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1. Introduction. If A is a (finite-dimensional) associative algebra over a
field F with radical R such that A/R is separable (semi simple, and remains semi-
simple under any extension of F), then the well-known Wedderburn principal
theorem states that A is a semi-direct sum T+ R, where Tis a subalgebra of A
isomorphic to A/R. Tis a maximal separable subalgebra of A and will be also
called a Wedderburn factor of A. The Malcev theorem (see [6]) states that any
two maximal separable subalgebras of A are conjugate in A via an inner auto-
morphism given by conjugation by an element 1 — z, where zeR (A need not
contain an identity). Let G be a semisimple group of automorphisms and anti-
automorphisms of A (see §2 for definitions and terminology). In certain cir-
cumstances, G will leave invariant a Wedderburn factor of A (see [7; 8] and
Theorem 1 of §3 for an exact description). In [9], we proved a uniqueness theorem
for G-invariant Wedderburn factors for F of characteristic 0 and G finite. In
[11], this was generalized to characteristic F not two and G finite of order not
divisible by the characteristic of F. In §3 we generalize this result to arbitrary
semisimple G and characteristic F not two (Theorem 2 and Corollary 1). It is
shown that any two G-invariant Wedderburn factors of A are G-orthogonally
conjugate in A.

Let Lbe a Lie algebra over a field F of characteristic 0. Then, if R denotes
the radical (maximal solvable ideal) of L, then the well-known Levi theorem
(see [5]) says that L is a semi-direct sum T+ R where Tis a subalgebra of L
isomorphic to L/R. Tis a maximal semisimple subalgebra of Land will also be
called a Levi factor of L. The Malcev-Harish-Chandra theorem (see [4; 6])
states that any two Levi factors of L are conjugate by an automorphism exp(Ad z)
of L, where z is in the nil radical (maximal nilpotent ideal) of L. If G is a semi-
simple group of automorphisms of L, then L will contain G-invariant Levi fac-
tors (see [7]). In [10], we proved a uniqueness theorem for G-invariant Levi
factors of L assuming G was finite. In §4, we generalize this result to an arbitrary
semisimple G (Theorem 4 and Corollary 3). It is shown that for any two G-in-
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variant Levi factors of L, there exists a fixed point 2 of G in the nil radical of
L such that exp(Ad z) carries one onto the other.

Let L be a solvable Lie algebra over a field of characteristic 0 and G a semi-
simple group of automorphisms of L. Then G will leave invariant a Cartan
subalgebra of L (see [7]). In general, any two Cartan subalgebras of L will be
conjugate via an automorphism exp(Adz), where z is in the intersection of all
the terms of the chain of powers of L (see [1]). In §5, we show that if the two
Cartan subalgebras are G-invariant, then z may be taken as a fixed point of G
(see Theorem 6).

Finally, we conclude with some examples of invariant substructures in §6.
All algebras considered here will be finite-dimensional over the base

field.

2. Preliminaries. Let A he an associative algebra over the field F. If A
does not have an identity, let Ax he the algebra obtained by adjoining F to A.
Let G be a group of automorphisms and antiautomorphisms of A. If A is com-
mutative, consider the elements of G as automorphisms. If A is not commuta-
tive, then each element of G is either an automorphism of A or an antiautomor-
phism of A, but not both. G acts on Ax by letting t(a) = a for a e F, teG.

Definition 1. An element z of AY is said to be G-symmetric if z is a fixed
point of the automorphisms in G and is sent into — z by the antiautomorphisms
in G.

The G-symmetric elements of Ax form a Lie algebra over F, i.e., a subspace
closed under [x, v] = xy — yx.

Definition 2. A regular element w of At is G-orthogonal if w is a fixed point
of the automorphisms in G and is sent into w-1 by the antiautomorphisms in G.

The G-orthogonal elements of Ax form a multiplicative group. This group
contains as a subgroup the collection of G-orthogonal elements of the form
1 — z, where zeR, the radical of A.

Definition 3. An element q eAy is G-quasi-orthogonal if q is quasi-regular
(i.e., q has a quasi-inverse q' such that q + q' - qq' = 0 = q + q' — q'q), q is
a fixed point of the automorphisms in G and is sent into its quasi-inverse q '
by the antiautomorphisms in G.

