ORTHOGONAL ARRAYS OF INDEX UNITY!
By K. A. Busu
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Summary. In this paper we shall proceed to generalize the notion of a set of
orthogonal Latin squares, and we term this extension an orthogonal array of
index unity. In Section 2 we secure bounds for the number of constraints which
are the counterpart of the familiar theorem which states that the number of
mutually orthogonal Latin squares of side s is bounded above by s — 1. Curi-
ously, our bound depends upon whether s is odd or even. In Section 3 we give a
method of constructing these arrays by considering a class of polynomials with
coefficients in the finite Galois field GF(s), where s is a prime or a power of a
prime. In the concluding section we give a brief discussion of designs based on
these arrays.

1. Introduction. Let a set of s integers 0,1, -+ ,s — 1 be arrangedinan s X s
square in such a way that every integer occurs s times. If each integer occurs
once and only once in every row and column, the square is said to be a Latin
square of side s. Two squares are said to be orthogonal to one another if, when
one square is superimposed upon the other square, every number of the first
occurs once and only once with every number of the second square. To the
set of at most s — 1 Latin squares which are mutually orthogonal, we may
adjoin two other squares which are not Latin squares but which are orthogonal
to each other and to every other Latin square in the orthogonal set. The first
of these squares is constructed by taking each element of the first row as 0, each
element of the second row as 1, and so on. The second square is the transpose of
the first square. Conversely it may be noted that any square orthogonal to these
two squares must be a Latin square. Thus a total of s + 1 orthogonal squares is
possible at best, and it is known that this bound is attainable when s is a prime
or a power of a prime [1]. When this bound is attained, we say that we have a
complete set of orthogonal squares. As an example . a complete set, we might
choose s = 3 and write

000 0 1 2 01 2 01 2
111 01 2 1 20 2 01
2 2 2 01 2 2 01 120

If we write in order the elements of each square in a line, we can display these
squares in the following form:

00011122 2 [first square]
012012012 [second square]

1 This note is a revision of one part of the author’s doctoral dissertation submitted to
the University of North Carolina at Chapel Hill.
426

]

; Jay

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ%
The Annals of Mathematical Statistics. MIKOIRS ®

WWWw.jstor.org



ORTHOGONAL ARRAYS OF INDEX UNITY 427

0
0

[third square]

2120 201
2201120 [fourth square]

[ereuy—y

In this form we see that any two rows have the property that each one of the
nine possible ordered pairs occurs exactly once when one row is superimposed
on another row. We now generalize this basic idea.

Let us consider a matrix A = [a;;], where each a.; represents one of the
integers 0, 1, -+ , s — 1, s > 1. The matrix is rectangular with N columns,
which we shall call the blocks of the array, and k rows. Consider all ¢-rowed
submatrices of N columns which can be formed from this array, ¢ < k. Each
column of any ¢-rowed submatrix can be regarded as an ordered ¢-plet so that
each t-rowed submatrix contains N such ¢-plets. The matrix A will be called
an orthogonal array [N, k, s, ] of size N, k constraints, s levels, strength t and
index \ if each of the (' t-rowed N-columned submatrices that may be formed
from the array contains every one of the s’ possible ordered ¢-plets each repeated
A times. It is clear that this definition implies that each row contains the s
integers 0, 1, - -+ , s — 1, each repeated As‘™ times. We shall consider the case
where A = 1 and refer to such arrays as “orthogonal arrays of index unity.”
We shall consider arrays where ¢ > 2 since the case ¢ = 2 has been completely
discussed and solved for s a prime or a power of prime. References [1], [2], [7],
[8], and [11] discuss this problem.

2. Upper bounds for ‘the number of constraints. We shall use the notation
f(N, s, t) to denote the maximum number of constraints which are possible.
Thus f(N, s, 2) = s 4+ 1 when s is a prime or a power of a prime. We prove
first the

THEOREM. If s < ¢, then f(s', s, t) < ¢t + 1.

