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It is shown how to construct a pair of orthogonal v/2 by 2v rectangles for 

all even v. Also, it is shown how to construct a set of t pairwise orthog­

onal v /2 by 2v F-rectangles for all even v for which a set of t pairwise 

orthogonal Latin squares of order v exists. Some situations where these 

designs are useful in practice are indicated • 

l. INTRODUCTION 

The class of row-column experiment designs introduced here has usefulness 

in many areas of experimentation. In a variety of situations, it may be undesir-

able, or even impossible, to have as many treatment periods as there are treat-

ments, but it is relatively easy to obtain more individuals or organizations for 

the experiment. For example, in a study of diet and aerobic dance exercise, it 

was undesirable to subject each individual to reore than three exercise-diet treat-

ments, but it was relatively easy, and desirable, to obtain 12 or 24 individuals 

for the study for the six diet-exercise treatments. It was necessary to have a 

class of individuals in order to teach aerobic dancing. It was considered essen-
--------------------=---~-~ ---------- -- ---~-------·------
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tial to have every treatment rollow every other treatment and vice versa. We 

~ give a design ror this situation at the end or the paper. Some other situations 

~ 

~ 

where these experiment designs may be userul are: 

(i) In marketing and other experiments where the 2v sampling units 

(individuals, organizations, etc.) are used ror v/2 time periods 

for two sets or v treatments, 

(ii) In changeover experiments with 4v sequences and v/2 periods partially 

balanced for residual erfects of v treatments, 

(iii) In surveys where the order of the v questions (sensitive or other-

wise) is to be in a balanced arrangement for residual effects for 

eacc set of 4v individuals and each individual answers v/2 questions. 

We first give a definition of a pair of k row by b col~~ F-rectangles. Then, 

we show how to construct a pair of orthogonal (v/2) X v F-rectangle for all even 

v and how to construct a set of t such pairwise orthogonal F-rectangles for all 

even v for which t orthogonal latin squares of order v exist. 

2. CONSTRUCTION OF PAIRWISE ORTHOGONAL F-RECTANGLES 

Let V = (l,2,···,v} be a set of v distinct symbols. A k X b array filled 

w:i. th the elements of V is said to be an F-rectangle if' 

(i) Every element of V appears the same number of times, 

r = bk/v, in the array, 

(ii) The appearance of each element in each row and column 

is as unirorm as possible. 

Note that condition (ii) indicates that if ks v, no element of V appears 

more than once in each column, and it' b =tv, each element of V appears t 

times in each row. 
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• Definition. Let F1 and Y2 be two kx b F-rectangles. · Then we say F1 i~ 

o~hogonal to F2 (denoted by F1 JL F2 ) if upon superposition of F1 on F2 

every element of V in F 1 appears the same number of times with every ele­

ment of V in F2 • 

• 

• 

Example. Let V = (1,2, 3,4}; then, the :following Fl' F2 and F3 are pairwise 

orthogonal 2 X 8 F-rectangJ.es. 

1 2 3 4 3 4 1 2 ). 2 3 4 4 3 2 1 
, 

2 1 4 3 4 3 2 1 3 4 1 2 2 1 4 3 

1 2 3 4 2 1 4 3 

4 3 2 1 3 4 1 2 

We shall now prove the following theorem. 

'lbeorem l. 'lbere exists a pair of orthogonal (v/2) X 2v F-rectangles for 

all even v. 

'lbe proo:f is by construction. Construct a (v/2) x v F-rectangle, A, 

based on V with 1, 2, · • ·, v/2 as its entries in the :first column and :fill 

the remaining cells cyclically. Construct another (v/2) X v F-rectangle, B, 

based on V wi'th (v/2) +1, (v/2) +2, ···,vas its entries in the first col­

umn and fill the remaining cells cyclically. Construct another (v/2) x v 

F-rectangle, c, based on V with the odd numb~rs among 1, 2, • • ·, v as its 

entries in the first column and fill the remaining cells cyclica.lJ.y. Then, 

. .... . , 
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• form a pair of' orthogonal (v/2) x 2v F-rectangles. It is obvious that Fl. 

