
Orthogonal Decision Trees
Hillol Kargupta, Byung-Hoon Park, and Haimonti Dutta

Abstract—This paper introduces orthogonal decision trees that offer an effective way to construct a redundancy-free, accurate, and

meaningful representation of large decision-tree-ensembles often created by popular techniques such as Bagging, Boosting, Random

Forests, and many distributed and data stream mining algorithms. Orthogonal decision trees are functionally orthogonal to each other

and they correspond to the principal components of the underlying function space. This paper offers a technique to construct such

trees based on the Fourier transformation of decision trees and eigen-analysis of the ensemble in the Fourier representation. It offers

experimental results to document the performance of orthogonal trees on the grounds of accuracy and model complexity.

Index Terms—Orthogonal decision trees, redundancy free trees, principle component analysis, Fourier transform.

�

1 INTRODUCTION

DECISION tree [1] ensembles are frequently used in data
mining and machine learning applications. Boosting

[2], [3], Bagging [4], Stacking [5], and Random Forests [6]
are some of the well-known ensemble-learning techni-
ques. Many of these techniques often produce large
ensembles that combine the outputs of a large number
of trees for producing the overall output. Ensemble-based
classification and outlier detection techniques are also
frequently used in mining continuous data streams [7],
[8]. Large ensembles pose several problems to a data
miner. They are difficult to understand and the overall
functional structure of the ensemble is not very “action-
able” since it is difficult to manually combine the physical
meaning of different trees in order to produce a
simplified set of rules that can be used in practice.
Moreover, in many time-critical applications, such as
monitoring data streams in resource-constrained environ-
ments [9], maintaining a large ensemble and using it for
continuous monitoring are computationally challenging.
So, it will be useful if we can develop a technique to
construct a redundancy-free meaningful compact repre-
sentation of large ensembles. This paper offers a
technique to do that and possibly more.

This paper presents a technique to construct redun-
dancy-free decision-tree-ensembles by using orthogonal
decision trees. The technique first constructs an algebraic
representation of trees using multivariate discrete Fourier
basis set. The new representation is then used for eigen-
analysis of the covariance matrix generated by the decision
trees in Fourier representation. The proposed approach
then converts the corresponding principal components to
decision trees. These trees are defined in the original
attributes-space and they are functionally orthogonal to
each other. These orthogonal trees are in turn used for
accurate (in many cases, with improved accuracy) and

redundancy-free (in the sense of an orthogonal basis set)
compact representation of large ensembles.

Section 2 presents the motivation of this work. Section 3
presents a brief overview of the Fourier spectrum of decision
trees. Section 4 describes the algorithms for computing the
Fourier transform of a decision tree. Section 5 offers the
algorithm for computing the tree from its Fourier spectrum.
Section 6 discusses orthogonal decision trees. Section 7
presents experimental results using many well-known data
sets. Finally, Section 8 concludes this paper.

2 MOTIVATION

This paper extends our earlier work [10], [9], [11] on the
Fourier spectrum of decision trees. The main motivation
behind this approach is to create an algebraic framework for
the metalevel analysis of models produced by many
ensemble learning, data stream mining, distributed data
mining, and other related techniques. Most of the existing
techniques treat the discrete model structures such as
decision trees in an ensemble primarily as a black box. Only
the output of the models is considered and combined in
order to produce the overall output. Fourier bases offer a
compact representation of a discrete structure that allows
algebraic manipulation of decision trees. For example, we
can literally add two different trees, produce weighted
average of the trees themselves, or perform eigen-analysis
of an ensemble of trees. Fourier representation of decision
trees may offer something that is philosophically similar to
what spectral representation of graphs [12] offers—an
algebraic representation that allows deep analysis of
discrete structures.

Fourier representation allows us to bring in the rich
volume of well-understood techniques from Linear Algebra
and Linear Systems Theory. This opens up many exciting
possibilities for future research, such as quantifying the
stability of an ensemble classifier, mining, and monitoring
mission-critical data streams using properties of the
eigenvalues of the ensemble. This paper takes some steps
toward achieving these goals.

The main contributions of this paper are listed below:

1. It offers several new analytical results regarding the
properties of the Fourier spectra of decision trees.

2. It presents a detailed discussion on the Tree
Construction from Fourier Spectrum (TCFS) algo-

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 7, JULY 2006 1

. H. Kargupta and H. Dutta are with the Department of Computer Science
and Electrical Engineering, University of Maryland Baltimore County,
1000 Hilltop Circle, Baltimore, MD 21250.
E-mail: {hillol, hdutta1}@csee.umbc.edu.

. B.-H. Park is with the Computer Science and Mathematics Division, Oak
Ridge National Laboratory, PO Box 2008 MS6164, Oak Ridge, TN 37831-
6164. E-mail:parkbh@ornl.gov.

Manuscript received 20 Dec. 2004; revised 29 Nov. 2005; accepted 23 Jan.
2006; published online 18 May 2006.
For information on obtaining reprints of this article, please send e-mail to:

1041-4347/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

rithm for computing a decision tree from the Fourier
coefficients. This includes discussion and experi-
mental evaluation of the TCFS algorithm. New
experimental results compare the performance of
the trees constructed using the TCFS technique with
that of the trees constructed using standard techni-
ques such as C4.5.

3. It discusses Orthogonal Decision Trees (ODTs) in
detail and offers extensive experimental results
documenting the performance of ODTs on bench-
marked data sets.

The following section reviews the Fourier representation
of decision trees.

3 DECISION TREES AND THE FOURIER

REPRESENTATION

This section reviews the Fourier representation of decision
tree ensembles, introduced elsewhere [13], [14]. It also
presents some new analytical results.

3.1 Decision Trees as Numeric Functions

The approach developed in this paper makes use of linear
algebraic representation of the trees. In order to do that, we
first need to convert the tree into a numeric tree just in case
the attributes are symbolic. A decision tree defined over a
domain of categorical attributes can be treated as a numeric
function. First note that a decision tree is a function that
maps its domain members to a range of class labels.
Sometimes, it is a symbolic function where attributes take
symbolic (nonnumeric) values. However, a symbolic func-

tion can be easily converted to a numeric function by simply
replacing the symbols with numeric values in a consistent
manner. Since the proposed approach of constructing
orthogonal trees uses this representation as an intermediate
stage and eventually the physical tree is converted back to
the exact scheme for replacing the symbols (if any), it does
not matter as long as it is consistent.

Once the tree is converted to a discrete numeric function,
we can also apply any appropriate analytical transformation
as necessary. Fourier transformation is one such interesting

possibility. Fourier representation of a function is a linear
combination of the Fourier basis functions. The weights,
called Fourier coefficients, completely define the representa-
tion. Each coefficient is associated with a Fourier basis
function that depends on a certain subset of features defining
the domain. This section reviews the Fourier representation
of decision tree ensembles, introduced elsewhere [9].

3.2 A Brief Review of Multivariate Fourier Basis

A Fourier basis set is comprised of orthogonal functions
that can be used to represent any discrete function. In other
words, it is a functionally complete representation. Con-
sider the set of all ‘-dimensional feature vectors where the
ith feature can take �i different discrete values. The Fourier
basis set that spans this space is comprised of �‘

i¼0�i basis
functions. Each Fourier basis function is defined as

 �j ðxÞ ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�l
i¼1�i

q �l
m¼1 exp

2�i
�m
xmjm ;

where j and x are vectors of length ‘; xm and jm are mth

attribute-value in x and j, respectively; xm; jm 2 f0; 1; � � ��ig
and � represents the feature-cardinality vector, �0; � � ��‘;
 �j ðxÞ is called the jth basis function. The vector j is called a
partition and the order of a partition j is the number of nonzero
feature values it contains. A Fourier basis function depends
on somexi onlywhen the corresponding ji 6¼ 0. If a partition j

has exactly � number of nonzero values, then we say the
partition is of order � since the corresponding Fourier basis
function depends only on those � number of variables that
take nonzero values in the partition j.

