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Abstract

Much research has been done concerning 24-run orthogonal two-level designs involving
3–23 factors and 28-run orthogonal two-level designs involving 3–27 factors. The focus
of this research was on completely randomized screening designs, and led to lists of
recommended designs for each number of factors. When using the recommended de-
signs, there is either no aliasing between the main effects and the two-factor interaction
effects or only a limited amount. Among all designs with this attractive property, the
recommended designs minimize the aliasing among the two-factor interaction effects.
It is, however, unclear which 24- and 28-run designs are best when complete random-
ization is infeasible and the designs have to be arranged in blocks. In this paper, we
address this issue and present the best arrangements of 24-run designs in 3, 4 and 6
blocks, and the best arrangements of 28-run designs in 7 blocks.

KEY WORDS: Confounding Frequency Vector; G-Aberration; G2-Aberration; Gen-
eralized Word-Length Pattern; Orthogonal Array; Plackett-Burman Design.
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1 Introduction

Blocking is one of the most important principles of experimental design. To illustrate the

relevance of blocking in modern factorial screening experiments, consider the following ex-

ample. In cheese production, raw milk is processed into curds in large production tanks.

Many controllable factors, such as the rotor speed, the amount of rennet and the milk tem-

perature, impact the curds production. Dairy technologists are interested in the effects of

nine of these controllable curds production factors on the properties of the cheeses made

from the curds. The technologists are primarily interested in the factors’ main effects, but

they think that a few two-factor interactions might also be active. The traditional type of

experimental design to use in that scenario is a two-level orthogonal screening design.

Two-level orthogonal designs are popular experimental plans for screening, because they

yield main effect estimates with maximum precision in case a model is estimated with main

effects only. The maximum precision is due to the facts that the two-level orthogonal designs

are level-balanced (each level of every factor is used equally often) and that the main effect

contrast vectors are orthogonal to each other.

A complication when performing the cheese production experiment is that one batch of

raw milk allows for at most eight curds to be produced and that substantial batch-to-batch

variation may be present. As a result, the required design is a two-level screening design

arranged in three blocks of eight runs, where the blocks correspond to the batches of raw

milk. Since the budget for the study allows for 24 runs, three blocks of eight experimental

runs are required. Note that the original nine factors are generally called the treatment

factors, while the batch is generally called the blocking factor of the experiment. Therefore,

in the cheese production study, there are nine two-level treatment factors and a three-level

blocking factor.

Ideally, the estimates of the treatment factors’ main effects are not affected by the batch-

to-batch or block-to-block variation and the estimation of the two-factor interaction effects

is affected as little as possible. We call blocking arrangements for which the main effect

2



estimates are not affected by the block-to-block variation orthogonally blocked designs. For

such designs, the main effect contrast vectors are orthogonal to the blocks.

Now, it turns out that 71,157,023 different orthogonally blocked 24-run designs exist with

nine two-level treatment factors and one three-level blocking factor (Schoen et al., 2010).

Based on the research described in this paper, we identified three attractive orthogonally

blocked designs, all of which are shown in Table 1. The orthogonally blocked nature of the

designs is due to the fact that the main effect contrast vectors of each of the nine treatment

factors sum to zero in each block for each design in Table 1.

For designs 1 and 3 in Table 1, the main effect contrast vectors are not only orthogonal

to the blocks, but also to the contrast vectors of the two-factor interactions. Therefore, these

designs allow the main effects to be estimated independently from the block effects as well as

from the two-factor interactions. Design 2 in Table 1 does not possess this attractive property,

but it possesses another interesting characteristic: it allows 14 two-factor interaction effects

to be estimated, while designs 1 and 3 only allow 11 two-factor interaction effects to be

quantified. Therefore, active interactions might be detected more easily with design 2 than

with designs 1 and 3.

The remainder of the paper is organized as follows. In Section 2, we describe the state of

the art when it comes to blocking orthogonal two-level designs and we highlight the contri-

bution of this paper. In Section 3, we review optimality criteria for completely randomized

and blocked orthogonal two-level designs. Based on these criteria, we present optimal block-

ing arrangements of 24- and 28-run designs in Section 4. Next, in Section 5, we describe

two real-life experiments in which 24-run designs had to be arranged in blocks. Finally, in

Section 6, we discuss our findings and provide a few suggestions for future research.

2 Literature review and contribution of this paper

There is a vast amount of literature on blocking two-level designs. Most of it deals with the

regular blocking of regular two-level designs. Any n-factor regular two-level design consists
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of a 2p full factorial design in p basic factors. The settings of the n − p remaining factors

are determined by calculating products of the settings of two or more basic factors. Due

to this construction, any pair of factorial effects (for instance, main effects and two-factor

interactions) is either completely aliased or orthogonal (Montgomery, 2009; Wu and Hamada,

2009), and the run size is a power of two. Regular orthogonal blocking arrangements of

regular two-level designs thus have numbers of runs that are powers of two. In addition,

the numbers of blocks and the numbers of runs within a block are powers of two as well.

Consequently, regular blocking arrangements of regular two-level designs do not offer much

flexibility. Another characteristic of the blocking arrangements is that, by construction,

the interaction effects are either completely confounded with the blocks or orthogonal to

the blocks. So, the estimability of certain interactions is completely sacrificed in these

types of blocking arrangements. References discussing these kinds of orthogonal blocking

arrangements of regular two-level designs include National Bureau of Standards (1957),

Bisgaard (1994), Sun et al. (1997), Sitter et al. (1997), Cheng and Wu (2002) and Xu

(2006).

In this paper, the focus is on nonregular orthogonal two-level designs. When using

nonregular designs, most pairs of factorial effects are not completely aliased. For this reason,

they permit larger numbers of statistical models to be fitted to the data, thereby offering

more information on the factorial effects. In addition, when certain interactions are active

and a main effects model is estimated, the estimates of the main effect estimates usually

have a smaller bias.

Table 2 presents an overview of the literature on nonregular two-level designs, classified

according to the run size and the presence or absence of a blocking factor in the designs.

The table also positions our work and shows that we fill a gap in the literature by studying

the blocking of 24- and 28-run orthogonal two-level designs. The second column of Table 2

indicates the strength of the designs considered in the literature. In strength-2 designs, the

main effect contrast vectors are orthogonal. When using strength-3 designs, the main effect
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Table 2: Overview of the literature on nonregular two-level designs and position of the
present paper.

Run Size Strength Without Blocking With Blocking

12, 16, 20 2 or 3 Deng and Tang (2002) Cheng et al. (2004)
Li et al. (2004) Schoen et al. (2013)

Xu and Deng (2005)
Sun et al. (2008)

24, 28 2 or 3 Bulutoglu and Ryan (2015) present paper
Schoen et al. (2017)

32, 36 2 Schoen et al. (2017)

32, 40, 48 3 Schoen and Mee (2012) Schoen (2012)

contrast vectors are not only orthogonal to each other, but also to the contrast vectors of

the two-factor interaction effects. In regular two-level orthogonal designs, a strength of 2

corresponds to resolution III, while a strength of 3 corresponds to resolution IV.