The collection of G-quasi-orthogonal elements of At is a group under the
composition x oy = x + y — xy. An element q eAy is G-quasi-orthogonal if and
only if 1 — q is G-orthogonal.

The proofs of the assertions made here and other relations between the
properties of G-symmetry, G-orthogonality, and G-quasi-orthogonality can
be found in [11].

Definition 4. A G-orthogonal conjugacy of A is an inner automorphism
of A given by conjugation by a G-orthogonal element of At.

The G-orthogonal conjugacies of A form a group. This group contains as a
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subgroup the conjugations by G-orthogonal elements 1 —z for zeR. A G-orthog-
onal conjugacy commutes with each element of G.

Definition 5. Two subalgebras of A are said to be G-orthogonally conjugate
if there exists a G-orthogonal conjugacy of A carrying one onto the other.

The relation of G-orthogonal conjugacy is an equivalence relation among the
subalgebras of A. It is also an equivalence relation among the G-invariant sub-
algebras of A. Any G-orthogonal conjugacy will carry a G-invariant subalgebra
onto another G-invariant subalgebra.

If x e A, then Ad x will denote the derivation a -* [x, a] = xa — ax of A. If
xeP, then Ad x is a nilpotent derivation of A and exp(Ad x)
= / +Adx + (Adx)2/2! + ••• is an automorphism of A.

Now let L be a Lie algebra over a field of characteristic zero. If x e L then,
Adx will denote the derivation 1 ->[xl] of L. If x is in the nil radical of L, then
Adx is a nilpotent derivation of L and exp(Adx) = / + Adx +(Adx)2/2! H—
is an automorphism of L. If G is a group of automorphisms of L, and x is a
fixed point of G in the nil radical of L, then Adx will commute with the elements
of G, and so will exp(Adx) which is a polynomial in Adx. Any such exp(Adx)
will hence carry a G-invariant subalgebra onto another G-invariant subalgebra,
and also a G-invariant Cartan subalgebra onto another G-invariant Cartan sub-
algebra. In reference to other terminology and properties of Lie algebras, see
[3] or [5].

A group G of nonsingular linear transformations is semisimple (fully reducible)
if every G-invariant subspace has a G-invariant complementary subspace.

3. The associative algebra case. We first summarize what is known concerning
the existence of invariant Wedderburn factors (maximal separable subalgebras)
in the following theorem.

Theorem 1. Let A be an associative algebra over afield F. Let R denote
the radical of A, and assume A/R is separable. Let G be a group of automorphisms
and antiautomorphisms of A. If the characteristic of F is zero, assume G is
semisimple. If the characteristic of F is p ^ 0, assume G is finite of order not
a multiple of p. (G is then semisimple.) Then G leaves invariant some maximal
separable subalgebra of A.

Proof. If A is abelian, then by the Malcev theorem, A contains a unique
maximal separable subalgebra, which will be left invariant by G. Hence we assume
A is not abelian, and that each element of G is either an automorphism or an
antiautomorphism of A, but not both. The case of characteristic p is proved
in [8]. Now assume that F has characteristic zero and G is semisimple. The case
R2 = {0} is essentially proved in Lemma 5.1 of [7] (the statement of the lemma
omits the hypothesis that the group is fully reducible). Change the notation of
the lemma so that © = A, 91 = R,T = G, and iXH = M, any Wedderburn factor
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of A. M exists and Hypothesis (1) of the lemma is satisfied by the Wedderburn
principal theorem. Hypothesis (2) is satisfied by the Malcev theorem, and since
automorphisms and antiautomorphisms permute Wedderburn factors. Hypoth-
esis (3) is clear. In the lemma, G is assumed to consist only of automorphisms.
The proof of the lemma can be easily extended if G is also allowed to possess
antiautomorphisms. Another way of obtaining the result is to replace G by the
group H of automorphisms of A (considered as a Lie algebra) obtained by re-
placing the antiautomorphisms of A by their negatives. Then, by the lemma,
H (and hence G) will leave fixed a Wedderburn factor of A. The passage from
the case R2 = {0} to the general case may then be effected by the induction
argument described in the proof of Theorem 1 in [8], together with the known
facts that the homomorphic images of a semisimple group obtained by restricting
it to an invariant subspace or letting it act on a factor space modulo an invariant
subspace are also semisimple.