A function f : X‘ ! <, that maps an ‘-dimensional

discrete domain to a real-valued range, can be represented

using the Fourier basis functions: fðxÞ ¼
P

j wj
�

j ðxÞ, where

wj is the Fourier Coefficient (FC) corresponding to the

partition j and
�

j ðxÞ is the complex conjugate of �j ðxÞ;

wj ¼
P

x
�
j ðxÞfðxÞ. The Fourier coefficient wj can be viewed

as the relative contribution of the partition j to the function

value of fðxÞ. Therefore, the absolute value of wj can be used

as the “significance” of the corresponding partition j. If the

magnitude of some wj is very small compared to other

coefficients, we may consider the jth partition to be

insignificant and neglect its contribution. The order of a

Fourier coefficient is nothing but the order of the corre-

sponding partition.We shall often use terms like high order or

low order coefficients to refer to a set of Fourier coefficients

whose orders are relatively large or small, respectively. The

energy of a spectrum is defined by the summation
P

j w
2
j . Let

us also define the inner product between two spectra wð1Þ

and wð2Þ, where wðiÞ ¼ ½wðiÞ;1wðiÞ;2; � � �wðiÞ;jJ j�
T is the column

matrix of all Fourier coefficients in an arbitrary but fixed

order. Superscript T denotes the transpose operation and jJ j

denotes the total number of coefficients in the spectrum. The

inner product, < wð1Þ;wð2Þ >¼
P

j wð1Þ;jwð2Þ;j. We will also

use the definition of the inner product between a pair of real-

valued functions defined over some domain �. This is

defined as < f1ðxÞ; f2ðxÞ >¼
P

x2� f1ðxÞf2ðxÞ.
The following section considers the Fourier spectrum of

decision trees and discusses some of its useful properties.

3.3 Properties of Decision Trees in the
Fourier Domain

For almost all practical purposes, decision trees have
bounded depths. This section will therefore consider
decision trees of finite depth bounded by some constant.
The underlying functions in such decision trees are
computable by a constant depth Boolean AND and OR
circuit (or, equivalently, AC0 circuit). Linial et al. [15] noted
that the Fourier spectrum of an AC0 circuit has very
interesting properties and proved the following lemma:

Lemma 1 ([15]). Let M and d be the size and depth of an AC0

circuit. Then,

X

fjjoðjÞ>tg

w2
j � 2M2�t

1=d=20;

where oðjÞ denotes the order (the number of nonzero variable)
of partition j and t is a nonnegative integer. The term on the

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 7, JULY 2006

left-hand side of the inequality represents the energy of the

spectrum captured by the coefficients with order greater than a

given constant t.

The lemma essentially states the following properties

about decision trees:

1. High order Fourier coefficients are small in magni-
tude.

2. The energy preserved in all high order Fourier
coefficients is also small.

The key aspect of these properties is that the energy of

the Fourier coefficients of higher order decays exponen-

tially. This observation suggests that the spectrum of a

Boolean decision tree (or, equivalently, bounded depth

function) can be approximated by computing only a small

number of low order Fourier coefficients. So, Fourier basis

offers an efficient numeric representation of a decision tree

in terms of an algebraic function that can be easily stored

and manipulated.
The exponential decay property of the Fourier spectrum

also holds for non-Boolean decision trees. The complete

proof is given in the Appendix, which can be found on the

Computer Society Digital Library at http://computer.

org.tkde/archives.htm.
There are two additional important characteristics of the

Fourier spectrum of a decision tree that we will use in this

paper:

1. The Fourier spectrum of a decision tree can be
efficiently computed [9].

2. The Fourier spectrum can be directly used for
constructing the tree.

In other words, we can go back and forth between the

tree and its spectrum. This is philosophically similar to the

switching between the time and frequency domains in the

traditional application of Fourier analysis for signal proces-

sing. These two issues will be discussed in details later in

this paper. However, before that, we would like to make a

note of one additional property.
The Fourier transformation of decision trees preserves

the inner product. The functional behavior of a decision tree

is defined by the class labels it assigns. Therefore, if

fx1;x2; � � �xj�jg are the members of the domain �, then

the functional behavior of a decision tree fðxÞ can be

captured by the vector ½f �x2� ¼ ½fðx1Þfðx2Þ � � � fðxj�jÞ�
T ,

where the superscript T denotes the transpose operation.

The following lemma proves that the inner product

between two such vectors is identical to the same in

between their respective Fourier spectra:

Lemma 2. Given two functions f1ðxÞ ¼
P

j wð1Þ;j j
�
ðxÞ and

f2ðxÞ ¼
P

j wð2Þ;j j
�
ðxÞ in Fourier representation, then,

< f1ðxÞ; f2ðxÞ >¼< wð1Þ;wð2Þ > .

Proof.

< f1ðxÞ; f2ðxÞ > ¼
X

x2�

f1ðxÞf2ðxÞ

¼
X

x2�

X

j;i

wð1Þ;j j
�
ðxÞwð2Þ;i i

�
ðxÞ

¼
X

j;i

wð1Þ;jwð2Þ;i

X

x2�

 j
�
ðxÞ i

�
ðxÞ

¼
X

j

wð1Þ;jwð2Þ;j

¼< wð1Þ;wð2Þ > :

tu

The fourth step is true since Fourier basis functions are
orthonormal.

4 COMPUTING THE FOURIER TRANSFORM OF A

DECISION TREE

The Fourier spectrum of a given tree can be computed
efficiently by traversing the tree. This section first reviews
an algorithm to do that. It discusses aggregation of the
multiple spectra computed from the base classifiers of an
ensemble. It also extends the technique for dealing with
non-Boolean class labels. Kushilevitz and Mansour [16]
considered the issue of learning the low order Fourier
spectrum of the target function (represented by a Boolean
decision tree) from a data set with uniformly distributed
observations. Note that the current contribution is funda-
mentally different from their goal. This paper does not try
to learn the spectrum directly from the data. Rather, it
considers the problem of computing the spectrum from the
decision tree generated from the data.

4.1 Schema Representation of a Decision Path

For the sake of simplicity, let us consider a Boolean decision
tree as shown in Fig. 1. The Boolean class labels correspond
to positive and negative instances of the concept class. We
can express a Boolean decision tree as a function
f : X‘ ! f0; 1g. The function f maps positive and negative
instances to one and zero, respectively. A node in a tree is
labeled with a feature xi. A downward link from the node xi
is labeled with an attribute value of the ith feature. The
path from the root node to a successor node represents the
subset of data that satisfies the different feature values
labeled along the path. These subsets of the domain are

KARGUPTA ET AL.: ORTHOGONAL DECISION TREES 3

Fig. 1. A Boolean decision tree.

essentially similarity-based equivalence classes and we
shall call them schemata (schema in singular form). If h is
a schema, then h 2 f0; 1; �g‘, where � denotes a wildcard
that matches any value of the corresponding feature. For
example, the path fðx3!

1
x1; x1!

0
x2g in Fig. 1 represents the

schema 0 � 1, since all members of the data subset at the
final node of this path take feature values 0 and 1 for x1 and
x3, respectively. We shall use the term order to represent
the number of nonwildcard values in a schema. The
following section describes an algorithm to extract Fourier
coefficients from a tree.

