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Abstract

The weight sharing scheme and spatial pooling oper-

ations in Convolutional Neural Networks (CNNs) intro-

duce semantic correlation to neighboring pixels on fea-

ture maps and therefore deteriorate their pixel-wise clas-

sification performance. In this paper, we implement an

Orthogonal Decomposition Unit (ODU) that transforms a

convolutional feature map into orthogonal bases targeting

at de-correlating neighboring pixels on convolutional fea-

tures. In theory, complete orthogonal decomposition pro-

duces orthogonal bases which can perfectly reconstruct any

binary mask (ground-truth). In practice, we further de-

sign incomplete orthogonal decomposition focusing on de-

correlating local patches which balances the reconstruction

performance and computational cost. Fully Convolutional

Networks (FCNs) implemented with ODUs, referred to as

Orthogonal Decomposition Networks (ODNs), learn de-

correlated and complementary convolutional features and

fuse such features in a pixel-wise selective manner. Over

pixel-wise binary classification tasks for two-dimensional

image processing, specifically skeleton detection, edge de-

tection, and saliency detection, and one-dimensional key-

point detection, specifically S-wave arrival time detection

for earthquake localization, ODNs consistently improves

the state-of-the-arts with significant margins.

1. Introduction

Pixel-wise binary classification tasks, e.g., skeleton de-

tection, edge detection, and saliency detection, are funda-

mentally important for computer vision and pattern recog-

nition. Skeleton is one of the most representative visual

properties, describing objects with compact but informative
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Figure 1: Orthogonal Decomposition Unit (ODU) trans-

forms a convolutional feature map to orthogonal bases,

which can be used to perfectly reconstruct complex binary

masks (ground-truth) with convolutional reconstruction.

curves. Such curves constitute a continuous decomposition

of object shapes [25], providing valuable cues for both ob-

ject representation and recognition. Edge can be converted

into descriptive features and spatial constraints, which en-

force object grouping [38], semantic segmentation [21], and

object localization [13]. Saliency represents the most con-

spicuous and attractive regions in an image, and saliency

detection serves as the first step to a variety of computer

vision applications [8].

Pixel-wise binary classification tasks have the common

goal about predicting a mask of interest given a color input

image. In the deep learning era, the fully convolutional neu-

ral networks (FCNs) [27] have been widely applied to solve

pixel-wise classification problems due to their end-to-end

training manner and flexibility to the image size. Recent

FCN-based approaches, e.g., holistically-nested edge de-
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tection (HED) and side-output residual network (SRN) [11]

root in multi-layer feature fusion with the motivation that

low-level features focus on details while high-level features

are rich in semantics [11]. Linear Span Network (LSN) [19]

uses linear span theory to de-correlate the convolutional fea-

ture channels and increase their independence.

The multi-layer feature fusion and channel-level de-

correlation have been extensively explored. However, pixel-

level de-correlation remains unsolved. The backbone CNNs

used in pixel-wise binary classification approaches are usu-

ally pre-trained on image classification and have pixel-wise

semantic correlation which caused by the weight sharing

scheme and pooling operations notably deteriorates the net-

work’s capability about pixel-wise classification.

In this paper, we propose an Orthogonal Decomposition

Unit (ODU) which transforms a convolutional feature map

into orthogonal channels, Fig. 1, and targets at alleviating

semantic correlation of neighboring pixels on convolutional

the feature map. The ODU is based on a mathematical prin-

ciple that any vector, e.g., a binary ground-truth mask, can

be perfectly reconstructed by a set of complete orthogonal

bases (orthogonal feature channels). When fusing the de-

composed feature maps with a convolutional operation, the

convolutional weights can be solved independently, which

endows ODU the capability of pixel-wise refinement over

feature maps. Considering that neighboring pixels suffer

semantic correlation more critical, we utilize incomplete or-

thogonal decomposition on local feature patches. Besides

the de-correlation of local patches, incomplete orthogonal

decomposition also decreases the computational cost com-

pared with complete orthogonal decomposition.

The ODU can be added atop the output layer of FCNs

and update them to Orthogonal Decomposition Networks

(ODNs) which facilitate learning de-correlated and comple-

mentary features. In contrast to existing FCNs, e.g., SRN

[11], LSN [19], and deeply supervised short-connections

(DSS) [8] that focus on learning channel-level comple-

mentary features, ODNs pursue pixel-level spatial de-

correlation and feature complementarity in a more effective

way.

