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ORTHOGONAL DESIGNS V: ORDERS DIVISIBLE BY EIGHT 

Jennifer Seberry Wallis 

ABSTRACT. Constructions are given for orthogonal designs in orders 

divisible by eight. These are then used to show all two variable 

orthogonal designs exist in orders 24, 32 and 48. The existence of 

two variable designs in order 40 and three variable designs in 

order 24 is discussed. 

The conjectures on the existence of all orthogonal designs 

(1, k) and skew-symmetric weighing matrices for weights 

k = 1, 2, ... , 2:9-1 are resolved in the affirmative for orders 

2:9, t ~ 3 a positive integer. 

1. Introduction. 

An orthogonal design of order n and type (ul ' u2 ' ...• us) 

(ui > 0) on the commuting variables xl' x
2

' •••• Xs is an n x n 

matrix A with entries from {O. ±x
l 

• •••• ±xs } such that 

Alternatively. the rows of A are formally orthogonal and each row has 

precisely ui entries of the type ±x
i

• 

In [2J. where this was first defined and many examples and 

properties of such designs were investigated. we mentioned that 

and so our alternative description of A applies equally well to the 

columns of A. We also showed in [2J that s ~ pen) (Radon's function) 

is defined by 

p (n) 
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when 

b odd, a = 4c + d, 0 s d s 4 . 

In [2] we also showed that if there is an orthogonal design of 

order n = 2 (mod 4) and type (a,b) then ~ is a rational square. 
a 

While in [5] it was shown that if n _ 4 (mod 8) and if X 

is an orthogonal design of order n and type 

(i) (a, b), then 
b 

is a rational a, a, a 
square; 

(ii) (a, a, b) , then ~ is the sum of at most two rational squares; 
a 

b (iii) (a, b), then is the sum of at most three rational squares. 
a 

It has been established in [2] that conditions (i), (ii) and 

(iii) were necessary and sufficient for n = 12 but Geramita and 

Verner [9] proved 

THEOREM (Geramita-Verner). If there exists an orthogonal design of 

type (Ul , u2 ' ••. , us) in order n - 0 (mod 4) 
s 

and Lu. = n 
i=l 1 

1 

then there exists an orthogonal design of type (1, ul ' u2 ' •.• , us) 

in order n. 

This meant the conditions (i), (ii), (iii) were not sufficient for 

n = 20. 

D. Shapiro [6] has shown that if n _ 8 (mod 16) and if X is 

an orthogonal design of order n and type 

(i) 

(ii) 

(iii) 

(a, a, a, a, a, a, a, b), then 

(a, a, a, a, a, a, b), then 

rational squares; 

b 
a 

b 
a 

is a rational square; 

is the sum of at most two 

(a, a, a, a, a, b), then 

rational squares. 

b 
a 

is the sum of at most three 

We conjecture that: 

A necessary and sufficient condition for the existence of an orthogonal 

design of the type (a, b) and of order n = 0 (mod 8) is that a + b S n. 
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Defini tion. 

A weighing matrix of weight k and order n, is a square 

{a, 1, -I} matrix, A, of order n satisfying 

In [2J we showed that the existence of an orthogonal design 

of order n and type (ul ' ... , us) is equivalent to the existence 

of weighing matrices AI' ... , A s' of order n, where A. has 
~ 

weight u. and the matrices, {A. }~ 1, satisfy the matrix equations 
~ ~ ~ 

xxt + YXt = 0 and X * Y = 0 (*the Hadamard product) 

in pairs. In particular, the existence of an orthogonal design of 

order n and type (1, k) is equivalent to the existence of a 

skew-symmetric weighing matrix of weight k and order n. 

It is conjectured that: 

(I) for n = 0 (mod 4) there is a weighing matrix of 

weight k and order n for every k S n 

(II) for n = 0 (mod 8) there is a skew-symmetric weighing 

matrix of order n for every k < n (equivalently there is an 

orthogonal design of type (1, k) in order n for every k < n); 

(III) for n _ 4 (mod 8) there is a skew-symmetric weighing 

matrix of order n for every k < n, where k is the sum of S 

three squares of integers (equivalently, there is an orthogonal design 

of type (1, k) in order n for every k < n which is the sum of 

S three squares of integers. In other words, the necessary 

condition for the existence of an orthogonal design of type (1, k) 

in order n, n _ 4 (mod 8), is also sufficient); 

(IV) for n _ 2 (mod 4) there is a skew-symmetric weighing 

matrix for every weight k < n - 1 when k is a square (equivalently, 

the necessary condition for the existence of an orthogonal design of 

type (1, k) in order n is also sufficient). 