4.2 Extracting and Calculating Significant Fourier
Coefficients from a Tree

Considering a decision tree as a function, the Fourier
transform of a decision tree can be defined as:

wj ¼
1

j�j

X

x2�

fðxÞ jðxÞ ¼
1

j�j

X

x2Sl1

fðxÞ jðxÞ

þ
1

j�j

X

x2Sl2

fðxÞ jðxÞ þ . . .þ
1

j�j

X

x2Sln

fðxÞ jðxÞ

¼
jSl1 j

j�j
fðh1Þ jðh1Þ þ

jSl2 j

j�j
fðh2Þ � jðh2Þ þ . . .þ

jSln j

j�j

fðhnÞ jðhnÞ;

where � denotes the complete instance space, Sli is an
instance subspace which the ith leaf node li covers, and hi is
a schema defined by a path to li, respectively (Note that any
path to a node in a decision tree is essentially a subspace or
hyperplane; thus, it is a schema).

Lemma 3. For any Fourier basis function j,
P

x2� jðxÞ ¼ 0.

Proof. Since Fourier basis functions form an orthogonal set,

X

x2�

 jðxÞ ¼
X

x2�

 0ðxÞ jðxÞ ¼ 0:

Here, 0 is the 0th Fourier basis function, which is
constant (one) for all x. tu

Lemma 4. Let hi be a schema defined by the path to a leaf node li.
Then, if j has a nonzero attribute value at a position where hi

has no value (wild-card),

X

x2Sli

fðxÞ jðxÞ ¼ fðhiÞ
X

x2Sli

 jðxÞ ¼ 0;

where Sli is the subset that hi covers.

Proof. Let j ¼ ðjinjoutÞ, where jin are features which are
included hi and jout are features not in hi, respectively.
Since all values for jin are fixed in hi, jinðxÞ is constant
for all x 2 Sli and Sli forms redundant (multiples of)
complete domain with respect to jout. Therefore, for a leaf
node li,

X

x2Sli

fðxÞ jðxÞ ¼
X

x2Sli

fðhiÞ jðxÞ ¼ fðhiÞ
X

x2Sli

 jinðxÞ joutðxÞ

¼ fðhiÞ jðhiÞ
X

x2Sli

 jout
ðxÞ ¼ 0:

tu

Lemma 5. For any Fourier coefficient wj whose order is greater

than the depth of a leaf node li,
P

x2Sli
 jðxÞ ¼ 0. If the order

of wj is greater than the depth of tree, then wj ¼ 0.

Proof. The proof immediately follows from Lemma 4. tu

Thus, for an FC wj to be nonzero, there should exist at

least one schema h that has nonwild-card attributes for all

nonzero attributes of j. In other words, there exists a set of

nonzero FCs associated with a schema h. This observation

leads us to a direct way of detecting and calculating all

nonzero FCs of a decision tree: For each schema h (or path)

from the root, we can easily detect all nonzero FCs by

enumerating all FCs associated with h.
Before describing the algorithm, we need to introduce

some notations. Let hk¼i be a vector that is generated by

replacing the kth position of h with value i. Note that this

notation will be used for both schema and partition. Let us

consider a nonleaf node n that has d children. In other words,

there exist d disjoint subtrees below n. If xk is the feature

appearing in n, then FxkðiÞ denotes the average function

value of domain members covered by a subtree accessible

through the ith child of n. For example, in Fig. 2, Fx1ð0Þ is
1
2

and Fx2ð1Þ is one. Note that FxkðiÞ is equivalent to the

average of schema h, where h denotes the path (from the

root node) to the ith subtree of the node where xk appears.
The algorithm starts with precalculating all FxkðiÞs (This

is essentially a recursive “Tree-Visit” operation). Then, it

incrementally finds nonzero FCs as it traverses the tree. If

we let S denote the set of partitions that correspond to

nonzero FCs, initially, S ¼ f000 . . . 0g and the correspond-

ing w000...0 is calculated with the overall average of output.

In Fig. 2, it is: 1
2
� 1

4
þ 1

2
� 1 ¼ 5

8
. The algorithm continues to

extract all remaining nonzero FCs in recursive fashion from

the root. New nonzero FCs are identified by inducing their

correponding partitions from the existing S. For any h 2 S,

when a node with the feature xk is visited, partitions

hk¼1; � � � ;hk¼�k�1 are added into S, where �k is the

cardinality of xk. For the tree in Fig. 2, S is initially f000g.

Then, 010 is added to S when x1 is visited. Note that 010 is

found by replacing the first position (starting from zero)

with 1, i.e., h1¼1 ¼ 010 is obtained from h ¼ 000. w010 is

computed using (1):

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 7, JULY 2006

Fig. 2. An instance of a Boolean decision tree that shows average output
values at each subtree.

w010 ¼
1

2
� fð�0�Þ 010ð�0�Þ þ

1

2
� fð�1�Þ 010ð�1�Þ

¼
1

2
� Fx1ð0Þ 010ð�0�Þ þ

1

2
� Fx1ð1Þ 010ð�1�Þ

¼
1

2
�
1

2
� 1þ

1

2
� 1� ð�1Þ ¼

1

4
�
1

2
¼ �

1

4
:

For x2, f001; 011g will be added into S. w001 and w011 are

computed similarly as w010. The pseudocode of the

algorithm is presented in Fig. 3.

4.3 Fourier Spectrum of an Ensemble Classifier

The Fourier spectrum of an ensemble classifier that consists
of multiple decision trees can be computed by aggregating
the spectra of the individual base models. Let fðxÞ be the
underlying function computed by a tree-ensemble where
the output of the ensemble is a weighted linear combination
of the outputs of the base tree-classifiers.

fðxÞ ¼ a1f1ðxÞ þ a2f2ðxÞ þ . . .þ anfnðxÞ

¼ a1
X

j2J1

w
ð1Þ
j jðxÞ þ . . .þ an

X

j2Jn

w
ðnÞ
j jðxÞ;

where fiðxÞ and ai are ith decision tree and its weight,

respectively. Ji is set of nonzero Fourier coefficients that are

detected by the ith decision tree and w
ðiÞ
j is a Fourier

coefficient in Ji. Now, (2) is written as: fðxÞ ¼
P

j2J wj jðxÞ,

where wj ¼
Pn

i¼1 aiw
ðiÞ
j and J ¼ [ni¼1Ji. The following

section extends the Fourier spectrum-based approach to

represent and aggregate decision trees to domains with

multiple class labels.

4.4 Fourier Spectrum of Multiclass Decision Trees

A multiclass decision tree has k > 2 different class labels. In
general, we can assume that each label is again assigned a
unique integer value. Since such decision trees are also
functions that map an instance vector to numeric value, the
Fourier representation of such a tree is essentially not any
different. However, the Fourier spectrum cannot be directly

applied to represent an ensemble of decision trees that uses
voting as its aggregation scheme. The Fourier spectrum
faithfully represents functions in closed forms and ensem-
ble classifiers are not such functions. Therefore, we need a
different approach to model a multiclass decision trees with
the Fourier basis.

Let us consider a decision tree that has k classifications.
Then, let us define =i to be the Fourier spectrum of a
decision tree whose class labels are all set to zero except the
ith class. In other words, we treat the tree to have a Boolean
classification with respect to the ith class label. If we define
fðkÞðxÞ to be a partial function that computes the inverse
Fourier transform using =k, classification of an input vector
x is written as: fðxÞ ¼ c1f

ð1ÞðxÞ þ c2f
ð2ÞðxÞ þ � � � þ clf

ðlÞðxÞ,
where each ci corresponds to a mapped value for the
ith classification. Note that if x belongs to jth class, f ðiÞðxÞ ¼
1 when i ¼ j, and 0 otherwise.

Now, let us consider an ensemble of decision trees in

weighted linear combination form. Then, f ðkÞðxÞ can

be written as: f ðkÞðxÞ ¼ a1f
ð1Þ
1 ðxÞ þ a2f

ð2Þ
2 ðxÞ þ � � � alf

ðlÞ
l ðxÞ,

where ai and f
ðkÞ
i ðxÞ represent the weight of ith tree in the

ensemble and its partial function for the kth classification,

respectively. Finally, the classification of an ensemble, of a

decision tree that adopts voting as its aggregation scheme

can be defined as: fðxÞ ¼ argmaxkðf
ðkÞðxÞÞ.

