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ABSTRACT

Orthogonal frequency division multiplexing (OFDM) is a promising technique

for high-data-rate wireless communications because it can combat inter-symbol in-

terference (ISI) caused by the dispersive fading of wireless channels. The proposed

research focuses on techniques that improve the performance of OFDM based wire-

less communications and its commercial and military applications. In particular,

we address the following aspects of OFDM: inter-carrier interference (ICI) suppres-

sion, co-channel interference suppression for clustered OFDM, clustered OFDM based

anti-jamming modulation, channel estimation for MIMO-OFDM, and precoding for

MIMO-OFDM with channel feedback.

For inter-carrier interference suppression, a frequency domain partial response

coding (PRC) scheme is proposed to mitigate ICI. We derive the near-optimal weights

for PRC that are independent of the channel power spectrum. The error floor resulting

from ICI can be reduced significantly using a two-tap or a three-tap PRC.

Clustered OFDM is a new technique that has many advantages over traditional

OFDM. In clustered OFDM systems, adaptive antenna arrays can be used for inter-

ference suppression. To calculate weights for interference suppression, we propose a

polynomial-based parameter estimator to mitigate the severe leakage of the discrete

Fourier transform (DFT)-based estimator due to the small size of each cluster. An

approximately optimal window size for the polynomial-based estimator is obtained

and an adaptive algorithm is developed to obtain the optimal window size. With

the adaptive algorithm, the polynomial-based estimator has no leakage and does not

require channel statistics.
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Clustered OFDM can also be applied to military communications for high-data-

rate transmission. We propose a clustered OFDM based spread spectrum modulation

to provide better anti-jamming capability. The approximate and asymptotic expres-

sions are derived for performance analysis. For coded systems with hard- and soft-

decision decoding, the performance bounds are used to evaluate the anti-jamming

performance. We have also developed a simple jamming state estimator for soft-

decision decoding.

Employing multiple transmit and receive antennas in OFDM systems (MIMO-

OFDM) can increase the spectral efficiency and link reliability. However, channel es-

timation is a challenging task for MIMO-OFDM systems since more parameters need

to be estimated than in single transmit antenna systems. We develop an minimum

mean-square-error (MMSE) channel estimator that takes advantage of the spatial and

frequency correlations in MIMO-OFDM systems to minimize the estimation error. We

derive conditions for the optimal training sequences and investigate the training se-

quence designs for several channel conditions. Two optimal training sequence designs

for arbitrary spatial correlations are developed. The training sequence designs for

some special correlations are also discussed.

For a MIMO system, the diversity and array gains can be obtained through opti-

mal linear precoding if the exact knowledge of channel state information is available

at the transmitter. In practical implementations, perfect channel state information

is difficult to be obtained. We propose to use a linear precoding scheme that requires

limited feedback. We investigate the issues of codebook construction and selection

criteria. For MIMO-OFDM systems, we propose a subspace tracking based approach

that can exploit the frequency correlations between the OFDM subchannels to re-

duce the feedback rate. The proposed approach does not require recalculation of the

precoding matrix and is robust to multiple data stream transmissions.
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CHAPTER I

INTRODUCTION

The growth of mobile communications and wireless Internet access has produced a

strong demand for advanced wireless techniques. The challenges for wireless commu-

nication designs come from the detrimental characteristics of wireless environments,

such as multipath fading, Doppler effect, co-channel interference, and intentional jam-

ming in military communications. The objective of our research is to provide new

approaches to solve the problems mentioned above by means of orthogonal frequency

division multiplexing (OFDM).

Multipath fading of wireless channels leads to inter-symbol interference (ISI),

which limits the transmission rate of single-carrier systems. In conventional single-

carrier communication systems, the ISI is usually dealt with by a time domain chan-

nel equalizer [1]. When the data rate increases, the symbol duration reduces and

the equalizer becomes very complex. OFDM is an elegant solution to the severe ISI

problem [2], [3].

OFDM is a special form of multicarrier modulation [4], which was originally used

in high frequency military radio. An efficient way to implement OFDM by means

of a Discrete-time Fourier Transform (DFT) was found by Weinstein in 1971 [2].

The computational complexity could be further reduced by a Fast Fourier Transform

(FFT). However, OFDM was not popular at that time because the implementation of

large-size FFTs was still too expensive. Recent advances in VLSI technologies have

enabled cheap and fast implementation of FFTs and IFFTs. In the 1980s, Cimini first

investigated the use of OFDM for mobile communications [3]. Since then, OFDM has

become popular. In the 1990s, OFDM was adopted in the standards of digital audio
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broadcasting (DAB), digital video broadcasting (DVB), asymmetric digital subscriber

line (ADSL), and IEEE802.11a. OFDM is also considered in the new fixed broadband

wireless access system specifications.

In OFDM systems, the entire channel is divided into N narrow subchannels and

the high-rate data are transmitted in parallel through the subchannels at the same

time. Therefore, the symbol duration is N times longer than that of single-carrier

systems and the ISI is reduced by N times. Through adding a cyclic prefix (CP)

ahead of each OFDM symbol, the ISI can be totally suppressed as long as the length

of CP Tg is longer than the maximum channel delay τmax. Usually the length of

the cyclic prefix is much smaller than the symbol duration, therefore, the spectrum

efficiency decrease is negligible. To preserve the orthogonality, the subchannel spacing

satisfies ∆f = 1/Ts, where Ts is the OFDM symbol duration.

OFDM modulation and demodulation can be efficiently implemented by an IFFT

and FFT. Although OFDM successfully prevents the ISI, it does not suppress channel

fading. By using coding and interleaving across the frequency and time domain, the

transmitted data can be effectively protected. Further improvement can be achieved

through other advanced techniques, such as power allocation and adaptive modu-

lation. Since the different subchannels experience different fading in the frequency

selective channels, the optimal power allocation that maximizes the total capacity is

water pouring [5], i.e., allocating more power to subchannels with high gains. Adap-

tive modulation is a simple way to combat the deep fading in some subchannels.

For adaptive modulation, the constellation size of modulation for each subchannel is

adjusted according to the subchannel quality such that a low bit error rate is pre-

served. OFDM can also be used together with multiple access schemes, where the

subchannels, power, and data rate are dynamically allocated to provide a high degree

of flexibility in supportable bit rates and Quality-of-Service (QoS) [22], [40].
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OFDM has many good properties that make it an attractive modulation for high-

data-rate transmission. However, it has also some inherent disadvantages. One of

its disadvantages is the large peak-to-average power ratio (PAPR). Theoretically, the

difference of the PAPR between an OFDM system and a single carrier system is pro-

portional to the number of subchannels, though the theoretical value rarely happens.

Large PAPR reduces the efficiency of the power amplifier, and results in nonlinear

distortion of the transmitted signal. Several techniques have been proposed to reduce

the PAPR, such as clipping, coding, peak windowing, phase shifting, and so on.

Another disadvantage is that OFDM is sensitive to Doppler frequency and car-

rier offset, because the bandwidth of each subchannel is very narrow. Because the

subchannels are closely spaced, the orthogonality among subchannels is destroyed

by time variation over one OFDM symbol or carrier frequency offset [16]-[19]. This

causes inter-carrier interference (ICI). If not compensated for, the ICI will result

in an error floor, which increases with Doppler frequency and symbol duration. We

propose a frequency domain partial response coding (PRC) to reduce the effect of

the ICI. Based on the general expression of the ICI power for OFDM with PRC, we

derive the near-optimum weights for PRC that minimize the ICI power. From the

numerical and simulation results, PRC with optimal weights for OFDM can reduce

the ICI effectively.

Recently, a novel technique, referred to as clustered OFDM [20]-[22], was pro-

posed to improve the performance of classical OFDM systems. In a clustered OFDM

system, the wideband OFDM signal is organized into clusters of subchannels in fre-

quency domain. Each user can access several clusters located at different frequencies.

If channel coding is used over the clusters, frequency diversity gain can be obtained.

Clustered OFDM also provides a flexible multiple access scheme for multiuser com-

munications. Through a simple allocation algorithm, the whole system performance

can be improved [40].
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In multiuser communication systems, such as cellular systems, the performance is

limited by co-channel interference. Adaptive antenna arrays have been proven to be

an effective technique to mitigate fading effect and suppress co-channel interference,

thereby increase the link reliability and coverage of wireless communications [41]-[43].

Among many approaches for interference suppression, minimum mean-square-error

diversity combing (MMSE-DC) is the most effective one. To calculate weights for the

MMSE-DC, the receiver needs the channel state information of the desired signals and

statistics of co-channel interference, which are obtained through estimation in prac-

tice [45]. We investigate adaptive antenna arrays for clustered OFDM to suppress

co-channel interference. Due to the small size of each cluster for clustered OFDM, the

DFT-based estimator [45] has large leakage and results in severe performance degra-

dation. Therefore, a polynomial-based parameter estimator is proposed to combat

the severe leakage of the DFT-based estimator. We study the impact of polynomial

order and window size on the estimation error. An approximately optimal window

size for the polynomial-based estimator is derived and an adaptive algorithm for the

optimal window size is developed. With the adaptive algorithm, the polynomial-based

estimator has no leakage and does not require channel statistics.

Clustered OFDM can be also applied in military communications to design a low

probability interception (LPI) and anti-jamming modulation. We have investigated

clustered OFDM for military communications [62]. For military applications, the sys-

tem has to be designed to protect against intentional interference, jamming. Spread

spectrum (SS) is known to be an effective anti-jamming technique [58]. In a spread

spectrum system, the transmitted signal is spread over a wide frequency band, much

wider than the minimum bandwidth required to transmit data. The transmitter

spreads the signal over a large bandwidth through a pseudo-random code known to

the intended receiver. The receiver can despread the received signal using the same

pseudo-random code. Since the jammer does not know the pseudo-random code,
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the jamming signals only slightly increase the noise floor at the receiver. However,

many military applications need high-data-rate transmission over wireless channels,

which requires OFDM to deal with delay spread. The combination of OFDM and

spread spectrum, so-called multicarrier spread spectrum (MC-SS) [59], has better

anti-jamming and ISI suppression performance than single-carrier SS. It was shown

in [60] and [61] that MC-SS outperforms single-carrier DS-SS. We combine clustered

OFDM with spread spectrum techniques to design an anti-jamming modulation for

military communications. We analyze the anti-jamming performance of clustered

OFDM spread spectrum systems for dispersive channels. Since there is no close-form

expression for the multi-channel gain output distribution with arbitrary correlation

matrices, we use an exponential correlation matrix to approximate the practical chan-

nel correlation matrix. The approximate performance is very close to the exact one.

For coded systems with hard- and soft-decision decoding, we investigate their perfor-

mance bounds. Our numerical results show that the proposed scheme provides great

ability of anti-jamming and combating the dispersive fading of wireless channels.

Multiple transmit and receive antennas can be used to form multiple input and

multiple output (MIMO) channels and increase channel capacity. For a narrow-

band communication system with MT transmit antennas and MR receive antennas in

rich scattering propagation environments, it is shown [47]-[48] that the information-

theoretical capacity increases linearly with the minimum number of transmit and

receive antennas, min(MT , MR). Various schemes have been proposed to exploit the

advantages of MIMO channels, such as space-time coding [49] and BLAST [53]. Em-

ploying multiple antennas in OFDM systems (MIMO-OFDM) can reduce the equal-

izer complexity for broadband communication systems. However, most of MIMO

transmission and signal detection schemes require channel state information. In

MIMO systems, channel estimation is more challenging than in single antenna systems

5



since more parameters have to be estimated [55]. Most analysis and channel estima-

tions assume that MIMO channels are independent and identically distributed (i.i.d.)

Rayleigh fading. In indoor environments, however, MIMO channels are correlated

[56], [57] and with Ricean fading. Exploiting this characteristics, channel estimation

can achieve better performance. We develop an MMSE channel estimator for MIMO-

OFDM systems that can makes full use of the spatial and frequency correlations and

design optimum training sequences that minimize the channel estimation error. In

general, the optimal training sequences for different transmit antennas are orthogonal

and with equal power. In certain special cases, the power of training sequences can

be further optimized.