Conjecture (I) is an extension of the Hadamard conjecture 

(i.e. for every n = 0 (mod 4) there is a {I, -I} matrix, H, of order 
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n satisfying HHt = nI ), 
n 

while (II) and (III) generalize the 

conjecture that for every n = 0 (mod 4) there is a Hadamard matrix, H, 

of order n with the property that H = I + S where S = _st. 
n 

Conjecture (I) was established in [7J for 

n £ {4, 8, 12, •.. , 32, 40} and in [lJ for n = 2t (t ~ 3), while 

conjecture III was established in [2J for n = 4, 12 and in [3J for 

n = 20 and 28. Conjecture (II) (and as a consequence (I)) was 

established in [3J for n = 2t+~3, n = 2t+~5, t ~ 2 a positive integer. 

Conjecture IV was established in [2J for n = 6, 10, 14. 

In this paper we establish conjecture (II) (and as a conse

quence (I)) for n = 2t+~9, t ~ 2 a positive integer. 

Let R be the back diagonal matrix. Then an orthogonal 

design or weighing matrix is said to be constructed from two circulant 

matrices A and B if it is of the form 

and to be of Goethals-Seidel type if it is of the form 

A BR CR 
DR l 

-BR A DtR _CtR 

-CR _DtR A 

B:R J 
-DR CtR _BtR 

where A, B, C, D are circulant matrices. 

2. Known Results. 

In this section we list some of the results from [2J that 

we shall use. 

LEMMA 1. [2, corollary to construction 22J. If there is an orthogonal 

design of type (a, b) in order n then there is an orthogonal design 
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of type (a, a, b, b) in order 2n and of type (a, a, 2a, b, b, 2b) 

in order 4n. 

The following easy corollary was mentioned in [3J. 

COROLLARY 1.1. If there are orthogonal designs of type (1. k) 

1 $ k $ 2 in order n then there are orthogonal designs of type 

(1, m) in order 2n for 1 $ m $ 22 + 1. In particular, if there 

are orthogonal designs of type (1, k), 1 $ k $ n - 1, in order n 

then there are orthogonal designs of type (1. m), 1 $ m $ 2tn - 1, 

in order 2t n, t a positive integer. 

LEMMA 2. If X is an orthogonal design of order n and type 

(Ur • u2 , ...• us) on the variables xl' 

orthogonal design of order n and type 

then there is an 

... , 
on the s - 1 variables 

u ) 
s 

Part (i) of the following lemma appeared in [2J and will be 

used extensively. Part (ii) with f = 1 has been observed, 

independently. by Joan Murphy Geramita. 

LEMMA 3. If there exists an orthogonal design of order n and 

type (sl' s2' •.. , s2) then there exist orthogonal designs of type 

(i) where 

(ii) where f 

in order 2n. 

Proof· (i) Replace each variable by 

(
Xi 0 ) if e

i 
= 1 

o x. 
1. 

and by (Xi Xi) 
x. -x. 

l. 1. 

(ii) Replace the variable Xl by 

- 267 -
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and the variable xi' i~l, by 

or 

according as f is 1 or 2. 

( Xi Xi) 
x. -x. 
~ ~ 

The following also holds. 

LEMMA 4. 

where 

There are orthogonal desi~s of order 8n and type (1, k) 

(i) n 3, 4, 5 or 6, kE{l, .•. , 8n - I}; 

(ii) n ~ 7, kdl, ... , 46}. 

3. Orthogonal Designs of Order Diviqible by Eight. 

In trying to find designs of order n = 0 (mod 8) it 

soon becomes clear that designs of the Goethal-Seidel type on eight 

variables are invaluable. But the difficulty of finding matrices to 

replace the variables has led to the following lemma using part 

Williamson and part Goethals-Seidel criteria. 

LEMMA 5. Suppose Xl' X2, ..• , X8 are eight circulant matrices 

of order n satisfying 

8 

L 
i=l 

X.X~ 
~ ~ 

fl. 