We remark that it does not seem to be known whether the conclusion of
Theorem 1 holds when F is of characteristic p and G is an infinite semisimple
group. Examples are given in §6 to show that it can happen that such a G leaves
invariant maximal separable subalgebras, so that the uniqueness result to be
presented now (Corollary 1) can apply in this situation. No general result or
counterexample seems to be available. The methods of [7] for characteristic
zero depend heavily on the technique of algebraic groups (e.g., rational repre-
sentations preserve semisimple groups) and do not carry over to characteristic p.
On the other hand, if G* denotes the algebraic hull of G (i.e.,the closure of G
in the Zariski topology; see [2]), then G* is an algebraic group of automorphisms
and antiautomorphisms of A (since the group of all automorphisms and anti-
automorphisms of A is algebraic) which is semisimple (since G and G* have the
same invariant subspaces). Hence, in all of this discussion, we could assume that
G is an algebraic group, if necessary.

We now turn to the uniqueness question for maximal separable subalgebras
of A left invariant by G. The assumptions will be that ^4/R is separable, and
that G is a semisimple group of automorphisms and antiautomorphisms of A.
If zeR, we denote by Ct_z the inner automorphism of A defined by
Cl_2(a) = (1 — z)a(l — z)~1. Let T he a maximal separable subalgebra of A
left invariant by G, and let S be any separable subalgebra of A left invariant
byG.

Lemma 1. Let Z = {zeR; Ci-Z(S)QT}. If R2 = {0}, then Z is a non-
empty flat subset of A, i.e., if z1,z2,---,z„eZ, aua2,---,aneF, and E"=iai = 1,
then   ¿¡^(XjZjeZ.

Proof. Z is nonempty by the Malcev theorem. Let y= S^i^z,-, and let
seS. Then
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Cy-y(s) = (1 - y)s(l + y) = s + sy - ys
n n n

-   L (a,s) +  Z a,(sz,)+ Z ot,(-z,s)
1=1 ¡=i ¡=i

n n
=   E a¡(s + sz¡ - z,s)   =   lajQ.^er.

(=i (=i

In the following sequence of lemmas, we continue to assume that P2 = {0}.
Since Z is nonempty, we choose an x e Z and fix x as a reference point.

Lemma 2.   Let W = {z-x; zeZ}. Then W is a subspace of A.

Proof.   Let z1;z2eZ, <Xy,a2eF. Then

ay(zy — x) + a2(z2 — x) = axzx + a2z2 + (1 — at — a2)x — xeW

since ayZy + a2z2 + (1 — at — a2)x e Z by Lemma 1.

Lemma 3.     Z is an affine subspace of A.

Proof.   Z is the translate of If under the affine transformation a -» a + x of A.

Lemma 4.   // t is an automorphism in G, then t leaves Z invariant.

Proof. Let seS, zeZ. Then s = t(u) for some ueS. Cy-t(z)(s) = s + st(z)
- t(z)s = t(u) + t(u) t(z) - t(z) t(u) = t(u + UZ- zu) = tCy _z(m) e T. Hence t(z)
eZ.

Lemma 5. // t is an antiautomorphism in G, then t reflects Z through the
origin, i.e., if zeZ, then t(z)e —Z = { — z; zeZ}.

Proof. Let z e Z, seS, s = t(u), ueS. C1+t(z)(s) = s + t(z)s - st(z) - t(u)
+ t(z)t(u) - t(u)t(z) = t(u + UZ- zu) = tCy _2(«)eT. Hence - t(z) e Z, t(z) e;- Z.

Lemma 6.   G leaves the subspace W of A invariant.

Proof.   Let z e Z. Let t be an automorphism in G.  Then

t(z - x) = (t(z) - t(x) + x) - x 6 W

by  Lemmas   1   and  4.  Now  let  t  be  an  antiautomorphism  in   G.  Then
t(z - x) = (~(-t(z)) + (-i(x)) + x) - x e W by Lemmas 1 and 5.

Lemma 7.    There exists a G-symmetric element z of R such that Cy_z(S)Ç: T.