All possible nonregular orthogonal two-level designs with up to 24 runs are known and

have been studied in detail under the implicit assumption that a completely randomized

experiment will be performed and no blocking is required. References for the designs with

12, 16 and 20 runs include Deng and Tang (2002), Li et al. (2004), Xu and Deng (2005)

and Sun et al. (2008). Schoen et al. (2017) reviewed the literature on nonregular designs in

24, 28, 32 and 36 runs. Based on the complete enumeration of 24-run designs by Schoen

et al. (2010), Schoen et al. (2017) as well as Bulutoglu and Ryan (2015) explored all 24-run

orthogonal designs and identified the designs that minimize the amount of aliasing between

the main effects and the two-factor interaction effects and, subject to this, the amount of

aliasing among the two-factor interaction effects. They also listed the best 28-run nonreg-

ular designs involving 3–14 factors and the best 36-run nonregular designs involving 4–18

factors according to these criteria. While Schoen et al. (2017) focused on design exploration,

Bulutoglu and Ryan (2015) concentrated on design enumeration algorithms. Finally, Schoen

and Mee (2012) explored all strength-3 designs in 32, 40 and 48 runs.

Cheng et al. (2004) were the first authors to propose criteria as well as a search procedure

6



to identify good orthogonal blocking arrangements of two-level nonregular designs. Their

approach works whenever the number of blocks is a power of two. However, the blocking

arrangements shown in Table 1 for the cheese production experiment involve three blocks,

and can therefore not be found with the approach of Cheng et al. (2004). Schoen et al. (2013)

proposed a more general search procedure for arranging factorial designs of strength 2 in any

number of blocks that allows orthogonal blocking. The method, which works for treatment

factors with any numbers of levels, is based on complete catalogs of orthogonal designs that

include the treatment factors and the blocking factor. Schoen et al. (2013) presented the

best blocking arrangements for mixed-level and pure-level designs with 12, 16, 18, 20, and

27 runs. They did not address 24-run and 28-run designs, because the complete catalogs for

these designs are very large and a complete exploration of the catalogs was computationally

infeasible at the time. Finally, Schoen (2012) presents optimal arrangements of strength-3

designs with 32, 40 and 48 runs in two blocks.

This paper contributes to the literature by presenting optimal arrangements of 24-run

designs in three, four, and six blocks and optimal arrangements of 28-run designs in seven

blocks. Their run size makes the 24- and 28-run designs a cost-efficient alternative to the

strength-3 designs with 32 runs or more. At the same time, they show considerably less

aliasing between main effects and two-factor interactions than the strength-2 designs with

up to 20 runs. In addition, the two-factor interactions are almost never completely aliased

with other two-factor interactions in the 24- and 28-run designs.

3 Optimality criteria

In this section, we first review optimality criteria for completely randomized two-level de-

signs. Next, we explain how to quantify the confounding and aliasing in blocked designs.

We propose three criteria to deal with blocked orthogonal two-level designs and we illustrate

these criteria using the three designs for the cheese making experiment in Table 1.
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3.1 Criteria for completely randomized designs

Optimality criteria for two-level orthogonal designs in the absence of blocking include the

strength of the design, the rank of the interaction model matrix (which corresponds to a

model with an intercept, all main effects and all two-factor interactions; Cheng et al., 2008),

G-aberration (Deng and Tang, 1999, 2002), and G2-aberration (Tang and Deng, 1999).

3.1.1 Strength

Orthogonal two-level designs have a strength of t if, for any set of t factors, all 2t combinations

of factor levels occur equally often. When using strength-2 designs, the main effect contrast

vectors are orthogonal. When using strength-3 designs, the main effect contrast vectors

are not only orthogonal to each other, but also to the contrast vectors of the two-factor

interaction effects. When using strength-4 designs, the contrast vectors of the two-factor

interactions are orthogonal to each other too. A consequence of the definition of strength is

that any strength-t design has a run size proportional to 2t. The 24-run designs studied in

this paper can therefore either have strength 2 or strength 3. The 28-run designs all have a

strength of 2, because 28 is not a multiple of 23 = 8.

3.1.2 Rank

The rank of the interaction model matrix is of interest to researchers who want to identify

active two-factor interactions in addition to main effects. The larger the rank, the larger the

number of estimable two-factor interactions. For example, the rank of the interaction model

matrix of the first and the third design option in Table 1 equals 21. The second option has

a rank of 24. The larger rank might be a reason to prefer the second option over the first

and the third.
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3.1.3 G-aberration

The G-aberration criterion is based on counting correlations between contrast vectors. Of

particular interest in orthogonal two-level designs are correlations between main effect con-

trast vectors and two-factor interaction contrast vectors (type-3 correlations) and correla-

tions among the two-factor interaction contrast vectors (type-4 correlations). Deng and Tang

(1999) showed that the only possible absolute type-3 and type-4 correlations for orthogonal

N -run two-level designs equal (N − 8j)/N , where j is a non-negative integer smaller than

or equal to N/8. So, the only possible absolute type-3 and type-4 correlations are 1, 2/3,

1/3 and 0 for orthogonal 24-run designs, and 1, 5/7, 3/7 and 1/7 for orthogonal 28-run

designs. For any given design, the F3 vector quantifies the frequencies of the absolute type-3

correlations for pairs of one main effect and one two-factor interaction effect. The F4 vector

quantifies the frequencies of the absolute type-4 correlations for pairs of two two-factor inter-

action effects. More specifically, the F3 and F4 vectors contain the frequencies of the different

type-3 and type-4 correlations divided by 3. The division by 3 for the type-3 correlations

is due to the fact that, for any set of three factors, there are three pairs of one main effect

contrast vector and one two-factor interaction contrast vector, all of which have the same

correlation. The frequencies for the type-4 correlations are divided by 3 for a similar reason.

Generally, the first entries for the F3 and F4 vectors correspond to the most severe correla-

tions, while the last entries correspond to the least severe correlations. The frequencies of

the zero type-3 and type-4 correlations are usually omitted from the F3 and F4 vectors.

In the notation of the F3 and F4 vectors, it is customary to explicitly mention the values

N − 8j rather than the absolute correlations (N − 8j)/N . So, an F3 vector for a 24-run

design is denoted by F3(24, 16, 8) instead of F3(1, 2/3, 1/3), while an F3 vector for a 28-run

design is denoted by F3(28, 20, 12, 4) instead of F3(1, 5/7, 3/7, 1/7). A similar notation is

used for the F4 vectors.

For an n-factor design, in addition to the F3 and F4 vectors, we can also define the

F5, . . . , Fn vectors involving the frequencies of the different absolute type-5, . . . , type-n cor-
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relations. Together, all these vectors form the confounding frequency vector (F3, F4, . . . , Fn).

A minimum G-aberration design minimizes the confounding frequency vector’s entries from

left to right. The G-aberration of a design is its ranking in terms of the confounding fre-

quency vector.