In this section, we discussed the Fourier representation of
decision trees. We showed that the Fourier spectrum of a
decision tree is very compact in size. In particular, we
proved that the exponential decay property is also true for a
Fourier spectrum of non-Boolean decision trees. In the
following section, we will describe how the Fourier spec-
trum of an ensemble can be used to construct a single tree.

5 CONSTRUCTION OF A DECISION TREE FROM

FOURIER SPECTRUM

This section discusses an algorithm to construct a tree from
the Fourier spectrum of an ensemble of decision trees. The
following section first shows that the information gain
needed to choose an attribute at the decision nodes can be
efficiently computed from the Fourier coefficients.

5.1 Schema Average and Information Gain

Consider a classification problem with Boolean class
labels—f0; 1g. Recall that a schema h denotes a path to a
node nk in a decision tree. In order to compute the
information gain introduced by splitting the node using a
particular attribute, we first need to compute the entropy of
the class distribution at that node. We do that by
introducing a quantity called schema average. Let us define
the schema average function value as follows:

�ðhÞ ¼
1

jhj

X

x2h

fðxÞ;

where fðxÞ is the classification value of x and jhj denotes

the number of members in schema h. Note that the schema

average �ðhÞ is nothing but the frequency of all instances of

the schema h with a classification value of 1. Similarly, note

that the frequency of the tuples with classification value of 0

is ð1� �ðhÞÞ. It can therefore be used to compute the

entropy at the node nk.

KARGUPTA ET AL.: ORTHOGONAL DECISION TREES 5

Fig. 3. Algorithm for obtaining the Fourier spectrum of a decision tree. k
in xk implies that xk is the kth feature. �k denotes the cardinality of xk
and jnodej denotes the size of subspace node covers. j�j is the size of

the complete instance space. nodei is the ith child of node.

confidenceðhÞ ¼ maxð�ðhÞ; 1� �ðhÞÞ

entropyðhÞ ¼ ��ðhÞ log�ðhÞ � ð1� �ðhÞÞ logð1� �ðhÞÞ:

The computation of �ðhÞ using the above expression for
a given ensemble is not practical since we need to evaluate
all x 2 h. Instead, we can use the following expression that
computes �ðhÞ directly from the given FS:

�ðhÞ ¼
X

p1

::
X

pm

wð0;...;p1;...;pm;...;0Þ exp
2�ið

p1b1
�j1

þ...þpmbm
�jm

Þ
;

where h ¼ � � �b1 � � � b2 � � � bm � � � that has m nonwild-
card values bi at position ji and pi 2 f0; 1; . . . ; �ji � 1g. A
similar Walsh analysis-based approach for analyzing the
behavior of genetic algorithms can be found elsewhere [17].
Note that the summations in (3) are defined only for the
fixed (nonwild-card) positions that correspond to the
features defining the path to the node nk.

Using (3) as a tool to obtain information gain, it is
relatively straight-forward to come up with a version of ID3
or C4.5-like algorithms that work using the Fourier
spectrum. However, a naive approach may be computation-
ally inefficient. The computation of �ðhÞ requires an
exponential number of FCs with respect to the order of h.
Thus, the cost involved in computing �ðhÞ increases
exponentially as the tree becomes deeper. Moreover, since
the Fourier spectrum of the ensemble is very compact in size,
most Fourier coefficients involved in computing �ðhÞ are
zero. Therefore, the evaluation of �ðhÞ using (3) is not only
inefficient, but also involves unnecessary computations.

Construction of a more efficient algorithm to compute
�ðhÞ is possible by taking advantage of the recursive and
decomposable nature of (3). When computing the average
of an order l schema h, we can reduce some computational
steps if any of the order l� 1 schemata which subsumes h is
already evaluated. For a simple example in the Boolean
domain, let us consider the evaluation of �ð�1 � 0 � �Þ. Let
us also assume that �ð�1 � ��Þ is precalculated. Then, �ð�1 �
0 � �Þ is obtained by simply adding w000100 and �w010100 to
�ð�1 � ��Þ. This observation leads us to an efficient algo-
rithm to evaluate schema averages. Recall that the path to a
node from the root in a decision tree can be represented as a
schema. Then, choosing an attribute for the next node is
essentially the same as selecting the best schema among
those candidate schemata that are subsumed by the current
schema whose orders are just one more than that of this
schema. In the following section, we describe a tree
construction algorithm that is based on these observations.

5.2 Bottom-Up Approach to Construct a Tree

Before describing the algorithm, we need to introduce some
notations. Let hk¼i and h be two schemata. The order of hk¼i
is one higher than that of h. Schema hk¼i is identical to h

except at one position—the kth feature is set to i (Note that
we use similar notation for ExtractFS). For example,
consider schemata h ¼ ð �1� �2Þ and h3¼1 ¼ ð�1 � 12Þ. Here,
we use an integer number-based indexing of the features
(zero for the leftmost feature). �ðhÞ denotes a set of
partitions that are required to compute �ðhÞ (See (3)). A
k-fixed partition is a partition with a nonzero value at the
kth position. Let �ðkÞ be a set of order one k-fixed partitions;
�ðhk¼iÞ be the partial sum of �ðhk¼iÞ which only includes
k-fixed partitions. Now, the information gain achieved by
choosing the kth feature with a given h is redefined using
these new notations:

Gainðh; kÞ ¼ entropyðhÞ �
1

�k

X

�k�1

i¼0

entropyðhk¼iÞ

entropyðhk¼iÞ ¼ ��ðhk¼iÞ logð�ðhk¼iÞÞ � ð1� �ðhk¼iÞÞ

logð1� �ðhk¼iÞÞ

�ðhk¼iÞ ¼ �ðhÞ þ �ðhk¼iÞ

�ðhk¼iÞ ¼
X

j2�ðhÞ��ðkÞ

 jðhk¼iÞwj;

where � is the Cartesian product and �k is the cardinality of
the kth feature, respectively.

Now, we are ready to describe the Tree Construction
from Fourier Spectrum (TCFS) algorithm, which essentially
notes the decomposable definition of �ðhk¼iÞ and focuses on
computing �ðhk¼iÞ-s. Note that with a given h (the current
path), selecting the next feature is essentially identical to
choosing the kth feature that achieves the maximum
Gainðh; kÞ. Therefore, the basic idea of TCFS is to associate
most up-to-date �ðhk¼iÞ-s with the kth feature. In other
words, when TCFS selects the next node (after some i is
chosen for hk¼i), hk¼i becomes the new h. Then, it identifies
a set of FCs (We call these appropriate FCs) that are required
to compute all hk¼i-s for each feature and computes the
corresponding entropy. This process can be considered to
update each �ðhk¼iÞ for the corresponding kth feature as if it
were selected. The reason is that such computations are
needed anyway if a feature is to be selected in the future
along the current path. This is essentially updating �ðhk¼iÞ-s
for a feature k using bottom-up approach (following the
flavor of dynamic programming). Note that �ðhk¼iÞ is, in
fact, computable by adding �ðhk¼iÞ to �ðhÞ. Here, �ðhk¼iÞ-s
are partial sums that only current appropriate FCs con-
tribute to. The detection of all appropriate FCs requires a
scan over the FS. However, they are removed from the FS
once they are used in computation, since they are no longer
needed for the calculation of higher order schemata. Thus, it
takes a lot less time to compute higher order schemata; note
that it is just opposite to what we encountered in the naive
implementation. The algorithm stops growing a path when
either the original FS becomes an empty set or the minimum
confidence level is achieved. The depth of the resulting tree
can be set to a predetermined bound. A pictorial description
of the algorithm is shown in Fig. 6. Pseudocode of the
algorithm is presented in Figs. 4 and 5.