The contributions of this paper include:

• A plug-and-play module named Orthogonal Decom-

position Unit (ODU) is designed to partition neighbor-

ing pixels on a feature map into orthogonal channels

that targets to alleviate the fundamental drawback of

CNNs about pixel-level semantic correlation.

• With ODU plugged atop the output layer, success-

ful fully convolutional networks, including VGG [33],

HED [39], and SRN [11], are upgraded to Orthogo-

nal Decomposition Networks (ODNs), which facilitate

learning de-correlated and complementary features.

• With negligible computation cost, ODNs consistently

improves the state-of-the-arts with significant mar-

gins on pixel-wise binary classification tasks for two-

dimensional image processing, specifically skeleton

detection, edge detection, and saliency detection, and

one-dimensional keypoint detection, specifically S-

wave arrival time detection for earthquake localization.

2. Related Work

In this section, we review approaches about pixel-wise

binary classification and methods about learning comple-

mentary and/or de-correlated features with CNNs.

Pixel-wise binary classification. The early pixel-wise

binary classification approaches rooted in hand-crafted im-

age processing methods [3,12,18,24], which used morpho-

logical operations to localize pixels of interest, e.g., edge

or skeleton pixels. Recently, learning based methods were

proposed for pixel-wise binary classification. The multiple

instance learning method [36] was used to learn a true skele-

ton pixel from a bag of pixels. The structured random for-

est [35] and subspace multiple instance learning [28] were

employed to perform skeleton detection and localization.

With the rise of deep learning, researchers have formu-

lated pixel-wise binary classification as an image-to-mask

mapping problem and focusing on fusing the multi-layer

convolutional features in an end-to-end manner.

HED [39] introduced deeply supervised side-output net-

work to learn a pixel-wise classifier for edge detection.

Multiscale deep features (MSD) [14] extracted and fused

features from multiple convolutional layers for saliency de-

tection, and leverages image segmentation to further boost

the performance. Fusing scale-associated deep side-outputs

(FSDS) [31] learned multi-scale skeleton representation

given scale-associated ground-truth. SRN [11] and DSS [8]

leveraged the side-output residual units to fit the errors be-

tween the object symmetry/skeleton ground-truth and the

side-outputs of multiple convolutional layers. To improve

the pixel-wise classification accuracy, a segment-wise spa-

tial pooling were proposed for saliency detection [16].

It has been extensively explored that how to fuse multi-

layer convolutional features to predict binary mask. Never-

theless, researchers barely investigate de-correlating neigh-

boring pixels in a convolutional layer. With strong semantic

correlation, CNN’s capability for pixel-wise classification

remains limited.

Convolutional feature de-correlation. From a broad

view of convolutional feature de-correlation, canonical cor-

relation analysis (CCA) [4, 34] and singular vector decom-

position (SVD) [34] were implemented into CNNs with

specially designed de-correlation layers. These approaches

validated the feasibility of using a single de-correlation

layer to push the network learning complementary features.

For object saliency detection, a super-pixel approach was

combined with FCNs to reduce the correlation of deep pix-
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Figure 2: ODU eases the semantic correlation among neighbouring pixels by decomposing the input map to orthogonal

channels, which are further fused in the convolutional reconstruction to perform pixel-wise refinement.

els [7]. For multiple pixel-wise classification tasks, SRN

[11] and DSS [8] used residual models to “force” the side-

output features from different convolutional layers to be

complementary. A recent research, linear span network

(LSN) [19] linked the multi-layer convolutional features

with the linear span theory to reduce the correlation and in-

crease the complementary of multi-channel features. How-

ever, the pixel-wise de-correlation problem remains un-

solved, despite of the effort on sub-pixel operations [32].

3. Orthogonal Decomposition Unit

An Orthogonal Decomposition Unit (ODU) is made up

of two components of orthogonal decomposition and con-

volutional reconstruction, Fig. 2. Orthogonal decomposi-

tion is utilized to decompose an input map to a set of or-

thogonal channels, which have the same size to the input

map. Convolutional reconstruction is then utilized to fuse

the orthogonal channels to an output map with pixel-wise

refinement.