Note that the F5 and F6 vectors quantify the extent to which three-factor interaction con-

trast vectors are correlated with two-factor interaction contrast vectors and other three-factor

interaction contrast vectors, respectively. In most applications, three-factor interactions are

assumed to be negligible. Therefore, it is not particularly interesting to minimize the F5

and F6 vectors. The same is true for the F7, . . . , Fn vectors, which deal with interactions of

an even higher order. Therefore, in this paper, we restrict our attention to the F3 and F4

vectors. Note that strength-3 designs do not involve nonzero type-3 correlations. Therefore,

the elements of their F3 vectors all equal 0.

3.1.4 G2-aberration

Tang and Deng (1999) proposed a simpler version of the confounding frequency vector called

the generalized word length pattern (GWLP). To calculate the GWLP’s first element, all

type-3 correlations are squared and summed, and the result is divided by 3. The resulting

figure is called the generalized word count of length 3 and denoted by A3. Generalized word

counts of length 4, 5, . . . , n are defined in a similar fashion, and denoted by A4, A5, . . . , An.

The GWLP is the vector (A3, A4, . . . , An). A minimum G2-aberration design minimizes the

GWLP’s entries from left to right. The G2-aberration of a design is its ranking in terms of

the GWLP. We restrict our attention to the A3 and A4 counts for reasons similar to those

given in Section 3.1.3. Finally, note that, for strength-3 designs, A3 = 0.

3.1.5 Illustration

For designs 1 and 3 in Table 1, the F3 and F4 vectors equal F3(24, 16, 8) = (0, 0, 0) and

F4(24, 16, 8) = (0, 0, 126), respectively. Design 2 has F3(24, 16, 8) = (0, 0, 10) and F4(24, 16, 8) =
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(0, 0, 98). So, when using design 1 or 3, there are no occurrences of the absolute type-3 corre-

lations of 1, 2/3 and 1/3 between a main effect contrast vector and a two-factor interaction

contrast vector. In other words, the designs have strength 3 and all main effect contrast

vectors are orthogonal to the two-factor interaction contrast vectors. Moreover, the only oc-

curring absolute type-4 correlation is 1/3, meaning that every pair of two-factor interaction

contrast vectors has a correlation of +1/3 or −1/3.

When design 2 would be used, 10 × 3 = 30 pairs of a main effect contrast vector and a

two-factor interaction contrast vector would have a correlation of ±1/3. This can be seen

from the value of 10 in the F3 vector for that design. The remaining pairs of a main effect

contrast vector and a two-factor interaction contrast vector would be uncorrelated. The fact

that its F3 vector is not a zero vector is due to the fact that design 2 only has a strength of

2.

Starting from the F3 and F4 vectors, the A3 and A4 values of the design options in Table 1

can be computed. For designs 1 and 3, A3 = 0 × 12 + 0 × (2/3)2 + 0 × (1/3)2 = 0, and

A4 = 0× 12 + 0× (2/3)2 + 126× (1/3)2 = 14. For design 2, A3 = 1.11 and A4 = 10.89.

3.2 Confounding and aliasing in blocked designs

When screening designs have to be blocked, a primary concern is to ensure that the main

effects can be estimated independently from the block effects. For this reason, we restrict

our attention to orthogonally blocked designs. The next most important concern involves

the confounding of the two-factor interactions with the blocks. By far the most common

approach is to minimize the confounding of the two-factor interactions with the blocks. In

doing so, it might be easier to detect active interaction effects. Schoen et al. (2013), however,

explain that maximizing the confounding between the two-factor interactions and the blocks

may be sensible as well. As a matter of fact, this alternative approach would ensure that the

mean squared error of the main effects model has the smallest possible upward bias due to

active interactions, and would result in a maximum power for detecting active main effects

11



when using a model involving main effects only.

Each of the two approaches to deal with two-factor interactions requires measuring the

extent to which they are confounded with the block effects. Schoen et al. (2013) quantified

the confounding of the two-factor interactions with the blocks by means of the FA3 vector,

a frequency vector of generalized counts of length-3 words that involve the blocking factor.

To explain the construction of the FA3 vector, consider the problem of arranging a two-

factor two-level treatment design with 24 runs into three blocks. The first step is to define an

orthogonal coding for the three-level blocking factor. One possible choice of coding involves

dummy variables c1 and c2 which take the values −1 and 1, respectively, for the first block, 0

and −2 for the second block, and 1 and 1 for the third block. The next step is to normalize

the contrast vector containing all 24 c1 and c2 values to length
√
24 and to calculate the inner

products between the treatment factors’ two-factor interaction contrast vector, on the one

hand, and the normalized contrast vectors with c1 and c2 values, on the other hand. Next,

the two resulting inner products have to be divided by 24. This results in two correlations

between the interaction contrast vector and the contrast vectors of the three-level blocking

factor. Finally, summing the squared correlations produces the generalized word count of

length 3 for the 3×2×2 design involving the three-level blocking factor and the two two-level

treatment factors. We denote that generalized word count of length 3 by A
(b22)
3 . Xu and

Wu (2001) show that the A
(b22)
3 value does not depend on the exact choice of the orthogonal

coding scheme for the blocking factor.

The smaller the value of A
(b22)
3 , the less severe the aliasing between the main effect of

the three-level blocking factor and the interaction involving the two-level treatment factors.

There are four different orthogonal 24-run designs with one three-level factor and two two-

level factors (Schoen et al., 2010). Studying these four designs shows that the possible

generalized word counts of length 3 for one three-level factor and two two-level factors are

2/3, 1/2, 1/6 and 0. In other words, the only possible values of A
(b22)
3 are 2/3, 1/2, 1/6 and 0.

Smaller values indicate a smaller degree of confounding between the two-factor interactions

12



and the blocks. A zero value for A
(b22)
3 indicates that the contrast vector of the two-factor

interaction is orthogonal to the blocks.

For any orthogonal 24-run design with one three-level (blocking) factor and n two-level

(treatment) factors, there exist n(n−1)/2 projections of the design into one three-level factor

and two two-level factors. The FA3 vector lists the frequencies with which the nonzero A
(b22)
3

values of 2/3, 1/2 and 1/6 occur in these projections. For example, the first two (9-factor)

designs in Table 1 have an FA3 vector of (0, 0, 18), where the vector’s first, second and third

entries correspond to the A
(b22)
3 values 2/3, 1/2 and 1/6, respectively. This means that 18 of

the 36 two-factor interactions have an A
(b22)
3 value of 1/6 (indicating some confounding of the

two-factor interactions with the blocks), while the remaining 18 have an A
(b22)
3 value of zero

(indicating no confounding with the blocks). For the third design option in Table 1, the FA3

vector is (0, 9, 18). As a result, when that design would be used, nine additional interactions

would be confounded with the blocks. The extent of that additional confounding would also

be more severe, because of the A
(b22)
3 value of 1/2 for these nine interactions.