Proof. Since G is semisimple, we may write A = W © Y, where Tis a G-in-
variant subspace of A. Now Twill intersect Z in exactly one point, call it z. Then
clearly Y(~\( — Z) = { — z}. It follows now from Lemmas 4 and 5 that z is a fixed
point of the automorphisms in G and is sent into its negative by the antiauto-
morphisms in G.
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Lemma 7 will be used in the case R2 = {0} of the following theorem.

Theorem 2. Let A be an associative algebra over afield F of characteristic
not two. Let R be the radical of A and assume A/R is separable. Let G be a semi-
simple group of automorphisms and antiautomorphisms of A. Let Tbe a maximal
separable subalgebra of A left invariant by G and let S be any separable
subalgebra of A left invariant by G. Then there exists a G-quasi-orthogonal
element z of R (i.e., 1 — z is G-orthogonal in the algebra A± obtained from A
by adjunction of an identity, if necessary) such that the inner automorphism
C1-z of A carries S into T.

Proof. If A is commutative, the same remark in the proof of Theorem 1
holds, and we may take z = 0. Hence we now assume A is not commutative.
If R2 = {0}, then by Lemma 7, there exists a G-symmetric element z of R such
that Ci-£S) s T. Since (1 - z)"1 = 1 + z, 1 - z is G-orthogonal. We note that
the restriction that characteristic F ± 2 is not used when R2 = {0}. Now let
R2 ^ {0}. We proceed by induction on the dimension of A. We first note that
G induces semisimple groups (also denoted by G) of automorphisms and anti-
automorphisms of the algebras R,T+ R2, and A/R2, all of which have dimension
iess than that of A. Let a-* d = a + R2 denote the natural homomorphism of
A onto A/R2. The radical of A/R2 is R/R2. fis a maximal separable subalgebra
of Â left invariant by G, and S is a separable subalgebra of Ä left invariant by G.
Hence by induction (or by the case R2 = {0}), there exists an element veR such
that Cî-v(5) = (ï-v)S(ï-v)~1 s T, and v is G-symmetric, i.e., t(v)-veR2
for t an automorphism in G, and t(v) + veR2 for t an antiautomorphism
in G. Now we write R = R2 © U, where U is a G-invariant subspace.
We write — v/2 = x + u for x e R2, u e U. Let t be an automorphism in G. Then
t(u)-u= - t(v)/2 - t(x)+ v/2 + x = - \(t(v)- v) + x- t(x)eR2n U = {0}. Let /
be an antiautomorphism in G. Then t(u) + u= —^(t(v)+v) — x — t(x)e R2nU
= {0}. Hence u is a G-symmetric element of R. We now set y = — 2u(l — m)-1.
Clearly yeR and y = -2ü(\ - «)_1 = - 2( -v/2)(l + v/2) = v. Hence
(l-y)S(l-y)~l+R2çT+R2. Furthermore, 1 - y = 1 + 2u(l - u)~l
= (1 + u)(l — u)_1 which is G-orthogonal since « is G-symmetric. We now
apply induction to the algebra T+ R2, whose radical is R2. Tis a G-invariant
maximal separable subalgebra and (1 — y)S(l — y)_1is a G-invariant separable
subalgebra, since C¡_y commutes with the elements of G. By induction, there
exists an element reR2 such that 1 — r is G-orthogonal and
(1 -r)(l- y)S(l -yy\l - r)-1 q T. Then z = r + y - ry is the desired
element of R satisfying the conclusion of Theorem 2.

Corollary 1. Let A be an associative algebra over afield F of characteristic
not two. Let R be the radical of A, and assume that A/R is separable. Let G
<&e a semisimple group of automorphisms and antiautomorphisms of A. Then
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any two G-invariant maximal separable subalgebras of A are G-orthogonally
conjugate. If the characteristic of F is zero, then the G-orthogonal conjugacy
may be written in the form exp(Adx), where x is a G-symmetric element of R.

Proof. The first statement follows immediately from Theorem 2. If the char-
acteristic of F is zero, let z be as described in Theorem 2, and let x = log(l — z)
= — z — z2/2 — z3/3 — •••. If t is an automorphism] in G, then t(z) = z implies
i(x) = x. If t is an antiautomorphism in G, then f(x) = — t(z) — t(z)2/2 — t(z) 3/3 — • • •
= log(l — t(z)) = log(l — z)-1 = — log(l — z) = — x. Hence x is a G-sym-
metric element of R. Finally Cj_z = CexpOog(1_z)) = exp(Ad(log(l — z)))
= exp(Adx).