The TCFS uses the same criteria to construct a tree as that
of the C4.5. Both of them require a number of information-
gain-tests that grows exponentially with respect to the
depth of the tree. In that sense, the asymptotic running time
of TCFS is the same as that of the C4.5. However, while the
C4.5 uses original data to compute information gains, TCFS
uses a Fourier spectrum. Therefore, in practice, a compar-
ison of the running time between the two approaches will
depend on the sizes of the original data and that of the

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 7, JULY 2006

Fig. 4. Algorithm for constructing a decision tree from the Fourier
spectrum (TCFS).

Fourier spectrum. The following section presents an
extension of the TCFS for handling non-Boolean class labels.

5.3 Extension of TCFS to Multiclass Decision Trees

The extension of the TCFS algorithm to multiclass problems
is immediately possible by redefining the “entropy”

function. It should be modified to capture an entropy from
the multiple class labels. For this, let us first define �ðiÞðhÞ to
be a schema average function that uses =i (See Section 4.4)
only. Note that it computes the average occurrence of the
ith class label in h. Then, the entropy of a schema is
redefined as follows:

entropyðhÞ ¼ �
X

k

i¼1

�ðiÞðhÞ log�ðiÞðhÞ;

where k is the number of class labels.
This expression can be directly used for computing the

information gain to choose the decision nodes in a tree for
classifying domains with non-Boolean class labels.

In this section,wediscussedaway toassignaconfidence to
a node in a decision tree and considered amethod to estimate
information gain using it. Consequently, we showed that a
decision tree construction from the Fourier spectrum is
possible. In particular, we devised the TCFS algorithm that
exploits the recursive and decomposable nature of tree
building process in spectrum domain, thus constructing a
decision tree efficiently. In the following section, we will
discuss orthogonal decision trees that can be constructed
using the Fourier spectrum of the trees in an ensemble.

6 REMOVING REDUNDANCIES FROM ENSEMBLES

Existing ensemble-learning techniques work by combining
(usually a linear combination) the output of the base

KARGUPTA ET AL.: ORTHOGONAL DECISION TREES 7

Fig. 5. Algorithm for constructing a decision tree from the Fourier spectrum (TCFS). orderðhÞ returns the order of schema h. intersectðh; iÞ returns the
feature to be updated using wi, if such a feature exists. Otherwise, it returns �.

Fig. 6. Illustration of the Tree Construction from Fourier Spectrum
(TCFS) algorithm. It shows the constructed tree on the left. The
schemata evaluated at different orders are shown in the middle. The
rightmost tree shows the splitting of the set of all Fourier coefficients
used for making the process of looking up the appropriate coefficients
efficient.

classifiers. They do not structurally combine the classifiers
themselves. As a result, they often share a lot of
redundancies. The Fourier representation offers a unique
way to fundamentally aggregate the trees and perform
further analysis to construct an efficient representation.

Let feðxÞ be the underlying function representing the
ensemble ofm different decision trees, where the output is a
weighted linear combination of the outputs of the base
classifiers. Then, we can write,

feðxÞ ¼ �1�ð1ÞðxÞ þ �2�ð2ÞðxÞ þ � � � þ �m�ðmÞðxÞ

¼ �1

X

j2J 1

wð1Þ;j
�

j ðxÞ þ � � � þ �m
X

j2Jm

wðmÞ;j
�

j ðxÞ;

where �i is the weight of the ith decision tree and J i is
the set of all partitions with nonzero Fourier coefficients
in its spectrum. Therefore, feðxÞ ¼

P

j2J wðeÞ;j
�

j ðxÞ, where
wðeÞ;j ¼

Pm
i¼1 �iwðiÞ;j and J ¼ [mi¼1J i. Therefore, the Four-

ier spectrum of feðxÞ (a linear ensemble classifier) is
simply the weighted sum of the spectra of the member
trees.

Consider the matrix D where Di;j ¼ �ðjÞðxiÞ, where
�ðjÞðxiÞ is the output of the tree �ðjÞ for input xi 2 �. D is
an j�j �m matrix where j�j is the size of the input domain
and m is the total number of trees in the ensemble.

An ensemble classifier that combines the outputs of the
base classifiers can be viewed as a function defined over the
set of all rows in D. If D�;j denotes the jth column matrix of
D, then the ensemble classifier can be viewed as a function
of D�;1; D�;2; � � �D�;m. When the ensemble classifier is a
linear combination of the outputs of the base classifiers, we
have F ¼ �1D�;1 þ �2D�;2 þ � � ��mD�;m, where F is the
column matrix of the overall ensemble-output. Since the
base classifiers may have redundancy, we would like to
construct a compact low-dimensional representation of the
matrix D. However, explicit construction and manipulation
of the matrix D is difficult, since most practical applications
deal with a very large domain. We can try to construct an
approximation of D using only the available training data.
One such approximation of D and its Principal Component
Analysis-based projection is reported elsewhere [18]. Their
technique performs PCA of the matrix D, projects the data
in the representation defined by the eigenvectors of the
covariance matrix of D, and then performs linear regression
for computing the coefficients �1; �2; � � � ; and �m.

While the approach is interesting, it has a serious
limitation. First of all, the construction of an approximation
of D even for the training data is computationally prohibit-
ing for most large-scale data mining applications. Moreover,
this is an approximation since the matrix is computed only
over the observed data set of the entire domain. In the
following, we demonstrate a novel way to perform a PCA of
the matrix containing the Fourier spectra of trees. The
approach works without explicitly generating the matrix D.
It is important to note that the PCA-based regression scheme
[18] offers a way to find the weightage for the members of
the ensemble. It does not offer any way to aggregate the tree
structures and construct a new representation of the
ensemble which the current approach does.

The following analysis will assume that the columns of
the matrix D are mean-zero. This restriction can be easily
removed with a simple extension of the analysis. Note that
the covariance of the matrix D is DTD. Let us denote this
covariance matrix by C. The ði; jÞth entry of the matrix,

Ci;j ¼< Dð�; iÞ; Dð�; jÞ >¼< �ðiÞðxÞ; �ðjÞðxÞ >

¼
X

p

wðiÞ;pwðjÞ;p ¼< wðiÞ;wðjÞ > : ð4Þ

The fourth step is true by Lemma 2. Now, let us consider
the matrixW , whereWi;j is the coefficient corresponding to
the ith member of the partition set J from the spectrum of
the tree �ðjÞ. Equation (4) implies that the covariance
matrices of D and W are identical. Note that W is an jJ j �
m dimensional matrix. For most practical applications,
jJ j << j�j. Therefore, analyzing W using techniques like
PCA is significantly easier. The following discourse outlines
a PCA-based approach.

PCA of the covariance matrix of W produces a set of
eigenvectors V1; V2; � � �Vk. The eigenvalue decomposition
constructs a new representation of the underlying domain.
Note that since the eigenvectors are nothing but a linear
combination of the original column vectors of W, each of
them also form a Fourier spectrum and we can reconstruct a
decision tree from this spectrum. Moreover, since they are
orthogonal to each other, the tree constructed from them also
maintain, the orthogonality condition and, therefore, they
are redundancy-free. They define a basis set and can be used
to represent any given decision tree in the ensemble in the
form of a linear combination. Orthogonal decision trees can
be defined as an immediate extension of this framework.

A pair of decision trees f1ðxÞ and f2ðxÞ are orthogonal to
each other if and only if < faðxÞ; fbðxÞ >¼ 0 when a 6¼ b and
< faðxÞ; fbðxÞ >¼ 1 otherwise. The second condition is
actually a slightly special case of orthogonal functions
—orthonormal condition. A set of trees are pairwise
orthogonal if every possible pair of members of this set
satisfy the orthogonality condition.