Further suppose: 

(i) Xl' X2 , •.. , X8 are all symmetric or all skew; or 

(ii) Xl X2 

(iii) Xl X2 

(v) 

X. and Xi+l = ... = x8 ' 1~i~8; or 
~ 

Xi' and xi +l ' ... , x8 aU symmetric 

aU skew, hi,,;8; or 

X4 and X5 ' X6 ' X7 ' x8 are all symmetric 

(skew); or 

X4 and x5 ' X6' X7 , Xs are aZl 

symmetric; or 
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(vi) Xl'··· , X. 
1 

(vii) X2 ' X3 ' X4 

(viii) 

Then, with 

f 

are aU skew and 

symmetric; 

aU skew and x5 ' 

JI, 

L 
i=l 

symmetric; 

2 
s .x. I 

1 1 

Xi +l '··· , Xs aU 

or 

x6 ' X7 ' Xs aU 

or 

there exists an orthogonal design of order Sn and type (sl' s2' .•. , sJl,). 

Proof. Use the following constructions: 

(i) the matrices in design 1; (ii) XlR and X
i
+l in design 1; 

(iii) XlR, Xi +l ' ..• ,XS in design 1; (iv) letting A = Xl' B = X2 in 

designs 2 and 3; (v) X=X
l

, A = X2 ' B = X3 in design 4; (vi) design 

1 and X.R for j,o; i; (vii) design 5; (viii) design 6 (this 
J 

was discovered by E. Spence see [lOJ). 

A B C D E F G H 

-B A D -c F -E -H G 

-c -D A B G H -E -F 

-D C -B A H -G F -E 

-E -F -G -H A B C D 

-F E -H G -B A -D C 

-G H E -F -c D A -B 

-H -G F E -D -c B A 

Design 1. 
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AR B B B E F G :l -B AR B -B F -E -H 

-B -B AR B G H -E -F 

-B B -B AR H -G F -E 

-E -F -G -H AR _BT _BT _BT 

-F E -H G BT AR BT _BT 

-G H E -F BT _BT AR BT 

-H -G F E BT BT _BT AR 

Design 2. 

AR B B B E F G H 

-B AR B -B F -E -H G 

-B -B AR B G H -E -F 

-B B -B AR H -G F -E 

-E -F -G -H AR BT BT BT 

-F E -H G _BT AR _BT BT 

-G H E -F _BT BT AR _BT 

'T' _BT BT -H -G F E -B· AR 

Design 3. 
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XR AR B B C D E F 

-AR XR B -B D -c -F E 

-B -B XR AR E F -c -D 

-B B -AR XR F -E D -c 

-c -D -E -F XR AR BT BT 

-D C -F E -AR XR _BT BT 

-E F C -D _BT BT XR -AR 

-F -E D C _BT _BT AR XR 

Design 4. 

\AR 
B C D E F G 

Hl 

-B AR D -c F -E -H G 

-c -D AR B G H -E -F 

-D C -B AR H -G F -L 

-E -F -G -H AR BT CT DT 

-F E -H G _BT AR _DT CT 

-G H E -F _CT DT AR _BT 

-H -G F E _DT -C T BT AR 

Design 5. 
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X.,R 
I 

Design 6. 

LEMMA 6. If every design (1, i, k) where l+i+k os: n exists in 

order n then every design (~, m) where ~+m os: 2n exists in 

order 2n. 

Proof· Case 1. To construct all the designs (~, m) where ~ is 

odd use the designs (1, ~(~-l), j) in order n where 

j E{~(~-l), .•• ,n-l-~(~-l)}. Then using (ii) of lemma 3 (with f 2) 

we have the designs (1, 1, ~-l, 2j) which give all the designs 

(~, m) where ~ is odd and m E{~, ... , 2n-~}. 

Case 2. The construction of all designs (~,m) where ~ 

is even is similar but starts by using all the designs (1, ~/2, j) 

in order n where jE{~/2, ... , n-l-~/2}. Again using (ii) of 

lemma 3 (with f = 2) we have the designs (1, 1, ~, 2j) which give 

all the designs (~,m) where ~ is even and mE{~, ..• , 2n-~}. 