Corollary 2. Let A and G be as in Corollary 1. Assume that A possesses
a G-invariant maximal separable subalgebra. Then any G-invariant separable
subalgebra of A is contained in a G-invariant maximal separable subalgebra
of A.

Proof. This follows directly from Theorem 2 and the fact that the inverse
of a G-orthogonal conjugacy is a G-orthogonal conjugacy.

4. The Lie algebra case.   In [7], the following theorem is proved.

Theorem 3. Let Lbe a Lie algebra over afield of characteristic zero. Let
G be a semisimple group of automorphisms of L. Then G leaves invariant a
maximal semisimple subalgebra of L.

We recall that a maximal semisimple subalgebra of L is also called a Levi
factor of L. Let N be the nil radical (maximal nilpotent ideal) of L. Then we
may prove a result analogous to Theorem 2 and Corollary 1. Since the proof
is parallel to the proof of Theorem 2, we outline it here.

Let G be a semisimple group of automorphisms of the Lie algebra L. Since
í is an automorphism of L if and only if — t is an antiautomorphism of L, it is
only necessary to consider automorphisms of L. Let T be a G-invariant Levi
factor of L, and S any G-invariant semisimple subalgebra of L.

Lemma 8. Let Z = {zeN; exp(Adz)S £ T). // N2 a [N,N] = {0}, then
Z is a nonempty flat subset of L.

Proof. Using the fact that (Adz)2 = 0 for zeN, the proof is analogous to
the proof of Lemma 1.

We continue to assume that N2= {0}. We now choose a fixed xeZ as ref-
erence point.

Lemma 9.     W = {z — x; zeZ} is a subspace of L.

Lemma 10.     Z is an affine subspace of L.

Lemma 11.    If teG, then t leaves Z invariant.
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Proof. Let zeZ, seS, s = t(u), ueS. Then t(z)eN and exp(Ad(i(z)))
= / +Ad(i(z)), / the identity mapping of L. Then exp(Ad(i(z)))(s) = t(u) + [t(z),t(u)~]
= t(u + [z,u]) = r((exp(Adz))u)e Tsince zeZ. Hence t(z)eZ.

Lemma 12.    G leaves W invariant.

Proof.   Lemmas 8 and 11.

Lemma 13.    There exists a fixed point z of Gin N such that exp(Ad z)(S) s T.

Proof.   Write L= W © Y, Y G-invariant. Then Z intersects Y in exactly one
point—call it z. Then, since Z and Tare G-invariant, z is a fixed point of G.

Lemma 13 will cover the case JV2= {0} of the following theorem.

Theorem 4. Let Lbe a Lie algebra over a field of characteristic zero. Let
N be the nil radical of L. Let G be a semisimple group of automorphisms of L.
Let T be a G-invariant Levi factor of L, S any G-invariant semisimple sub-
algebra of L. Then there exists a fixed point z of G in N such that exp(Adz)
carries S into T.

Proof. If iV2={0}, Lemma 13 applies. Assume N2 ^ {0}, and use induction
on the dimension of L. Let a-> ä = a + N2 denote the natural homomorphism
of L onto L/N2. Then there exists a fixed point v of G in Ñ such that
exp(Ad v)(S) £ T, i.e., veN and t(v) -veN2forteG. Now write N = N2@ U,
where U is G-invariant. Write v = x + u, xeN2, ueU. Then t(u) — ueN2C\ U
= {0}, so u is a fixed point of G in JV, and w = v so that exp(Ad u)S + N2 £ T + N2.
Now we use the induction hypothesis on the Lie algebra T+ N2 to obtain a
fixed point r of G in N 2 such that exp(Ad r) exp(Ad u) S^T. Using the Baker-
Campbell-Hausdorff formula (see [5]), we may write exp(Adr) exp(Adu)
= exp(Ad z), where z is in the Lie algebra generated by r and u. Since the fixed
points of G form a Lie algebra, z is a fixed point of G and exp(Adz)S £ T.

Corollary 3. Let Lbe a Lie algebra over a field of characteristic 0. Let G
be a semisimple group of automorphisms of L. Let S and T be G-invariant
Levi factors of L. Then there exists a fixed point z of G in the nil radical of L
such that S and Tare strictly conjugate in Lunder the automorphism exp(Adz).