and F2 are F-rectangl.es. The fact that they are orthogonal. follows from 

(a) -the cyclic construction of A, B and C and (b) the property tha-t each 

• Fl 

• 

el.em.ent of V in F2 appears once with the element 1. in F1 • 

Examol.e. Let V = (1.,2,3,4,5,6}. Then, 

l 2 3 4 5 6 4 5 6 1. 2 3 1 2 3 4 5 6 

A = 2 3 4 5 6 1 ' B = 5 6 1. 2 3 4 and c = 3 4 5 6 1. 2 

3 4 5 6 1 2 6 1 2 3 4 5 5 
/" 1. 2 3 4 0 

Now form F1 = rn and F2 =~as 

~ 2 3 4 5 6 4 5 6~ ..:!::.) 2 3 (1) 2 3 4 5 6 l 2 3 ® 
= 2 3 4 5 6(b) 5 6 ® 2 3 4 

' F2 = 3 4 5 6 1@ 3 4 G) 6 

3 4 5 6 -1) 2 6 (1)2 3 4 5 5 6 1. 2 G) 4 5 @1 2 

The concept of' orthogonal F-rectangles is closely related to the concept 

of orthogonal. Latin squares. One such rel.ation in the context of this note 

is indicated below. 

Theorem 2. For v even the existence of t pairwise orthogonal Latin squares 

of' order v implies the existence of t pairwise orthogonal (v/2) x 2v F-

rectangles. 

The proof' is by construction. If' [L1, L2, • • ·, Lt} is a set of pairwise 

orthogonal Latin squares of order v (even), then spl.it L. into halves as 
]. 

5 6 

1 2 . 
3 4 

' -
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set of pairwise (v/2) X 2v F-rectangles. 

~ Ft} forms the required 

Remark. Theorem 2 cannot be used when v = 2 and 6 since there is no pair 

of orthogonal Latin sq_uares of order 2 and 6. Also, Theorem 2 requires the 

construction of orthogonal Latin squares, which is not easy for v = 2(mod 4). 

If one is interested only in a pair of orthogonal (v/2) X 2v F-rectangles 

then Tileorem 1 is useful and easy to implement for a11 even orders including 

v = 6 • For v = 2 one may use 

Fl = I l 2 l 2 I. and F2 =I l 2 2 l 

to obtain F1 j_ F 2 • 

3- USE OF ORTHOGONAL F-RECTANGLES IN CONSTRUCTING REPEATED MEASURES DESIGNS 

TO MEASURE RESIDUAL EFFECTS 

Knowing that a pair of orthogonal rectangles exists is important in con-

structing repeated measures designs to measure residual effects. To do this 

we start ~th a Latin sq_uare of order v in the form of a repeated measures 

design balanced for residual effects and use this Latin sq_uare of order v to 

construct an F-rectangle, F1 = I AI Bl . Then we form a second F-rectangle, F2 , 

whose first two rows are the first row and vth row of the original Latin sq_uare. 

This allows every treatment (element) to follow and be followed by every other 

treatment. The remaining rows of F2 are filled to obtain orthogonality. The 

method is not uniq_ue. We illustrate this for v = 6 and 8: 
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l 2 3 4 5 6 

F1 = 6 l 2 3 4 5 

2 3 4 5 6 l 

5 6 l 2 3 4 

3 4 5 6 l 2 ' 

4 5 6 l 2 3 

Fl = 

12345678 

8 l 2 3 4 5 6 7 

2 3 4 5 "6 7 8. l 

3 4 5 6 7 7 8 l 

1 

5 

2345678 

6781234 

5 6 7 8 1 2 3 

l 2 3 4 5 6 7 

Note that we could have used 

l 2 3 4 5 6 

F2 = 4 5 6 l 2 3 

5 6 l 2 3 4 

3 4 5 6 7 8 l 2 

67812345 

4 5 6 7 8 l 2 3 

5 6 7 8 l 2 3 4 

1 2 3 4 

5 6 7 8 

7 8 l 2 

1 2 3 4 

5 6 7 8 

1 2 3 4 

3 4 5 6 

5 6 7 8 

67812345 67812345 

2345678167812345 

' 

l 2 

4 5 

3 4 

3 4 5 6 

6 l 2 3 ' 

5 6 l 2 

as the last two rows of F2 for v = 8. One should select rows to reduce the 

confounding between columns and treatments as much as possible. 