COROLLARY 6. 1 • Since all designs (1, i, j) exist in order 16 all 

designs (k, ~) exist in order 32. 

Lemma 6 is a nice method for constructing two variable 

designs in order 2n given that all three variable designs (1, i, j) 
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are known in order n. Unfortunately (as we will see) all the designs 

(1. i. j) may not be known. So we ask when can the two variable 

designs in order 2n constructed from a given three variable design 

(a. b, c) be constructed using other three variable designs (which 

hopefully exist) in the same order. 

Suppose a design (a. b, c) exists in order n. then much 

tedious work (using lemma 3) will allow us to construct many two 

variable designs in order 2n. If the design (a, b. c) is not known 

but other three variable designs in order n are known it may happen 

that most of the two variable designs in order 2n which could have 

been constructed from (a, b. c) can be constructed using other designs. 

It may in fact be shown that 

THEOREM 7. Suppose a three variable design (a. b, c) is unknown 

or does not exist in order n. Further suppose (a. b, a + c). 

(a. a + b. c) and (2a, b, c) designs do exist in order n. Then the 

existence of the following WO variabZe desirrns is in doubt in 

order 2n. 

(a, b + c) (a. a + 2b + 2c) (2b. a + 2c) 

(a, b + 2c) (a + b, b + c) (c. a + 2b) 

(a. c + 2b) (a + c. b + c) (2c. a+ 2b) 

(a. a + b + c) (b. a + 2c) (a + 2b. a+ 

(a. 2b + 2c) 

2c) • 

If in addition an (a. b. b + c) design is known in order n then the 

designs in doubt in order 2n are: 

ExampZe. 

(a, b + 2c) 

(a + c. b + c) 

(b, a + 2c) 

(2b, a + 2c) 

(c. a + 2b) 

(2c, a + 2b) 

(a + 2b. a + 2c). 

Suppose we wish to reduce the number of cases in considering 

the two variable designs in order 48 which are in doubt because a 

design (1, 1. 21) has not yet been constructed in order 24. 

First we note that both (1. 1. 21 + 1) and (1, 1 + 1. 21) 

are known and (1 + 1, 1, 21) can be used for (2a, b, c). So the 
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conditions of the theorem apply. Hence the designs 

(I, 43) (3, 21) (3. 43) 

(2. 43) (3, 42) (22. 22) 

are in doubt. In this case the design (I, 2. 21) also eliminates 

(I, 43). (2. 43), 0, 21). (3, 42) and (1. 1. 22) eliminates (22. 22). 

0, 43) exists since a (I, 3. 20) design exists in order 24. 

4. NwneriaaZ ResuUs in Orders 24 and 48. 

We use the following matrices: 

I = [~ ~ ~] 
001 

J=[~~~] 
111 

K = [~ ~ ~] 
1 1 0 

B = [~ ~ ~] 
1 - 0 

R = [~ ~ ~] 
100 S =[: J 

In [2J it is noted that all two variable designs exist in 

order 12 except (1, 7), (3, 5) and (4, 7) which are impossible. From 

theorem 3 of [3J we have that every design (1. k) for kE{l •...• 23} 

exists in order 24. 

LEMMA 8. The foUawing designs exist in order 24: 

1) (1,1,1.1,6.6,); 10) (2.2,5.5,8); 19) (1.1.4,4,5); 

2) (1,1,1,1,2,10); 11) (1,1,1,2,4,10); 20) (1,2.5.5.8); 

3) (1.1.2.2.5.8); 12) (1.1.1.3.4.9); 21) (1.2.2.8.8); 

4) (1,2,6,6,9); l3) (1,3,5,6,9) ; 22) (1,2,2.4.l3); 

5) (1,2.4.5,10); 14) (1.2,3,5.13); 23) (1.2.2.5.14); 

6) (1.2.5.6.10); 15) (1.2.3.4.12); 24) (1.1.2.2.9.9); 

7) (1.1,1,4,6,6); 16) (1,3,4,5,9); 25) (1,2.2.2.8.9); 

8) (1,4,5.6.6); 17) (1,2.2.3.16); 26) (1.1.2.4,4.8) ; 

9) (1,2,5.5.9); 18) (1.2.2.8,11) ; 27) (3.3.3.3.3.3.3.3) 
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Proof. We note that there is a (1. 4) design in order 6 and so a 

(1. 1. 2, 4, 4, 8) design exists in order 24 giving 26). The design 

27) is given by Plotkin in [8J. 

