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Abstract—Emerging metasurface antenna technology enables
flexible and low cost massive multiple-input multiple-output
(MIMO) millimeter-wave (mmW) imaging for applications such
as personnel screening, weapon detection, reconnaissance, and
remote sensing. This work proposes an orthogonal coded active
illumination (OCAI) approach which utilizes simultaneous, mu-
tually orthogonal coded transmit signals to illuminate the scene
being imaged. It is shown that OCAI is robust to code amplitude
and code phase imbalance introduced by imperfect transmitter
(TX) and receiver (RX) hardware, while also mitigating common
impairments of low cost direct-conversion receivers, such as
RX self-jamming and DC offsets. The coding gain offered by
this approach improves imager signal to noise ratio (SNR)
performance by up to 15 dB using codes of symbol length 32.
We present validation images of resolution targets and a human-
scale mannequin, obtained with a custom massive-MIMO mmW
imager having 24 simultaneous TX and 72 simultaneous RX
operating in the K-band (17.5 GHz to 26.5 GHz). The imager
leverages both spatial coding via frequency diverse metasurface
antennas, and temporal coding via OCAI of the scene.

Index Terms—Computational imaging, Imaging systems, meta-
masurface antennas, millimeter wave (mmW), MIMO, orthogo-
nal codes.
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I. INTRODUCTION

M ILLIMETER-WAVE (mmW) imaging has many appli-

cations such as reconnaissance, remote sensing [1]–

[3], autonomous robotics [4], [5], non-destructive testing [6],

security screening [7], and concealed weapon detection [8].

In active mmW imaging, the region of interest (ROI) in a

scene is illuminated by one or more transmitters, while the

scattered energy from the scene is spatially sampled. Many

active imagers leverage mechanical motion of an antenna array

to form a synthetic aperture radar (SAR) image [1], [9]. Other

active imagers use phased arrays such as active electronically

scanned arrays (AESAs) [10]. Phased arrays exploit a large

number of antenna elements to form a large, spatially sampled

aperture [5], [11].

These existing approaches often have significant disadvan-

tages. SAR acquisition time is often slow due to the required

mechanical motion, which may lead to motion blur for close-

in, fast moving targets. Phased array and AESA based imagers

are often expensive, power hungry, and complex due to the

large amount of RF hardware such as transmitters (TX),

receivers (RX), and phase shifters needed.

Recent work has focused on reducing the cost and complex-

ity of mmW imagers using computational imaging techniques

that exploit sparse apertures formed from metasurface antennas

(MSAs) [12]–[14]. Metasurface antennas typically consist of

a waveguide fed dense array of sub-wavelength unit cells.

An alternative MSA approach is the frequency-diverse chaotic

cavity aperture with sub-wavelength irises [15]–[17]. MSAs

can generate frequency-diverse chaotic beam patterns which

sparsely sample the ROI and enable compressive imaging. As

these antennas can be manufactured using established, low-

cost manufacturing processes, the cost and design cycle for

metasurface based imagers can be advantageous compared to

existing approaches [15], [16].

To improve ROI size and achievable resolution, multiple

spatially distributed TXs and RXs can be used to obtain a large

imager aperture comprised of multiple MSAs. To minimize

motion blur due to a moving scene, data acquisition time

is critical. The preferred solution is to exploit multiple-input

multiple-output (MIMO) processing to operate all TXs and

and RXs simultaneously. However, simultaneous TX and RX
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Fig. 1. Block diagram of one TX/RX pair in the MIMO system, including
a single oscillator (LO), K TX channels with phase modulators, the imaged
scene, and L RX channels.

operation requires the ability to distinguish the signals from

different TXs at each receiver, so the TX signals must be

somehow separable.

In this work, an orthogonal coded active illumination

(OCAI) approach for massive MIMO mmW imaging is pro-

posed which exploits balanced, binary orthogonal codes to

separate TX signals at the receivers, while simultaneously

mitigating RX self-jamming and DC offset impairments often

found in mmW imagers using low cost direct-conversion

receivers [18]. We show that the OCAI coding is insensitive

to code amplitude and code phase imbalance, and the coding

gain leads to an increase in SNR performance by up to 15 dB

for codes with length of 32 symbols.