For MIMO systems, both diversity and multiplexing gain can be obtained simul-

taneously [54]. Close-loop method can provide both diversity and multiplexing gain

with low complexity. However, close-loop method requires accurate channel state

information. In practical implementations, it is difficult for the transmitter to obtain

perfect channel state information. We investigate a precoded MIMO system with lim-

ited feedback, whereby a precoding codebook is constructed to quantize the MIMO

channel subspace. The receiver conveys only the indices of the best precoding matrix

to the transmitter. We discuss the precoding matrix selection problem and propose

simplified sub-optimum algorithms. For MIMO-OFDM systems, we investigate the

clustering, interpolation, and subspace tracking approaches. The proposed subspace

tracking approach can reduce the feedback rate and is robust to multiple data stream

transmissions.

The rest of the thesis is organized as follows. In Chapter 2, we study ICI suppres-

sion for OFDM. We give details on the frequency domain partial response coding. In

Chapter 3, two issues for clustered OFDM are addressed: co-channel interference sup-

pression and clustered OFDM based anti-jamming modulation. A polynomial-based

parameter estimator is proposed to provide parameter estimation for MMSE-DC. An
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adaptive algorithm for polynomial-based estimator is developed. For military com-

munications, a clustered OFDM based anti-jamming modulation is proposed. The

proposed scheme with channel coding has great anti-jamming capability. In Chapter

4, we investigate MIMO-OFDM for wirelss LANs. An MMSE channel estimator is de-

veloped. The estimator can fully exploit the spatial and frequency correlations among

MIMO-OFDM channels. The optimal training sequences are investigated so that the

estimation error is minimized. We also investigate the linear precoding for MIMO-

OFDM with limited feedback. A subspace tracking based approach is proposed to

reduce the feedback rate.
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CHAPTER II

INTER-CARRIER INTERFERENCE

SUPPRESSION

As a promising technique for high-data-rate transmission, OFDM has been success-

fully used in many environments. However, time variations of wireless channels over

one OFDM symbol period destroy orthogonality among subchannels and cause the

ICI. Several methods [23]-[32] have been proposed to reduce the effect of ICI. One

commonly used method is frequency domain equalization [23], [32]. In [23], a pilot

symbol assisted frequency domain equalizer was proposed. In [24], an equalization

technique suitable to time-varying multipath channels was developed. Antenna diver-

sity is an effective way to combat the fading effect of wireless channels and can reduce

the ICI, as shown in [16]. Another way to deal with the ICI is time domain window-

ing [25], [26]. In [27], ICI suppression for MIMO-OFDM was studied. Recently, a

self ICI cancellation approach [28] was proposed, which transmits each symbol over a

pair of adjacent subchannels with a 180o phase shift. This method can suppress ICI

significantly with reduced bandwidth efficiency. Partial response coding (PRC) in the

time domain was studied for single-carrier systems to reduce the sensitivity to time

offset [1] without sacrificing bandwidth efficiency. In the frequency domain, the PRC

with correlation polynomial F (D) = 1 − D was used to mitigate the ICI caused by

carrier frequency offset in [29]. In this chapter, a general frequency domain PRC is

proposed to suppress the ICI caused by Doppler frequency shift or carrier frequency

offset.
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In Section 2.1, an OFDM system with PRC is described and the exact ICI ex-

pression is derived. The optimal weights of PRC that minimizes the ICI power are

obtained and the performance of the PRC with the optimal weights is analyzed in

Section 2.2. Finally, the numerical and simulation results are presented in Section

2.3.

2.1 ICI for OFDM with PRC

As in [30], the baseband model of an OFDM system with PRC is shown in Figure

2.1. At the transmitter, the modulated signal is encoded by PRC. Let xk’s be the

ModulationData in S/P PRC IFFT P/S

Demodulation
Data out

P/S
ML

Detector
FFT S/P

Transmitter

Receiver

ks~

ks
kx

kx~

Figure 2.1: An OFDM system with PRC.

symbols to be transmitted and ci’s be the weights of PRC with unit norm, i.e.,

K−1
∑

i=0

c2i = 1,

where K is the number of weights of PRC. Without loss of generality, we assume

E|xk|2 = 1 and E(xkx
∗
l ) = 0 for k 6= l. Then, the transmitted signal at the k-th

subchannel can be expressed as

sk =
K−1
∑

i=0

cixk−i. (2.1)
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The coded signal can be recovered by an ML sequence detector [33] at the receiver.

The OFDM signal in the time domain is

y(t) =
∑

k

ske
2πfkt, 0 ≤ t < Ts, (2.2)

where fk = f0 + k△f is the frequency of the k-th subchannel, △f = 1/Ts is the

subchannel spacing, and Ts is the symbol duration. After passing through a time-

varying channel with impulse response, h(t, τ), the received signal is

ỹ(t) =

∫

h(t, τ)y(t− τ)dτ. (2.3)

The channel impulse response for the frequency selective fading channel can be

described as

h(t, τ) =
∑

l

γl(t)δ(τ − τl), (2.4)

where τl is the delay of the l-th path and γl(t) is the corresponding path gain. Here, we

assume that the complex stochastic processes γl(t)’s are independent for different l’s

and have the same statistics but different variance εl. For simplicity, we first consider

the flat fading channel and omit the subscription l. Then, the received signal becomes

ỹ(t) = γ(t)y(t).

The demodulated signal can be written as

s̃m =
1

Ts

∫ Ts

0

ỹ(t)e−2πfmtdt. (2.5)

Here, the integration is used instead of DFT. As indicated in [19], the difference is

negligible. It was derived in [19] that the demodulated signal can be expressed as

s̃m = a0sm +
∑

k 6=m

am−ksk, (2.6)

where al is defined as

al =
1

Ts

∫ Ts

0

γ(t)e−2πl△ftdt. (2.7)
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In the above equation (2.5), a0 is the gain of the desired signal and al’s, for l 6=

0, represent the gains of the interfering signals from other subchannels. For time-

invariant channels, γ(t) is a constant and al = 0 for l 6= 0; consequently, there is no

ICI. In general, for time-varying channels, al 6= 0 for some l 6= 0, the ICI exists.

The total ICI power is defined as

PICI = E

∣

∣

∣

∣

∣

∑

l 6=0

alsm−l

∣

∣

∣

∣

∣

2

. (2.8)

For OFDM without PRC [19], it is

P̃ICI = 1 − 2

∫ fd

0

P (f)sinc2(fTs)df, (2.9)

where fd is the maximum Doppler frequency shift, P (f) is the power spectral density

of γ(t), and sinc(x) = sin (πx)/(πx).

It is derived in the appendix that PICI for OFDM with PRC can be expressed as

PICI = 1 − 2

∫ fd

0

P (f)sinc2(fTs)df + IPRC(cK , fdTs), (2.10)

where

IPRC(cK , fdTs) =

∫ fd

0

8 sin (πfTs)
2P (f)

π2

(

K−1
∑

k=1

K−1−k
∑

i=0

cici+k

k2 − f 2T 2
s

)

df

=

∫ fd

0

8 sin (πfTs)
2P (f)

π2
I(cK , fTs)df, (2.11)

with

cK = [c0, c1, · · · · · · , cK−1]
T ,

and

I(cK , fTs) =
K−1
∑

k=1

K−1−k
∑

i=0

cici+k

k2 − f 2T 2
s

.

2.2 Optimum PRC for OFDM

In the previous section, we introduced an OFDM system with PRC and derived the

expression of the ICI power. In this section, we investigate the optimal PRC weights

and analyze the corresponding performance.
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2.2.1 Optimal Weights for PRC

From (2.10), the ICI power includes two parts: the ICI power for OFDM without

PRC, and IPRC(cK , fdTs) contributed by PRC. Therefore, the only way to reduce

the ICI power is to minimize IPRC(cK , fdTs) with respect to cK . In the integral of

IPRC(cK , fdTs), the first part, (8 sin (πfTs)
2P (f)/π2), is always positive. Therefore,

we need only make the last part as small as possible. When f 2T 2
s ≪ 1 , the last part

can be approximated as

I(cK , fTs) ≈ g(cK) =
K−1
∑

k=1

K−1−k
∑

i=0

cici+k

k2
= cT

KRKcK , (2.12)

where RK is defined as

RK =



























0 1
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1
8

· · · 1
2(K−1)2

1
2

0 1
2

· · · 1
2(K−2)2

1
8
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2(K−3)2

...
...

...
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...

1
2(K−1)2

1
2(K−2)2

1
2(K−3)2

· · · 0



























.

From (2.12), it is clear that the optimal cK that minimizes the ICI is the normalized

eigenvector of RK corresponding to the smallest eigenvalue. Then,

Imin(cK , fTs) ≈ gmin(cK) = λ
(K)
0 ,

where λ
(K)
0 ≤ λ

(K)
1 ≤ · · · ≤ λ

(K)
K−1 are the ordered eigenvalues of RK .

When K → ∞, we can obtain the limit of gmin(cK) using Corollary 4.2 in [35],

lim
K→∞

gmin(cK) = min
λ∈ℜ

f(λ), (2.13)

where f(λ) is defined as

f(λ) =
∑

k 6=0

1

2k2
ekλ. (2.14)
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The minimum of f(λ) can be found by setting its derivative with respect to λ to be

zero, that is,

d

dλ
f(λ) = −

∞
∑

k=1

1

k
sin (kλ) = 0. (2.15)

Solving (2.15) for λ and substituting it into (2.13) leads to

lim
K→∞

gmin(cK) =
∞
∑

k=1

(−1)k

k2
= −π

2

12
. (2.16)

Once gmin(cK) is found, the total ICI power for OFDM with optimum PRC can be

calculated using (2.10).

2.2.2 Performance Analysis

The exact expression of the ICI is too complicated to provide much insight. In many

cases, it is difficult to calculate the ICI because the exact power spectrum is not

available. Here we derive an approximate expression using a similar method in [19].

If fTs ≪ 1, we have the following approximation:

sin2(πfTs) ≈ (πfTs)
2. (2.17)

Substituting (2.12) and (2.17) into (2.11), we can obtain the following expression:

IPRC(cK , fdTs) ≈
∫ fd

0

8(πfTs)
2

π2
P (f)g(cK)df

= 4αg(cK)(fdTs)
2, (2.18)

where α is defined as

α =
2

T 2
s

∫ fd

0

f 2P (f)df, (2.19)

which is dependent on the spectral density of γ(t). It is calculated in [19] that α = 1/2

for the classical Doppler spectrum (Jakes’ model) and α = 1 for OFDM with carrier

offset.

Using (3.10) in [19] and (2.18), we can obtain an approximate expression of the

ICI for PRC as

PICI ≈
[

π2

3
+ 4g(cK)

]

α(fdTs)
2 (2.20)
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Table 1: Table of optimal weights
K cK −g(cK) Gain(dB)
1 1 0 0
2 0.7071, -0.7071 0.5000 4.066
3 -0.4775, 0.7376, -0.4775 0.6474 6.719
4 -0.3501, 0.6144, -0.6144, 0.3501 0.7137 8.786
∞ 0.8225 ——–

The expression is much simpler than the exact one. From (2.18), the total ICI is

decided by three factors: α, fdTs, and g(cK). fdTs can be regarded as the normalized

Doppler frequency shift with respect to the sunchannel spacing, ∆f . g(cK) represents

the ICI reduction resulting from PRC. For OFDM without PRC [19],

P̃ICI ≈
π2

3
α(fdTs)

2. (2.21)

Then, the performance gain of PRC is

Gain(dB) = P̃ICI(dB) − PICI(dB)

≈ −10 log10

[

1 +
12

π2
g(cK)

]

.

Table 1 lists the optimal weights, the corresponding g(cK), and the performance

gain according to the above results. From the table, the value of g(cK) is close to the

limit when K = 4.