Proor. We shall make repeated use of the following fact: selecting any
¢ — 1 rows, any specified (¢! — 1)-plet must occur exactly s times, for these s
identical (¢ — 1)-plets may be enlarged to ¢-plets by the adjunction of another
row in exactly s ways since a given ¢-plet occurs once and only once. If possible
let there exist ¢ 4+ 2 orthogonal rows. In order to facilitate notation we shall
assume that one of the blocks consists entirely of zeros. This is justified because
within each row we can always make a permutation of the elements
0,1,2, ---,s — 1 without destroying the orthogonality of the array. The general
case proceeds along slightly different lines from the special cases s = 2 and
s = 3 which we shall consider first.

Proof for the case s = 2. We divide the array into two parts. The first part,
‘A, consists of three rows, and the second part, B, consists of ¢ — 1 rows. There
will be exactly two blocks which will have zero in every row of B. One of these
blocks is our initial block consisting exclusively of. zeros. In the second block the
three rows of A must contain the symbol 1, for otherwise there would be two
identical ¢-plets. Now there will be two blocks which will have the symbol 1
in the first row of B and zero in all other rows. Let these be the third and fourth
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blocks. The first four blocks of the array we have just described will have the
form:

0 1
A 0 1
, 01 . .

0011
R 0000

0000

The third block already has ¢ — 2 elements in common with each of the first
two blocks. Therefore it can have at the most one more element in common
with any of these blocks. Since the three rows of A for the third block have to
be filled in by using the symbols 0 and 1 only, we cannot avoid the situation in
which it has at least two elements in part A in common with one of the first
two blocks. The theorem is thus proved for the case s = 2.

We now proceed to the case s = 3 using the same general type of argument
although there are more complications. We divide the array into two parts as
before, three rows in A and ¢ — 1 rows in B. In this case the first fifteen blocks
of the array can be written as follows:

0 0 0 0 0
A 0 0 0 0 0
0 0 0 0
000 111 2 2 2 000 000
B 0 00 000 000 111 2 2 2

000 000 000 000 0 00O

The blank spaces in A are to be filled in with 1 or 2. Obviously with each group
of three blocks with identical ({ — 1)-plets in B, we must include 0 from each
row of A, and two 0’s may not occur in the same block since then a ¢-plet identical
with a ¢-plet from the first block would arise. We will encounter a somewhat
similar type of arrangement in the general case shortly to be discussed. Each
row of B in the portion of the array exhibited contains only zeros with the
exception of the first two rows.

Let us consider the four blocks in the array which have 0 in the top line of A
not counting the initial block. We now attempt to complete the second and
third rows of A for these four blocks. We note that these four blocks already
have a common element in A so that if two of the four blocks were completed.
using the same pair we would have two identical triplets in A. However any
two blocks have at least ¢ — 3 0’s in common in B so that two identical ¢-plets
would eventuate. Therefore the four pairs must be distinct. From the elements
1 and 2 we can make only four distinet ordered pairs so that each possible pair
must be utilized in these four blocks.

* In completing the second and third blocks we must therefore repeat these
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pairs. Hence we can find two blocks with two elements in common in 4. But
this is impossible since (say) the second block has ¢ — 2 0’s in common with
every other block in the B portion.

Proof for the case s > 3. We shall use the same notations and procedures
employed in the proof of the previous cases. We shall have an initial block
consisting of ¢ + 2 zeros. We divide the array into an A group with three rows
and a B group with { — 1 rows. We then write down the s — 1 blocks which
contain only 0’s in the rows of B. We shall call this group of blocks F. We follow
this with a group of s blocks which have the element 1 in the top row of B and
the element 0 in the remaining rows of B. This is followed by a group of s blocks
containing the element 2 in the top row of B, 0’s elsewhere. Finally we arrive
at a group of blocks which have the element s — 1 in the top row with 0’s else-
where. We have now secured s — 1 groups with s blocks in a group in addition
to the group F. We now generate s — 1 further groups each containing s blocks
by choosing the second row of B as our non-zero row. Proceeding in this way
we finally obtain (¢ — 1)(s — 1) groups each containing s blocks since there are
t — 1 rows in B.