All the other designs are found by using various parts of 

lemma 5: part (i) for 1) and 2); nart (iii) for 3),4) •... ,11); 

part (iv) for 12), 13), ..• ,17); part (v) for 18); part (vi) for 19); 

part (vii) for 20) and 21); part (viii) for 22). 23). 24) and 25). 

Appendix 1 contains the first rows of the circulant matrices which 

should be used in lemma 5 for each design. 

THEOREM 9. A U two vaY'iah le designs in order 24 exist. 

Proof. We have already noted that all designs (1, k) for 

kE{l, ... , 23} exist. All the other designs may be obtained by 

repeated use of lemma 2 on the designs in lemma 8. 

THEOREM 10. AU three vaY'iahle designs exist in order 24 with the 

possible exception of 

(1, 1. 21) (2, 7, ll) (4. 4, 15) 

(1, 3, 17) (3. 3. ll) (5, 7. ll) 

(1, 3, 19) (3, 3. 17) (7. 7. 7) 

(1. 5. 17) (3. 6. ll) (7. 7, 9) 

(1, 7. 15) (3. 7. ll) (7. 8. 8). 

(1, 8. 14) (3, 8. 12) 

Proof· All three variable designs in order 24 except those of the 

enunciation may be constructed either from the known four variable 

designs in order 12 (see [2J) by use of lemma 3 or by using lemma 2 

on the designs in lemma 8. 

THEOREM ll. AU two vaY'iahle designs exist in order 48. 

Proof· Recalling that the existence of all three variable designs 

(1, i. j) where 1 + i + j ~ 24 in order 24 would give the result we 

consider these three variable designs. 

Now we have. as yet. been unable to demonstrate the 
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existence of the following three variable designs (1, i, j) in 

order 24: 

(1, 1, 21) (1, 5, 17) 

(1, 3, 17) (1, 7, 15) 

(1, 3, 19) (1, 8, 14) 

Hence we use theorem 7 to decide which two variable 

designs in order 48 are left in doubt because these designs (1, i, j) 

have not yet been constructed in order 24. We then use lemma 3 with 

known designs in order 24 and find all the two variable designs left 

in doubt. 

5. Numerical Results in Order 40. 

LEMMA 12. The following designs exist in order 40: 

1) (2, 10, 10, 13); 6) (1, 2, 2, 4, 25); 11) (1, 10, 10, 

2) (1, 2, 14, 23); 7) (1, 2, 2, 11, 24); 12) (1, 10, 10, 

17); 

19) ; 

3) (5, 9, 9, 15) ; 8) (1, 2, 12, 25); 13) (2, 4, 11,16); 

4) (1, 2, 6, 9, 20); 9) (1, 4, 9, 9, 9); 14) (1, 4, 8, 8, 16); 

5) (1, 2, 2, 19) ; 10) (2, 8, 25) ; 15) (1, 8, 8, 8, 8). 

Proof· All the designs are found by using various parts of lemma 5: 

part (i) for 1) and 2); part (iii) for 3), 4), ... , 13) ; and 

part (vii) for 14) and 15). Appendix 2 contains the first rows of 

the circulant matrices which should be used in lemma 5 for each design. 

TIlEOREM l3. All two variable designs in order 40 exist except possibly 

(6, 33), (7, 32), (8,31), (9, 30) . 

Proof. From [3; theorem 10J we have that all the designs (l,k) for 

kE{l, •.. , 39} exist in order 40. 

Using the known designs listed in [5J for order 20 and 

applying lemma 3 or using lemma 2 on the designs in lemma 12 gives 

the result. 

For completeness we note the following result: 

TIlEOREM 14. All two variable designs in order 80 exist except possibly 

(13,64), (14,65). 
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6. Some Results on the (I, k) Conjecture. 

It has been conjectured "Let n:= 0 (mod 8). Then there 

exists an orthogonal design (I, k) in order n for every 

k = I, 2, ... , n - 1". The verity of this conjecture for n implies 

the verity of two other conjectures. 