In the above discussions, we obtained the optimum PRC and analyzed its perfor-

mance for flat fading channels. For frequency selective fading channels, it is usually

assumed that a cyclic extension is inserted ahead of each OFDM symbol to combat

the ISI. Then, the expression of the ICI for frequency selective fading channels can

be derived in a similar way

PICI =1 − 2

∫ fd

0

P (f)sinc2(fTs)df + ĨPRC(cK , fdTs), (2.22)

where

ĨPRC(cK , fdTs) =

∫ fd

0

8 sin (πfTs)
2P (f)

π2
Ĩ(cK , fTs)df, (2.23)
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and

Ĩ(cK , fTs) =
K−1
∑

k=1

K−1−k
∑

i=0

∑

l

εle
2πk∆fτl

cici+k

k2 − f 2T 2
s

. (2.24)

Usually, the path delay τl is much smaller than the symbol duration. Then, for small

size PRC, the term εle
2πk∆fτl is approximately a constant. And the optimum PRC

with small size obtained for flat fading channels is also applicable to the frequency

selective fading channels.

2.3 Numerical and Simulation Results

In this section, we present the numerical and simulation results to show the perfor-

mance improvement of OFDM with the optimum PRC.
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infinite length PRC

Figure 2.2: Comparison of the ICI power due to Doppler frequency shift.

2.3.1 Numerical Results

To examine the performance improvement, we compare the ICI value of OFDM with

and without PRC.
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Figure 2.2 presents a comparison of the ICI power for the classical Doppler spec-

trum (Jakes’ model, [8]). From the figure, the ICI power is reduced by about 4.0 dB

for a two-tap and about 6.2 dB for a three-tap PRC, respectively. The optimum PRC

can also reduce the ICI resulting from carrier offset, as shown in Figure 2.3. There is

about a 4.5 dB improvement for a two-tap PRC.
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−5

Normalized carrier frequency offset (δ)

P IC
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OFDM without PRC
2−tap PRC signal
3−tap PRC signal

Figure 2.3: Comparison of the ICI power due to carrier offset.

2.3.2 Simulation Results

Here, we present our simulation results for the performance of PRC. The system

model and parameters used in our simulation are the same as those in [38]. The entire

channel bandwidth (800 kHz) is divided into 128 subchannels. The 120 subchannels

at the middle are used to transmit data. The remaining subchannels on each side are

used as guard subchannels. QPSK with coherent demodulation is used. A (40,20) R-S

code, with each code symbol consisting of three QPSK symbols grouped in frequency,

is used so that each block forms an R-S codeword. The noise is assumed to be white

Gaussian with zero-mean and variance σ2
n. Then, the SNR is 1/σ2

n. The time-varying
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fading channel is generated using Jakes’ model. A cyclic prefix is used to avoid ISI.

Figure 2.4 shows word-error-rate (WER) versus SNR for hilly terrain (HT) chan-
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10
−1

10
0

OFDM without PRC
2−tap PRC signal
3−tap PRC signal

SNR(dB)

W
E

R

Figure 2.4: WER of OFDM with and without PRC (fdTs = 0.1).

nel. From the figure, OFDM with PRC has some performance loss at low SNR. How-

ever, for the system at high SNR, the ICI is the dominant impairment and OFDM

with PRC has better performance than that without PRC. The error floor resulting

from Doppler frequency shift is reduced from 10−2 to 10−3. Because PRC has some

performance loss when K > 2 as for time domain PRC [1], the performance of a

three-tap PRC is not as good as that of a two-tap PRC, though the three-tap PRC

has better performance in terms of ICI suppression.

The error floor versus normalized Doppler frequency shift is shown in Figure 2.5.

From the figure, to ensure WER below 1%, the maximum tolerable Doppler frequency

shift for OFDM without PRC is about 10% of the subchannel spacing, and it is relaxed

to be 15% for OFDM with a two-tap or a three-tap PRC.
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Figure 2.5: Error floor comparison for OFDM signal with and without PRC.

2.4 Summary

In this chapter, we proposed a frequency domain PRC to reduce the ICI caused by

the time variations of wireless channels. The optimal weights for PRC that minimize

the ICI power are obtained. The numerical and simulation results show that PRC

effectively reduces the error floor caused by Doppler frequency shift or carrier offset.

Even though our discussions are for flat fading channels, the obtained optimal PRC

weights are also applicable to the frequency selective channels.

2.5 Appendix: Derivation of the ICI Power

Here, we derive the ICI power caused by Doppler frequency shift for OFDM with

PRC. First, we calculate the autocorrelation of al:

E(ama
∗
n) = E

{

1

Ts

∫ Ts

0

γ(t)e−2πm∆ftdt× 1

Ts

∫ Ts

0

γ∗(τ)e−2πn∆fτdτ

}

, (2.A.1)

where m 6= n. By (2.7) and Equation (10-50) in [36],

E(ama
∗
n) =

∫ 1

−1

r(Tsx)
− sin[π(m− n)|x|]

π(m−n)
e−2π m+n

2
xdx, (2.A.2)
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where r(τ) is the autocorrelation of γ(t). Then, the ICI power is

PICI = E

∣

∣

∣

∣

∑

l 6=0

alsm−l

∣

∣

∣

∣

2

= E

∣

∣

∣

∣

∑

l 6=0

al

K−1
∑

i=0

cixm−l−i

∣

∣

∣

∣

2

=
∑

n6=i

K−1
∑

i=0

c2iE|an−i|2 + 2
∑

n6=i
n6=i+k

K−1
∑

k=0

K−1−k
∑

i=0

cici+kE(an−ia
∗
n−i−k)

=
∑

l 6=0

E|al|2 + 2
K−1
∑

k=1

K−1−k
∑

i=0

cici+kTk,

where we use the identity
∑K−1

i=0 c2i = 1 and definition

Tk =
∑

n

E(an−ia
∗
n−i−k) − E(a0a

∗
−k) − E(aka

∗
0). (2.A.3)

Substituting (2.A.2) into (2.A.3), we have

Tk =

∫ 1

−1

r(Tsx)
− sin(πk|x|)

πx
×
[

∑

n

e−2π
2(n−i)−k

2
x − 2 cos (πkx)

]

dx (2.A.4)

From Equation (3.2) and (3.5) in [37],

∞
∑

n=−∞
e−2πnx =

∞
∑

m=−∞
δ(x−m).

Consequently,

Tk =

∫ 1

−1

r(Tsx)
− sin(πk|x|)

πk

[

∑

m

δ(x−m)eπkx − 2 cos(πkx)

]

dx

=

∫ 1

−1

r(Tsx)
2 sin(πk|x|) cos(πkx)

πk
dx

=

∫ 1

−1

sin(2πk|x|)
πk

[

2

∫ fd

0

P (f) cos(2πfTSx)df

]

dx

=

∫ fd

0

4 sin2(πfTs)P (f)

π2(k2 − f 2T 2
s )

df. (2.A.5)

From [19],

∑

l 6=0

E|al|2 = 1 − 2

∫ fd

0

P (f)sinc2(fTs)df, (2.A.6)
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then

PICI = 1 − 2

∫ fd

0

P (f)sinc2(fTs)df + IPRC(cK , fdTs), (2.A.7)

where

IPRC(cK , fdTs) =

∫ fd

0

8 sin (πfTs)
2P (f)

π2

(

K−1
∑

k=1

K−1−k
∑

i=0

cici+k

k2 − f 2T 2
s

)

df.
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CHAPTER III

CLUSTERED OFDM AND ITS MILITARY

APPLICATIONS

This chapter introduces a novel system, called clustered OFDM. We investigates

interference suppression and military applications of clustered OFDM systems. Sec-

tion 3.1 introduces the concept of clustered OFDM. In Section 3.2, we propose a

polynomial-based parameter estimator for clustered OFDM with adaptive antenna

arrays for interference suppression. In Section 3.3, a clustered OFDM based anti-

jamming modulation is proposed for military communications.

3.1 Clustered OFDM

Recently, clustered OFDM [20]-[22] was proposed for high-speed wireless transmission

[39]. In a clustered OFDM system, contiguous OFDM subchannels are grouped into

subchannel clusters and each user accesses several clusters at different frequencies.

Figure 3.1 shows the concept of clustered OFDM [46]. A wideband OFDM signal is

f

user 1 user 2 user 3
user 4

Figure 3.1: Concept of clustered OFDM.
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divided into 16 clusters. Four users utilize all clusters and each accesses four clusters.

Since the clusters belonging to one user are distributed over the whole frequency

band, frequency diversity can be achieved for frequency selective fading channels by

means of channel coding [20]-[22]. Since the size of each cluster in a clustered OFDM

system is smaller than the whole bandwidth, the PAPR can be reduced by 10 logM

if the whole band is divided into M clusters. In addition, the complexity of nonlinear

coding for PAPR reduction can be significantly reduced [20]. Clustered OFDM can

also be combined with multiple transmit antennas to achieve transmit diversity. In a

clustered OFDM system with multiple transmit antennas, each cluster can be assigned

to an independent antenna, a coding scheme is used to obtain the transmit diversity.

If a feedback channel is available, the cluster can be assigned to the antenna with the

best channel quality.

Clustered OFDM is also an ideal modulation for joint physical and medium access

layer optimization [40]. The system has a high degree of flexibility for supportable

bit rates since it can adaptively allocate different clusters to different users.

3.2 Interference Suppression for Clustered OFDM

For cellular wireless communication systems, one of the major limitations is co-

channel interference. The co-channel interference arises when two or more users

transmit signal simultaneously on the same channel. In TDMA systems, such as

GSM/GPRS and IS-136, the power of co-channel interference mainly depends on the

reuse factor, and cannot be avoided since the same channels must be reused in some

other cells not far away. Various techniques have been developed to reduce the co-

channel interference, for example, dynamic frequency allocation, power control, and

adaptive multi-rate coding. Adaptive antenna arrays have been proven to be an ef-

fective technique to mitigate fading effect and suppress co-channel interference [42].

In [41], MMSE diversity combing is proposed to suppress co-channel interference.
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Among many algorithms for calculating the weights for MMSE diversity combining,

direct matrix inversion with diagonal loading (DMI/DL) [43], [44] is able to reach

the optimal performance. However, this algorithm requires accurate information of

the channel responses corresponding to the desired signals and the correlations of the

received signals from different receive antennas.

For classical OFDM, either pilot-symbol aided or decision-directed channel esti-

mators can be used to obtain the channel information. When the channel statistics

are available, an MMSE estimation with the optimal transform obtained through

decomposing the channel correlation matrix was proposed to achieve the optimal

performance [63], [64]. However, extremely high computational complexity limits

the practical use of the optimal transform. To overcome the difficulties of obtaining

the optimal transform, a robust estimation using DFT to approximate the optimal

transform was proposed in [38]. It was proven that the leakage resulting from the

approximation is negligible if the number of subcarriers is large enough, which is usu-

ally satisfied for classical OFDM systems. A similar estimation approach was used

to estimate the correlation of the received signals for OFDM systems with adaptive

antenna arrays [45]. Unfortunately, when it is applied into clustered OFDM systems,

the leakage is very large because of the small size of each cluster and the performance

loss is unacceptable. In [22], some robust transforms for clustered OFDM channel

estimation were proposed to reduce the edge effect. We propose to use a polynomial-

based estimator to obtain the desired channel information and the received signal

correlation for clustered OFDM systems. The motivation is that polynomial approx-

imation can achieve high accuracy in a small area.

Polynomial approximation has been extensively studied in mathematical literature

[65], [66]. Applications of the polynomial-based estimation to communication systems

can also be found in [67], [68]. For the polynomial-based estimation, the channel is

assumed to be a smooth function of time or frequency, and can be approximated by a
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polynomial function. Two critical issues for a polynomial-based estimator have to be

taken into account: the polynomial order and window size. With the increase of the

window size, the approximation error increases while the variance of estimation error

is reduced [67]. For a slow-varying channel, a fixed window size is good enough. When

a channel changes fast, an adaptive window size is desirable to improve performance.