This work is organized as follows: In Section II, the OCAI

system model for MIMO imaging is derived. Section III

presents numerical simulations needed to analyze the OCAI

performance for different code parameters, non-ideal code

realizations, and undesired receiver DC offsets. In Section IV,

an overview of the prototype K-band (17.5-26.5 GHz) mmW

massive MIMO imager hardware is provided. Section V gives

an overview of the image reconstruction problem. Image

reconstructions of a resolution target and a human scale

mannequin obtained from OCAI-based MIMO measurements

are presented in Section VI, followed by conclusions.

II. SIGNAL MODELS FOR MIMO IMAGING

A. Illumination with a Single Transmitter

At a high level, the goal of active radio frequency (RF)

imaging is to estimate the reflectivity coefficient distribution

of a ROI in a scene, given measured backscatter responses

between K TXs and L RXs. A scene is assumed to be

comprised of N hypothesized point scatters with complex re-

flectivity {ρn}. The scene is a linear system, so the backscatter

frequency response Gk,l(jω) between the kth TX and lth RX

(see Fig. 1) is given as

Gk,l(jω) =
N
∑

n=1

ρnαk,l,n(jω)e
−jωτk,l,n , (1)

where k ∈ {1, . . . ,K}, l ∈ {1, . . . , L}, αk,l,n(jω) represents

the round-trip path loss and antenna gain, j =
√
−1, and τk,l,n

is the round-trip propagation delay between the kth TX, lth
RX, and the nth point scatter.

Many imaging radars use frequency chirped pulses [19]

as the excitation signal, but various ultra-wideband (UWB)

signals [20] are also used. For relatively slow varying scenes,

stepped frequency modulated continuous wave (stepped-FM)

signals [21] are advantageous. In the stepped-FM scheme,

each TX emits a sequence of constant amplitude tones, having

different frequencies. These tones illuminate the scene and

enable a sampled measurement of the frequency response

Gk,l(jω) one frequency step at a time. Given a single tone

sk(t) = ℜ
{

e+jωt
}

(2)

emitted by the kth TX, the received signal at the lth RX can

be represented as

rl(t) = ℜ
{

Gk,l(jω)e
+jωt

}

+ nl(t), (3)

where t is time, ℜ{·} is the real operator, and nl(t) is

measurement noise. After down-conversion and sampling with

sampling period T , the received signal is given by

rl[i] = Gk,l(jω) + dl + νl[i], (4)

where i ∈ N is the sampling index, dl is a DC offset or RX

self-jamming introduced by non-ideal down-converters [18],

and νl[i] is complex valued measurement noise. Hence,

rl[i] gives an estimate of the respective frequency response

Gk,l(jω), assuming mitigation of dl [18].

B. Illumination with Multiple Transmitters

To measure the frequency response between multiple TX-

RX pairs at the same time, the transmit signals must be

mutually orthogonal to permit each transmitter’s contribution

to be separated from all others. One way to achieve this

is by introducing orthogonal codes as a lower frequency

(kHz to MHz) modulation, such as a phase shift keying

(PSK) modulation, of the (GHz) stepped-FM tones. While the

coded modulation inherently introduces some bandwidth to

the illuminating TX signal, practical modulation rates (kHz to

MHz) are e.g. 10−5 lower than the carrier frequency (GHz).

Therefore, any frequency dependence in the scene will not be

visible even with modulated illumination.

The transmitted signal from the kth TX, using a code of

length M , can be represented as

sk(t) = ℜ
{

e+jωt
M−1
∑

i=0

si,k rectT (t− iT )

}

, (5)

where si,k ∈ {−1,+1} is the ith binary code symbol of the

kth transmitter, and rectT (t) is a unit rectangle over the code

symbol period 0 ≤ t < T . The received signal of the lth RX

is therefore given as

rl(t) =
K
∑

k=1

ℜ
{

Gk,l(jω)e
+jωt

M−1
∑

i=0

si,k rectT (t− iT )

}

+ nl(t). (6)
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Fig. 2. Comparison of the 1/NMSE performance with and without OCAI
as a function of code length M and different Es/N0 levels, for K = 3

transmitters.