3.1. Orthogonal Decomposition for Spatial De
correlation

Formally, we denote an m × n input map as A = (aij),
where i = 1, 2, · · ·m and j = 1, 2, · · ·n. aij is the pixel

at i-th row and j-th column on the map. The input map A
is transformed to an m × n × mn map with complete or-

thogonal decomposition, denoted as D, on the left of Fig 2.

Supposing the k-th channel of D as D(k) = (d
(k)
ij ), where

k = 1, 2, · · · ,mn, the pixel-wise correspondence between

A and D is defined as

{

d
(k)
ij = aij , if k = (i− 1)× n+ j

d
(k)
ij = 0, else

. (1)

According to Eq. 1, it can be easily concluded that complete

orthogonal decomposition has two elegant properties.

Property 1: sparsity. Neighboring pixels in the input

map are decomposed to different channels with sparse non-

zero elements, i.e., a channel has at most one non-zero

pixel. The element-wise sum of the orthogonal channels

is equivalent to the input map, as

A =

mn
∑

k=1

D(k). (2)

Property 2: orthogonality. As the locations of non-zero

pixels from any two channels are different with each other,

any two channels of the output map are orthogonal to each

other, as

D(i) ·D(j) = 0, 1 ≤ i 6= j ≤ mn. (3)

3.2. Convolutional Reconstruction for Pixelwise
Refinement

In convolutional reconstruction, a 1 × 1 convolutional

layer is inserted atop the orthogonal decomposition layer

to fit the ground-truth. Denoting the m × n output map

and binary ground-truth as B = (bij) and G = (gij), the

convolutional reconstruction is formulated as
mn
∑

k=1

λkD
(k) = B ≈ G, k = 1, 2, · · · ,mn, (4)

where k = 1, 2, · · · ,mn and λk denotes the convoltuional

reconstruction coefficient to be learned. Eq. 4 can be solved

as

λ(i−1)n+j = gij/aij , aij 6= 0, (5)

which implies that with back-propagation each channel is

assigned an independent weight corresponding to the single

non-zero pixel. In this way, we can operate each pixel on

the input map in the convolutional reconstruction for pixel-

wise refinement. As the condition aij 6= 0 can be easily

satisfied in the back-propagation process, ODU can com-

pletely reconstruct an arbitrary given binary mask with the

orthogonal features.
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Figure 3: The orthogonal coordinate system generated from

the input map by ODU can span the whole space.

3.3. Geometric Interpretation

To understand ODU, we visualize a two dimensional ex-

ample, Fig. 3. A single channel input map can be repre-

sented as a vector α = (a1, a2) in the plane, Fig. 3(1).

According to Eq. 1, vector α is decomposed into two or-

thogonal vectors, i.e., α1 = (a1, 0) and α2 = (0, a2), in the

orthogonal decomposition. These two orthogonal vectors

establish an orthogonal coordinate system, Fig. 3(2).

As shown in Fig. 3(2), α1 and α2 can span the whole

plane, where any vector can be perfectly reconstructed by

α1 and α2. In convolutional reconstruction, the recon-

struction coefficients can be directly computed by the coor-

dinates of β, i.e., a ground-truth mask. According to Eq. 5,

α1, and α2 are transformed to β1 and β2, which are equiv-

alent to the orthogonal projection of β to α1 and α2, Fig.

3(3). β is then reconstructed as β = β1 + β2, Fig. 3(4).

Therefore, ODU can reconstruct β by independently fit-

ting β1 and β2 in two orthogonal directions, which ensures

the capability of pixel-wise refinement through spacial de-

correlation of the input map.

4. Orthogonal Decomposition Network

Considering that neighboring pixels suffer semantic cor-

relation most, we introduce ODU with incomplete orthog-

onal decomposition (IOD) which focuses on de-correlating

the neighboring pixels within local patches. With IOD, we

build Orthogonal Decomposition Network (ODNs) using

single-ODU or multi-ODU to approximate the sparsity and

orthogonality of features.

4.1. Incomplete Orthogonal Decomposition

The incomplete orthogonal decomposition, Fig. 4(a), is

proposed to perform spacial de-correlation on local patches.