In [67] and [68], a tentative search algorithm was used to find a local optimal window

size. However, this method is sensitive to noise and requires high computational

complexity.

In this section, we investigate polynomial-based estimation for clustered OFDM.

We first study the impact of the polynomial order and window size on the estimation

error. Then, we derive an approximately optimal window size and propose an adaptive

algorithm with low complexity to obtain the optimal window size.

3.2.1 Clustered OFDM with Adaptive Antenna Arrays

As in [46], the baseband model of a clustered OFDM system with adaptive antenna

arrays for interference suppression is shown in Figure 3.2. After OFDM demodulation,
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Figure 3.2: Clustered OFDM with the MMSE diversity combiner.

the received signals from different receive antennas at the same block and subcarrier

are multiplied by different weights and the weighted signals are summed to form

the output signals. The output signals are further demodulated and decoded. The

weights are determined to maximize the output signal-to-noise-plus-interference ratio
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(SINR). For a J-branch diversity system, the received signal from the m-th antenna

at the k-th subcarrier of the n-th block can be written as

xm[n, k] =
L
∑

l=0

H(l)
m [n, k]sl[n, k] + nm[n, k], (3.1)

where s0[n, k] is the desired signal, H
(0)
m [n, k] is the channel frequency response cor-

responding to the desired signals, sl[n, k] is the l-th interferer, H
(l)
m [n, k] is the cor-

responding channel frequency response, and nm[n, k] is AWGN with zero-mean and

variance σ2
n.

In the above expression, we assume synchronized co-channel interferers. As indi-

cated in [45], the effect of the asynchronous interference on the system performance is

similar to the synchronous interference. We also assume the signals from the desired

user and interferers are i.i.d. complex random variables with zero-mean and unit

variance. And H
(l)
m [n, k]’s for different m’s or l’s are independent, stationary, and

complex Gaussian with zero-mean and different variances σ2
l ’s.

The received signals are linearly combined with weights, wm[n, k]’s,

y[n, k] = wH [n, k]x[n, k], (3.2)

where x[n, k] is the received signal vector, defined by (x1[n, k], · · · , xJ [n, k])T , and

w[n, k] is the weight vector, defined by (w1[n, k], · · · , wJ [n, k])T . The weight vector

can be calculated by the DMI/DL algorithm [44]:

w[n, k] = (R[n, k] + γI)−1H(0)[n, k], (3.3)

where γ is a diagonal loading factor [44], [45], I is J×J identity matrix, and H(0)[n, k]

is the J × 1 channel response vector corresponding to the desired signal. R[n, k] is

the J × J correlation matrix, defined as

R[n, k] = (rij[n, k])
J
i,j=1 =

(

Ec

{

xi[n, k]x
∗
j [n, k]

})J

i,j=1

=

(

L
∑

l=0

H
(l)
i [n, k]H

(l)∗
j [n, k] + σ2

nδ[i− j]

)J

i,j=1

, (3.4)
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where Ec is the conditional expectation given the channel parameters corresponding

to both the desired signal and interferers.

From (3.3), to obtain the weight vector for adaptive antenna arrays, the instan-

taneous correlations of the signals from different antennas and channel parameters

have to be estimated. The accuracy of estimation directly affects the performance of

the system.

3.2.2 Polynomial-Base Parameter Estimation

As indicated before, to obtain the optimal weights for the MMSE combiner, we have to

estimate channel parameters and instantaneous correlations. We use the polynomial-

based estimator to obtain those parameters. Since the polynomial estimator is ap-

plicable to both channel and instantaneous correlation estimation, we focus only on

estimation of the instantaneous correlations.

3.2.2.1 Polynomial model for instantaneous correlation estimation

It was shown in [38] that the correlation of the channel responses satisfies separa-

tion property, i.e., the correlation of the channel responses in time and frequency

domain rH(∆t,∆f) can be expressed as the product of the time domain correlation

rT (∆t) and frequency domain correlation rF (∆f). From [45], the separation property

holds for instantaneous correlations of the received signals from different antennas.

With this property, a two-dimensional polynomial fitting can be simplified to two

one-dimensional fitting problems: a frequency domain fitting and a time domain fit-

ting. As a result, the computational complexity is reduced significantly. Although

the autocorrelations of the received signals do not satisfy the separation property, we

still use two one-dimensional estimators for simplicity. The resultant performance is

satisfactory, as shown later by our simulation. Furthermore, the real part and imag-

inary part of instantaneous correlations can be estimated independently. Therefore,

we assume that all variables are real for the rest of the derivations.
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The temporal estimation of the instantaneous correlations r̃ij[n, k] can be written

as

r̃ij[n, k] = xi[n, k]x
∗
j [n, k]

= rij[n, k] + ṽij[n, k], (3.5)

where ṽij[n, k] is the temporal estimation error

ṽij[n, k]=
L
∑

l1,l2=0,l1 6=l2

H
(l1)
i [n, k]H

(l2)∗
j [n, k]sl1 [n, k]s

∗
l2
[n, k]

+ni[n, k]
L
∑

l2=0

H
(l2)∗
j s∗l2 [n, k]

+n∗
j [n, k]

L
∑

l1=0

H
(l1)
i sl1 [n, k]. (3.6)

Since sl[n, k]’s are i.i.d, ṽij[n, k] is white with E(ṽij[n, k]) = 0, and Var(ṽij[n, k]) =

σ̃2
ij[n, k]. For MMSE estimation, only second-order statistics, the variance σ̃2

ij[n, k] of

ṽij[n, k], is concerned. The channel parameters for the desired signal and interferers

change with time and frequency, so is the variance of ṽij[n, k]. Since the estimator

works independently for each pair of i and j, we eliminate the subscript i, j in the

rest of the section.

According to approximation theory [70], the instantaneous correlations within a

(2N + 1) point window centered at n0 can be approximated by a polynomial of order

M ,

r[n] =
M
∑

m=0

am(n− n0)
m + εr[n]. (3.7)

Here, we have ignored the frequency index k. It is obvious from (3.7) that r[n0] = a0.

With the temporal estimation, the coefficients of the polynomial can be obtained by

solving the following weighted least-square equation:

min
a0,··· ,aM

n0+N
∑

n=n0−N

∣

∣

∣

∣

∣

r̃[n] −
M
∑

m=0

am(n− n0)
m

∣

∣

∣

∣

∣

2

W

(

n− n0

N

)

, (3.8)
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whereW
(

n−n0

N

)

denotes a nonnegative weight function. Equation (3.8) can be written

in matrix form

min
aM

(r̃ − DMaM)TW(r̃ − DMaM),

where

aM = (a0, · · · , aM)T , r̃ = (r̃[n0 −N ], · · · , r̃[n0 +N ])T ,

W = diag{W (
n0 −N

N
), · · · ,W (

n0 +N

N
)},

and

DM =

































1 −N · · · (−N)M

1 1 −N · · · (1 −N)M

...
...

...

1 0 · · · 0

...
...

...

1 N · · · NM

































.

The estimation of aM can be derived as

âM = (DT
MWDM)−1DT

MWr̃. (3.9)

Note that DT
MWDM is invertible provided that the window size N is larger than

order M . Then, the estimation of r[n0] is r̂[n0] = e1(D
T
MWDM)−1DT

MWr̃, where

e1 = (1, 0, · · · , 0). In other words, the estimation of r[n0] is the first element of âM .

The window size and polynomial order play important roles in polynomial-based

estimation. Next, we investigate these issues.

Polynomial Order

To find the optimal polynomial order, we first study its impact on the estimation

error. The MSE of estimation at the center point n0 within [n0−N,n0 +N ] is defined

as

εp[n0] = E
{

|r[n0] − r̂[n0]|2
}

, (3.10)
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where the expectation is over ṽ[n].

Let εp = E{(âM − aM)(âM − aM)T}. Then, direct calculation yields

εp = Var(âM) + (bias(âM)) (bias(âM))T , (3.11)

where Var(âM) = E{(âM − E{âM})(âM − E{âM})T}, εp[n0] is the element at the

first row and first column of εp, and the bias is defined as

bias(âM) = E{âM} − aM .

To find εp[n0], we need to evaluate the bias and variance of the coefficient estimation.

Define GM = DT
MWDM , ḠM = DT

MW2DM , and the model error ξM = r −

DMaM , where r is the exact instantaneous correlation vector. From (3.9), we have,

E{âM} = E{G−1
M DT

MWr̃}

= G−1
M DT

MWr

= G−1
M DT

MW(DMaM + ξξξM)

= aM + G−1
M DT

MWξξξM . (3.12)

Then,

bias(âM) = G−1
M DT

MWξξξM . (3.13)

The estimation variance is

Var(âM) = E
{

(G−1
M DT

MWṼ)(G−1
M DT

MWṼ)T
}

= σ̃2[n0]G
−1
M ḠMG−1

M , (3.14)

where Ṽ = (ṽ[n0−N ], · · · , ṽ[n0 +N ])T is the temporal estimation error vector, which

is assumed to have constant variance σ̃2[n0] within (n0 −N,n0 +N).

Let g
(M)
ij denote the element of the matrix GM at the i-th row and j-th column.

29



From the definition of GM , we have

g
(M)
ij =

N
∑

n=−N

ni+jW (
n

N
)

= N i+j+1

N
∑

n=−N

( n

N

)i+j 1

N
W (

n

N
)

≈ N i+j+1ψi+j, (3.15)

where

ψp =

∫ 1

−1

tpW (t)dt.

Define N̄M = diag{1, N, · · · , NM} and ΨM = {ψi+j}0≤i,j≤M , then

GM ≈ NN̄MΨMN̄M . (3.16)

Similarly, we have

ḠM ≈ NN̄MΨ̄MN̄M , (3.17)

where Ψ̄M = {ψ̄i+j}0≤i,j≤M with ψ̄p =
∫ 1

−1
tpW 2(t)dt. Note that ψp and ψ̄p are zero for

odd p when the weight function is symmetric. Then, the estimation variance becomes

Var(âM) ≈ σ̃2[n0]

N
N̄

−1
Ψ−1

M Ψ̄MΨ−1
M N̄

−1
M . (3.18)

According to Weierstrass Approximation Theorem [70], the remainder ξξξM can be

approximated by a polynomial with any degree accuracy, i.e.,

ξM =
∞
∑

k=M+1

akdk, (3.19)

where dk =
(

(−N)k, · · · , Nk
)T
. From (3.13), (3.15), (3.16), and (3.19), the bias can

be written as

bias(âM) ≈
∞
∑

k=M+1

NkakN̄
−1
M Ψ−1

M Φk, (3.20)
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where Φk = (ψk, · · · , ψk+M)T . The first element of Φk, ψk, is equal to zero for odd

k and symmetric weight function. Consequently, the expressions of the approximate

variance and bias of r̂[n0] are given as follows,

Var(r̂[n0]) ≈
σ̃2[n0]

N
e1N̄

−1
M Ψ−1

M Ψ̄MΨ−1
M N̄

−1
M eT

1 , (3.21)

bias(r̂[n0]) ≈











∑∞
k=M+1N

kake1N̄
−1
M Ψ−1

M Φk, M is odd,

∑∞
k=M+2N

kake1N̄
−1
M Ψ−1

M Φk, M is even.
(3.22)

From (3.22), for evenM , the bias of theM -th order and (M+1)-th order polynomial-

based estimators are related to at least the (M+2)-th coefficient of the polynomial.

Then, the following property of the polynomial-based estimation is concluded:

For the even number M , the MSEs of estimation at the center with the M-th order

and M + 1-th order polynomial-based estimator are the same.

The proof is given in the appendix. We should note that the statement is valid only

for estimation at the center of the window and symmetric weight function. Otherwise,

it does not hold, as shown in [68]. The property can be further confirmed by simulation

results in Figure 3.3.