(i) Let n:= 0 (mod 8). Then there exists a skew-symmetric weighing 

matrix of order n for every weight w = 1,2, •.. , n - 1; 

(ii) Let n _ 0 (mod 8). Then there exists a ~veighing matrix of 

order n for every weight w = 1, 2, ... , n. 

We now prove 

THEOREM 15. Let n 2:9 where t ~ 3 is a positive integer. Then 

there exists 

(i) an orthogonal design (1, k) in order n for k = 1, 2, ... , n - 1; 

(ii) a skew-summetric weighing matrix of order n for every weight 

w = 1, 2, ... , n - 1; 

(iii) a weighing matrix of order n for every weight w 1, 2, ... , n. 

Proof· We observe that in [4; lemma l8J the existence of orthogonal 

designs (1, k) in order 72 is established for kE{X:X * 31, 46, 47, 56, 

60, 61, 62, 63, 68, 0 S x S 7l}. 

First we note that the four circulant matrices with first 

rows 

X3X3-X3-X3-X3-X3-X3-X3X3' may be used in the Goethals-Seidel array to 

form the design (1, 1, 34) in order 36 and this then gives, using 

lemma 3, the design (1, 1, 2, 68) in order 72. 

Now the required designs may be obtained by replacing the 

variables of the indicated four variahle designs in order 24 (found in 

lemma 8) by the variable matrices shown (see section 4 for definition of 

I, J, K, B, R, S): 
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For (1, 31) use xII, x
2

S, x
2
K, x

2
BR in the (1, 1, 7, 7) design. 

For (1, 46) use xII, x
2
I, x2K, x

2
S in the (1, 1, 9, 9) design. 

For (1, 47) use xII, x
2
I, x

2
K, x

2
S in the (1, 2, 9, 9) design. 

For (1, 56) use xl I, x
2
I, x

2
K, x

2
S in the (1, 1, 11, 11) design. 

For (1, 60) use xII + x
2

B, x2J, x2KR, x
2

SR in the (1, 3, 5, 13) design. 

For (1, 61) use x.I + x2B, x2R, x2J, x
2

SR in the (1, 2, 5, 14) design. 
l 

For (1, 62) use xII + x2B, x2KR, x
2
J, x

2
SR in the (1, 3, 4, 14) design. 

For (1, 63) use xII, x
2
I, x2J, x2S in the (1, 3, 5, 15) design. 

Hence all designs (1, k) for k ~ 1, 2, ... , 71 exist in 

order 72. Now by the corollary to proposition 1 of [3J we have part 

(i) of the theorem. 

Clearly the rows and columns of an orthogonal design (1, k) 

may be rearranged until it is in the form xII + x2w where WT 
~ -w 

and WWT ~ kI. But W now satisfies part (ii) and W + I part (iii) 

the enunciation and so we have the theorem. 

The result on the existence of a design (1, 1, 34) in order 

36 allows part (iv) of the summary in [4J to read 

LEMMA 16. 

kd1, 

There are orthogonal designs (1, k) for 

6, 8, 14,16,17,18,20,21,22,24, ... ,27,29, 

32, 33, 34} for every order 4n where n (odd) ~ 9. 
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of 



Design 

(1, 1, 1, 1, 6, 6) 

(1, 1, 1, I, 2, 10) 

(1, 1, 2, 2, 5, 8) 

(1, 2, 6, 6, 9) 

(1, 2, 4, 5, 10) 

(1, 2s 5, 6, 10) 

(1, 1, 1, 4, 6, 6) 

(1, 4, 5, 6, 6) 

(1, 2, 5, 5, 9) 

(2, 2, 5, 5, 8) 

(I, I, I, 2, 4, 10) 

(1, 1, I, 3, 4, 9) 

(1, 3, 5, 6, 9) 

(1, 2, 3 , 5, 13) 

(I, 2, 3, 4, 12) 

(1, 2, 3, 4, 12) 

(1, 3, 4s 5, 9) 

(I, 2, 2, 3, 16) 

(1, 2, 2, 8, 11) 

(I, I, 4, 4, 5) 

(I, 2, 5, 5, 8) 

(1, 2, 2, 8, 8) 

(1, 2, 2, 4, 13) 

(1, 2, 2, 5, 14) 

(1, 1, 2, 2, 9, 9) 

(1, 2, 2, 2, 8, 9) 

APPENDIX 1. 
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APPENDIX 2. 