A more concise measure of the confounding between the two-factor interactions and the

blocks is the total generalized count of length-3 words involving the blocking factor and the

two-factor interaction contrast vectors, which we call the total block count and denote by

A
(btot)
3 . We obtain this count by multiplying the frequencies in the FA3 vector with the

corresponding generalized word counts and summing the resulting products. For example,

the total block count A
(btot)
3 of the first two designs in Table 1 equals 0 × 2/3 + 0 × 1/2 +

18 × 1/6 = 3, whereas it equals 7.5 for the third design. Obviously, the smaller the block

count, the smaller the overall extent to which two-factor interactions are confounded with

the blocks.

3.3 Criteria for optimal blocking

To identify optimal blocking arrangements, we adapt the criteria proposed by Cheng and Wu

(2002) for regular two-level designs, Cheng et al. (2004) for nonregular orthogonal two-level
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designs and Schoen et al. (2013) for general orthogonal nonregular designs to the specific

cases of blocked nonregular two-level designs considered here. We name the resulting criteria

the W2, W
−

2 and W3 criteria and we collectively call them ‘the three criteria’. Like the G-

aberration and G2-aberration criteria, these criteria involve a vector that has to be minimized

from left to right. The difference between the aberration criteria and our criteria is that our

minimization vectors involve mixes of the generalized word counts A3, A4 and A
(btot)
3 , the

F3, F4 and FA3 vectors, and, in one criterion, the rank R of the interaction model matrix.

The exact minimization vectors for our design selection criteria are shown in Table 3.

Table 3: Three criteria for selecting optimally blocked two-level designs
Criterion Minimization vector

W2 −R A3 F3 A
(btot)
3 A4 F4

W−

2 A3 F3 −A
(btot)
3 A4 F4

W3 F3 FA3

3.3.1 The W2 criterion

As can be seen from the first element of its minimization vector in Table 3, −R, our W2

criterion seeks designs with a large rank R for the interaction model matrix, i.e., designs that

allow many two-factor interaction effects to be estimated. The minus sign in −R indicates

that minus the rank should be minimized, which is the same as maximizing the rank itself.

The inclusion of −R as the first element in the W2 minimization vector distinguishes our W2

criterion from that in Schoen et al. (2013). The modification allows us to detect interesting

strength-2 designs (for which A3 > 0) with many estimable two-factor interaction effects,

while the original W2 criterion leads to the selection of strength-3 designs (for which A3 = 0)

with fewer estimable two-factor interaction effects. However, strength-3 designs will still be

optimal in terms of the W3 criterion, since any design for which A3 = 0 also has a zero

F3 vector. In conclusion, by inserting −R in the W2 minimization vector, we increase the

difference between the W2 and W3 criteria. This allows us to identify a larger set of useful

blocking arrangements.
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Besides −R, the elements of the W2 criterion’s minimization vector include the gener-

alized length-3 word count A3 of the two-level treatment factors, the treatment factors’ F3

vector, the block count A
(btot)
3 , the generalized length-4 word count A4 of the treatment

design, and its F4 vector. Positioning the F3 vector immediately behind the A3 value em-

phasizes our desire to avoid strong correlations between main effect contrast vectors and

two-factor interaction contrast vectors among all design options with the same generalized

length-3 word count. For a similar reason, we position the F4 vector behind the A4 value.

Cheng et al. (2004) considered separate criteria for the generalized word counts Ai and

for the confounding frequency vector (which involves the F3 and F4 vector). We combine

the generalized word counts and the confounding frequency vector to reduce the number of

different criteria to consider.

In the W2 criterion’s minimization vector, the block count A
(btot)
3 is preceded by the

generalized length-3 word count A3 and itself precedes the length-4 count A4. So, minimizing

the confounding of the two-factor interactions with the blocks is prioritized over minimizing

the aliasing among the two-factor interactions. This makes sense especially when large block

effects are anticipated or when the number of blocks is small, in which cases the available

inter-block information about confounded interaction effects is very limited and confounding

of two-factor interactions with the blocks should be avoided to the largest possible extent.

Several authors also consider a W1 criterion, which switches the positions of the block

count A
(btot)
3 and the generalized length-4 word count A4 (Cheng and Wu, 2002; Cheng et al.,

2004; Schoen et al., 2013). We believe that this criterion is not useful for the cases with

three of four blocks studied here, for the reasons that led us to recommend the W2 criterion.

Nevertheless, we did search for blocking arrangements that are optimal with respect to the

W1 criterion. It turned out that these blocking arrangements only differ from the W2 optimal

arrangements for 7- and 8-factor 28-run designs in 7 blocks. We therefore only pay attention

to the W1 criterion for these two cases.
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3.3.2 The W−

2 criterion

Schoen et al. (2013) introduced the W−

2 criterion to facilitate the detection of active main

effects, by maximizing the confounding between the two-factor interaction effects and the

blocks. In this way, the mean squared error of the main effects model would be inflated as

little as possible due to any active two-factor interactions, resulting in the largest possible

test statistic values for the treatment factors’ main effects’ significance tests.

Schoen et al. (2013) also discuss a W−

1 criterion, which reverses the prioritization of

the maximization of the confounding between two-factor interactions and blocks and the

minimization of the length-4 word count A4. However, as the aim is to estimate a sim-

ple main-effects-only model, prioritizing the maximization of the confounding between two-

factor interactions and blocks is more useful than minimizing the aliasing among two-factor

interactions. For this reason, we do not use the W−

1 criterion in the present paper.

3.3.3 The W3 criterion

TheW3 criterion is based on the F3 and FA3 vectors. Loosely speaking, it first minimizes the

number of two-factor interactions that are severely confounded with the main effects and,

subject to this, it minimizes the number of two-factor interactions that are substantially

confounded with the blocks. It is, of course, possible to extend the minimization vector with

the F4 vector. However, for the designs considered in this paper, adding the F4 vector to

the minimization vector does not lead to different optimal designs.

3.4 Illustration of the three criteria

For each of the three blocking arrangements in Table 1, Table 4 shows the W2, W
−

2 and W3

criteria’s minimization vectors. The second design option in Table 1 outperforms the other

two designs in terms of theW2 criterion, because it has the interaction model matrix with the

largest rank, namely 24. The third design in Table 1 is best according to the W−

2 criterion,

because it has the largest block count A
(btot)
3 of the three designs (7.5), in addition to a zero
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Table 4: The W2, W
−

2 and W3 criteria’s minimization vectors for the three designs in Table 1

W2 criterion: −R A3 F3 A
(btot)
3 A4 F4

Design 1 −21 0 (0,0,0) 3 14 (0,0,126)
Design 2 −24 1.11 (0,0,10) 3 10.89 (0,0,98)
Design 3 −21 0 (0,0,0) 7.5 14 (0,0,126)

W−

2 criterion: A3 F3 −A
(btot)
3 A4 F4

Design 1 0 (0,0,0) −3 14 (0,0,126)
Design 2 1.11 (0,0,10) −3 10.89 (0,0,98)
Design 3 0 (0,0,0) −7.5 14 (0,0,126)

W3 criterion: F3 FA3

Design 1 (0,0,0) (0,0,18)
Design 2 (0,0,10) (0,0,18)
Design 3 (0,0,0) (0,9,18)

A3 value and a zero F3 vector. Finally, the first design option in Table 1 outperforms the

second design option in terms of the W3 criterion, because it has a better F3 vector. It

outperforms the third design option in terms of the W3 criterion, because it has the same

ideal F3 vector and a better FA3-vector.