In the simulation of Figure 3.3, the time domain correlation estimation is per-

formed using polynomials with different orders and window sizes. From this figure,

we have the following observations:

1. The normalized MSE (NMSE) performance is related to the window size, and

an improper window size results in performance degradation.

2. For an even number M , the polynomial-based estimators with M -th order and

M + 1-th order have the same performance.

3. The estimation performance is not sensitive to the polynomial orders. For ex-

ample, from zero-th order to second order, there is about a 1 dB improvement.

However, there is only a 0.3 dB gain from second order to sixth order. Thus,
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Figure 3.3: NMSE for different window size.

it suggests that the second or third order polynomial is good enough for esti-

mation. Zero-th order polynomial may be used for some applications with low

complexity.

4. These simulation results also show that the estimation performance is more

sensitive to the window size than to the polynomial polynomial order.

Since the estimation performance is very sensitive to the window size, we investigate

this issue next.

Optimal Window Size

If the MMSE criterion is used, the optimal window size can be found to minimize

the following MSE of estimation

min
N

E
{

∣

∣MSE = r[n0] − e1(D
T
MWDM)−1DT

MWr̃
∣

∣

2
}

, (3.23)

where the expectation is over the instantaneous correlations and noise. Unfortunately,
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there is no close form solution for the problem even if the statistics of the instanta-

neous correlations and the noise are known. Therefore, we resort to an approximate

solution.

In (3.22), we can discard the higher order terms if the window size is well chosen

and thus obtain a simplified expression

bias(âM) ≈ NM+1aM+1N̄
−1
M Ψ−1

M ΦM+1, (3.24)

where we only consider the case that M is odd for convenience since performance for

the even and odd order polynomial-based estimators is same. Substitute (3.21) and

(3.24) into (3.11), we obtain the MSE of estimation

εp[n0] ≈
ασ̃2[n0]

N
+
(

βaM+1N
M+1

)2
, (3.25)

where the constants α = e1N̄
−1
M Ψ−1

M Ψ̄MΨ−1
M N̄

−1
M eT

1 and β = e1N̄
−1
M Ψ−1

M ΦM+1.Both

depend on the polynomial order M and the weight function W (·). The optimal

window size can be derived by minimizing the εp[n0] in (3.25), which is

N
(p)
opt [n0] = arg min

N
εp[n0]

=

(

ασ̃2[n0]

(2M + 2)β2a2
M+1

)
1

2M+3

. (3.26)

If the order M and the weight function W is determined, coefficients α and β can

be calculated. For example, for the weight function of W (t) = 3/4(1 − t2) [66] and

M = 3, the optimal window size is 1.60(σ̃2[n0]/aM+1)
1/2M+3.

Sometimes, minimizing the MSE at one point cannot guarantee minimizing the

MSE at other points within the window. An alternative approach is to minimize the

weighted MSE over the whole window, which is defined as

εs =
E
{

(r − DM âM)TW(r − DM âM)
}

Tr(W)
, (3.27)

where Tr(W) denotes the trace of matrix W.
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Similar to the derivation of εp[n0], we can obtain

εs ≈ a2
M+1N

2M+2(ψ2M+2 − ΦT
M+1Ψ

−1
M ΦM+1)

ψ0

+
σ̃[n0]

2Tr(Ψ̄MΨ−1
M )

Nψ0

,

where we assume the variance of ṽ[n] is constant. The optimal window size to mini-

mize εs is

N
(s)
opt=

(

Tr(Ψ̄MΨ−1
M )

(2M+2)(ψ2M+2−ΦT
M+1Ψ

−1
M ΦM+1)

)
1

2M+3
(

σ̃2[n0]

a2
M+1

)
1

2M+3

. (3.28)

Comparing (3.26) and (3.28), we can see that two types of the optimal window sizes

can be uniformly expressed as

Nopt = CM+1

(

σ̃2[n0]

a2
M+1

)
1

2M+3

, (3.29)

where CM+1 is a constant depending on the order and the weight function.

Polynomial Coefficient Estimation

In the previous section, we have investigated the optimal window size for the

polynomial-based estimator. In this section, we study how to obtain polynomial

coefficients required to calculate the optimal window size.

The parameter aM+1 can be found through pilot estimation. The idea is to use

(M + 1)-th or a higher-order polynomials to fit the temporal estimation and obtain

the estimation of aM+1 and σ̃2. Thus, an approximately optimal window size can

be calculated. From the approximately optimal window size, we use an M -th order

polynomial fitting to obtain the refined estimation. The problem for pilot estimation

is how to select a proper initial window size.

If statistics of the instantaneous correlations are known, the mean-square of the

M + 1-th order polynomial coefficient aM+1 can be obtained by [69]

E|aM+1|2 =
(2π)2(M+1)

(M + 1)!2

∫ 2fd

−2fd

|f |2(M+1)Sr(f)df,

where fd is the Doppler frequency and Sr(f) is the Doppler spectrum of r[n]. If we

estimate in frequency domain, fd becomes τm, the maximum delay spread, and Sr(f)
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turns to the frequency correlation spectrum. Then, we can calculate the window

size for pilot estimation according to (3.29). For Rayleigh fading channel, and fd =

100 Hz, σ̃2 = 0.1, M = 3, the optimal window size can be calculated as Nopt ≈ 14,

and Nopt ≈ 17 for M = 4.

However, the statistics of the channels or instantaneous correlations of the re-

ceived signals are usually not known and need to be estimated. Thus, the global

optimal window size based on statistics may not be available. Here, we introduce

another approach that does not require the statistics of the channels or instantaneous

correlations of the received signals. The basic idea is to find the window size that

minimizes some cost function. From [65], the normalized estimation error is defined

as

σ̂2 =

∑n0+N
i=n0−N [r(i) − r̂(i)]2W ( i−n0

N
)

Tr(W − WDMG−1
M DT

MW)
. (3.30)

Its expectation is

E[σ̂2] = σ̃2[n0] + b2q, (3.31)

where

b2q = κ−1ξξξT
M{W − WDMG−1

M DT
MW}ξξξM ,

and

κ = Tr(W − WDMG−1
M DT

MW).

The second term in (3.31) can be approximated as

b2q ≈ κ−1{g2q+2 − g
T
q+1G

−1
M gq+1}a2

q+1

≈ N2q+2a2
q+1ψ

−1
0 (ψ2q+2 − ΦT

q+1Ψ
−1
M Φq+1)

= C̃qN
2q+2a2

q+1, (3.32)

where gq+1 = (gq+1, · · · , g2q+1)
T , and C̃q = ψ−1

0 (ψ2q+2 − ΦT
q+1Ψ

−1
M Φq+1).
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To find the window size for pilot estimation, we define a cost function,

εR = (1 + λ/N)σ̂2,

where λ is a constant. Note that εR is a random variable. Its expectation is,

E(εR) ≈ σ̃2[n0] + b2q +
λσ̃2[n0]

N
,

where the lower-order term λ
N
b2q with respect to N is discarded. Minimizing E(εR)

with respect to N results in the window size

Np =

(

λσ̃2[n0]

(2q + 2)C̃qa2
q+1

) 1
2q+3

. (3.33)

We can choose the constant λ such that Np = Nopt for a specific order and weight func-

tion. And the window size for pilot estimation can be obtained through minimizing

εR:

Np = arg min
N

(εR). (3.34)

With the initial window size, the polynomial coefficients can be estimated through

pilot estimation. The algorithm for polynomial estimation can be summarized as

follows:

Algorithm (Two-stage polynomial estimation)

1) Initialization: Set a minimal window size Nmin and maximal window size Nmax.

2) Pilot estimation: Fit temporal estimation by a polynomial of order M + 1 or

M+2 using the pilot window sizeNp in (3.34) and obtain the estimation of âM+1, âM+2

and σ̂2[n0].

3) Refined estimation: Estimate r[n0] with the window size obtained by (3.26) or

(3.28) using an M -th polynomial.

The disadvantage of the pilot estimation is that performance is bad at the low

SNR. if the noise is high, the estimated coefficient aM+1 is not accurate, which results

in bad window size for refined estimation. It is known that the DFT-based estimator
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is robust to high noise because the leakage is small compared to the noise at the low

SNR. Therefore, we can use the DFT-based approach for pilot estimation at the low

SNR. The detail of DFT-based estimation can be found in [45].

To reduce the computational complexity, we can search window sizes at a few time-

frequency points and then average them to obtain a window size that is used for pilot

estimation at the rest points. For a two stage estimation, the sensitivity of the refined

estimator to the window sizes of pilot estimation is reduced significantly. Another

simple method of selecting a window size for the pilot estimation is multiplying a

coefficient (usually 1.2 ∼ 1.5) to the average window size of refined estimation. All

those methods result in close performance from our simulation results.

3.2.3 Simulation Results

In this section, we demonstrate performance of the polynomial-based estimator through

simulation under different environments.

The system model and parameters used in our simulation are the same as those

in [22]. The entire bandwidth, 4.096 MHz, is divided into 512 subchannels with

subchannel space ∆f = 8 kHz. The symbol duration is Ts = 1/∆f = 125 µs.

An additional 31.25 µs guard interval is used to mitigate intersymbol interference.

The 512 subchannels are divided into 32 clusters with a cluster size of 15 and 32

guard subchannels (one guard subchannel between each pair of clusters). Four users

transmit data through the channel at the same time and each user accesses eight

clusters. Thus, there are 120 subchannels for each user. A (40,20) Reed-Solomon (R-

S) code, with each symbol consisting of three QPSK symbols grouped in frequency, is

used in the system. Hence, each block forms an R-S codeword. Each time slot contains

10 cluster OFDM blocks with one block used for synchronization and training to

suppress error propagation. Interference is assumed to be modulated using the same

modulation scheme. At the receiver, the instantaneous correlations and channels
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are obtained through the polynomial-based estimator with the adaptive algorithm.

After original detection, we use enhanced approach proposed in [45] to improve the

estimation. Two types of channel models are used: typical urban (TU) and HT.
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Figure 3.4: NMSE of polynomial-based estimator for channel with fd = 100 Hz at
SNR=15 dB.

Figure 3.4 shows the NMSE of the polynomial-based estimator with the optimal

window sizes and adaptively adjusted window size for different orders. It can be seen

that the performance of the adaptive algorithm is very close to that of the optimal

window size for the same order, which shows that the adaptive algorithm performs

well even if we do not know the optimal window size. This figure also shows that

the second order polynomial approximation is enough for estimation. When the

polynomial order increases from two to four, the gain is less than 0.5 dB.

Figures 3.5 and 3.6 compare the NMSE for the DFT-, rectangular- [22], and

polynomial-based estimators, under two channel conditions: TU channel with Doppler

frequency 40 Hz and HT channel with 100 Hz Doppler frequency. From these figures,
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Figure 3.5: NMSE versus (a) SIR for SNR=15 dB and (b) SNR for SIR=10 dB, for
TU channel with fd = 40 Hz.

the polynomial-based estimator has better performance than the other transform-

based estimators under the moderate SNR or signal-to-interference ratio (SIR). Specif-

ically, from Figure 3.5 for TU channel, there are about a 6.5 dB improvement at 20

dB SIR and 15 dB SNR and a 5.5 dB improvement at 20 dB SNR and 10 dB SIR.

With the increase of Doppler frequency or delay spread, performance improvement

of the polynomial-based estimator diminishes. For HT channel in Figure 3.6, the

performance improvement decreases to 2.5 dB at 20 dB SIR and 15 dB SNR, and
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Figure 3.6: NMSE versus (a) SIR for SNR=15 dB and (b) SNR for SIR=10 dB, for
HT channel with fd = 100 Hz.