Specifically, we use a pw × ph non-overlap densely sliding

window to partition an input map into local patches with the

same size and perform the complete orthogonal decompo-

sition defined in Eq. 1 on all patches. With incomplete or-

thogonal decomposition, the pixel correspondence between

the input map and the channels of the output feature map is

defined as
{

d
(k)
ij = aij , if k = (i

′

− 1)× pw + j
′

d
(k)
ij = 0, else

, (6)

where aij and dij are defined in Eq. 1, i
′

≡ i(modph),

j
′

≡ j(modpw), 1 ≤ i
′

≤ ph, 1 ≤ j
′

≤ pw, 1 ≤ i ≤

m, 1 ≤ j ≤ n.

The incomplete orthogonal decomposition approximates

the properties of sparsity and orthogonality defined in Eq. 2

and Eq. 3 while reducing the channels of the output feature

map to pw · ph. Contrarily, according to Eq. 1, an m × n
input map requires mn channels to implement the complete

orthogonal decomposition. When m and n are large, there

is a curse of dimensionality.

According to Eq. 5, the essence of ODU with complete

orthogonal decomposition is refining each pixel with an in-

dependent weight. In incomplete orthogonal decomposi-

tion, there is weight sharing that non-zero pixels in the same

channel share the reconstruction coefficient. Therefore, we

appropriately use filter size larger than the size of orthogo-

nal decomposition patch in the convolutional reconstruction

to ease the weight sharing.

4.2. ODN Exemplars

By integrating the ODU with incomplete orthogonal de-

composition, we update FCNs including VGG [33], HED

[39] and SRNs [11] to OD-VGG, OD-HED, and OD-SRN,

as shown in Fig. 4(b). For OD-VGG, a single ODU is added

atop the last convolutional layer of VGG-16. For OD-HED

and OD-SRN, six ODUs are inserted in the five side-output

branches and one fusion branch. HED is an effective archi-

tecture for multi-scale convolutional feature fusion, while

SRN updated the fusion strategy by introducing residual

modules between the adjacent side-output branches. With

these ODN exemplars, we target at validating the general

applicability of ODUs to pixel-wise refinement in popular

FCN architectures.

Single-ODU: spatial de-correlation. It is known that

neighboring pixels on CNN feature maps have strong se-

mantic correlation for the weight sharing scheme and spatial

pooling operations. Such correlation causes falsely classify-

ing background pixels near a true positive to false positives,

and vice versa. With the sparsity (Property 1) of orthog-

onal decomposition, convolutional reconstruction can inde-

pendently pinpoint the label of each pixel. In other words, a

single ODU implement pixel-wise refinement through spa-

tial de-correlation.

Multi-ODU: complementary feature learning. State-

of-the-art approaches usually perform channel-wise feature
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Figure 4: (a) Incomplete orthogonal decomposition with an 3× 5 input map and 2× 2 patch size. (b) With ODUs, plug-and-

play modules added atop the output layers, VGG-16 [33], HED [39] and SRN [11] are updated to ODNs.

integration, but fail to differentiate positive and negative

pixels in the same channels, which inevitably introduces

noise to the final outputs. With multiple ODUs, the orthog-

onality (Property 2) drives the network to learn comple-

mentary features in the linear span view [19]. Meanwhile,

the sparsity (Property 1) make the feature fusion proce-

dure more selective, i.e., different stages enhance/suppress

pixels in different areas. In this way, the potential of the

backbone network to learn complementary feature is fur-

ther explored which further promote the ODN’s capability

of pixel-wise refinement.

5. Experiments

In this section, the experimental settings are first intro-

duced. The effects of ODU on feature de-correlation and

pixel-level refinement are then validated. Finally, the per-

formance of ODNs is reported on pixel-wise binary classifi-

cation tasks for two-dimensional image processing, specifi-

cally skeleton detection, edge detection, and saliency detec-

tion, and one-dimensional keypoint detection, specifically

S-wave arrival time detection for earthquake localization.

All the experiments run on a Tesla K40 GPU. The mini-

batch size is set to 1, the loss-weight to 1 for each output

layer, the momentum to 0.9, the weight decay to 0.002, and

the initial learning rate to 1e-6, which decreases one mag-

nitude for every 10,000 iterations.