Consider one of these groups other than F which have identical (¢ — 1)-plets
in B. Over such a group the rows of A must contain some permutation of the
elements 0, 1, - - - , s — 11in order that no t-plet be repeated. Hence the element
0 must occur once in each row of A over such a group; further, it must not occur
twice in the same block, for then a ¢-plet consisting exclusively of 0’s would
arise. There are thus (s — 3)(ft — 1)(s — 1) blocks in these groups (exclusive
of F) which contain no element 0 in the three rows of A.

Over every row of A each of the elements 1, 2, --- , s — 1 occurs once in
each group. If this condition is not met, then we either lose a ¢-plet*or we secure
more than one ¢-plet since in B each group exhausts a given (¢ — 1)-plet. Let us
denote by e that element which occurs most frequently in the first row of 4 in
those blocks which do not contain the element 0 and are not in F. Then e occurs
in these blocks at least (s — 3)(¢ — 1) times, for this is the number of blocks
averaged over the number of elements, and there are s — 1 nonzero elements.

The element e will also occur in some block of F in the first row of A. Suppose
that in this block the elements @ and b occur in the second and third row. Now
no element in the second row of A can be the element a if the same block contains
the element e in its first row, for then we would have two elements in common
in A, and any block in F has { — 2 elements in common with any other block
in B; this would yield two identical ¢-plets. A similar remark applies to the
element b in the third row of A. Since we are considering only those blocks not
in F which contain no zero in any row of A, we may therefore form but (s — 2)*
pairs when the element e occurs in such a block

However, the pairs in these blocks must all be distinct. If they were not,
then we would have three elements in common in 4, and always there are
¢t — 3 zeros in common in B so that again two ¢-plets would be identical. Further-
‘more, none of these pairs in the second and third rows may coincide with a pair
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in the second and third row of F by a like argument, that is, two elements alike
in A, ¢ — 2 elements alike in B. There are s — 2 pairs which remain in F since
we must obviously exclude the pair (a, b) for which we have made a stronger
statement. Now there are at least (s — 3)(¢ — 1) distinct pairs not in F so that
we must have .

(s—2°2(s—2)+ (s —3)¢t — 1),

for the total number of allowable pairs must not be less than the total number
of distinct pairs required. Upon simplification we obtain

B-9t—s+1) 20,

which is a contradiction. This proves our theorem for s > 3.

We now prove a special result for the case ¢ = 3. In the proof we require the
following definition. :

DerFiNiTioN. Two blocks will be called disjoint if corresponding elements are
different, that is, a;; #% ay for each value of 1.

THEOREM. When s is odd, (s, s, 3) < s + 1.

Proor. Suppose that s 4 2 orthogonal rows can be constructed. Now each
element is repeated s” times in each row and each pair of elements occurs s
times in any two rows. Consider the elements in the first block, and let us select
a particular element in this block. With the other elements in the block we can
form s + 1 pairs where the particular element selected is used as one component
of the pairs. Taking into account the fact that each of these pairs occurs once
in the initial block and that we have also here used one replication of our selected
element, we have to form pairs in other blocks containing the element selected
(s 4+ 1)(s — 1) times. But this exhausts the replications of the element chosen.
Consequently any two blocks have either two elements in common or are dis-
joint. From the s + 2 elements in the initial block we can form (s 4 2)(s + 1)/2
pairs which are repeated s — 1 times. But

(s+2)s+Dis—1/2<s—1, s> 1,

so that disjoint blocks exist. Let us consider two disjoint blocks, and all other
blocks (s — 1) in number which contain the same pair in the first two rows as
the second of these disjoint blocks. We can then represent the situation as

a; bl bl bl . b1
%) b2 bz bz . b2

az b3

Q4 bs

an+2 ba+2

where a; > b;, 7 = 1,2, --- , s 4+ 2. Since every triplet occurs exactly once,
then the last s elements in the last s rows of the first block must occur exactly
once in these s — 1 blocks. But since two blocks have either none or two elements
in common, we get a contradiction since s is odd.
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We are now in a position to state the general theorem.