1.5 dB at 20 dB SNR and 10 dB SIR, respectively. Because of the leakage effect,

the estimation error of the other estimators does not decrease even if the noise and

interference are very small. Whereas the polynomial-based estimator has no leak-

age effect when the window size is adaptively adjusted. Therefore, the performance

improvement increases with SINR. However, at lower SINR as in Figure 3.6, there

is about a 1 dB performance loss for HT channel. This is because the effect of the

interference or noise overwhelms the leakage effect.
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Figure 3.7: WER versus SNR for different channels with SIR=10 dB.

Figures 3.7 and 3.8 show the WER versus SIR and SNR for the DFT-, rectangular-

, and polynomial-based estimators, under different channel conditions. Figure 3.8

shows WER versus SIR at 15 dB SNR. Compared to the other estimators, the required

SIRs for a 10−4 WER for the polynomial-based estimator have about a 1.5 dB and a

2 dB improvement for HT and TU channels, respectively. Figure 3.7 shows the WER

versus SNR at 10 dB SIR. For a 10−4 WER, the required SNRs for the polynomial-

based estimator have about a 2 dB and a 4 dB improvement for TU and HT channels,

respectively.

3.3 Clustered OFDM Based Anti-Jamming

Modulation

Many military communications require high-data-rate transmission over wireless chan-

nels. However, the dispersive fading of wireless channels causes severe ISI and de-

grades the system performance. OFDM is an effective technique of mitigating ISI.
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Figure 3.8: WER versus SIR for different channels with SNR=15 dB.

For military communications, jamming exists. Unlike co-channel interference,

jamming is intentional interference, which is usually modelled as a Gaussian noise

with high power. Here, we consider two types of jamming: broadband jamming (BJ)

and partial band jamming.

The broadband jamming has the total power J uniformly spread over the whole

spread bandwidth Wss. The broadband jamming does not exploit any knowledge

of the anti-jamming system except its bandwidth. The performance of anti-jamming

system subject to the broadband jamming provides the baseline performance for all of

the anti-jamming systems. An effective anti-jamming system should give performance

close to or better than the baseline performance, regardless of the type of the jamming

[58].

The partial band jamming occurs when the jammer injects the total power into

only part of the total bandwidth Wss. Therefore, partial jammer can exploit the

power more efficiently provided the prior knowledge about the anti-jamming systems.
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The combination of OFDM and spread spectrum, so-called multicarrier spread

spectrum (MC-SS), can provide strong anti-jamming and ISI suppression capabilities

[59]. It was demonstrated in [60] and [61] that MC-SS outperforms single-carrier

direct sequence spread spectrum (DS-SS).

Recently, we have investigated clustered OFDM for military communications [62].

In this section, we address anti-jamming modulation based on clustered OFDM to

provide both anti-jamming and ISI suppression capabilities. We first describe the

proposed system and then its performance.
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Figure 3.9: Block diagram and cluster assignment for clustered OFDM based spread
spectrum systems.
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3.3.1 Clustered OFDM Spread Spectrum System

A clustered OFDM SS system for dispersive channels is illustrated in Figure 3.9. In

the clustered OFDM SS system, the whole frequency band Wss is uniformly parti-

tioned into Q disjoint subbands with bandwidth B = Wss/Q. Each subband includes

L OFDM clusters with each one containing K subchannels. Consequently, each sub-

band consists of KL subchannels. Then, the subchannel space is ∆f = Wss

QKL
, and

the bandwidth of each cluster is Wc = K∆f = Wss

QL
. The cluster bandwidth is care-

fully selected so that the channel frequency response within each cluster is with a

small variation; however, the bandwidth of each subband should be larger than the

channel’s coherent bandwidth so that the channel frequency responses for different

subbands are independent.

Assume that partial channel information is available at the transmitter so that the

transmitter is able to choose the cluster with the best quality within each subband.

Then, selective diversity can be achieved for combating the fading effect. The clusters

assigned to each user randomly hop among Q subbands; then, clusters belonging to

the same user experience independent fading.

The data stream is first interleaved and encoded with error-correction codes. The

encoded data are then spread by a short Hadamard sequence. For security, the spread

data symbol may also be scrambled by a pseudo-random noise sequence. Each spread

data symbol is modulated using BPSK and then transmitted through one cluster.

Assume a sufficient cyclic prefix is added to suppress the ISI caused by dispersive

fading. Then, after DFT and despreading, the received signal for the l-th cluster and

n-th block can be expressed as

r[n, l] = H[n, l]x[n, l] + J [n, l] + w[n, l], (3.35)

where J [n, l] is the jamming signal, w[n, l] is AWGN that is assumed to have zero-

mean and variance N0, x[n, l] is the BPSK modulated signal that is assumed to
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have unit variance, and H[n, l] is the channel frequency response that is assumed to

be complex Gaussian with zero-mean and unit-variance. H[n, l] is independent for

different subbands but has the same statistics.

The jamming signal is assumed to be partial band noise jamming with fraction ρ,

0 < ρ ≤ 1. For convenience of analysis, we assume that the jamming signal occupies

multiples of cluster bandwidth. Then, if the total jamming power is PJ Watts, then

the received jamming signal J [n, l] has variance PJ△f
2ρWss

for the cluster with jamming

and zero for the cluster without jamming. In the anti-jamming performance analysis,

we assume the background noise is negligible compared to the jamming signal if not

mentioned.

As indicated before, channel state information, H[n, l] is required at the transmit-

ter to achieve diversity and at the receiver for coherent demodulation and soft-decision

decoding. Several channel estimation approaches [22] can be used to estimate channel

state information accurately. Therefore, we assume that perfect channel information

is available at the transmitter and the receiver when analyzing anti-jamming perfor-

mance of clustered OFDM SS systems.

3.3.2 Uncoded System Performance

In this section, we investigate performance of clustered OFDM SS systems without

coding. We start with systems with broadband jamming, that is, the case of ρ = 1.

3.3.2.1 Broadband Jamming Systems

For broadband jamming, the power spectral density of the jamming signal is PJ/Wss

and the received jamming power is NJ/2 for BPSK modulation, where

NJ =
PJ△f
Wss

.

Let αl = |H[n, l]|2 and

α = max{α1, · · · , αL},
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where we have ignored the time index, n, since it does not affect the analysis. For a

given channel gain, α, the bit-error-rate (BER) is determined by

Pr(e|α) = Q(

√

2Ebα

NJ

),

where Eb is the signal energy per bit and Q(x) = 1√
2π

∫ +∞
x

e−t2/2dt. Since α is random,

the BER for BPSK modulation can be expressed as

Pb(Eb/NJ) =

∫ ∞

0

Pα(e|x)dFα(x)

=

∫ ∞

0

1

2

√

Eb

πNJx
exp

(

−Ebx

NJ

)

Fα(x)dx (3.36)

where Fα(x) is the cumulative distribution function (cdf) of α. Since α = max{α1, · · · , αL},

the cdf of α can be derived from the joint distribution of (α1, · · · , αL), which is

Fα(x) =

∫ x

0

∫ x

0

· · ·
∫ x

0

f(α1, α2, · · · , αL)dα1dα2 · · · dαL, (3.37)

where f(α1, α2, · · · , αL) is the joint distribution of (α1, · · · , αL). Let Rf be the fre-

quency domain channel correlation matrix, defined as

Rf = E



































H[n, 1]

...

H[n, L]













(H∗[n, 1], · · · , H∗[n, L])























.

For a Rayleigh fading channel, f(α1, α2, · · · , αL) is a multivariate exponential distri-

bution function that is determined by Rf . The bivariate and trivariate exponential

distributions can be obtained from bivariate and trivariate Rayleigh distribution [71].

Unfortunately, there is no close-form expression for arbitrary L and correlation matri-

ces. It is known that there exists a close-form expression for multivariate exponential

distribution if the correlation matrix Rf is an exponential matrix [72], i.e.,

(Rf )ij =























1, i = j

rj−i
f , i < j

(r∗f )
i−j, i > j

.
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And the distribution function f(α1, α2, · · · , αL) can be written as [72]

f( α1, α2, · · · , αL) =

1

(1 − r2)L−1
exp

(

− 1

1 − r2

[

α1 + αL + (1 + r2)
L−1
∑

i=2

αi

])

×
L−1
∏

i=1

I0

(

2r

1 − r2
(αiαi+1)

1
2

)

, (3.38)

where I0(·) is the zeroth-order modified Bessel function of the first kind and r = |rf |

is the correlation coefficient between the adjacent channels. Here, we use the expo-

nential correlation matrix to approximate the practical correlation matrix. Since the

distribution is only determined by the absolute value of the correlation coefficient r,

we consider only the absolute value in the approximation. Equating ln{|(Rf )1j|} with

(j − 1) ln r, j = 2, · · · , L− 1 and applying the least-square method, the approximate

correlation coefficient between adjacent channels can be obtained as

r = exp

(

L
∑

j=2

(j − 1) ln(|(Rf )1j|)
L(L− 1)(2L− 1)/6)

)

. (3.39)

To calculate the cdf of the diversity output, we extend the Bessel function into

the power series and substitute into (3.38):

f( α1, · · · , αL) =
exp

(

− 1
1−r2

[

α1 + αL + (1 + r2)
∑L−1

i=2 αi

])

(1 − r2)L−1

×
∞
∑

i1,i2,··· ,iL−1=0

(

r

1 −r2

)2
PL−1

j=1 ij

×α
i1
1 α

i1+i2
2 · · ·αiL−2+iL−1

L−1 α
iL−1

L
∏L−1

j=1 (ij!)2
. (3.40)

Substituting (3.40) into (3.37) leads to

Fα(x) = (1 − r2)
∞
∑

i1,i2,··· ,iL−1=0

∏L−1
j=1

(

ij+ij+1

ij

)

r2
PL−1

j=1 ij

(1 + r2)i1+iL−1+L−2+2
PL−2

j=2 ij

×γ(i1 + 1,
1

1 − r2
x)γ(iL−1 + 1,

1

1 − r2
x)

×
L−2
∏

j=1

γ(ij + ij+1 + 1,
1+r2

1 − r2
x), (3.41)
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where γ(·) is the incomlete Gamma function, which is defined as

γ(a, x) =
1

Γ(a)

∫ x

0

exp(−t)ta−1dt,

and Γ(·) is the gamma function. Then, the BER for an uncoded clustered OFDM SS

system can be calculated numerically through (3.36). From the comparison between

the numerical and simulation results in the following sections, the approximate per-

formance is very close to the exact one for all signal-to-jamming ratio (SJR) regions.

In some cases, the above analytical expressions are too cumbersome to be used

in practical system design. And people are more interested in the asymptotic perfor-

mance at the high SJR. Then, using the method similar to the one in [73], we can

obtain a much simpler asymptotic expression.

When SJR tends to infinity, the BER can be expressed by

Pasm(Eb/NJ) = lim
Eb/NJ→∞

Pb(Eb/NJ) =

(

Gc
Eb

NJ

)−Gd

, (3.42)

where Gc is called coding gain and Gd is referred to as diversity gain or diversity

order. Expand the cdf of channel output gain α into power series:

Fα(x) =
∞
∑

i=d

aix
i.

We have

Gc =

(

2
√
π

Γ(d+ 1
2
)ad

)
1

Gd

, Gd = d,

and

Pasm(Eb/NJ) =

(

(

2
√
π

Γ(d+ 1
2
)ad

)
1
d Eb

NJ

)−d

. (3.43)

For our case, from the cdf expression (3.37), it can be easily derived that

d = L, ad =
1

det(Rf )
.
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Then, the asymptotic BER expression is given by

Pasm(Eb/NJ) =

(

(

2
√
π det(Rf )

Γ(L+ 1
2
)

)
1
L Eb

NJ

)−L

. (3.44)

Specifically, if Rf is an exponential correlation matrix, |Rf | = (1 − r2)L−1 and the

asymptotic BER is

Pasm(Eb/NJ) =

(

(

2
√
π(1 − r2)L−1

Γ(L+ 1
2
)

)
1
L Eb

NJ

)−L

. (3.45)

From the above results, the diversity order is independent of the correlation coeffi-

cients and is only determined by the number of diversity branches L. The correlation

coefficients determine the coding gain Gc. From (3.45), higher correlation results in

lower coding gain.