5.1. ODU Effect

From left to right in each row of Fig. 5, it can be seen that

the output maps of OD-HED are refined and much back-

ground noise is suppressed. Particularly, the zigzag noise

caused by up-sampling is eased and the fused output (the

last row of OD-HED) is closer to the ground-truth. By com-

paring the outputs of all five stages of HED and OD-HED

in Fig. 5 from top to down, we conclude that the output

maps of OD-HED are more complementary than those of

HED. In shallow stages of OD-HED, the fine details are
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Figure 5: With ODU, each input feature map (first col-

umn) is decomposed into orthogonal channels (middle col-

umn) that facilitate de-correlated and complementary fea-

ture learning and pixel-wise refinement (last column).

richer than that of HED. The torso of the horse is suppressed

while the slim parts including the tail and legs are enhanced.

In deep stages of OD-HED, the torso of the horse is en-

hance while slim parts are suppressed. These validate that

ODUs can drive multi-layer learning complementary con-

volutional features. With t-SNE analysis, it’s illustrated that

with the features learned by OD-HED, the background and

foreground pixels are more separable, validating the effec-

tiveness of ODUs for semantic de-correlation, Fig. 6.

We give quantitative comparison of patch sizes and

convolutional reconstruction filter size of incomplete or-

thogonal decomposition on SK-LARGE skeleton detection

dataset, Table 1 and Table 2. In Table 1, it can be seen
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HED OD-HED

Figure 6: t-SNE of foreground/background pixels shows

that the features of OD-HED incorporate less semantic cor-

relation than those of HED. (Best viewed in color)

Table 1: Comparison of patch sizes of incomplete orthogo-

nal decomposition on SK-LARGE with 11× 11 filter size.

Patch size w/o 3× 3 5× 5 7× 7
F-measure 0.489 0.604 0.606 0.600

Table 2: Comparison of filter sizes for convolutional recon-

struction on SK-LARGE with 5× 5 patch size.

Filter size 3×3 7×7 11×11 15×15 17×17

F-measure 0.511 0.575 0.606 0.620 0.619

Table 3: Skeleton detection on SKLARGE.

Methods F-measure ∆ F-measure

VGG-16 0.489

OD-VGG 0.620 0.131

HED [39] 0.495

OD-HED 0.644 0.149

SRN [11] 0.655

OD-SRN 0.676 0.021

that the F-measure significantly increases after applying

the ODU. Compared with VGG-16 without ODU, VGG-16

with incomplete orthogonal decomposition patch size 3×3,

achieve 21.5% (0.489 vs. 0.604) performance gain. As se-

mantic correlation mainly exits within local patches, the F-

measure increases to 0.606 using patch size 5× 5, but stops

increase when the size becomes larger. In all the following

experiments, we use the patch size 5 × 5. In Table 2, we

evaluate reconstruction convolutional filters under different

sizes. From 3 × 3 to 15 × 15, the performance keeps in-

creasing, but drops a little at 17 × 17. The reason for this

phenomenon is that larger filter eases the weight sharing

of non-zero pixels of the incomplete decomposed orthog-

onal features while aggravates the weight learning burden.

Therefore the 15× 15 convolutional filter is selected for re-

construction.

5.2. Skeleton Detection

Five skeleton detection datasets, including SYMMAX

[36], WH-SYMMAX [28], SK-SMALL [31], SK-LARGE
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Figure 7: Pixel-wise refinement of skeleton detection ex-

amples by ODNs. It can be seen that with ODUs inserted,

zigzag noise and blur are suppressed and fine details of ob-

ject skeletons are detected.

[30], and Sym-PASCAL [11] are used to evaluate ODNs.

SYMMAX contains 200/100 training/test images. SK-

SMALL involves skeletons about 16 classes of objects with

300/206 training/test images. Based on SK-SMALL, SK-

LARGE is extended to 746/745 training/test images. Sym-

PASCAL is derived from the PASCAL-VOC-2011 segmen-

tation dataset [5] which contains 14 object classes with

648/787 images for training and test. By changing thresh-

old values on output masks we get multiple predicted bi-

nary skeleton masks, which is compared with the ground-

truth pixel-by-pixel to compute precision (P) and recall

(R). The F-measure is used to evaluate the performance

of the different detection approaches, which is calculated

with the optimal threshold values over the whole dataset as

F = 2P ·R/(P +R).