From an exhaustive search over all nonisomorphic designs involving nine two-level (treat-

ment) factors and one three-level (blocking) factor produced by the enumeration algorithm

of Schoen et al. (2010), we were able to find out that the designs 1, 2 and 3 in Table 1 are

optimal in terms of the W3 criterion, the W2 criterion and the W−

2 criterion, respectively.

The W−

2 optimal design (design 3) involves the same treatments as the W3 optimal design

(design 1), but the treatments are assigned to the three blocks in a different fashion. This

can be seen from the fact that the designs have the same A3 and A4 values and the same F3

and F4 vectors, but a different A
(btot)
3 value and a different FA3 vector.

Which of the three designs is preferred depends on the exact goal of the experimenters.

If interactions are considered as nuisance effects, designs 1 and 3 both stand out. Design

3 is preferred if one wants to start with a main effects model and estimate the standard

errors based on the mean squared error, while there might be a number of small two-factor

interactions. The mean squared error is less biased when using this design than when using

the other two designs. Design 1 is preferred if one wishes to remove one or two more
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Table 5: Numbers of nonisomorphic orthogonally blocked two-level designs with 24 and 28
runs

Number of 24 runs 28 runs
factors 3 blocks 4 blocks 6 blocks 7 blocks

2 4 4 4 4
3 29 25 25 25
4 573 552 226 371
5 28,745 21,757 2,663 21,502
6 1,089,168 457,768 19,323 395,598
7 14,576,216 3,113,669 58,112 1,422,094
8 57,436,095 8,168,256 65,679 1,005,490
9 71,157,023 12,605,571 26,454 135,569
10 33,893,515 15,119,461 12,243 4,296
11 10,266,252 14,961,206 4,882 104
12 3,305,030 12,096,092 1,543 21
13 981,180 7,855,020 277
14 220,993 4,066,838 45
15 32,567 1,665,918
16 2,282 532,484
17 129,122
18 22,880
19 2,758
20 238

substantial interactions from the mean squared error by including interaction terms in the

model. Finally, design 2 is recommended if finding interaction effects is an important goal

of the experiment.

4 Optimal blocking arrangements

Table 5 shows the numbers of nonisomorphic orthogonal 24-run two-level treatment designs

involving a three-level, a four-level and a six-level blocking factor as well as the numbers of

nonisomorphic orthogonal 28-run two-level treatment designs involving a seven-level blocking

factor (Schoen et al., 2010). By an exhaustive evaluation of all these designs in terms of

the three criteria, we were able to identify all optimal orthogonally blocked two-level designs

involving 24 or 28 runs. Our exploration of the complete catalog was performed in the

same way as the search done by Schoen et al. (2013) for smaller designs. As the numbers
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of nonisomorphic designs are very large, this exploration was computationally demanding.

Supplementary materials to this paper include all optimal orthogonally blocked designs with

four or more treatment factors, as well as tables showing the F3, F4 and FA3 vectors along

with the ranks of the interaction model matrices for the optimal designs.

We visualize the generalized length-3 word counts A3 and the block counts A
(btot)
3 of the

optimal designs involving four or more two-level treatment factors in Figure 1. Panels (a)

and (b) of the figure show results for 24-run designs involving three blocks. Panels (c) and

(d) show results for 24-run designs involving four blocks. Panel (e) visualizes the results for

24-run designs involving six blocks, and, finally, panel (f) contains results for 28-run designs

and seven blocks.

Every vertical line in the panels corresponds to one optimal blocking pattern we identified.

The lower end of each line indicates the generalized length-3 word count A3 of the two-level

treatment design, while the length of the line indicates the block count A
(btot)
3 . As a result,

a low lower end of a line means a small degree of aliasing between the treatment factors’

main effects and their two-factor interactions. A short vertical line means a small degree

of confounding between the treatment factors’ two-factor interaction effects and the blocks.

A high higher end of a vertical line means a severe aliasing of the two-factor interactions

with the main effects and/or a severe confounding of the two-factor interactions with the

block effects. So, the higher end of each line provides a measure of the total confounding

and aliasing of the two-factor interactions, A3 + A
(btot)
3 .

Generally, the vertical lines appear in clusters of three and correspond, from left to right,

to the W2 optimal, W−

2 optimal, and W3 optimal designs for the number of treatment factors

displayed on the horizontal axis. Whenever a cluster contains only one or two lines, this

means that we identified designs that are optimal with respect to more than one criterion.
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(a) 24 runs, 3 blocks, 4–12 factors
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(b) 24 runs, 3 blocks, 13–16 factors
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(c) 24 runs, 4 blocks, 4–12 factors
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(d) 24 runs, 4 blocks, 13–20 factors
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(e) 24 runs, 6 blocks, 4–14 factors
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(f) 28 runs, 7 blocks, 4–12 factors

Figure 1: Properties of the optimal blocking arrangements of 24-run and 28-run orthogonal
designs. The lower ends of the vertical lines indicate the A3 values for the treatment designs,
while the lines’ lengths represent the block counts A

(btot)
3 .
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4.1 24-run designs in three blocks

Panel (a) of Figure 1 shows the results for 24-run designs involving 4–12 treatment factors

and three blocks. For each number of treatment factors, the plot shows one or two designs

of strength 3, which have a generalized length-3 word count, A3, of zero. These designs are

optimal in terms of theW−

2 andW3 criteria, because these criteria prioritize the minimization

of the A3 value. In all of these cases, the same two-level treatment design is used in the W−

2

and W3 optimal blocked designs.

For the case of nine treatment factors, the strength-3 treatment design, along with itsW−

2

and W3 optimal blocking arrangements, is shown in Table 1. Design 3 in Table 1 corresponds

to the W−

2 optimal design, while design 1 is the W3 optimal design.

All designs involving four or five treatment factors have a strength-3 treatment design.

The small cross corresponds to a 4-factor design that does not involve any confounding of

the two-factor interactions with the blocks. It consists of two replicates of the regular 24−1
IV

design and one replicate of that design’s foldover. Each of the three replicates is assigned to

a different block. The design is W2 optimal and W3 optimal. The second design with four

factors involves three replicates of the regular 24−1
IV design. Its runs are assigned to the blocks

in such a way that the runs in the first block all have a +1 in the contrast vectors for the

interaction between treatment factors 1 and 2 and the interaction between treatment factors

3 and 4, the runs in the second block all have a −1 in the contrast vectors for the interaction

between treatment factors 1 and 4 and the interaction between treatment factors 2 and 3, and

the runs in the third block all have a −1 in the contrast vectors for the interaction between

treatment factors 1 and 3 and the interaction between treatment factors 2 and 4. This

design is W−

2 optimal. In the optimal blocking arrangements for five treatment factors, two

different treatment designs are used. The first one is used in the W2 optimal and W3 optimal

blocking arrangement, while the second is used in the W−

2 optimal blocking arrangement.