Design Xl X2 X3 X" Xs X6 X7 Xo 

(2, 10, 10, 13) "1""-""-"""" "1-""""""-"" ",,0",,",,0 00",,",,0 "3'12-"2-"2"2 -"2"3-"3-"3"3 -"2"2"2"2"2 -"3"3"3"3"3 

(1, 2, 14., 23), "1"4 "4 -"4 -"4 -"2x3 -x3 -"3x3" "2"3-"3-x3"3 -x4"/,-:x4-x4x4 -x4x4x4x4"4 -"4-"4x3x3-:"4 x3x4"3"3x4 -"3x4 -xI, -x4"" 

(S, 9, 9, lS) x1""x1-x1 "" ",,-x""l"l-"" -""",,",,",,",, ""x4-""-x"x,, 0"2-"2-x2x2 -x2"2"2"2"2 °"3-"3-"3"3 -x3"3x3"3"3 

(1, 2, 6, 9, 20) "1-"S"3-"3"S 0-"S"3"3-xS "3"S-"5-"S"5 "3"5"S"5"5 "2"5-"5-"5"5 -"2"S-"S-"S"5 0""-""-"4"4 -"""""""4"" 

(1, 2, 16, 19) "l""x"-",,-",, -""",,",,",,",, -"4"""""""" "" -""",,",, -"" "2"3-"3-x3"3 "2-"3"3"3-"3 °"3-"3-"3"3 °"3"3"3"3 

(1, 2, 2, ", 25) "1°",,-",,0 00",,",,0 "2"S-"S-"S"S -"2"S-"5-"S"5 "3"S-xS-xS"S -"3"S-"5-x5"5 0"S"5x5"5 -x5x5xS"5"5 

(1, 2, 2, 11, 2") , 1""""-""-"" "2"5-"S-"S"5 -x2"S-"5-"S"5 "3"5-"5-"5"5 -"3"5-"5-"S"5 -",,"5"5"S"5 ",,-x""5"5-"" x4x5x4x4xS 

N 
ClO (1, 2, 12, 25) 

"1""",, -"" -"" "3"3-"3-"3"3 -""",,-",,-",,",, -"3
x
"",,",,",, "3-"3""""-"3 "3"""3"3"" "2""-""-"""" -x

2
x4 -x4 -x4x,. 0 

(1, 4, ", 9, 9, 9) "1°"2-"2° °°"2"2° °"3-"3-"3"3 -"3"3"3"3"3 0""-""-"",,,, -"""4"""""" °"5-"5-"5"5 -"5"5"5"5"5 

(2, 8, 2S) >:2"~"2"2-"3 "2"3"2"2-"3 -"2"3"2"2"3 -x2-"3"2"2-"3 "2-"2°°-"2 °"2°°"2 "1"2-"2-"2"2 -"1"2-"2-"2"" 

(1, 10, 10, 17) 
"1 "4

x
" -"" -"'" x" -x""4",, -"" Ox"x"x"x" O""-x,,-",,",, "2"3-x3-"3"3 -x3"2-x2-"2"2 -"2"2"2"2"2 -x3"J"3"3"3 

(I, 10, 10,19) Xl ",,"4 -"" -"" -""",,",,",,",, -""""""x,,X,, "" -""",,",,-",, "2"3-"3-"3"3 -"3"2-"2-"2x2 -"2"2x2"2"2 -"3"3"3"3"3 

(2, '" 11, 16) :<3-"3"2-"2-"3 00"2"20 "3°"3"3° "3"3-"3-"3"3 "1""-""-"""" -"1"4-""-"""" 0""-""-"",,,, O""""",,x,, 

(1, ", B, 8, 16) "1"3""-""-"3 °"3-""""-"3 0"3"5-"5-"3 0"3-"5"5-"3 -"2"3",,",,"3 -"2"3-""-"""3 "2"3"S"S"3 "2"3-"S-"S"3 

(1, 8, 8. 8. 8) '11"2"3 -"3-"2 OX2-"3"3-"2 O"""S-"fi-"" Ox"-xSx5-",, 0"2"3"3"2 0"2-"3-"3"2 O"""S"S",, 0""-"5-"S"" 
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