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In this note we give a simple proof of a generalization of a theorem

of Szegö. The theorem in question is

(1) (sin ef^P™ (cos $) = ¿ al,„ sin(n +2k+ 1)8
*-o

where X>0, Xs^l, 2, • • • , and

x   _ 22-2X(« + *)ir(» + 2x)r(* +1 - x)

a"'n " r(x)r(i - x)*!f»ir(n + * + x + i)

and P„\cos 9) is given by

(1 - 2r cos 6 + rV = ¿ 2^(cos 0)r\
n-0

Recall that sin(ra + l)0/sin 0 = P¡¿1)(cos Ô) so that (1) may be written

oo

(sin ö^'pf'tcos 6) = ¿ai.nPl+^ícos^ísino)
Jb-0

or

oo

(sin df^P™(cos 6) = X! a*.nPn+2*(cose)(sine)2.
ft-0

This suggests that a formula of the form

00

(2) (sin efPn\cos 6) = 22 t¿*Pn\cos 9)(sin Ô)2"

is true. Since al:„ is positive for 0<X<1 we might conjecture that

a)?n is positive for X <p. In fact, we show that it is for (p—1)/2 <X <p.

The condition (p. —1)/2 <X is necessary to obtain convergence of the

series (2).

This result follows from an old result of Gegenbauer [l ] which has

almost been forgotten by the mathematical community. Since

P(n(x) is a polynomial we may write
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(3) PT(x) = £ /Cp.  (*).

Gegenbauer gives the value of ß as

x,, _ T(\)(k + \)T((n - k)/2 + p. - \)T(u + (k + n)/2)

ßk,n "    T(p:)[(n - k)/2]\T(u - X)r(X + 1 + (k + n)/2)

if « — k is even, n^k, and /3£'£ = 0 otherwise. Observe that (3^0 if

ju^X. A simple proof of this is in [2].

We also need the following simple fact. Let w(x) and Wi(x) be

positive functions on a set E. Let {pn(x)} and {qn(x)} he the ortho-

normal polynomials associated with w(x) and Wi(x) respectively.

Then if
n

(4) qn(x) = £ ck,npk(x)
k-0

we have
00

(5) w(x)pk(x) = £ ck,nqn(x)wi(x).
n-k

The convergence of the series can be taken in the appropriate L2 space

if [w(x)]2/wi(x) is integrable. (5) follows immediately from (4) since

the Fourier coefficients are the same in the two expansions.

Using (3), (4) and (5) and remembering that {Pn>')(x)} are orthog-

onal but not orthonormal we get

,   . , 2\X-1/2D(X)/   \ V^      X.M     00     .   . . 2 C-l/2
(6) (1  - X2) P„    (x)   =   ¿_, Oik,nPn+2k(x)(l  — X )

k-0

where

x,„ _ T(u)22»-2*(n+2k+u)(n+2k)ir(n+2\)T(n+k+u)r(k+u-\)

a"'n ~ r(ß-\)T(X)nlkir(n+k+\+i)T(n+2k+2ß)

Using the asymptotic formula for P^\x) it is easy to see that the

series in (6) converges for -1<ï<1 if X>(ju —1)/2. Also observe

that al;H>0 for (/z-1)/2<X<m.
Setting « = 0 in (6) we get

T(u)22aT(2ß - 2a)
(1 - x2)-a = —-—--

T(a)TQi - a)
(7) W   W»        J

A  (2k + u)(2k) \Y(k + u)T(k + a)    us
• y.-—■ p2k (x).
¿To   k\T(k + u - a + \)T(2k + 2u)
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For a =1/2 and p = l/2 this is due to Bauer and a =1/2, p>0 it is
due to Gegenbauer [l].

There are two other instances of polynomial expansions of different

orthogonal polynomials that involve the classical polynomials and

have positive coefficients.

The better known one is

(8) Ln (x) - 2, —-~t-zrr ¿*  (*),

where Lf(x) are the Laguerre polynomials of order j3, degree «, and

ß>a. Notice that the coefficients are positive. See [3, p. 209] for (8).

For Jacobi polynomials, P^,0)(x), the following expansion holds

„O.Ï), , r(«+y+i) ^,
Pn        (*)   =

r(ß-a)T(n+y+ß+l) tío

T(n+k+ß+y+i)T(n-k+ß-a)V(k+a+y+l)(2k+a+y+l)   (a,7)

T(n+k+a+y+2)T(n-k+l)T(k+y+í) "

See [4, p. 254]. Again notice that, if y> —1 and j3>a=£0, the coeffi-

cients are positive. The common feature of both of these results is that

the polynomials are normalized correctly at the right point. In the

Laguerre case L„a)(0)>0 and P^,ß)(l)>0 for Jacobi polynomials.

An interesting conjecture can be formulated of which these are a

special case. For convenience we formulate it on (0, 00).

Let w(x) be a positive function on (0, 00) such that /0™x"w(x)dx

exists for each w = 0, 1, • • • . Let {pn(x)} he the orthonormal poly-

nomials with respect to w(x) normalized by pn(0)>0. All of the zeros

of p„(x) are in (0, «>) so this is possible. Let {^W} be the poly-

nomials orthonormal with respect to xaw(x) normalized in the same

way. Then if a>0 we conjecture that

n

P"(x)   =   22 <Xkpk(x)
*=-0

with a*>0.

For a an integer this follows from known classical results. For if

a = l then

i, ,     Pn+i(0)pn(x) - pn(0)pn+i(x)
Cnpn(x) = -

by a theorem of Christoffel [4, Theorem 2.5]. By another theorem of

Christoffel [4, Theorem 3.2.2],
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Pn+l(0)Pn(x) - pn(0)Pn+l(x) "
- =   'n 2-, Pk(0)pk(x).

X k-0

Thus

p\(x) = r„ £ pk(0)pk(x)
k-0

and pk(0), pi(0), and thus r„ are positive by assumption. For larger

integral values of a the result follows by iteration.
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