After down-conversion and sampling, the received signal is

rl[i] =
K
∑

k=1

Gk,l(jω)si,k + dl + νl[i]. (7)

Concatenating the M received samples from the lth RX in

a vector rl = [rl[0] rl[1] . . . rl[M − 1]]
T

, where (·)T is the

transpose operator, leads to the linear vector equation

rl = Sgl + dl1+ νl, (8)

where each matrix element [S](i+1),k = s(i+1),k, [gl]k =
Gk,l(jω), 1 is a vector of all ones, and [νl](i+1) = νl[i].

The TX codes are chosen to be mutually orthogonal, i.e.

S†S = MI (9)

with I being an identity matrix, and balanced, i.e.

S†1 = 0 (10)

with 0 being a vector of all zeros. The channel transfer

function is estimated as a vector ĝl, obtained in a least-squares

sense as

ĝl =
1

M
S†rl, (11)

where S† represents the conjugate transpose of S.

C. Performance Metrics for Code Selection

To design an appropriate OCAI scheme, a generalized

performance metric that is independent of any particular scene

and imaging aperture combination is needed. A viable metric

is 1/NMSE, where NMSE is the normalized mean squared

error of the channel estimations {ĝl} which is defined as

NMSE =
E
{

(ĝl − gl)
†
(ĝl − gl)

}

E
{

g
†
l gl

} , (12)
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Fig. 3. Comparison of the 1/NMSE performance with and without OCAI
as a function of the number of TXs K and different Es/N0 levels.

with E {·} being the expected value operator. Note that the

symbol-energy-to-noise-spectral-density ratio Es/N0 is given

by Es/N0 = 1/σ2
ν , with |si,k| = 1 and σ2

ν being the

measurement noise variance.

III. OCAI PERFORMANCE ANALYSIS

The performance of the proposed OCAI scheme was first

analyzed using numeric simulations. The used codes belong to

the family of Hadamard codes obtained from the columns of

Hadamard matrices [22], [23] with si,k ∈ {−1,+1}, forming

a binary phase shift keying (BPSK) modulation of the illu-

minating tones. Unless stated otherwise, a simulated number

of TXs K = 24 and the code length M = 32 were used.

To simulate various channels, the amplitudes of the simulated

channels {gl} were chosen to be Weibull distributed [24]

with shape parameter k = 1.8 and scaling parameter λ =

(Γ(1 + 2/k))
−1/2 ≈ 0.975 so that E

{

|Gk,l(jω)|2
}

= 1 [25].

The channel phases were chosen to be uniformly distributed

in the interval [0, 2π). Any DC offsets {dl} were initially set

to zero, unless noted otherwise.

A. Code Length and Number of Transmitters

Fig. 2 shows the dependence of 1/NMSE on the code

length M for K = 3 TXs. It can be seen that, with increasing

M , the 1/NMSE increases from 1/NMSE = 106 dB for

M = 4 to 1/NMSE = 115 dB for M = 32 in the

Es/N0 = 100 dB case. Also, the coded 1/NMSE is always

above its respective single TX case without any coding (dashed

lines in Fig. 2 - Fig. 6), e.g., 1/NMSE = 100 dB in

the Es/N0 = 100 dB case. This is due to the additional

coding gain as the measurement noise is averaged over the M
measurements such that the estimation variance σ2 = σ2

ν/M
is identical to the NMSE [as can be see in (12)].

In Fig. 3, the 1/NMSE as function of the number of TXs

is shown. Note that the chosen code length was M = 32,

regardless of how many TXs were used. As can be seen,
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Fig. 4. Comparison of the 1/NMSE performance with and without OCAI
as a function of code amplitude imbalance for different Es/N0 levels.
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the 1/NMSE is independent of the number of TXs K. For

example, 1/NMSE = 115 dB in the Es/N0 = 100 dB case.

This is due to the mutual orthogonality of the different TX

codes.

B. Non-ideal Code Realizations

Practical transmitter and receiver hardware will always have

some degree of imperfection due to lot-to-lot component

variation and temperature variation, among many other factors.

