for assessment of similarity between sequences

is flawed. Here, the minimum e-value that can be

obtained for a given query sequence decreases with

increasing sequence length until, at a certain length, the

lower bound for e-values is reached and BLAST returns

an e-value of 0. This creates two problems: (1) long se-

quences will frequently have low quality hits with better

e-values than the best possible hits of short sequences;

and (2) the floor value for the e-value calculation means

that length bias is non-uniform and thus irreversible.

Specifically, beyond the floor-value e-values cannot be

used to distinguish between the qualities of hits as they

are all assigned the same e-value. As can be seen in the

heat map shown in Fig. 1b, many hits obtain this floor-

value for a given pairwise species comparison and thus

their similarities are indistinguishable. This length-bias

must be removed to prevent biasing downstream cluster-

ing applications.

In this method we construct a similarity measure

between sequences based on the bit-score normalised to

take into account the query and hit sequences lengths and

the phylogenetic distance between species. Unlike e-

values, the bit-scores do not suffer from the presence of a

threshold limit and thus different amounts of sequence

similarity can be distinguished regardless of the lengths of

the sequences involved. Let Lq be the length of the query

sequence and Lh be the length of the hit sequence. In an

analogous manner to the e-value calculation made by

BLAST and other sequence comparison methods, we use

the variable Lqh = LqLh to quantify the lengths of a pair of

sequences that are being compared.

The length normalisation procedure is shown in Fig. 2.

For each species pair, we:

1. Sort all BLAST hits according to Lqh = LqLh.

2. Put the hits into equal sized bins of 1,000 hits (put

the ‘shortest’ 1,000 hits according to Lqh into one

bin, the next 1,000 hits into the next bin and so on

for all the hits). If there are fewer than 5,000 hits

then we put the hits into bins of 200. Using fixed

sized bins means that it is not necessary for the

algorithm to specify the location of the bins in

advance.

3. Sort the hits in each bin according to BLAST bit

score and select the top 5 % of hits from each bin.

Find the parameters a and b that best describe the

fit between sequence similarity scores and gene

length for the selected hits using the equation

log10Bqh = a log10Lqh + b where Bqh is the BLAST

bit score between sequences q and h.

4. Normalise all obtained BLAST bit scores (not just

the top 5 %) between the given species pair

according to, Bqh
' = Bqh/10

bLqh
a , so that B'qh, (the

normalised score) is the BLAST bit score for a

hit divided by the BLAST bit score that would be

expected for the best hits between sequences of

that length for the species pair under

consideration.

The top 5 % of hits are used rather than RBHs as

selection of RBHs will be affected by the gene length-

bias that we wish to correct. Moreover, gene duplication

events can frequently cause RBHs to fail (Additional file

8: Figure S5) and thus reduce the number of data points

that are available for fitting. The normalisation proced-

ure ensures that the best hits between a given species

pair achieve (on average) the same scores irrespective of

their gene length.

OrthoFinder also normalises for phylogenetic dis-

tance, this is done so that the similarity scores

between orthologues will be independent of phylogen-

etic distance (that is, the true orthologues in distantly

related species will obtain similar scores to the true

orthologues in closely related species). If this step is

not done then true orthologues in distantly related

species will always obtain lower scores than true

orthologues in closely related species. Thus during

graph clustering (which is unaware of phylogenetic

relationship between species) distantly related true

orthologues (and cognates) will become disconnected

from each other more easily than closely related true

orthologues (and cognates) in the orthogroup graph.

Previous efforts to prevent this phylogenetic bias in-

clude dividing the observed similarity score for any

given gene-pair by the mean similarity score observed

for all reciprocal best hits between genes in that spe-

cies pair [13]. However, in the absence of gene length

information this means that short genes will always

be penalised more than long genes.

Though there is precedent for the use of Lqh = LqLh to

quantify the lengths of a pair of sequences that are being

compared [14], different functions for gene length nor-

malisation were also assessed. All other functions,
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including for example the use of the variable ~Lqh ¼ Lq
þLh in place of Lqh, gave a lower overall clustering

accuracy.