The above design for v = 6 could have been used for the six diet-aerobic 

dance treatments and for 24 girls. All treatments would precede and follow all 

other treatments either once or twice. Thus, the design is partially balanced 

for one-period carry-over effects. One could have used F1 with 12 girls, and 

all treatments but one would either follow or precede a treatment. The design 

could also be used with l2 girls and two sets of six treatments • The second 

set could be a fruit additive to the diet, e.g., grapefruit, orange, raisins, 

grapes, sweetened peaches, and unsweetened peaches. This set would be orthogonal 

to those treatments in the first F-rectangle. 



• 

• 

• 

- 7 -

4. OPTThlAL DESIGNS 

The F-rectangle in Theorem 1 ~ormed as I C I C I is not connected. No 

optimality properties were considered in the previous sections. To obtain a 

variance-optimal design, we proceed as ~allows. First, ~orm a cyclic Latin 

square o~ even order. Second, order the rows o~ this square to achieve maximum 

column-treatment balance. One method o~ doing this for v = 4t + 2 is to use the 

quadratic residues for 4t + 3 and the non-quadratic residues omitting the null 

element to order the rows o~ A and B in F = I A I B /. This will generally not 

give maximum balance; a ~ew rows may need to be interchanged from A to B to 

achieve maximum balance. The resulting F1 = I A I B I will then be as near variance 

balanced as possible, and consequently variance optimal, because this is a zero­

one occurrence design, i.e., either the treatment occurs in a column or it does 

not • 

Thirdly, ~orm A* = A + aJ, mod v, and B* = B + bv, mod v, where a and b are 

scalars and J is a v X v matrix o~ ones. Permute the rows to A* and B* such that 

an F2 = I A*/B*/ is orthogonal to F1• I~ F1 is variance optimal, F2 will also be 

variance optimal because the addition of a J matrix to A and B does nothing to 

change the treatment-column balance arrangement. This leads to the ~allowing: 

Theorem 1· The method o~ construction outlined above leads to ~ pair of variance-

optimal orthogonal F-rectangles of order v/2 X 2v with identical information ~atrices. 

To illustrate the above results for v= 6, let 

l 2 3 4 5 6 3 4 5 6 1 2 

Fl = 2 3 4 5 6 1 5 6 l 2 3 4 

4 5 6 1 2 3 6 l 2 3 4 5 
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Note that 1, 2, and 4 are the quadratic residues for 7, and that 3, 5, and 6 

• are the non-null non-quadratic residues. Let A* = A + J and B* = B + 4J, to 

obtain 

2 3 4 5 6 l 1 2 3 4 5 6 

3 4 5 6 1 2 3 4 5 6 1 2 

5 6 1 2 3 4 4 5. 6 l 2 3 

Permuting the rows of the above in each part, we obtain 

3 4 5 6 1 2 3 4 5 6 1 2 

F2 5 
/" 1 2 3 4 4 5 6 1 2 3 = 0 

2 3 4 5 6 1 1 2 3 4 5 6 

A form of the variance-covariance matrix for either F1 or F2 is 

• 14 0 0 -.2 0 0 
-1 

0 14 0 0 -2 0 

~(6I - iNN' + fJf1 = 3~ 
0 0 14 0 0 -2 

-2 0 0 14 0 0 

0 -2 0 0 14 0 

0 0 -2 0 0 14 

For v = 10, use the quadratic and non-zero non-quadratic residues of 4t + 3 = 11, 

interchanging 8 and 9, and we obtain F1 and F2 as: 