Unlike the designs with four treatment factors, the five-factor treatment designs cannot be

constructed using regular fractions.
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The W2 optimal designs involving 6–11 treatment factors have a nonzero generalized

length-3 word count A3, but, nevertheless, a larger value for the rank criterion than the

alternative designs with the same numbers of factors. The nonzero A3 value of the W2

optimal designs can be recognized in in panel (a) of Figure 1 by looking at the lower end of

the leftmost vertical line for each number of factors: that line does not start at zero. The

longest vertical line for each number of factors in the plot always corresponds to the W−

2

optimal design. This is because that design maximizes the confounding of the two-factor

interaction effects with the blocks, as opposed to the W2 and W3 optimal designs.

Another pattern that is visible in the figure is that the upper ends of the vertical lines

increase with the number of factors. This shows that, for a given number of experimental runs

and a given criterion, studying larger numbers of treatment factors results in larger degrees

of aliasing of two-factor interactions and/or confounding of the two-factor interactions with

the blocks. Finally, for the case of 11 factors, there exists one design that simultaneously

optimizes the W−

2 and W3 criteria. For the case of 12 treatment factors, there is a single

blocking arrangement that is optimal in terms of all three criteria. The treatment design in

that blocking arrangement is a folded-over 12-run Plackett-Burman design. Each block in

the blocking arrangement consists of four specific mirror image pairs.

Panel (b) of Figure 1 shows the results for 24-run designs involving 13–16 factors and

three blocks. For these numbers of factors, no strength-3 designs exist and the rank of the

interaction model matrix equals 24 for all designs under study. Therefore, for these numbers

of factors, the W2 and W−

2 criteria are more alike than for smaller numbers of factors, where

the rank for strength-3 designs is always lower than that for the best strength-2 designs. More

specifically, for 13–16 factors, the W2 and W−

2 criteria favor the same two-level treatment

designs. For the case of 13 factors, there is only one way to block that treatment design, so

that the W2 and W−

2 optimal blocking arrangements are the same. The treatment design

has a maximum absolute type-3 correlation of 2/3 and an A3 value of 6, while the A
(btot)
3

value equals 12. In contrast, the W3 optimal blocking arrangement for 13 factors has a
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treatment design with a maximum absolute type-3 correlation of 1/3 only, an A3 count of

10 and an A
(btot)
3 value of 10. So, neither of the two blocked designs outperforms the other

in all possible ways.

For 14 and 15 factors, the W2 and W−

2 optimal blocking arrangements use the same

treatment design, but the assignment of the treatments to the blocks differs. The difference

between these arrangements is too small to be of practical importance. It is barely visible in

the plot. The comparison between the W2 and W−

2 optimal designs, on the one hand, and

the W3 optimal designs, on the other hand, is analogous to that for the 13-factor designs.

Finally, the selected 16-factor blocking arrangements are either W2 and W−

2 optimal or

W3 optimal. Both involve a two-level treatment design with absolute type-3 correlations of

2/3. There is very little practical difference between these blocking arrangements.

4.2 24-run designs in four blocks

Panel (c) of Figure 1 shows the results for 24-run treatment designs involving 4–12 treatment

factors and four blocks. The salient features of these designs strongly resemble those of the

designs arranged in three blocks. For example, the blocking arrangements that are optimal

in terms of the W−

2 and W3 criteria also have a strength-3 treatment design (and thus a

zero A3 value). The plot in panel (c) also shows that, all other things being equal, it is

harder to achieve good blocking arrangements for four blocks of size 6 than for three blocks

of size 8. As a matter of fact, the upper ends of the vertical lines in the figure’s panel (c) are

higher than those in panel (a). In other words, the total generalized length-3 word count,

A3 + A
(btot)
3 , measuring the confounding between the two-factor interactions and the blocks

plus the aliasing between main effects and two-factor interactions, is larger.

Panel (d) of Figure 1 shows the results for 24-run designs involving 13–20 treatment

factors and arranged in four blocks. The most striking feature of the plot is that, for

each given number of factors, the optimal blocking arrangements have the same generalized

length-3 word count A3. Indeed, except for 15 factors, the optimal blocking arrangements
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Table 6: Characteristics of the W2, W
−

2 and W3 optimal blocking arrangements of 15-factor
24-run treatment designs in four blocks. The elements of the FA3 vector correspond to
length-3 word counts of 1, 5/9, 3/9 and 1/9.

F3(24, 16, 8) F4(24, 16, 8) FA3 A
(btot)
3 Optimality

0 0 180 2 21 507 1 7 8 89 157/9 W2

0 0 180 5 12 516 2 5 9 89 159/9 W−

2

0 0 180 2 23 499 0 9 8 88 157/9 W3

we found only differ in terms of the F4 and FA3 vectors. The 15-factor optimal blocking

arrangements also differ in terms of the A
(btot)
3 value, but the small difference in A

(btot)
3 value

is hardly visible in the plot.

Table 6 shows the F3, F4 and FA3 vectors and the block counts A
(btot)
3 for the W2, W

−

2

and W3 optimal arrangements of 15-factor 24-run treatment designs in four blocks. The

rank of the interaction model matrix is 24 for each of these 15-factor designs. All the designs

tabulated possess the smallest A3 value possible for a 15-factor design in 24 runs, namely

20. Also, the designs all possess an A4 value of 67.67.

Among all designs with the most attractive A3 value and the most attractive F3 vector,

F3(24, 16, 8) = (0, 0, 180), the W2 criterion first minimizes the block count A
(btot)
3 and the A4

value, and then sequentially minimizes the elements of the F4 vector. In contrast, among all

designs with the most attractive A3 value and the most attractive F3 vector, theW
−

2 criterion

first maximizes the block count A
(btot)
3 and then sequentially minimizes the A4 value and the

elements of the F4 vector. The minimum value for the block count A
(btot)
3 among all designs

with the most attractive A3 value and F3 vector is 157/9, while the maximum value is

159/9. This small difference causes the vertical lines for the W2 and W−

2 optimal blocking

arrangements in the figure’s panel (d) to be nearly equally long. Finally, among all designs

with the most attractive F3 vector, the W3 criterion sequentially minimizes the FA3 vector.

All these features are listed in Table 6.

When 16, 17 and 19 factors are studied, the W2 and W−

2 optimal blocking arrangements

are identical, but they differ from the W3 optimal blocking arrangement. For 13, 14, 18 and

20 factors, the optimal blocking arrangements all coincide.
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4.3 24-run designs in six blocks

Panel (e) of Figure 1 shows the results for 24-run designs involving 4–14 treatment factors

and arranged in six blocks. Because of the larger number of blocks, there is more confounding

between the two-factor interaction effects and the blocks. Again, the blocking arrangements

that are optimal in terms of the W−

2 and W3 criteria have a treatment design with a zero

A3 value when 12 or fewer treatment factors are studied.