From the standpoint of the channel transfer function mea-

surement, this is immediately manifest in gain (amplitude)

and phase error in the coded signals. In Fig. 4 and Fig. 5,

the effects on the 1/NMSE due to code amplitude and code

phase imbalance are illustrated. For these simulations, the code
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Fig. 6. Comparison of the 1/NMSE performance with and without OCAI
as a function of RX DC offset |d| for different Es/N0 levels.

symbols were modified so that the modified code symbols s̃i,k
are given as

s̃i,k = (si,k +∆si,k)e
j∆Φi,k , (13)

where ∆si,k ∈ {∆s−1,k,∆s+1,k} represents some code am-

plitude imbalance and ∆Φi,k ∈ {∆Φ−1,k,∆Φ+1,k} represents

some code phase imbalance. As depicted in Fig. 1, it is

assumed that the code modulation is performed by a phase

shifter such that all the modified +1 symbols of a single

TX are affected with the same amplitude error ∆s+1,k and

phase error ∆Φ+1,k, as are all modified −1 symbols with

their own respective errors. In the used numeric model, the

amplitude and phase imbalance terms are assumed to be zero-

mean Gaussian distributed with standard deviations σs and

σΦ, respectively. Practical digital X- and K-band mmW phase

shifters are specified to have a root-mean-square amplitude

and root-mean-square phase error less than 1 dB (equivalent

to σs ≈ 0.13) and 5◦, respectively [26]–[28]. Fig. 4 and Fig. 5

show that OCAI is robust to non-ideal code realizations due

to practical phase shifters with this level of performance.

C. DC Offset Mitigation

Another important type of impairment often found in low

cost, direct conversion receiver hardware is an unwanted,

frequency varying DC offset due to internal cross-talk inside

the integrated circuits comprising the receiver. Fig. 6 shows

the effect of unwanted complex DC offsets {dl} at the receiver

output. It can be seen that OCAI is able to mitigate {dl} due

to S fulfilling the balanced property (10). However, the single

TX case without any coding is shown to be prone to DC

offset induced distortion in the channel estimation. It can be

seen that in the Eb/N0 = 100 dB case, the 1/NMSE of the

uncoded single TX decreases by 3 dB at |d| = 10−5. This is

the corner point where the DC offset becomes dominant over

the noise ν. For higher levels of |d|, the 1/NMSE decreases

with the magnitude of the DC offset, i.e. 1/NMSE = |d|−2

for |d| >
√

Eb/N0 and NMSE = Eb/N0 otherwise.
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Fig. 7. Metasurface aperture based massive-MIMO mmW imager prototype.

IV. PROTOTYPE MIMO MMW IMAGER OVERVIEW

The prototype massive-MIMO mmW imager for which this

OCAI scheme was developed consists of L = 72 RXs and

K = 24 TXs grouped into twelve identical modules [15],

[16]. These modules, arranged on an irregular grid to avoid

aliasing effects in the reconstruction, form a 2.1 x 2.1 m

metasurface aperture which is able to obtain images in human-

scale scenes. The metasurface TX/RX antennas (visible as

the 96 green panels in Fig. 7 and in Fig. 8) are planar,

printed-circuit based structures. Their inner layer consists of

an irregular shaped chaotic cavity feeding horizontal (TX) and

vertical (RX) sub-wavelength slot irises that form a Mills-

Cross configuration [17]. As shown in Fig. 8, the antenna radi-

ation patterns are strongly frequency-diverse, forming pseudo-

random antenna patterns that depend on the frequency of

the illumination. The design of these antennas are described

in detail in [29]–[32]. This approach results in a frequency

dependent backscatter measurement of the ROI that contains

spatially encoded backscattered scene information [12].

Each antenna has an associated transmitter or receiver that

implements the stepped-FM, massive-MIMO measurement.

The radio frequency (RF) range of the imager system is from

17.5 GHz to 26.5 GHz, covering the entire K-band spectrum

with N = 101 frequency steps and an average system noise

floor of -100 dBFS. An OCAI scheme based on Hadamard

codes of length M = 32 is used. All 24 transmitters and 72

receivers operate in parallel to make the MIMO measurement.