Identification of putative cognate gene-pairs for inclusion

in the orthogroup graph

Once scores are normalised OrthoFinder exploits

RBNHs to identify putative cognate gene-pairs. RBHs

are a high precision method to identify putative ortholo-

gues [25–27] and OrthoFinder uses the reciprocal

requirement exploiting its length and phylogenetic dis-

tance normalised BLAST scores. For each gene the

scores for its RBNHs are used to delimit the extent of

sequence similarity of that gene’s orthogroup. Specific-

ally, for each query sequence, q, any hit, h, with a nor-

malised score, B'
qh, greater than or equal to the score for

the lowest scoring RBNH of q is selected as a putative

cognate gene-pair of q and therefore is connected to q

in the orthogroup graph that is subsequently subjected

to MCL clustering.

The rationale for this approach is that the level of

normalised similarity of a query gene and its RBNHs can

be used to estimate the extent of similarity of other

genes within the same orthogroup. All genes more simi-

lar to a query gene than any of the query gene’s RBNHs

(irrespective of species) are likely members of the same

orthogroup. Therefore, the normalised similarity score

for the most dissimilar RBNH of a gene is used as a cut-

off for inclusion of additional cognate gene-pairs from

all species. That is q is connected to h in the orthogroup

graph if B'
qh > B'

qR where R is an RBNH of q. This pro-

vides a simple and robust method for recovering cognate

gene-pairs that may otherwise be difficult to detect due

to duplication events that can cause the RBNH method

to fail. Further details, explanation and worked examples

are provided in Additional file 8: Figure S5.

In summary, the novel method presented here gener-

ates, for each query gene, an independent prediction of

all the genes in its orthogroup. This orthogroup graph is

then clustered using MCL with its default inflation par-

ameter of 1.5. The effect of varying the MCL inflation

parameter on the OrthoFinder result is shown in

Additional file 9: Figure S6. The F-score of OrthoFinder

is relatively stable to variation in MCL inflation param-

eter, however it is possible to trade precision against re-

call by varying this parameter (Additional file 9: Figure

S6). For comparison the analogous analysis is also pre-

sented for OrhtoMCL (Additional file 10: Figure S7).

Implementation

OrthoFinder is written in python. It requires python

together with the numpy and scipy libraries [35] to be

installed. OrthoFinder requires the standalone BLAST+

and MCL algorithms that are freely available. These

standalone applications must be installed separately to

OrthoFinder and are not included in the OrthoFinder

package. The implementation makes use of sparse matri-

ces to store hits between sequences. This provides a

memory efficient method of storing the data and allows

key parts of the algorithm to be expressed using scipy’s

highly optimised C++ implementations of sparse matrix

operations. OrthoFinder can either run the BLAST

searches for you or can be run on pre-computed BLAST

searches. If you chose to run BLAST searches independ-

ently then instructions are provided in the documentation

for how to process your sequence names in the pre-

computed BLAST output. Similarly OrthoFinder will also

automatically run MCL for you. However if you wish to

run MCL separately using different parameter settings

then the MCL input files are stored for this purpose in a

working directory.

Evaluation

OrthoBench [5] is the only manually curated dataset of

orthogroups for the assessment of orthogroup prediction

algorithms. It was used in this work for assessing Ortho-

Finder as it has been independently evaluated, it under-

pins the testing of multiple different methods and it is a

well-defined and stringent test of the problem that

OrthoFinder was designed to solve. Criteria such as

functional similarity within orthogroups, expressed for

example using enzyme classification numbers [36], were

not used in this work since not all proteins with the

same function are members of the same orthogroup and

members of the same orthogroup do not necessarily all

have the same function. As we are using real benchmark

datasets for which only a subset of sequences have been

assigned to ‘true’ gene families the extent of true nega-

tive orthologue assignments is unknown (as is the case

for all methods tested on this dataset). Thus we cannot

use the Matthews correlation coefficient to assess the

performance of the orthogroup inference methods. In

the absence of this information the simplest and most

transparent evaluation of the accuracy of any prediction

method is to measure its precision and recall.

precision ¼
TP

TP þ FP

recall ¼
TP

TP þ FN

Where TP is the number of true positive orthogroup

assignments (that is, correct assignments), FP is the

number of false positive orthogroup assignments (that

is, incorrect assignments) and FN is the number of false

negative orthologue assignments (that is, missing assign-

ments). The F-score is the harmonic mean of these two

Emms and Kelly Genome Biology  (2015) 16:157 Page 11 of 14



measures, where the harmonic mean weights towards

the worst performing measure. We also provide other

evaluation measures from the original OrthoBench

analysis in Additional file 3: Figure S2.