TBEOREM. The mazximum number of constraints is bounded above by s + ¢t — 1
if t < s and s 1s even. In case s is odd, we may refine the inequality to s + ¢t — 2
when 3 £t < s.

Proor. This theorem is an immediate consequence of the preceding theorem,
for the existence of an array with k¥ 4 1 constraints and strength ¢ implies the
existence of an array with % constraints of strength { — 1 since we may select
a particular row in the first array and consider the s~ blocks which have 0 as
the element in that row. Evidently the k£ rows which remain form an or-
thogonal array of strength ¢ — 1, for each (¢ — 1)-plet occurs exactly one time;
otherwise with 0 as a common element some ¢-plet would occur more than once
in the first array. Hence increasing ¢ by one can increase the number of con-
straints at most by one. .

The inequality given above represents a substantial improvement over a
similar inequality due to Rao [8]. Rao’s result states that the number of con-
straints k is bounded above by

s—12Ci(s—1)+ - + C4s — 1)* if ¢ = 2u,
S —12Cs—1)+ - +C% — 1D+ 56— D) ift=2u+ 1.

When ¢ = 3, the Rao bound is s 4+ 2, so that we have reduced the bound by
unity if s is odd. When ¢ = 4 and s = 2, the Rao bound is 5, agreeing with our
result. When s = 3 and ¢ = 4, the bound is 6 against our 5; when s = 4 and
t = 4, the bound is 7 against our 5; when s = 5 and ¢ = 4, we have 9 against 7.
The differential tends to increase both with increasing s and increasing £. Thus
when ¢t = 6 and s = 11, the Rao bound is 22 against our 15.

3. Construction of orthogonal arrays of index unity. We now prove the following
theorem which, in conjunction with a corollary, provides a complete answer to
the problem of construction of orthogonal arrays of index unity and strength
three when s is a prime or a power of a prime.

THEOREM. If s = p", where p is a prime and s > {t, then we can construct the
array (s', s + 1, s, 1).

Proor. Let GF(s) denote the finite Galois field with s = p” elements which
may be denoted by e;, 7 = 0, 1, --- , s — 1. Consider the polynomials

Yi(@) = @z + a2+ -+ w4 ),

where the coefficients range over the field GF(s). It is clear that there are s*
such polynomials, since each of the ¢ coefficients can assume s different values
in the field, and the subscript 7 ranges over the values 0, 1, --- , s' — 1. We
now form an s by s’ array numbering the rows from 0 to s — 1 and the columns
from 0 to s* — 1. In the ¢th row and jth column we agree to insert the integer u
with the property

N yi(e:) = ew.

We assert that the resulting array is orthogonal of strength ¢ and index unity.
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Suppose on the contrary that we can select ¢ rows such that two ¢-plets are
identical, and let the associated polynomials be

6™+ aat™ + o + @z + a0 = ys(a),
aeazt 4 a,t—ﬁvl—z + -+ oz + a = yi@).

Let the rows be those rows which correspond to the Galois field elements
€iy, €y, ' , €. Upon inserting the element e;, in equations (1) above and
subtracting these two equations, we have

At_leﬁ,"l + Ae—26:,_2 + oo+ dye;, + 40 =0,

where A, = a’ — a. . As we allow r to range from 1 to £, we secure ¢ homoge-
neous equations linear in the ¢ quantities A,y , A¢2, -+ , 41, 4o. Not all the
A’s can be zero, since then the two polynomials would be identical. Consequently
for a solution to exist the determinant of the matrix V, where

€Y

™~ -1 -2
€i €4, e 64y 1 _l
t—1 -2
ei, ei, cee e 1
V’ — . . . ’
t—1 -2
| €, € e €65y 1 a

must vanish. However, it is well known that this matrix of Vandermonde type
has the property
\ det [V] = II (es, — es),

u<v
and so is nonsingular unless e;, = e;,, which is clearly impossible since the
rows were all distinct.