1 2 3 4 5 6 7 8 9 0 2 3 4 5 6 7 8 9 0 1 

3 4 5 6 7 8 9 0 1 2 6 7 8 9 0 1 2 3 4 5 

4 5 6 7 8 9 0 1 2 3 7 8 9 0 1 2 3 4 5 6 

5 6 7 8 9 0 l 2 3 4 9 0 1 2 3 4 5 6 7 8 

8 9 0 l 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 9 

• and 
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• 4 5 6 7 8 9 0 l 2 3 l 2 3 4 5 6 7 8 9 0 

8 9 0 l 2 3 4 5 6 7 2 3 4 5 6 7 8 ~ 0 l 

l 2 3 4 5 6 7 8 9 0 8 9 0 l 2 3 4 5 6 7 

7 8 9 0 l 2 3 4 5 6 9 0 l 2 3 4 5 6 7 8 

6 7 8 9 0 l 2 3 4 5 4 5 6 7 8 9 0 l 2 3 

Fl = I A I B I where A has cyclic rows with the first column being 1, 3, 4, 5, and 8 

and B has cyclic rows with the treatments of the first column being 2, 6, 7, 8, o. 

These row arrangements make treatment and columns as balanced as possible. 

F2 = lA* I B*l where A* is A+ 3J with rows permuted and B* is B + 2J with rows 

permuted. The variance-covariance matrix for both F-rectangles is: 

44 0 0 -2 0 0 0 -2 0 0 -l 

0 44 0 0 -2 0 0 0 -2 0 

0 0 44 0 0 -2 0 0 0 -2 

-2 0 0 44 0 0 -2 0 0 0 • ~(lOI- .kmr 4 )-l ~ 
0 -2 0 0 44 0 0 -2 0 0 

5 + 5J = 5 0 0 -2 0 0 44 0 0 -2 0 

0 0 0 -2 0 0 44 0 0 -2 

-2 0 0 0 -2 0 0 44 0 0 

0 -2 0 0 0 -2 0 0 44 0 

0 0 -2 0 0 0 -2 0 0 44 

These F-rectangle designs are near variance optimal, as well as being orthogonal. 

One can find a method of construction which replaces one of the diagonals of 

zeros with a diagonal of minus ones and the diagonals of -2 Fith a diagonal of 

minus ones. This may be done by interchanging numbers 3 and 4 in the second 

halves of both F1 and F2 for v = 6, and numbers 3 and 4 and numbers 7 and 8 in 

the second halves of both F1 and F2 for v = 10. This procedure results in more 

balance and produces variance-optimal designs for Theorem 3 • 

• 
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5. OTHER F-RECTANGIES 

If only two rows (periods) are required, one may easily construct a pair 

of orthogonal F-rectangles using the Latin square type in section 3. For v = 6, 

l 2 3 4 5 6 2 3 4 5 6 1 3 4 5 6 1 2 

6 l 2 3 4 5 5 6 1 2 3 4 4 5 6 l 2 3 

l 2 3 4 5 6 3 4 5 6 1 2 5 6 1 2 3 4 

4 5 6 1 2 3 4 5 6 l 2 3 l 2 3 4 5 6 

F2 , although orthogonal to F1, does not have as small a variance as F1 . It 

could perhaps be improved upon by using a construction procedure similar to 

that in section 4. The procedure generalizes for all even v. 

For v odd, one cannot produce F-rectangles of the above sort which are 

orthogonal. One can produce a pair of F-rectangles which are balanced 

Hedayat et al. 

a pair is 

(1972) sense, and which are nearly orthogonal. 

1 2 3 4 5 6 0 

Fl = 2 3 4 5 6 0 1 

4 5 6 0 1 2 3 

2 3 4 5 6 0 1 

F2 = 5 6 0 l 2 3 4 

3 4 5 6 0 l 2 

3 4 5 6 0 1 2 

5 6 0 1 2 3 4 

6 0 1 2 3 4 5 

1 2 3 4 5 6 0 

2 3 4 5 6 0 1 

6012345 

For v = 

in the 

7, such 

The variance-covariance matrix is 3~1/14, and each treatment in F1 occurs once 

with all but one of the treatments in F2 . The procedure generalizes for v = 4t + 3 

by using quadratic and non-null nonquadratic residues as the elements of the first 

and v+lst columns, respectively, of F1 • 
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