The performance of three ODNs including OD-VGG,

OD-HED, and OD-SRN and the comparisons with the base-

line networks are shown in Table 3. It can be seen that OD-

VGG outperforms VGG by 13.1%, OD-HED outperforms

HED by 14.9%. The reason for the large performance gain

lies in that a single ODU in VGG, Fig. 4(b), effectively de-

correlates convolutional features while multiple ODUs in

HED, Fig. 4(b), drive learning multi-layer complementary

features. With the capability of pixel-wise label refinement,
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Table 4: Performance comparison of state-of-the-art approaches on five commonly used skeleton detection datasets.

Lindeberg [18] MIL [36] HED [39] FSDS [31] LSN [19] SRN [11] OD-SRN (ours)

WH-SYMMAX [28] 0.277 0.365 0.743 0.769 0.797 0.780 0.804

SK-SMALL [31] 0.227 0.392 0.542 0.623 0.633 0.609 0.624

SYMMAX [36] 0.360 0.362 0.427 0.467 0.480 0.446 0.489

SK-LARGE [30] 0.270 0.293 0.495 – 0.668 0.655 0.676

Sym-PASCAL [11] 0.138 0.174 0.369 0.418 0.425 0.443 0.444

Table 5: Performance comparison on the BSDS500 edge

detection dataset.

Methods ODS OIS AP

DC [29] 0.757 0.776 0.790

HED [39] 0.780 0.797 0.814

SRN [11] 0.782 0.800 0.779

LSN [19] 0.790 0.806 0.618

OD-SRN(ours) 0.798 0.814 0.782

Human 0.800 0.800 –

OD-SRN outperforms SRN that uses residual modules to

learn complementary features, aggregating the performance

by 2.1%. The pair-wise comparison of skeleton detection

results is illustrated in Fig. 7.

On the five commonly used skeleton detection datasets,

Table 4, the OD-SRN respectively outperforms the baseline

SRN 2.4%, 1.5%, 4.3%, 2.1%, and 0.1% and beats the state-

of-the-art approaches.

5.3. Edge Detection

Edge detection is another typical pixel-wise binary clas-

sification task. The BSDS500 [2] dataset that is composed

of 200 training images, 100 validation images, and 200 test-

ing images is used to evaluated the ODN. In BSDS 500,

each edge mask is manually annotated by five persons on

average. For training images, we preserve their positive

labels annotated by at least three human annotators. The

F-measures when choosing an optimal scale for the entire

dataset (ODS) or per image (OIS), and the average preci-

sion (AP) are used as the evaluation metrics.

As shown in Table 5, the DeepContour (DC) [29] sets a

solid baseline. The HED [39] approach that fuses multi-

scale convolutional features reports higher performance

with ODS=0.780. The state-of-the-art SRN [11] achieves

ODS=0.782, and the LSN [19] achieves ODS=0.790. OD-

SRN achieves the best performance, ODS=0.798 and OIS

=0.814, which is even comparable to human performance.

5.4. Saliency Detection

We evaluate OD-SRN on five object saliency detection

datasets, including MSRA-B [20], ECSSD [40], HKU-IS

[15], PASCALS [17], SOD [22] [23]. MSRA-B contains

5,000 images with single objects. ECSSD contains 1,000

images with complex backgrounds. HKU-IS contains 4000

images for multi-object saliency. PASCALS contains 850

images. SOD is a subset of the BSDS dataset and contains

300 images, most of which has more than one salient ob-

jects. We train OD-SRN with the MSRA-B dataset and test

the model on all five datasets. F-measure and the mean ab-

solute error (MAE) are used as performance metrics [9].

In Table 6, OD-SRN consistently outperforms the base-

line SRN on the five datasets. The advantage of our ap-

proach lies in pixel-wise label refinement, so it mainly ag-

gregates the saliency detection results at object boundaries,

as shown in Fig. 8. For holistic saliency regions, the perfor-

mance improvement is moderate.