The orthogonality condition guarantees that the repre-
sentation is not redundant. These orthogonal trees form a
basis set that spans the entire function space of the
ensemble. The overall output of the ensemble is computed
from the output of these orthogonal trees. Specific details of
the ensemble output computation depends on the adopted
technique to compute the overall output of the original
ensemble. However, for most popular cases considered
here, it boils down to computing the average output. If we
choose to go for weighted average, we may need to
compute the coefficients corresponding to each Vq using
linear regression or other similar techniques.

7 EXPERIMENTAL RESULTS

This section reports the experimental performance of

orthogonal decision trees on the following data sets—SPECT,

NASDAQ,DNA,House of Votes, andContraceptiveMethod

Usage Data. For each data set, the following three experi-

ments are performed using known classification techniques:

1. C4.5: The C4.5 classifier is built on training data and
validated over test data.

2. Bagging: A popular ensemble classification techni-
que, bagging, is used to test the classification
accuracy of the data set.

3. Random Forest: Random forests are built on the
training data, using approximately half the number
of features in the original data set. The number of

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 7, JULY 2006

trees in the forest is identical to that used in the
bagging experiment.1

We then perform another set of experiments for compar-
ing the techniques described in the previous sections in
terms of error in classification and tree complexity.

1. Reconstructed Fourier Tree (RFT): The training set
is uniformly sampled, with replacement and
C4.5 trees built on each sample. The Fourier
representation of each individual tree is obtained,
preserving a certain percentage (e.g., 90 percent) of
the energy. This representation of a tree is used to
reconstruct a decision tree using the TCFS algorithm
described in Section 5. The performance of a
reconstructed Fourier tree is compared with the
original C4.5 tree. The error in classification and tree
complexity of each of the reconstructed trees is
reported. The purpose of this experiment is to study
the effect of “noise removal” from the ensemble on
its classification-accuracy by going to the Fourier
domain and then coming back to the tree domain
using the TCFS algorithm.

2. Aggregated Fourier Tree (AFT): The training set is
uniformly sampled, with replacement and C4.5
decision trees built on each sample (This is identical
to bagging). A Fourier representation of each tree is
obtained (preserving a certain percentage of the total
energy), and these are aggregated with uniform
weighting to obtain the spectrum of an Aggregated
Fourier Tree (AFT). The AFT is reconstructed using
the TCFS algorithm described before and the
classification accuracy and the tree complexity of
this aggregated Fourier tree is reported.

3. Orthogonal Decision Trees: The matrix containing
the Fourier coefficients of the decision trees is
subjected to principal component analysis. Orthogo-
nal trees are built using the corresponding eigenvec-
tors. In most cases, it is found that the first principal
eigenvector captures most of the variance and, thus,
the orthogonal decision tree constructed from this
eigenvector is of particular interest. We report the
error in classification and tree complexity of the
orthogonal decision tree obtained from the most
dominant eigenvector. We also perform experiments
where we keep k2 significant eigenvectors. The trees
are combined by weighting them according to the
coefficients obtained from a Least Square Regression.
Each orthogonal decision tree is weighted using
coefficients calculated from Least Square Regression.
For this, we allow all the orthogonal decision trees to
individually produce their classification on the test
set. Thus, each ODT produces a column vector of its
classification estimate. Since the class-labels in the test
set are already known, we use the least square
regression to obtain the weights to assign to each
ODT. The accuracy of the orthogonal decision trees is
reported as ODT-LR (ODTs combined using Least
Square Regression).

In addition to reporting the error in classification, we

also report the tree complexity, the total number of nodes in

the tree. Similarly, the term ensemble complexity reflects
the total number of nodes in all the trees in the ensemble. A
smaller ensemble tree complexity implies a compact
representation of an ensemble and, therefore, it is desirable.
Our experiments show that ODTs usually offer significantly
reduced ensemble tree complexity without any reduction in
the accuracy. The following section presents the results for
the SPECT data set.

7.1 SPECT Data Set

This section illustrates the idea of orthogonal decision trees
using a well-known binary data set. The data set, available
from the University of California at Irvine, Machine
Learning Repository, describes the diagnosing of cardiac
Single Proton Emission Computed Tomography (SPECT)
images into two categories, normal or abnormal. The
database of 267 SPECT image sets (patients) is processed
to extract features that summarize the original SPECT
images. As a result, 44 continuous feature patterns are
obtained for each patient, which are further processed to
obtain 22 binary feature patterns. The training data set
consists of 80 instances and 22 attributes. All the features
are binary, and the class label is also binary (depending on
whether a patient is deemed normal or abnormal). The test
data set consists of 187 instances and 22 attributes.

Table 1a shows the error percentage obtained in each of
the different classification schemes. The root mean squared
error for the 10-fold cross validation in the C4.5 experiment
is found to be 0.4803 and the standard deviation is 2.3862.
For Bagging, the number of trees in the ensemble is chosen
to be 40. Our experiments reveal that further increase in
number of trees in the ensemble causes a decrease in
accuracy of classification of the ensemble possibly due to
overfitting of the data.

For experiments with Random Forests, a forest of 40 trees,
each constructed while considering 12 random features, is
built. The average Out of bag error is reported to be 0.3245.

Fig. 7a compares the accuracy of the original C4.5
ensemble with that of the Reconstructed Fourier Tree
(RFT) ensemble preserving 90 percent of the energy of the
spectrum. The results reveal that if all of the spectrum is
preserved, the accuracy of the original C4.5 tree and RFT
are identical. When the higher order Fourier coefficients are
removed, this becomes equivalent to pruning a decision
tree. This explains the higher accuracy of the reconstructed
Fourier tree preserving 90 percent of the energy of the
spectrum. Fig. 7b compares the tree complexity of the
original C4.5 ensemble with that of the RFT ensemble.

In order to construct the orthogonal decision trees, the
coefficient matrix is projected onto the first 15 most
significant principal components. The most significant
principal component captures 85.1048 percent of the
variance and the tree complexity of the ODT constructed
from this component is 17 with an accuracy of 91.97 percent.
Fig. 8 shows the variance captured by all the 15 principal
components.

Tables 1a and 1b present the accuracy and the tree-
complexity for this data set, respectively. The orthogonal
trees are found to be smaller in complexity, thus reducing
the complexity of the ensemble.

7.2 NASDAQ Data Set

The NASDAQ data set is a semisynthetic data set with
1,000 instances and 100 discrete attributes. The original data
set has three years of NASDAQ stock quote data. It is

KARGUPTA ET AL.: ORTHOGONAL DECISION TREES 9

1. We used the WEKA implementation (http://www.cs.waikato.ac.nz/
ml/weka/) of Bagging and Random Forests.

2. We select the value of k in such a manner that the total variance
captured is more than 90 percent. One could potentially do cross-validation
to obtain a suitable value of k as pointed out in [19], but this is beyond the
current scope of the work and will be explored in future.

preprocessed and transformed to discrete data by encoding

percentages of changes in stock quotes between consecutive

days. For these experiments, we assign four discrete values,

that denote levels of changes. The class labels predict

whether the Yahoo stock is likely to increase or decrease

based on attribute values of the 99 stocks. We randomly

select 200 instances for training and the remaining 800 in-
stances forms the test data set.

Table 2a illustrates the classification accuracies of
different experiments performed on this data set. The root
mean squared error for the 10-fold cross validation in the
C4.5 experiment is found to be 0.4818 and the standard
deviation is 2.2247. C4.5 has the best classification accuracy,
though the tree built has the highest tree complexity also.
For the bagging experiment, C4.5 trees are built on the data
set, such that the size of each bag (used to build the tree) as
a percentage of the data set is 40 percent. Also, a Random
Forest of 60 trees, each constructed while considering
50 random features, is built on the training data and tested
with the test data set. The average out of bag error is
reported to be 0.3165.