Corollary 4. Let L and G be as in Corollary 1. Then any G-invariant
semisimple subalgebra of Lis contained in a G-invariant Levi factor.

These two corollaries are immediate consequences of Theorem 4.

5. Invariant Cartan subalgebras of solvable Lie algebras. In [7], the following
theorem is proved.

Theorem 5.   Let Lbe a solvable Lie algebra over afield of characteristic 0.
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Let G be a semisimple group of automorphisms of L. Then G leaves invariant
a Cartan subalgebra of L.

We now turn to the uniqueness of G-invariant Cartan subalgebras of L. Let
L" = [L"~\L~] denote the terms of the descending chain of powers of L, and let
L00 = Pl^L ! L„. The collection of automorphisms {exp(Ad x) ; x e L°°} of L
forms a group by the Baker-Campbell-Hausdorff formula. By the same formula,
this group will contain as a subgroup the collection of automorphisms
{exp(Adx); x a fixed point of G in L00} of L. It is this latter group which will
give us the conjugacy between any two G-invariant Cartan subalgebras of L.

Theorem 6. Let Lbe a solvable Lie algebra over afield of characteristic 0.
Let G be a semisimple group of automorphisms ofL. Let S and Tbe G-invariant
Cartan subalgebras of L. Then G has a fixed point z in Vo such that exp(Adz)
carries S onto T.

Proof. The proof will consist of an extension of the conjugacy argument
of [1]. We use induction on the dimension of L, and first assume

(1) L00 is not abelian.
Let Z be the center of L°°. Z is an ideal in L by the Jacobi identity. Z is

not zero since it contains the last nonzero term in the descending chain of powers
of Lœ, which is nilpotent. Let a -> ä=a + Z denote the natural homomorphism
of L onto L¡Z. G induces semisimple groups of automorphisms (also denoted G)
of L™, Z and L, and S, T are G-fixed Cartan subalgebras of L (see [3]). L has
smaller dimensions than L. Hence, by induction, there is a fixed point x of G in
Ü° = LX such that exp(Adx)£ = T. We write L°°= Z© U, where U is a G-in-
variant subspace. Write x = v + u, veZ, ueU. Then x — ü. If teG, then
t(u) — u = r(x) — x + v — t(v) e Z n 17 = {0}. Hence « is a fixed point of G in
L00 and and exp(Ad u) S + Z = T+ Z. Now since Ad u commutes with the elements
of G, we have that exp(Adu)S and Tare G-invariant Cartan subalgebras of
T4- Z. Also, (T + Z)°° = T + Z00 = Tx = 0 since T is nilpotent. Hence
(T + Z)°°ç Z. If L= T + Z, then L00^ Z and this contradicts the assumption
(1) that Lœ is not abelian. Hence T4-Z is a proper G-fixed subalgebra of L,
and by induction there is a fixed point r of G in (T + Z^zZ such that
exp(Adr)exp(Adu)S = T. Set z = r + u. Then, since [r,u] = 0, exp(Adz)
= exp(Adr)exp(Adu) maps S onto Tand z is clearly a fixed point of G in L°°.

(2) Lx is abelian.
By the result in [1], there is a zeLm such that exp(Adz)S = T. Let teG.

Then exp(Ad(t(z)))S = texp(Adz)t~ 1S = t(T) = T= exp(Adz)S. Now since
[z,i(z)] = 0, exp(Ad(r(z) — z))S = S. Taking logarithms, this implies that
Ad(r(z) - z)S s S, i.e., [S,t(z) — z~\^S. But since S is a Cartan subalgebra of
L, S is its own normalizer in L, so that t(z) — zeS. Now, in general, S nL™
is contained in the derived algebra of L°°, so that, by (2), SnL°°={0},
and z is a fixed point of Gin L00. This completes the proof of Theorem 6.
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6. Some examples. Let A denote the six-dimensional triangular (associa-
tive) algebra of three-by-three matrices (a,j) over F with au = 0 for) > i. The
radical of A is the three-dimensional subalgebra R consisting of all (au) with
a,j = 0 for j ^ i. The subalgebra D of R consisting of all (au) with at] = 0 for
i 5¿j is a maximum separable subalgebra of A. Let veF, v # 0. Let G be the
cyclic group generated by the inner automorphism Cv of A given by conjugation
by the diagonal matrix V= diag(l,r, l)eA. The matrix of Cr with respect to
the usual basis of matrix units of A is diag(l,i>, 1,1,« ~)l), so that Cv and
hence G are semisimple. To obtain the form of the maximal separable subal-
gebras of A, we apply the Malcev theorem to D. If