We have thus shown that all ¢-plets are distinct, and this completes the
demonstration that we can construct s rows. However, we can adjoin one more
row in an ‘orthogonal manner by assigning the value u to those columns which
are associated with the polynomial whose leading coefficient is e, . In this case
A, ; = 0, and we have { — 1 equations in ¢ — 1 unknowns. Here for a solution
to exist we must demand that the Vandermonde determinant of order ¢ — 2
vanish, and this is impossible. (We use order to indicate the highest degree of
terms in the matrix.)

For the special case ¢ = 3, it is possible to add yet another orthogonal row
when s = 2" by assigning the value u to those columns which have e, as the
coefficient of the term of degree ¢ — 2. It is clear that any ¢-plet which is con-
structed by using two components from these two rows and ¢ — 2 components
from the original s rows occurs just once. Here both A, and A, , vanish, and
we have a nonvanishing determinant of Vandermonde type of order ¢ — 3.

On the other hand, if our ¢-plet includes only the final row, the resultant
matrix is no longer of Vandermonde type and may be singular. This cannot
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happen over fields of characteristic 2 when ¢ = 3, for we obtain the matrix:

ef-, 1

e, 1]
The determinant of the matrix is (es; — es,)(es, + e5y), and since every element
is its own additive inverse in fields of characteristic 2, it is clear that the matrix

is nonsingular. We may therefore state the
COROLLARY. For the array (s°, k, s = p", 3), where p is a prime, we have

fs*,83) =s+ 1,5 =p" P an odd prime,
f(s*,838) =s+28=2"

by virtue of this construction and the inequalities of Section 2.

TeEOREM. If s < t, f(s',s,8) = t + 1, where s = p", p a prime.

Proor. In Section 2, we showed that for this case f(s’, s, t) < ¢ + 1. We now
show that this bound is attainable by using the same constructive procedure
employed in securing the additional rows in the last case we discussed. For
example, the third row will have the integer u in every column which has e,
as the coefficient of the term of degree ¢ — 3. In this way we clearly succeed in
constructing an array of strength ¢ and index unity which is orthogonal. To this
array we can add another row by the process we first used where we now substi-
tute into the various polynomials one of the nonzero elements of the field. For
convenience we may as well associate the additional row with the unity of our
field. It is clear that the matrix is nonsingular; indeed, it consists of a single
nonzero term.

We may summarize these results when ¢ > 3 as follows:

(i) Ifs =2">t thens+ 1 < f(s',s,8) S s+t — 1.

(i) If s = p™ > t, where p is an odd prime, then s + 1 = f(s, s, f) <

s+ t— 2.

4. Uses of orthogonal arrays. A problem which often arises in the design of
an experiment is that of ascertaining the effect of quantitative or qualitative
alterations in the various components upon some measurable characteristic of
the complete assembly. The traditional case is that of k fertilizers each of which
can be applied at s different levels. To carry out a complete factorial experiment
would require s* plots or assemblies to use a more general term applicable to any
type of experiment, agronomic or otherwise.

Rao [8] has shown that if the design is an array of strength ¢, then the estimates
of main effects and interactions are unaffected by interactions of order greater
than one and less than ¢ — 1, but the estimate of error is enhanced by their
presence. If ¢ is even, we can measure interactions up to order /2 supposing
the higher order interactions absent. When ¢ is odd, we can measure interactions
up to order (¢t — 1)/2. Thus an array of appropriate strength must be chosen
to handle those interactions which are deemed important, but it will not in
general be necessary to construct an array of size s*.
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