The largest number of two-level treatment factors that can be handled with an orthogonal

design with 24 runs arranged in six blocks is 14, whereas 16 factors can be studied when there

are only three blocks and 20 factors can be studied when there are four blocks. Studying

more than 14 treatment factors is possible using a six-block 24-run design, but only with a

design that is not orthogonally blocked.

4.4 28-run designs in seven blocks

The last series of blocking arrangements we discuss involves 28 runs and seven blocks. Panel

(f) of Figure 1 shows the characteristics of the optimal blocking arrangements we identified

for that case. The plot shows two different optimal blocking arrangements for four and five

factors, three different blocking arrangements for six, eight and nine factors, four different

blocking arrangements for seven factors and a single blocking arrangement for 10–12 factors.

The blocking arrangements for seven and eight factors deserve special attention, because

these are the only instances we encountered where the W2 optimal designs differ from the W1

optimal designs. Recall that, in theW2 criterion’s minimization vector, the block count A
(btot)
3

precedes the generalized length-4 word count A4, while, in the W1 criterion’s minimization

vector, the generalized length-4 word count A4 precedes the block count A
(btot)
3 .

Table 7 shows the rank R of the interaction model matrix, the generalized length-4 word

count A4 and the block count A
(btot)
3 for the W1, W2, W

−

2 and W3 optimal 7-factor and

8-factor 28-run designs arranged in seven blocks. All four 7-factor designs have the same F3

vector. Therefore, the W1 criterion favors the design with the smallest A4 value, while the
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Table 7: Characteristics of the W1, W2, W
−

2 and W3 optimal arrangements for 28-run 7-
and 8-factor designs in seven blocks. The elements of the FA3 vector correspond to length-3
word counts of 6/7, 4/7 and 2/7.

# factors R A4 A
(btot)
3 FA3 Optimality

7 28 1.04 6.29 0 5 12 W1

7 28 1.37 5.43 0 3 13 W2

7 26 2.18 9.43 3 6 12 W−

2

7 28 1.53 5.43 0 1 17 W3

8 28 3.06 8.86 0 8 15 W1

8 28 3.71 8.00 0 4 20 W2,W3

8 27 4.36 12.57 4 8 16 W−

2

W2 criterion favors the design which sequentially minimizes the A
(btot)
3 and A4 values, the

W−

2 criterion favors the design with the largest A
(btot)
3 value and ignores the rank, and the

W3 criterion favors the design with best FA3 vector (ignoring the A4 value).

For the 8-factor designs, the results are similar to those for the 7-factor designs, although,

for that case, the W2 and W3 criteria produce the same optimal blocking arrangement.

Finally, for nine factors, the W2 optimal design has the same generalized length-3 word

count A3 and the same block count A
(btot)
3 as the W3 optimal design. The designs differ in

the rank of the interaction model matrix, the A4 value, the F4 vector and the FA3 vector.

4.5 Comparison with the best designs for complete randomization

Most of the treatment designs that appear in the blocking arrangements that are optimal

in terms of the three criteria we study here are also optimal or nearly optimal when run in

a completely randomized fashion. Specifically, most of these designs are also best, second

best or third best when all possible treatment designs are ordered according to the F3 and

F4 vectors or according to the (A3, F3, A4, F4) vector (Schoen et al., 2017). The following

top-3 treatment designs, however, cannot be orthogonally blocked when three, four, six or

seven blocks are desired:

1. Three blocks, 24 runs, 14–16 factors: all top-3 treatment designs according to the F3

and F4 vectors.
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2. Four blocks, 24 runs, 13, 14, 17 and 19 factors: all top-3 treatment designs according

to the F3 and F4 vectors.

3. Four blocks, 24 runs, 15 and 16 factors: all top-3 treatment designs in terms of the

(A3, F3, A4, F4) vector.

4. Six blocks, 24 runs, 14 factors: all top-3 treatment designs according to the F3 and F4

vectors.

5. Seven blocks, 28 runs, 7 and 8 factors: the best treatment design according to the F3

and F4 vectors.

6. Seven blocks, 28 runs, 9–12 factors: all top-3 treatment designs according to the F3

and F4 vectors.

5 Two practical examples

In this section, we present two examples from our own consulting experience that required

the arrangement of 24-run designs in three or four blocks. Both examples involved 12 two-

level treatment factors. As there is only one optimal design for both these cases, they were

not suitable to introduce the different criteria in the beginning of the paper.

5.1 The cytotoxicity experiment

The first example deals with the detection of influential factors in a protocol to determine the

so-called EC50 value of water pollutants. The EC50 value is the pollutant concentration that

causes 50% of the cells in an in vitro cell culture to die. There was a concern that seemingly

innocuous changes in the protocol might result in substantially different outcomes. We

investigated the effect of 12 protocol features on the EC50 value using a folded over 12-run

Plackett-Burman design. This design has a strength of 3 and a rank of the interaction model

matrix equal to 24. Obviously, the 12 protocol features correspond to the 12 factors used
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Table 8: Factor names for the cytotoxicity and car tire experiments.

factor cytotoxicity car tire
X1 number of wells rubber compound
X2 seeding density number of ribs
X3 seeding time shoulder block position
X4 dosing center line cut depth
X5 medium center line cut width
X6 serum shoulder cut width
X7 concentration center line cut angle
X8 solvent shoulder cut angle
X9 volume center line cut through
X10 shaking shoulder cut through
X11 repeated dosing center line additional sipe
X12 exposure time shoulder additional sipe

in the experiment. The names of the 12 factors in the cytotoxicity experiment are listed in

Table 8. A single run required several days of work, but it was possible to perform eight runs

in parallel. Therefore, three blocks of eight runs were required to complete the experiment.

Table 5 shows that there are 3,305,030 different designs with one three-level (blocking)

factor and 12 two-level (treatment) factors in 24 runs. Three of these involve the folded-over

Plackett-Burman design for the treatments. So, there exist three nonisomorphic blocking

arrangements of the folded over Plackett-Burman design. The A3, A4 and A
(btot)
3 values

and the F3 and F4 vectors of these three blocking arrangements are the same, but the

arrangements differ in their FA3 vectors. More specifically, the FA3 vectors of the three

blocking arrangements equal (0, 12, 36), (3, 6, 42) and (6, 0, 48), where the entries of the FA3

vectors correspond to word counts of 2/3, 1/2 and 1/6. Since the three options only differ

in their FA3 vector, the blocking arrangement with the most attractive FA3 vector is the

best of the three. Clearly, this is the blocking arrangement with the FA3 vector equal to

(0, 12, 36).