The imager obtains K×L×M×N ≈ 5.6 × 109 measurements

per frame with a frame rate of up to 10 Hz. The expected

21.91 GHz

22.09 GHz

22.00 GHz

coax feed

via fence

chaotic cavity border

radiating slot iris

Fig. 8. Photo of one of the 96 printed metasurface apertures and measured
pseudo-random radiation patterns as a function of frequency.

20 mm

3
0
 m

m

7 mm

Fig. 9. Photo of the resolution test pattern having three different metal strip
widths and spacings: 30 mm, 20 mm, and 7 mm.

resolution is 1.6 cm in range and 0.6 cm in cross-range at a

distance of 1 m in front of the imager aperture [33].

V. THE MIMO IMAGE RECONSTRUCTION PROBLEM

3D mmW image reconstruction is an inverse problem where

frequency dependent measurements of the ROI are used to

estimate the reflectivity of the scatterers assumed to comprise

the scene. Because MIMO imagers as described in this paper

use a sparse sampling of the imager aperture, the inverse

problem is typically underdetermined and regularization is

needed.

The top level forward model of the MIMO imager is

ĝ = Hρ+ ν, (14)

where ρ = [ρ1, ρ2, . . . , ρN ]
T

denotes the true reflectivity

of the scatterers comprising the scene. H denotes the mea-

surement matrix representing the relationship between the

observed measurements ĝ and the scatterers, as described

by the signal model of Section II and (1), ν represents

measurement noise. Reconstruction therefore solves for

ρ̂ = argmin
ρ

{

‖ĝ −Hρ‖2 + λ ‖ρ‖2
}

, (15)
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(a) Imager system without OCAI support.
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(b) Imager system with OCAI support.

Fig. 10. Reconstructed mmW images of the resolution targets (c.g. Fig. 9) with and without OCAI supported measurements.

which represents a least-squares (LS) approach with a mini-

mum norm solution regularizer. The latter is needed because

H is underdetermined as described above.

To reduce the computational load of the inverse problem, an

auxiliary sensor such as the Microsoft Kinect structured-light

sensor can be used to reduce the reconstruction volume by

avoiding reconstruction of voxels that are known a priori to

be empty. In the proposed system, a Kinect sensor is used to

identify a rectangular volume of interest, which greatly reduces

the size of the reconstruction. Given a voxel size of 1.6 cm

× 0.6 cm × 0.6 cm, the unoccupied voxel data can be used

to reduce the number of voxels reconstructed from ∼138×106

voxels for a 2 m × 2 m × 2 m scene (representing the volume

the Kinect is set to observe) to ∼200,000 voxels comprising

the surface of human-sized targets. In the prototype imager,

ρ̂ has measurement dimension of K × L × N = 174, 528,

enabling reconstruction of the target with reasonable fidelity.

In the computational imaging literature, various approaches

have been proposed to address the computational load of the

reconstruction problem [34], [35]. Partitioning of the recon-

struction to permit hardware acceleration with a graphics pro-

cessing unit (GPU) offers the potential for significant speed-up

relative to CPU based reconstruction [36]–[38]. In this work, a

generalized minimal residual (GMRES) algorithm [39], [40] is

run on a Intel Core i7-5930K 3.5 GHz CPU with 128 GiB of

RAM and four Nvidia GeForce GTX 1080 GPUs. Because of

the rapid development of GPU computing and corresponding

accelerated reconstruction methods, we refer the reader to

these and many other recent works for up-to-date information

on the reconstruction problem.

VI. MEASUREMENT RESULTS

To validate the performance of OCAI, measurements and

image reconstructions of resolution targets using the massive-

MIMO mmW imager introduced in Section IV are compared
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Fig. 11. Measured reflectivity across the three metal strips comprising the
30 mm resolution target (upper half of Fig. 9) with and without OCAI.

to the results of a second imager prototype that does not have

OCAI enabled. The latter uses exactly the same metasurface

antenna aperture, but measurements are obtained by a single

RX/TX pair using a switch-based signal distribution network

to sequentially switch through all the different RX/TX antenna

combinations [15]. The acquisition frame rate in the OCAI

case is 7 Hz, while in the non-OCAI case each frame takes

∼ 30 s to acquire due to the non-OCAI sequential acquisition

having significant switching speed penalties.