5.5. Onedimensional Keypoint Detection: Swave
Arrival Time Detection

Task and dataset. As a general approach for pixel-wise

binary classification, ODN is extended to one-dimensional

keypoint detection, i.e., detecting S-wave arrival times of

an earthquake in enormous seismograms, Fig. 9. These

arrivals are keypoints of time when S-wave reaches seis-

mometers, which are essential for accurate earthquake lo-

calization [6] and earth interior imaging [10] [37]. Such

arrivals are usually annotated by experts with great efforts

[1] [26]. The training dataset includes 20,000 S-wave pick-

waveform pairs provided by human experts1. The testing

dataset includes 1512 records from 782 stations of 97 earth-

quakes in Japan. Each record is discretized as a 1D vector

with 1200 points and two channels corresponding to a radial

component R and a transverse component T , Fig. 9.

Performance and analysis. The S-wave arrival time de-

tection performance is evaluated by calculating the propor-

tions of samples under different time deviation between the

prediction and the ground-truth, Table 7. It can be seen that

OD-SRN outperforms the SRN baseline, i.e., with higher

proportion under the same time deviation. Specially, with

deviation ≤ 0.2s, OD-SRN achieves 76.7% accuracy, which

significantly outperforms SRN by 4.5%. In Fig. 9, SRN re-

ports a false positive (red dotted box), while OD-SRN can

precisely detect the arrival time of the S-wave by predicting

1Research Center for Prediction of Earthquakes and Volcanic Erup-

tions, Tohoku University and Hi-net
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Table 6: Performance comparison of the state-of-the-art approaches on commonly used saliency detection datasets. (Smaller

MAE indicates better performance.)

Methods
MSRA-B [20] ECSSD [40] HKU-IS [15] PASCALS [17] SOD [22] [23]

Fβ MAE Fβ MAE Fβ MAE Fβ MAE Fβ MAE

SRN [11] 0.888 0.063 0.872 0.084 0.871 0.065 0.771 0.129 0.803 0.132

OD-SRN (ours) 0.899 0.058 0.883 0.078 0.882 0.060 0.786 0.121 0.815 0.129

Table 7: Performance comparison on S-wave arrival time detection (sample proportions under time deviation).

Deviation(s) 0.00 0.01 0.02 0.03 0.04 0.05 0.06-0.10 0.11-0.20 ≤ 0.20
SRN [11] 0.030 0.065 0.063 0.073 0.051 0.057 0.192 0.190 0.722

OD-SRN(ours) 0.035 0.072 0.079 0.053 0.058 0.054 0.211 0.204 0.767

Figure 8: Pixel-wise refinement of saliency by OD-SRN.
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Figure 9: An S-wave arrival time example is detected by

SRN and OD-SRN. A false positive (red dotted box) pre-

dicted by SRN is suppressed by OD-SRN.

the maximum keypoint, which shows the pixel-level refine-

ment capability of OD-SRN.

Fig. 10 shows S-wave arrival time detection examples

predicted by OD-SRN (red lines) which achieves close per-

formance to the ground-truth ( blue lines) annotated by hu-

man experts.

6. Conclusion

We proposed the Orthogonal Decomposition Unit

(ODU) targeting at de-correlating neighboring pixels on

convolutional features. In theory, the complete orthogonal

time(s)
0 2 4 6 8 10 12 14 16

EventTime: 2016-1-15 20:5:11.02
Latitude: 35.162 Longitude: 137.064 Depth: 14.3 km mag: 3.1

Figure 10: S-wave arrival times in an earthquake detected

by OD-SRN . Red lines are arrivals detected by OD-SRN

while blue ones are ground-truth. (Best viewed in color)

decomposition produced orthogonal bases that can perfectly

reconstruct any binary mask (ground-truth). In practice, in-

complete orthogonal decomposition with proper patch sizes

can effectively and efficiently approximate the complete or-

thogonal decomposition. We updated successful FCNs in-

cluding VGG-16, HED, and SRN to Orthogonal Decompo-

sition Networks (ODNs) and applied them on typical pixel-

wise binary classification tasks including skeleton, edge,

and saliency detection to validate the generality of ODUs

for pixel-level spacial de-correlation and pixel-wise refine-

ment. The extension of ODN to 1D keypoint detection, i.e.,
S-wave arrival time detection for earthquake localization

provides fresh insight about the application of deep learn-

ing in the area of geoscience.
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