Inference of transcription factor orthogroups

To infer transcription factor orthogroups we first identi-

fied the set of transcription factors present in all ge-

nomes present in Phytozome V9. This identification was

performed using the same rules for the presence and

absence of PFAM domains as has been previously

described [31]. The full set of protein coding genes from

these genomes (including all the transcription factors)

was then clustered using OrthoFinder and OrthoMCL

and the distribution of the transcription factors within

these orthogroups was analysed. OrthoMCL was se-

lected for comparison here as it is the method by which

all orthogroups of transcription factors are currently

defined [31]. An orthogroup of transcription factors was

defined as an orthogroup whose constituent genes com-

prised ≥50 % transcription factors of the same domain

classification.

To determine if OrthoFinder was correct in combin-

ing multiple separate OrthoMCL orthogroups each

orthogroup was subject to gene-tree—species-tree rec-

onciliation. Using, gene-tree species-tree reconciliation

it is possible to determine if OrthoFinder had incor-

rectly placed together genes that had diverged prior to

the last common ancestor of the species being analysed.

To do this, gene trees were inferred for each orthogroup

by aligning the sequences using mafft-linsi [37] and infer-

ring a maximum likelihood tree from this alignment using

FastTree [38]. DLCpar [39] was used to reconcile these

gene trees with the known species tree [28]. Using this

method, each gene tree was assessed to determine if it

contained bipartitions that occurred prior to the diver-

gence of the last common ancestor of all the species being

analysed. If such a bipartition was identified then the

orthogroup was considered not to be a true orthogroup as

it contained one or more genes that evolved by duplica-

tion prior to the last common ancestor of all species under

consideration.

Discussion

In this work we have presented OrthoFinder, a novel

method for inference of orthogroups. Our method is fo-

cused on a clear definition of an orthogroup, that is, that

an orthogroup contains all genes descended from a single

gene in the last common ancestor of the species whose

genes are being analysed. This definition avoids conflating

shared ancestry with other criteria that are not equivalent,

such as functional conservation. Our method is designed

to address the problem of orthogroup inference rather than

categorise the disparate relationships that occur between

individual genes within an orthogroup. These relationships

are best resolved by first inferring orthogroups using

OrthoFinder and then using multiple sequence alignment

and phylogenetic methods on these orthogroups.

The two key novel features of our method are: (1) a

method to automatically remove gene length bias and

phylogenetic distance from sequence similarity scores;

and (2) a novel method to define the sequence similarity

limits of an orthogroup. In the tests performed on the

only publicly available orthogroup benchmark dataset

(OrthoBench) OrthoFinder outperformed all of the com-

monly used orthogroup assignment methods by between

8 % and 33 %. Moreover we have shown OrthoFinder to

be scalable and robust to missing genes typical of incom-

plete genomes and de novo transcriptome assemblies. The

software is freely available and can take pre-computed

BLAST scores as input making it easy to test on any newly

developed benchmarks for which pre-computed BLAST

scores are available.

We further demonstrate the utility of OrthoFinder by

providing a novel classification of all transcription factors

in the available, fully-sequenced plant genomes present in

Phytozome V9. This analysis clusters 97.6 % of the 52,744

putative transcription factors into orthogroups. This novel

analysis identifies millions of relationships that have not

previously been reported providing new insight into the

relationship and evolution of transcription factor gene

families in plants.

Inferring orthologues underpins much of modern

biological research and is among the first steps in the

annotation and analysis of genome and transcriptome

sequencing projects. As sequencing technologies are

now within the budgets of most research groups these

data resources are increasing in number rapidly. Thus

there is a requirement for an orthogroup inference

method that is accurate, robust, scalable, and that can

be run easily by independent research groups on con-

ventional computing resources. Many orthogroup in-

ference methods are not available for general use but

are provided as static databases (for example, EggNog

and TreeFam). Thus the most widely used methods

are those that enable researchers to analyse their own

data resources. With this in mind OrthoFinder has

been developed with the aim of being easy to use.

The method is executed as a single command, has

minimal dependencies and requires as input just the

individual protein sequence FASTA files for each spe-

cies that is being clustered. The algorithm carries out

all calculations (including BLAST searches and MCL

clustering) and outputs the orthogroups in both a

plain tab delimited text file and in the OrthoXML

community format. The algorithm itself is small, fast

and memory efficient, making it suitable for use on

linux desktop computers. Further information about
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the algorithm can be found at [19] and a standalone

implementation of the algorithm is available under

the GPLv3 licence at [20].