Fig. 9a compares the accuracy of the original C4.5
ensemble with that of the Reconstructed Fourier Tree
(RFT) ensemble preserving 90 percent of the energy of the
spectrum. Fig. 9b compares the tree complexity of the
original C4.5 ensemble with that of the RFT ensemble.

For the orthogonal trees, we project the data along the
first 10 most significant principal components. Fig. 10
illustrates the percentage of variance captured by the
10 most significant principal components.

Table 2b presents the tree-complexity information for
this set of experiments. Both the aggregated Fourier tree
and the orthogonal trees performed better than the single

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 7, JULY 2006

TABLE 1
(a) Classification Error and (b) Tree Complexity for SPECT Data

Fig. 7. The accuracy and tree complexity of C4.5 and RFT for SPECT data.

Fig. 8. Percentage of variance captured by principal components for

SPECT Data.

C4.5 tree or bagging. The tree-complexity result appears to
be quite interesting. While a single C4.5 tree had 29 nodes in
it, the orthogonal tree from the first principal component
requires just three nodes, which is clearly a much more
compact representation.

7.3 DNA Data Set

The DNA data set3 is a processed version of the
corresponding data set available from the UC Irvine
repository. The processed StatLog version replaces the
symbolic attribute values representing the nucleotides (only
A,C,T,G) by three binary indicator variables. Thus, the
original 60 symbolic attributes are changed into 180 binary
attributes. The nucleotides A,C,G,T are given indicator
values as follows: A ¼ 100, C ¼ 010, G ¼ 001, and T ¼ 000.
The data set has three class values 1, 2, and 3 corresponding
to exon-intron boundaries (sometimes called acceptors),
intron-exon boundaries (sometimes called donors), and the
case when neither is true. We further process the data such
that, there are are only two class labels, i.e., class 1
represents either donors or acceptors, while class 0
represents neither. The training set consists of 2,000 in-
stances and 180 attributes of which 47.45 percent belongs to
class 1, while the remaining 52.55 percent belongs to class 0.
The test data set consists of 1,186 instances and 180 attri-

butes of which 49.16 percent belongs to class 0 while the
remaining 50.84 percent belongs to the class 1. Table 3a
reports the classification error. The root mean squared error
for the 10-fold cross validation in the C4.5 experiment is
found to be 0.2263 and the standard deviation is 0.6086.

It may be interesting to note that the first five
eigenvectors are used in this experiment. Fig. 11 shows
the variance captured by these components. As before, the
redundancy free trees are combined by the weights
obtained from Least Square Regression. Table 3b reports
the tree complexity for this data set.

Fig. 12a compares the accuracy of the original C4.5
ensemble with that of the Reconstructed Fourier Tree (RFT)
ensemble preserving 90 percent of the energy of the
spectrum. Fig. 12b compares the tree complexity of the
original C4.5 ensemble with that of the RFT ensemble.

7.4 House of Votes Data

The 1984 United States Congressional Voting Records
Database is obtained from the University of California,
Machine Learning Repository. This data set includes votes
for each of the US House of Representatives Congressmen
on the 16 key votes identified by the CQA including water
project cost sharing, adoption of budget resolution, mx-
missile, immigration, etc. It has 435 instances, 16 Boolean
valued attributes, and a binary class label (democrat or

KARGUPTA ET AL.: ORTHOGONAL DECISION TREES 11

TABLE 2
(a) Classification Error and (b) Tree Complexity for NASDAQ Data

Fig. 9. The accuracy and tree complexity of C4.5 and RFT for Nasdaq data.

3. Obtained from http://www.liacc.up.pt/ML/statlog/data sets/dna.

republican). Our experiments use the first 335 instances for
training and the remaining 100 instances for testing. In our
experiments, missing values in the data are replaced by one.

The results of classification are shown in Table 4a while
the tree complexity is shown in Table 4b. The root mean
squared error for the 10-fold cross validation in the C4.5
experiment is found to be 0.2634 and the standard deviation
is 0.3862. For Bagging, 15 trees are constructed using the
data set, since this produced the best classification results.
The size of each bag was 20 percent of the training data set.
Random Forest of 15 trees, each constructed by considering
eight random features produces an average out of bag error
of 0.05502. The accuracy of classification and the tree
complexity of the original C4.5 and RFT ensemble are
illustrated in Fig. 13a and Fig. 13b, respectively.

For orthogonal trees, the coefficient matrix is projected
onto the first five most significant principal components.
Fig. 14a illustrates the amount of variance captured by each
of the principal components.

7.5 Contraceptive Method Usage Data

This data set is obtained from the University of California
Irvine, Machine Learning Repository and is a subset of the
1987 National Indonesia Contraceptive Prevalence Survey.
The samples were married women who were either not
pregnant or did not know if they were at the time of
interview. The problem is to predict the current contra-

ceptive method choice of a woman based on her demo-
graphic and socio-economic characteristics. There are
1,473 instances and 10 attributes including a binary class
label. All attributes are processed so that they are binary.
Our experiments use 1,320 instances for the training set
while the rest form the test data set.

The results of classification are tabulated in Table 5awhile
Table 5b shows the tree complexity. The root mean squared
error for the 10-fold cross validation in the C4.5 experiment is
found to be 0.5111 and the standard deviation is 1.8943. For a
Random Forest built with 10 trees, considering five random
features produces an average error in classification of about
45.88 percent and an average out of bag error of 0.42556.
Fig. 15a compares the accuracy of the original C4.5 ensemble
with that of the Reconstructed Fourier Tree (RFT) ensemble
preserving 90 percent of the energy of the spectrum. Fig. 15b
compares the tree complexity of the original C4.5 ensemble
with that of the RFT ensemble.

ForODTs, the data is projected along the first ten principal
components. Fig. 14b shows the amount of variance captured
by each principal component. It is interesting to note that the
first principal component captures only about 61.85 percent
of the variance and, thus, the corresponding ODT generated
from the first principal component has a relatively high tree
complexity.

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 7, JULY 2006

Fig. 10. Percentage of variance captured by principal components for

Nasdaq Data.

TABLE 3
(a) Classification Error and (b) Tree Complexity for DNA Data

Fig. 11. Percentage of variance captured by principal components for

DNA Data.

8 CONCLUSIONS

This paper introduced the notion of orthogonal decision

trees and offered a methodology to construct them.

Orthogonal decision trees are functionally orthogonal to

each other and they provide an efficient redundancy-free

representation of large ensembles that are frequently

produced by techniques like Boosting [2], [3], Bagging [4],

Stacking [5], and Random Forests [6]. The proposed

technique is also likely to be very useful in ensemble-based

mining of distributed [10] and stream data [7], [8].

KARGUPTA ET AL.: ORTHOGONAL DECISION TREES 13

Fig. 12. The accuracy and tree complexity of C4.5 and RFT for DNA data.

Fig. 13. The accuracy and tree complexity of C4.5 and RFT for House of Votes data.

TABLE 4
(a) Classification Error and (b) Tree Complexity for House of Votes Data

The proposed approach exploits the earlier work done by

Kargupta et al. [20], [9], which showed that the Fourier

transform of decision trees can be efficiently computed.

This work shows that we can compute the tree back from its

Fourier spectrum. The paper also offered a collection of new

results regarding the properties of the multivariate Fourier

spectrum of decision trees. Although the paper considers

the Fourier representation, this is clearly not the only

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 7, JULY 2006

Fig. 14. Percentage of variance captured by principal components for (a) House of Votes data and (b) Contraceptive Method Usage data.

TABLE 5
(a) Classification Error and (b) Tree Complexity for Contraceptive Method Usage Data

Fig. 15. The accuracy and tree complexity of C4.5 and RFT for Contraceptive Method Usage data.

available linear representation around. However, our work
shows that it is particularly suitable for representing
decision trees.