ro
w-

0       01

0       0 eR,

iy     z     o

we conjugate/) by I—W, /the identity mapping of A. The result is the subalgebra

S(x,y,z) =  < (-a + b)x

0

b

01

0 ; a,b,ceF

[ l(-a + c)y + (-b + c)xz       (-b + c)z     c]
The subalgebras S(x,y,z) for x,y,zeF are the maximal separable subalgebras
of A. The correspondence (x,y,z)^S(x,y,z) is one-to-one on F x F x F.
Now, to determine which S(x,y,z) are G-invariant, we apply Cv to S(x,y,z).
A direct calculation will show that Cv(S(x,y,z)) = S(vx,y,v'1z). Hence S(0, y, 0)
will be a G-invariant Wedderburn factor of A for any y e F. The cardinality of
{S(0, y, 0) ; y e F} is the same as that of F. If v is a root of unity, then G will be
a finite semisimple group. If F is infinite, and v is not a root of unity, then G
will be an infinite semisimple group of automorphisms leaving invariant an
infinite number of maximum separable subalgebras. Hence we can find examples
of infinite semisimple groups of automorphisms of an associative algebra over
fields of arbitrary characteristic which leave invariant maximal separable sub-
algebras. As an illustration of Theorem 2, it may be directly verified that if
yy,y2eF, then

0 0 01

U 0 0

0lyi-yi
is a fixed point of G in R, and conjugation by / - U maps S(0,.Vi,0) onto
S(0,y2,0). We also remark that the maximal separable subalgebras of A in this
example are also Cartan subalgebras of A considered as a solvable Lie algebra.
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To illustrate Theorem 6, —U is a fixed point of G in A "and exp(Ad(-t/))
= /+Ad(-L/) = C/_t, maps Si/Ly^O) onto S(0,y2,0).

We conclude with an example to show that the assumption that G be semi-
simple cannot be dropped if G is to leave invariant a maximal separable sub-
algebra. Let A he the three-dimensional associative algebra of two-by-two ma-
trices (a¡j) over F such that al2 = 0. The radical R of A is the one-dimensional
subalgebra consisting of all (au) with au = a12 = a22=0.The subalgebra D of A
consisting of all (atj) with al2 = «a2i = 0 is a maximal separable subalgebra of A.
By applying the Malcev theorem to D as above, we obtain the complete col-
lection of maximal separable subalgebras {S(x);xeF} of A, where

S(x) = \(a );a,beF\.
(A (a-b)x       bJ j

The correspondence x -» S(x) is one-to-one on F. Let

U=( )eA,
\w      vj

with v # 0. Let G be the cyclic group generated by the inner automorphism
Cv of A given by conjugation by U. The matrix of Cv with respect to the usual
basis of matrix units of A is

■ 1       w      0'

0       y       0    .

.0    -w      1.

A direct calculation will show that CvS(x) = S(w + vx). First let vj^l. Then
S(w(l — v)'1) is a (unique) G-invariant maximal separable subalgebra and G
is semisimple, since the minimum polynomial m(X) of Cv is easily seen to be
(A — 1)(A — v) which has distinct factors. If F is infinite, and v is not a root of
unity, then

Xw^ + v + '-'+v"'1)        v" /

will not be in the center of A for any n, so that G will be an infinite semisimple
group. If v" = 1, then U" = /. Hence, if v is a primitive nth root of unity, then
G will be a finite semisimple group of order n.

Now assume v = 1 and w^O. Then w + ux = x has no solution xeF so that
G does not leave invariant any maximal separable subalgebra of A. G is not
semisimple since the minimal polynomial m(X) of Cv may easily be seen to be
(A - l)2. In this case,
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v - f      °),\nw        l)

so that G is infinite if F has characteristic 0, and will be of order p if F has char-
acteristic p. We also note that the subalgebras S(x) are Cartan subalgebras of A
considered as a solvable Lie algebra.
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