3.3.2.2 Partial Band Jamming Systems

For partial band jamming systems with a jamming fraction ρ, the BER can be simi-

larly derived as

Pb(ρ, Eb/NJ) = ρPb (ρEb/NJ) = ρ

∫ ∞

0

1

2

√

Ebρ

πNJx
exp

(

−ρEbx

NJ

)

Fα(x)dx (3.46)

For convenience, we make the following transforms

s = ln(Eb/NJ), Plog(s) = ln (Pb(e
s)) ,

where Pb is the BER for broadband jamming. Then, for partial band jamming, the

logarithmic BER can be expressed as

lnPb(ρ,
Eb

NJ

) = ln

(

ρPb(ρ
Eb

NJ

)

)

= Plog(s+ ln ρ) + ln ρ (3.47)

The worst case jamming (WCJ) fraction ρ∗ can be obtained by maximizing (3.47)

with respect to ρ:

ρ∗ = max
ρ

lnPb(ρ,
Eb

NJ

).
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Taking the derivative of (3.47) with respect to ρ and making it equal to zero lead to

the worst-case jamming fraction ρ∗:

ρ∗ =











CL

Eb/NJ

, Eb/NJ ≥ CL,

1, Eb/NJ < CL,

(3.48)

where CL is the solution of the following equation:

P ′
log(lnCL) = −1,

where P ′
log(·) is the derivative of Plog(·).

For flat Rayleigh fading channels or L = 1, the BER is [58]

Pb =
1

2
− 1

2
√

NJ

Eb
+ 1

.

It can be calculated that P ′
log(·) > −1; therefore, the worst-case jamming fraction

turns out to be ρ∗ = 1. For frequency selective fading radio channels and L > 1,

from the asymptotic expression (3.44), P ′
log(·) = −L < −1 as Eb/NJ → ∞ and

P ′
log(·) = 0 > −1 as Eb/NJ → 0; then, (3.49) always has a solution. The optimal

jamming fraction is less than 1 at the high SJR region. The corresponding worst-case

BER is

Pw =











CL

Eb/NJ

Pb(CL), Eb/NJ ≥ CL,

Pb(Eb/NJ), Eb/NJ < CL.

(3.49)

Note that the BER for the flat Rayleigh fading channels at large SJR can be approx-

imated as

Pb ≈
1

4Eb/NJ

This shows that the BER of the uncoded systems subject to worst-case jamming

decreases with SJR in the same way as that of flat Rayleigh fading channels.
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3.3.2.3 Numerical and Simulation Results for Uncoded Systems

In this and the following sections, we use the channel with an exponential delay profile

as an example to show the effect of worst-case jamming. The frequency correlation

function for an exponential delay profile can be expressed as [22]

rexp(△f) =
exp(2π△f τ̄)
2π△f τ̄ + 1

, (3.50)

where τ̄ is the delay spread. Then, the correlation coefficient between cluster i and

i+ l is

0 5 10 15 20 25 30 35 40
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

J

P
b

Exact
Approximate
Asymptotic

L=1 

L=2 

L=6 

Figure 3.10: Approximate performance for broadband jamming.

rl =
exp(2πlWcτ̄)

2πlWcτ̄ + 1
. (3.51)

For τ̄Wc = 0.2, the uncoded system performance is shown in Figures 3.10 and 3.11.

Figure 3.10 gives the exact (simulated), asymptotic, and approximate BER for the

broad-band jamming. Compared to the exact result, the approximate BERs are very

accurate. Therefore, we can use the approximation in the following sections without
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a considerable effect. We can also see that the asymptotic BER curve fits the exact

one well at the high SJR region. Then, the simple asymptotic expression can be used

when only the performance at high SJR is concerned.
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Figure 3.11: Uncoded performance for the worst case jamming and broadband
jamming.

Figure 3.11 gives the numerical and simulated BER performance under broad-

band jamming and worst-case jamming for L = 1, 2, 6. For L = 1, 2, the exact BER

can be obtained through numerical calculation. For L = 6, we use the exponential

correlation matrix to approximate the exact one to obtain the BER curve. From the

figure, the performance is improved with the increase of L. For broad-band jamming,

the required SJR at a 10−4 BER is improved by 15 dB and 28 dB, respectively, when

L increases from 1 to 2 and 1 to 6. However, it is degraded severely by worst-case

jamming. When L increases from 1 to 2 and 6, the performance improvement loses

about 11 dB and 21 dB, respectively. Therefore, coding has to be used to recover the

loss. In the next section, we analyze the performance of coded systems.
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3.3.3 Coded System Performance

Coding is an effective technique to combat jamming and fading. In this section,

we first analyze the anti-jamming performance of coded systems with hard-decision

decoding.

3.3.3.1 Hard-Decision Decoding

For hard-decision decoding, the channel can be regarded as binary, symmetric, and

with a cutoff rate [58]:

R0 = 1 − log2(1 +D) bits/symbol, (3.52)

where parameter

D =
√

4Pb(1 − Pb),

with Pb being the uncoded BER. From [58], the performance bound for coded systems

with hard-decision decoding is determined by the cutoff rate R0. Since the cutoff rate

depends only on the uncoded BER, the worst-case jamming for uncoded systems is

also the worst for the hard-decision decoding system. For a convolutional code with

constraint length K = 7 and rate R = 1/2, the BER is upper bounded by [78]

Pb ≤
1

2
(36D10 + 211D12 + 1404D14 + · · · ). (3.53)

The BER of hard-decision decoding systems under the channel with exponential delay

profile is shown in Figures 3.12 and Figure 3.13. Figure 3.12 shows the cutoff

rate of coded systems with hard-decision decoding. For broad-band jamming, there

is a 5 dB improvement when L increases from 1 to 2. With the increase of L,

improved performance is obtained. However, the performance loss due to the worst-

case jamming still exists at high SJR when L > 1. The loss is as large as 4-7 dB

when L = 6. However, compared to the 24 dB loss of the uncoded system, coding

has recovered most of the performance loss.
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Figure 3.12: Cutoff rate of a coded system with hard-decision decoding for the
worst case and broadband jamming.

The BER bounds and simulation results for the coded system with hard-decision

decoding are shown in Figure 3.13. From this figure, it is obvious that most of the

performance loss because of the worst-case jamming in the uncoded system has been

recovered. For example, from L = 2 to L = 6, the performance loss has been reduced

to only 1.5 ∼ 3 dB at a 10−5 BER. Compared to the simulation results, the BER

bounds have always a 1 dB difference from the exact ones for both broad-band and

worst-case jamming.

3.3.3.2 Soft-Decision Decoding

Soft-decision decoding can be used to further improve system performance. For sys-

tems with soft-decision decoding, we assume that the receiver knows both channel

and jamming state information (JSI).

For a partial band jamming system, the received signal for one cluster after DFT
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Figure 3.13: Hard-decision decoded performance for the broadband and worst case
jamming.

and despreading can be generally expressed as

r = Hx+ ZJ, (3.54)

where Z is the jamming state, which is equal to one if jammed and zero if unjammed,

and H is the channel magnitude after the phase correction. Then, the decision metric

for maximum-likelihood detection is

m(r, x|H,Z) = c(Z)Hrx, (3.55)
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where c(Z) is a weight function of jamming state Z. Following the procedures in [58],

we can compute the parameter as

D(λ, ρ) = E{eλ[c(Z)rH(x̂−x)]|x}|x̂ 6=x

= E
{

ρe−2λc(1)αEb+λ2c2(1)αEbNJ/ρ + (1 − ρ)e−2λc(0)αEb

}

,

(3.56)

where α = |H|2 is the channel gain as mentioned above. If we choose c(1) = 1 and

a sufficiently large c(0) so that the second term in the above equation is negligible,

then

D(λ, ρ) = E
{

ρe−2λαEb+λ2αEbNJ/ρ
}

. (3.57)

From (3.57), D can be obtained by minimizing D(λ) with respect to λ, which is

D(ρ) = min
λ>0

D(λ, ρ)

= E

{

ρe
− ραEb

NJ

}

= ρDb(ρEb/NJ), (3.58)

where Db represents the D parameter when ρ = 1. Then by (3.41) and (3.59), the

cutoff rate and BER bound can be calculated from (3.52) and (3.53), respectively.

Similar to (3.46), D parameter for partial band jamming can be derived as

s = ln(Eb/NJ), Dlog(s) = ln(Db(e
s)),

D(ρ) = ρ

∫ ∞

0

Ebρ

NJ

exp(−Ebρx

NJ

)Fα(x)dx. (3.59)

Making the transforms

Then, similar to the derivation of worst case jamming fraction for uncoded sys-

tems, the worst case jamming fraction can be expressed the same as (3.48), where

the constant CL is the solution of following equation
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Figure 3.14: Cutoff rate with soft-decision decoding for the worst case and broad-
band jamming.

For flat fading or L = 1, the parameter D can be written in close-form as

D(ρ) =
ρ

ρEb/NJ + 1
. (3.60)

At high SJR, Dρ is approximated as

D(ρ) ≈ 1

Eb/NJ

, (3.61)

and the worst-case jamming fraction is ρ∗ = 1. When L > 1, we have ρ < 1 at high

SJR.

D′
log(lnCL) = −1. (3.62)

Figures 3.14 and 3.15 show the numerical and simulation results for coded systems

with soft-decision decoding. From the figures, the performance loss due to the worst-

case jamming is almost recovered by soft-decision decoding. The jammer is forced to

spread its energy over the whole band. It also shows that soft-decision decoding has

57



−2 0 2 4 6 8 10
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

J
 (dB)

P
b

Upper bound for BJ
Simulated for BJ

L=6 

L=2 

(a)

−2 0 2 4 6 8 10
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

J
 (dB)

P
b

Upper bound for WCJ
Simulated BER for WCJ

L=2 

L=6 

(b)

Figure 3.15: Soft-decision decoded performance for the broadband and worst case
jamming.

a much better anti-jamming ability than hard-decision decoding. For example, for

the case of L = 2, there is about a 5 dB improvement at a 10−5 BER. Again, about

a 1 dB difference is observed between the exact BER and the upper bound.

3.3.3.3 Jamming State Estimation

From the previous section, to recover performance loss due to jamming, soft-decision

decoding should be used, which, however, needs channel and jamming state infor-

mation. Hence, we investigate jamming state estimation for a coded system with
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soft-decision decoding.

Consider the received signal vector for one cluster after despreading:

r = Hx + ZJ + w, (3.63)

where J = (J1, · · · , JK)T with Var(Jk) = NJ/(2ρ), H is the channel magnitude

after the phase correction, and Z is the jamming state, Z ∈ {0, 1}. For analysis

convenience, we assume the whole cluster is used to transmit data. The jamming

state detector calculates the log-likelihood of Z by

Λ(Z) =
K
∑

k=1

ln
Pr(rk|Z = 1)

Pr(rk|Z = 0)
. (3.64)

Through some manipulations, we have

ln
Pr(rk|Z = 1)

Pr(rk|Z = 0)
=

r2
k +H2

N0(ρN0/NJ + 1)

+ ln

(

cosh
2rkH

N0 + NJ

ρ

)

− ln

(

cosh
2rkH

N0

)

−1

2
ln

(

1 +
NJ

ρN0

)

. (3.65)

Using approximation ln (cosh(|x|)) ≈ |x| − C for |x| ≥ 1, the log-likelihood can be

simplified as

ln
Pr(rk|Z = 1)

Pr(rk|Z = 0)
=

(|rk| − |H|)2

N0(ρN0/NJ + 1)
− 1

2
ln

(

1 +
NJ

ρN0

)

Define Λ∗ =
∑K

k=1(|rk| − |H|)2, then the jamming state can be estimated as follows











Z = 1, if Λ∗ > θ

Z = 0, if Λ∗ < θ,

where threshold θ is

θ =
KN0(ρN0/NJ + 1)

2
ln

(

1 +
NJ

ρN0

)

, (3.66)

for the maximum-likelihood detection.
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Figure 3.16: Soft-decision decoding performance with jamming fraction ρ = 0.3 .