Additional files

Additional file 1: Table S1. Table of all false positive and false negative

genes produced by clustering OrthoBench using OrthoMCL. (XLSX 57 kb)

Additional file 2: Figure S1. An overview of how the OrthoFinder

score transform also normalises for phylogenetic distance between

BLAST scores. For illustration the All-Vs-All BLASTp scores are shown

for the longest protein isoform from each protein coding gene in

Homo sapiens vs all other species in the test. Note the difference in

properties of fitted line, here the slope of the lines for the more

closely related species are greater than for the more distant species.

Following transform all fitted lines are transformed to the same value

with a slope of 0. Thus the best scoring hits between distantly

related species pairs and closely related species pairs achieve the

same score hence normalising for interspecies phylogenetic distance.

To provide further illustration all fitted lines between Homo sapiens and all

other species before and after normalisation are shown on the right.

(PDF 1440 kb)

Additional file 3: Figure S2. Results on the OrthoBench dataset using

additional assessment criteria presented in the original OrthoBench paper

(the calculation for one of the plots could not be reproduced using the

information provided in the OrthoBench paper and so has not been

included). (PDF 29 kb)

Additional file 4: Figure S3. F-scores on the OrthoBench dataset for

the 30 randomly chosen gene families and the 40 biologically or

technically challenging gene families that make up the dataset.

(PDF 357 kb)

Additional file 5: Figure S4. Accuracy of OrthoFinder as a function of

fraction of missing sequences. With poor gene coverage many RBNBs will

be missing and so cannot inform the identification of orthogroups. To

simulate this, genes were removed at random from the OrthoBench

dataset input into the OrthoFinder and the precision, recall and F-score

on the remaining genes were measured. (PDF 356 kb)

Additional file 6: Table S2. Transcription factor orthogroups inferred

using OrthoFinder. Orthogroups are named according to the PFAM

domain classification and from largest to smallest where #1 is the largest

orthogroup of that transcription factor type. Accession numbers provided

are correct for Phytozome version 9. Maximum likelihood phylogenetic

trees are provided in column AS. The relationship of the OrthoFinder

orthogroup to OrthoMCL orthogroups is listed in column B. ‘Identical’

means that the OrthoFinder orthogroup is identical to an OrthoMCL

orthogroup. ‘Superset’ means that the OrthoFinder orthogroup is a

superset of more than one OrthoMCL orthogroups. ‘Subset’ means that

the OrthoFinder orthogroup is a subset of a larger OrthoMCL orthogroup.

‘Neither subset nor superset’ means that the OrthoFinder orthogroup

contains sequences that were not clustered into any orthogroups by

OrthoMCL. The results of the gene tree species tree reconciliation are

provided in column C, this column specifics whether the phylogenetic

tree inferred from the OrthoFinder orthogroup contained genes that

were separated by a duplication prior to the last common ancestor.

(XLSX 2110 kb)

Additional file 7: Table S3. Results of the gene tree species tree

reconciliation analysis. This table contains a summary of the full dataset

presented in Additional file 1: Table S1. LCA is the last common ancestor

of all the species being analysed. OG is orthogroup. (XLSX 10 kb)

Additional file 8: Figure S5. A worked example showing the criteria for

identification of putative cognate gene-pairs used by OrthoFinder. (PDF 72 kb)

Additional file 9: Figure S6. The effect of the MCL inflation parameter

on the F-score, precision and recall of OrthoFinder on the OrthoBench

dataset. In OrthoFinder we use the default parameter of 1.5 which gives

the results reported in this paper (84.5 %, 80.8 % and 82.6 % for precision,

recall and F-score, respectively). Increasing the inflation parameter can be

used to achieve higher precision at the cost of lower recall. Conversely, a

smaller value of inflation can be used to achieve higher recall at the cost

of lower precision. In this dataset the best result obtained by OrthoFinder

in terms of F-score was 83.9 % using a value of 1.7 for the inflation

parameter. The scores for precision and recall were 88.4 % and 79.8 %,

respectively. (PDF 357 kb)

Additional file 10: Figure S7. The effect of the MCL inflation parameter

on the F-score, precision and recall of OrthoMCL on the OrthoBench

dataset. The standalone OrthoMCL v2.0.9 was run on the OrthoBench

dataset to produce the MCL input graph and MCL was rerun on this graph

with a range of inflation parameters. (PDF 357 kb)
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