The folded-over Plackett-Burman design and the blocking arrangement producing an

FA3 vector equal to (0, 12, 36) are shown in the first 13 columns of Table 9. The initial

12 columns contain the levels of the treatment factors, while the 13th column shows the

28



Table 9: W2, W
−

2 and W3 optimal arrangements of a folded over 12-run Plackett-Burman
design in three and in four blocks, with EC50 response values from a cytotoxicity experiment.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 B1 EC50 B2
− − − − − − − − − − − − 3 1.377 1
− − − − − − + + + + + + 2 8.241 1
− − − + + + − − − + + + 1 0.1875 1
− − + − + + − + + − − + 1 0.1209 2
− − + + − + + − + − + − 3 0.4063 2
− − + + + − + + − + − − 3 1.665 3
− + − − + + + + − − + − 1 1.32 2
− + − + − + − + + + − − 2 0.915 3
− + − + + − + − + − − + 2 0.3267 4
− + + − − + + − − + − + 1 0.0481 3
− + + − + − − − + + + − 2 3.016 4
− + + + − − − + − − + + 3 1.722 4
+ − − − + + + − + + − − 3 0.01179 4
+ − − + − + + + − − − + 2 0.2809 4
+ − − + + − − + + − + − 1 0.4971 3
+ − + − − + − + − + + − 2 4.438 4
+ − + − + − + − − − + + 2 0.6222 3
+ − + + − − − − + + − + 1 0.2552 2
+ + − − − + − − + − + + 3 0.3211 3
+ + − − + − − + − + − + 3 0.821 2
+ + − + − − + − − + + − 1 1.572 2
+ + + − − − + + + − − − 1 0.5872 1
+ + + + + + − − − − − − 2 1.538 1
+ + + + + + + + + + + + 3 0.1469 1

assignment of the treatments to the three blocks. The blocking arrangement was actually

used for the cytotoxicity experiment. The responses are given in the 14th column of the

table. Among the 3,305,030 possible orthogonal blocking arrangements for the cytotoxicity

experiment, no better options exist than the one based on the folded over Plackett-Burman

design and shown in Table 9. So, that blocking arrangement is W2, W
−

2 and W3 optimal.

In W2, W
−

2 and W3 optimal blocking arrangements, the main effects are orthogonal to

the block effects, because of the orthogonal blocking. They are orthogonal to the two-factor

interactions as well, because the treatment design in the cytotoxicity experiment is a fold-

over design. So, the treatment design is a strength-3 design. Consequently, a sensible way

to start the data analysis is to identify significant main effects first. The second step in the
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analysis could then be to assume weak effect heredity (Wu and Hamada, 2009) and explore

all two-factor interactions which involve at least one factor with a significant main effect.

This kind of strategy is recommended by Miller and Sitter (2001).

As the largest response value differs from the smallest one by a factor of about 700, we

used a logarithmic transformation of the response values in the data analysis. Figure 2 shows

the absolute values of the main effects obtained when using base-10 logarithms. The main

effects of the factors exposure time (X12), solvent (X8) and serum (X6) stand out. The

second stage of the analysis suggested that the interaction of the factor dosing (X4) with

both solvent and serum are probably active.

5.2 The car tire experiment

Our second practical example is concerned with the wear of car tires. As the cytotoxicity

experiment, the car tire experiment involved 12 two-level treatment factors and the total

number of experimental runs was 24. The names of the factors are listed in the last column

of Table 8. The difference between the cytotoxicity experiment and the car tire experiment

is that the latter required four blocks of six runs, rather than three blocks of eight runs.

This is due to the fact that the experimenters could only test six different tires per day and

substantial day-to-day variation was anticipated.

The design actually used by the experimenters was a replicated 12-run Plackett-Burman

design for 11 factors. The 12th factor was set at one level for the first replicate and at the

other level for the second replicate. As the experimenters were unaware of the possibility to

Figure 2: Absolute values of the main effects in the cytotoxicity experiment.
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create an orthogonal blocking arrangement for a 24-run design with six runs per block, they

randomly assigned the 24 runs to four blocks. The result is that, in their design, the main

effects of the 12 factors were not orthogonal to the blocks. Due to the fact that the 12-run

Plackett-Burman design was replicated rather than folded over, the main effects of the 11

treatment factors accommodated by that design were partially aliased with the two-factor

interactions. That is not the case for the main effect of the 12th treatment factor.

The treatment design we would have recommended for the car tire experiment is the one

in Table 9. So, as for the cytotoxicity experiment, it is best to use a folded over 12-run

Plackett-Burman design. The challenge then is to find an optimal arrangement for that

design in four blocks of six runs.

Table 5 shows that there are 12,096,092 different orthogonal blocking arrangements with

one four-level (blocking) factor and 12 two-level (treatment) factors in 24 runs. Four of these

involve the folded-over Plackett-Burman design for the treatment factors. The A3, A4 and

A
(btot)
3 values and the F3 and F4 vectors are the same for these four blocking arrangements.

Any of the four designs is therefore W2 and W−

2 optimal. However, the four designs differ

in their FA3 vectors. For this case, there are two blocking arrangements that sequentially

minimize the FA3 vector. The optimal entries are 18, 12 and 36, corresponding to A
(b22)
3

values of 5/9, 1/3 and 1/9, respectively. So, these two blocking arrangements are W2, W
−

2

and W3 optimal. The final column of Table 9 shows how the runs of the folded-over Plackett-

Burman design are assigned to the four blocks in one of the optimal arrangements.

6 Discussion

This paper makes a large number of orthogonal blocking arrangements available for orthog-

onal two-level designs involving 24 and 28 runs. To identify optimal blocking arrangements,

we explored complete catalogs of orthogonal designs with several two-level treatment factors

and one multi-level blocking factor. We focused on orthogonal blocking arrangements of

orthogonal treatment designs, because these designs result in maximum precision for the
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main effect estimates when estimating a model including the block effects and the treatment

factors’ main effects only. Depending on the specific case, when using the designs we present

for estimating a main effects model, the main effect estimates are either not at all biased

when one or more interactions are active, or only to a small extent.

For some of the cases considered here, the restriction to orthogonal blocking comes at a

price. Table 5 showed that orthogonal blocking arrangements of 24-run orthogonal designs

involving more than 16 two-level factors do not exist if three blocks are desired. Similarly,

orthogonal blocking arrangements of the 24-run orthogonal designs involving more than 14

two-level factors do not exist if six blocks are desired, and orthogonal blocking arrangements

of the 28-run orthogonal designs involving more than 12 two-level factors do not exist for

any number of blocks. Also, a comparison of the results presented here with those in Schoen

et al. (2017) for two-level designs with 24 or 28 runs in the absence of blocking revealed a

few cases where orthogonal blocking was only feasible for suboptimal treatment designs.

It is, of course, also possible to create blocking arrangements that are not orthogonally

blocked, using principles from optimal experimental design (Goos and Jones, 2011). We

would welcome follow-up research investigating the capabilities of nonorthogonal blocking

of good treatment designs with 24 and 28 runs. One aspect of this follow-up research could

be to develop a simulation tool to study the power for detecting active main effects and

two-factor interactions in blocked experiments. This would provide an objective basis for

comparing orthogonally blocked (W2, W
−

2 and W3 optimal) and nonorthogonally blocked

designs.

Supplementary materials

Tables.pdf: tables showing the F3, F4 and FA3 vectors along with the ranks of the inter-

action model matrices for the optimal designs.

Designs.zip: all optimal orthogonally blocked designs with four or more treatment fac-
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tors.
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