While the improvement in data acquisition speed using

OCAI is dramatic (7 Hz with OCAI vs. 0.03 Hz without

OCAI), the image reconstruction time can then become the

bottleneck in the overall system performance. In this prototype,
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Fig. 12. Reconstructed image of a human-size mannequin using OCAI
measurements.

even though data can be acquired at 7 Hz using OCAI, the

reconstruction time can be in the range of 150 s to 180 s per

frame, depending on the scene size. Note that with alternative

reconstruction algorithms that leverage the parallel processing

capability of modern GPUs, e.g. [35]–[38], the reconstruction

time can be dramatically improved.

Analysis of the image quality improvement enabled by

OCAI can be performed by comparing reconstructions of

known targets, such as a resolution test pattern. In this work,

a resolution test pattern consisting of a series of parallel metal

strips with a known width and spacing of 30 mm, 20 mm,

and 7 mm (see Fig. 9) was employed. The targets were placed

parallel to the imager antennas at a distance of 1 m. Fig. 10

shows image reconstructions (a) without OCAI support and

(b) with OCAI support. The image quality improvement due

to OCAI is apparent from the visible improvement in image

uniformity and shape definition. The useful resolution is also

improved as is evidenced by the smallest (7 mm) metal strips

being much better resolved.

Fig. 11 presents a quantitative comparison of image quality

with and without OCAI. Since the reflectivity of the metal

strips comprising the resolution target are known to be nearly

unity, the normalized reflectivity across the three metal strips

comprising the 30 mm width/spacing resolution target can be

used as a measure of ideality in the reconstructed image. As

shown in Fig. 11, the reflectivity of the metal strips forming

the 30 mm reconstruction target in the upper half of Fig. 9

is assumed to be 1.0 and plotted for reference. As can be

seen in the measured images, the reflectivity without OCAI

shows substantially larger variation than the reflectivity with

OCAI. The corresponding variance of the reflectivity enclosed

by the area of the three-strip 30 mm reconstruction target is

-16.4 dB without OCAI, but only -23.4 dB with OCAI. Thus,

for this resolution target, OCAI is able to reduce the variation

in reflectivity by 7 dB.

As a demonstration of the presented imager’s ability to

produce 3D mmW images of human-scale objects in the ROI,

Fig. 12 shows a reconstruction from OCAI based measurement

of a conductive paint covered, approximately 2 m tall, full-

scale human mannequin. Even very fine details are visible,

except at the feet and the shoulders of the mannequin where

specular reflection directs energy away from the imager panels.

This is an inherent issue for flat-panel mmW imagers due to

the specularity of human and metallic targets in the mmW

bands; adding some degree of curvature to the imager aperture,

or forming composite images from multiple views of the

target, are well-known approaches to alleviate this problem.

VII. CONCLUSIONS

This work presents an orthogonal coded active illumination

(OCAI) approach for massive-MIMO mmW imagers that is

particularly suited to metasurface imaging apertures using

low-cost direct conversion receivers. A numerical simulation

based design method is presented which shows that the OCAI

approach is robust to gain and phase variation in the mmW

TX and RX hardware, while additionally mitigating receiver

DC offsets common in direct-conversion receivers. These

simulations show that the backscatter response estimation

error decreases with increasing code lengths, for example,

up to 15 dB with codes of length M = 32 symbols. This

improvement in backscatter response estimation is shown to

result in decreased variation in estimated scene reflectivity and

thus better apparent image quality.

The OCAI approach was implemented on a 24 TX x

72 RX metasurface aperture based massive-MIMO mmW

imager prototype. Validation images of the same resolution test

patterns with and without OCAI show that the coding approach

improves image quality by reducing measured variation in

reflectivity by 7 dB while dramatically improving frame rate

from 0.03 Hz (without OCAI) to 7 Hz (with OCAI). A full-

size human mannequin is used to demonstrate the achievable

mmW image quality. These results suggest that OCAI enabled

imagers leveraging metasurface antennas can enable flexible,

low cost massive-MIMO mmW computational imaging for a

wide variety of active imaging applications.
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