This work also opens up several new possibilities. Linear
systems theory offers many tools for analyzing properties
like stability and convergence. For example, eigenvalues of
a linear system are directly associated with the stability of
the system. Similar concepts may be useful in under-
standing the behavior of large ensembles. We plan to
explore these issues in the future.

ACKNOWLEDGMENTS

The authors acknowledge supports from the US National

Science Foundation CAREER award IIS-0093353, US Na-

tional Science Foundation grant IIS-0203958, and NASA

grant NAS2-37143. The work of B.-H. Park was partially

funded by the Scientific Data Management Center (http://

sdmcenter.lbl.gov) under the Department of Energy’s

Scientific Discovery through Advanced Computing (DOE

SciDAC) program (http://www.scidac.org). H. Kargupta is

also affiliated to Agnik, LLC., Columbia, MD. A four-page

version of this paper was published in the Proceedings of the

2004 IEEE International Conference on Data Mining.

REFERENCES

[1] J.R. Quinlan, “Induction of Decision Trees,” Machine Learning,
vol. 1, no. 1, pp. 81-106, 1986.

[2] Y. Freund, “Boosting a Weak Learning Algorithm by Majority,”
Information and Computation, vol. 121, no. 2, pp. 256-285, 1995.

[3] H. Drucker and C. Cortes, “Boosting Decision Trees,” Advances in
Neural Information Processing Systems, vol. 8, pp. 479-485, 1996.

[4] L. Breiman, “Bagging Predictors,” Machine Learning, vol. 24, no. 2,
pp. 123-140, 1996.

[5] D. Wolpert, “Stacked Generalization,” Neural Networks, vol. 5,
pp. 241-259, 1992.

[6] L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1,
pp. 5-32, 2001.

[7] W. Fan, S. Stolfo, and J. Zhang, “The Application of Adaboost for
Distributed, Scalable, and On-Line Learning,” Proc. Fifth ACM
SIGKDD Int’l Conf. Knowledge Discovery and Data Mining, 1999.

[8] W.N. Street and Y. Kim, “A Streaming Ensemble Algorithm (Sea)
for Large-Scale Classificaiton,” Proc. Seventh ACM SIGKDD Int’l
Conf. Knowledge Discovery and Data Mining, 2001.

[9] H. Kargupta and B. Park, “A Fourier Spectrum-Based Approach
to Represent Decision Trees for Mining Data Streams in Mobile
Environments,” IEEE Trans. Knowledge and Data Eng., vol. 16, no. 2,
pp. 216-229, 2002.

[10] B. Park, A. R, and H. Kargupta, “A Fourier Analysis-Based
Approach to Learn Classifier from Distributed Heterogeneous
Data,” Proc. First SIAM Int’l Conf. Data Mining, 2001.

[11] B.H. Park and H. Kargupta, “Constructing Simpler Decision Trees
from Ensemble Models Using Fourier Analysis,” Proc. Seventh
Workshop Research Issues in Data Mining and Knowledge Discovery,
pp. 18-23, 2002.

[12] F. Chung, Spectral Graph Theory. Providence, R.I.: Am. Math. Soc.,
1994.

[13] H. Kargupta and B. Park, “Mining Time-Critical Data Stream
Using the Fourier Spectrum of Decision Trees,” Proc. IEEE Int’l
Conf. Data Mining, pp. 281-288, 2001.

[14] H. Kargupta, B. Park, S. Pittie, L. Liu, D. Kushraj, and K. Sarkar,
“Mobimine: Monitoring the Stock Market from a PDA,” ACM
SIGKDD Explorations, vol. 3, no. 2, pp. 37-46, Jan. 2002.

[15] N. Linial, Y. Mansour, and N. Nisan, “Constant Depth Circuits,
Fourier Transform, and Learnability,” J. ACM, vol. 40, pp. 607-620,
1993.

[16] E. Kushilevitz and Y. Mansour, “Learning Decision Trees Using
the Fourier Spectrum,” SIAM J. Computing, vol. 22, no. 6, pp. 1331-
1348, 1993.

[17] D. Goldberg, “Genetic Algorithms and Walsh Functions: Part I, a
Gentle Introduction,” Complex Systems, vol. 3, no. 2, pp. 129-152,
1989.

[18] C.J. Merz and M.J. Pazzani, “A Principal Components Approach
to Combining Regression Estimates,” Machine Learning, vol. 36,
nos. 1-2, pp. 9-32, 1999.

[19] C. Merz and M. Pazzani, “A Principal Components Approach to
Combining Regression Estimates,”Machine Learning, vol. 36, pp. 9-
32, 1999.

[20] H. Kargupta, B. Park, D. Hershberger, and E. Johnson, “Collective
Data Mining: A New Perspective towards Distributed Data
Mining,” Advances in Distributed and Parallel Knowledge Discovery,
H. Kargupta and P. Chan, eds., AAAI/MIT Press, 2000.

Hillol Kargupta received the PhD degree in
computer science from the University of Illinois
at Urbana-Champaign in 1996. He is an associ-
ate professor in the Department of Computer
Science and Electrical Engineering, University of
Maryland, Baltimore County. He is also a
cofounder of Agnik LLC, an ubiquitous intelli-
gence company. His research interests include
mobile and distributed data mining and the
computation in biological processes of gene

expression. Dr. Kargupta won a US National Science Foundation
CAREER award in 2001 for his research on ubiquitous and distributed
data mining. He, along with his coauthors, received the best paper
award at the 2003 IEEE International Conference on Data Mining for a
paper on privacy-preserving data mining. He won the 2000 TRW
Foundation Award and the 1997 Los Alamos Award for Outstanding
Technical Achievement. His research has been funded by the US
National Science Foundation, the US Air Force, the US Department of
Homeland Security, NASA, and various other organizations. He has
published more than 90 peer-reviewed articles in journals, conferences,
and books. He has coedited two books: Advances in Distributed and
Parallel Knowledge Discovery and Data Mining: Next Generation
Challenges and Future Directions, both published by AAAI/MIT Press.
He is an associate editor of the IEEE Transactions on Knowledge and
Data Engineering and the IEEE Transactions on Systems, Man, and
Cybernetics, Part B. He regularly serves in the organizing and program
committee of many data mining conferences. More information about
him can be found at http://www.cs.umbc.edu/~hillol. He is a senior
member of the IEEE.

Byung-Hoon Park received the MS and PhD
degrees in computer science, both from Wa-
shington State University in 1996 and 2001,
respectively. He is currently a research scientist
at the Computer Science and Mathematics
Division of the Oak Ridge National Laboratory
(ORNL). His research areas include distributed
data mining, computational biology, genetic
computing, data stream analysis, and text
mining. His research activities have been sup-

ported by the Genomes-to-Life program of the US Department of Energy
(DOE), Scientific Data Management (SDM) of DOE SciDAC program,
and the Biodefense Knowledge Center projects of the US Department of
Homeland Security. Before joining the ORNL, Dr. Park was with the
University of Maryland Baltimore County as a postdoctoral research
associate, where he was involved in a NASA EOS distributed data
mining project. He served on the program committees of several data
mining conferences and workshops. He also serves as a reviewer of
numerous journals and conferences.

Haimonti Dutta received the BS degree in
computer science from Jadavpur University,
Kolkata, India, in 1999 and the MS degree in
computer and information science from Temple
University, Philadelphia, in 2002. She worked for
a year as a Software Consultant at iGate Global
Solutions, Bangalore. She is currently a PhD
student in the Department of Computer Science
and Electrical Engineering at the University of
Maryland, Baltimore County. Her research inter-

ests include distributed data mining, data stream monitoring, grid
mining, and medical informatics.

KARGUPTA ET AL.: ORTHOGONAL DECISION TREES 15