Figure 3.16 shows the soft-decision decoding performance with the estimated JSI,

where the jamming fraction is ρ = 0.3, K = 16, and the signal-to-background-noise

ratio is set to be 15 dB. For comparison, we also give the performance of soft-decision

decoding with perfect JSI and without JSI. As we can see, the receiver with the

estimated JSI performs very well. Without the jamming state information, the soft-

decision decoding does not provide good performance when the jamming fraction is

small. It is noted that the performance with the estimated JSI is even better than

that with perfect JSI. This is because the perfect JSI is in the sense of probability

and does not reflect the instantaneous jamming signal amplitude while JSI obtained

by the jamming state estimator shows the exact amplitude of the jamming signal.

Figure 3.17 shows the BER at the worst case jamming cases. From the figure, the

BER for the system with the estimated JSI is very close to the one with the exact JSI.

Therefore, the simplified jamming state estimator can be used for the soft decision

decoding to improve the anti-jamming capability.
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Figure 3.17: Soft-decision decoding performance with estimated JSI.

3.4 Summary

In this chapter, we investigated the co-channel suppression for clustered OFDM and

proposed a clustered OFDM based spread spectrum system for military applications.

A polynomial-based parameter estimator is proposed to combat severe leakage of the

traditional DFT-based estimator in the clustered OFDM with receive antenna arrays

for interference suppression. For a clustered OFDM based spread spectrum system,

we use an approximate formula to analyze the uncoded system performance. The

simulation results show that the approximate BER is very close to the exact one. For

coded systems, we analysis their performance bounds and cutoff rates. Our research

results show that clustered OFDM spread spectrum system with channel coding can

effectively mitigate jamming and fading effect.
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3.5 Appendix: Proof of the Stattement in Section

3.2.2.1

To prove the statement, we use the following lemma

Lemma: Let matrix Ψ−1
M = {ρij}0≤i,j≤M and let Υ1

M be the first row of Ψ−1
M .

Then, we have ρij = 0 if i + j is odd. Furthermore, the first row of Ψ−1
M and Ψ−1

M+1

have the relationship of Υ1
M+1 = [Υ1

M , 0] for even M .

Proof : When M = 0, we have Ψ−1
M = ψ−1

0 , and

Ψ−1
M+1 =







ψ−1
0 0

0 ψ−1
2






.

Assume that the lemma holds for M = 2k , we will prove that it holds for M = 2k+1

and M = 2k + 2. Partition ΨM+1 into block matrices,

ΨM+1 =







ΨM ΦM+1

ΦT
M+1 ψ2M+2






. (3.A.1)

Using block matrix inversion, we have

Ψ−1

M+1=





Ψ−1
M +Ψ−1

M ΦM+1S
−1ΦT

M+1Ψ
−1
M −Ψ−1

M ΦM+1S
−1

−S−1ΦT
M+1Ψ

−1
M S−1



 (3.A.2)

where S = ψ2M+2 − ΦT
M+1Ψ

−1
M ΦM+1 is a scalar. Note that the vector ΦM+1 has the

form of (0, ∗, · · · , ∗, 0). Therefore, Ψ−1
M ΦM+1 will be in the form of (0, ∗, 0, ∗, · · · , 0, ∗, 0),

where (∗) denotes any number that is not necessarily zero. Substituting it into (3.A.2)

shows the lemma holds for M = 2k + 1. Similarly, it can be proved for M = 2k + 2.

Thus, the lemma holds for any M .

With the lemma, and the property ψ̄2k+1 = 0, it can be obtained that the first di-

agonal elements of matrices N̄
−1
M Ψ−1

M Ψ̄MΨ−1
M N̄

−1
M and N̄

−1
M+1Ψ

−1
M+1Ψ̄M+1Ψ

−1
M+1N̄

−1
M+1

for even M are the same. Thus, the estimation variance in (3.21) is same for M -th

and (M +1)-th order polynomials. Also with similar derivation, the estimators using

the M -th and M + 1-th order polynomial have the same bias for even M according

to (3.22) and the lemma. According to (3.11), the statement is proved.
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CHAPTER IV

MIMO-OFDM FOR WIRELESS LAN

4.1 MIMO-OFDM

The use of multiple antennas at both transmitter and receiver to form a multiple input

multiple output (MIMO) channel has drawn considerable attention for its potential

to improve link reliability and increasing capacity in wireless communications [47]-

[34]. In rich scattering propagation environments, for a narrow-band communication

system with MT transmit antennas and MR receive antennas, it is well known [47],

[48] that the channel capacity increases linearly with the minimal number of transmit

and receive antennas, min(MT , MR).

For broadband communications, OFDM turns a frequency selective channel into

a set of parallel flat channels, which significantly reduces the receiver complexity.

As a result, the combination of MIMO techniques with OFDM (MIMO-OFDM) is

regarded as a promising solution to enhance the data rate of future broadband wireless

communication systems. Besides the spatial diversity, broadband channels offer high

capacity and frequency diversity resulting from the delay spread [79]. Various schemes

have been proposed for MIMO-OFDM systems to exploit spatial-frequency diversity

[80], [81]. Recently, MIMO-OFDM has been proposed for the standard of the next

generation wireless LAN.

In this chapter, we investigate MIMO-OFDM for wireless LAN. We are exploiting

the channel characteristics in spatial and frequency domain to improve performance

of channel estimation. For slow varying wireless channel such as indoor channels,

partial channel information can be obtained through feedback channel. Then, the
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performance of MIMO systems can be improved substantially by exploiting the chan-

nel information at the transmitter. In Section 4.2, channel estimation of MIMO-

OFDM for wireless LAN is presented. In Section 4.3, linear precoding schemes for

MIMO-OFDM with limited channel feedback are discussed.

Here are some notations that will be used in this chapter.

X P ×Q matrix

xi i-th column of X

r(X) rank of X

λ{X} eigen spectrum of X

XT transpose of X

X∗ complex conjugate of X

XH conjugate transpose of X

X−1 inverse of X

tr(X) trace of X

det(X) determinant of X

⊗ Kronecker product

⊙ Hardamard product

vec(X) [xT
1 ,x

T
2 , · · · ,xT

Q]T

diag([x1, x2, · · · , xQ]) diagonal matrix with diagonal elements x1, x2, · · · , xQ

diag ([X1,X2, · · · ,XQ]) block diagonal matrix with diagonal submatrices

X1,X2, · · · ,XQ

E{·} expectation

IP P × P identity matrix

0P P × P zero matrix

z ∼ CN (0, σ2) circularly symmetric complex Gaussian random variable

with zero mean and variance σ2.
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4.2 Channel Estimation in Correlated Fading

Channels

Most of MIMO transmission schemes require channel state information at the receiver

for signal detection. In practice, the channel state information is obtained through

channel estimation. Channel estimation for OFDM system with single transmit an-

tenna has been addressed in [38], where the time and frequency correlations of dis-

persive fading channels are exploited to improve the performance. In MIMO-OFDM

systems, channel estimation is more challenging since more parameters have to be

estimated. Under the assumption that MIMO channels are i.i.d. Rayleigh fading,

channel estimators for MIMO-OFDM system have been developed in [55]-[83], where

the least square (LS) approach is used and the training or pilot symbols are optimized

to minimize the estimation error. However, the MIMO channels are correlated in cer-

tain environments, such in indoor mibile systems [56], [57]. Then, channel estimation

can achieve better performance by making use of the spatial fading correlation.

In this section, we address channel estimation for spatially correlated broadband

MIMO channels. Since statistics of channels are relative stable, we assume that the

correlation matrices are known at the transmitter and receiver. With the knowledge of

correlation matrices, MMSE channel estimation can be developed. We also investigate

the conditions for the optimum training sequences that minimize the estimation error

and simplify the estimation. We provide two training sequence design approaches

with constant modulus. Both have the same estimation error and result in a simple

estimation structure. The optimal window size and polynomial order are studied for

the estimator.

4.2.1 System Model for MIMO-OFDM

A broadband MIMO-OFDM system model is shown in Figure 4.1. The data stream

b(n) is first encoded by a space-time or space-frequency encoder. Then, the coded
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Figure 4.1: Broadband MIMO-OFDM system Model.

data is divided into MT substreams with each substream forming an OFDM block

transmitted through one transmit antenna. At the receiver, the received signals

at multiple receive antennas are decoded using channel state information obtained

through a training-based or decision-directed estimator. Therefore, channel estima-

tion is critical to achieve the advantages of a MIMO system.

Assume that there are N subchannels for each OFDM block and the length of the

cyclic prefix is greater than the delay spread so that there is no ISI. For convenience,

we assume a discrete time channel model. The leakage effect caused by the model

is negligible for proper cyclic prefix and sampling time [38]. The channel frequency

response at n-th block k-th subchannel for a MIMO-OFDM system can be expressed

as

H(n, k) =
L−1
∑

l=0

Hl(n)e−2πlk/N , (4.1)

where Hl(n) is the l-th tap channel matrix at the n-th block. The received signal at

k-th subchannel is given by

r(n, k) =

√

ρ

MT

H(n, k)s(n, k) + w(n, k), (4.2)
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where ρ is the SNR,

r(n, k) = [r0(n, k), r1(n, k), · · · , rMR−1(n, k)]
T

is the received signal vector, H(n, k) is frequency domain channel matrix,

s(n, k) = [s0(n, k), s1(n, k), · · · , sMT−1(n, k)]
T

is the transmitted signal vector with unit variance,

w(n, k) = [w0(n, k), w1(n, k), · · · , wMR−1(n, k)]
T

is AWGN with zero mean and unit variance. Substituting (4.1) into (4.2), and rear-

ranging it, we can obtain

r(n, k) =

√

ρ

MT

A(n, k)h(n) + w(n, k), (4.3)

where

h(n) = [vec(H0)
T ,vec(H1)

T , · · · ,vec(HL−1)
T ]T

is the vector of discrete-time channel responses,

A(n, k) = [D0(n, k),D1(n, k), · · · ,DL−1(n, k)]

with Dl(n, k) = e−2π kl
N sT (n, k)⊗IMR

. From (4.3), we can arrange the received signals

at all subchannels into vector form:

r(n) = [r(n, 0)T , r(n, 1)T , · · · , r(n,N − 1)T ]T ,

and express it uniformly as

r(n) =

√

ρ

MT

A(n)h(n) + w(n), (4.4)

where

A(n) = [A(n, 0)T ,A(n, 1)T , · · · ,A(n,N − 1)T ]T

and

w(n) = [w(n, 0)T ,w(n, 1)T , · · · ,w(n,N − 1)T ]T .

67



4.2.2 Correlated Broadband MIMO Channel Model

We follow the channel model presented in [79] that uses transmit and receive correla-

tion matrices to characterize the statistics of the MIMO channel. Assume that there

are MT transmit antennas and MR receive antennas, and each channel has L resolv-

able taps. The MR ×MT MIMO channel matrix Hl of the l-th tap at one instance

of time can be represented as

Hl = σl

(

√

Kl

Kl + 1
H̄l +

√

1

Kl + 1
H̃l

)

, (4.5)

where H̄l is a fixed matrix that represents the expectation of l-th channel matrix, H̃l

is a random matrix with entries being correlated zero-mean, unit variance, complex

Gaussian distributed. Kl is the Ricean K-factor, and σ2
l is the power of l-th tap, and

the total power is normalized to one,
∑L−1

l=0 σ
2
l = 1. Each channel tap can be regarded

as a significant scatterer cluster [79]. We assume that coefficients belong to the same

tap have the same delay power, and different channel taps are uncorrelated,

E

{

vec(H̃l)
(

vec(H̃l′)
)H
}

= 0MRMT
, for l 6= l′. (4.6)

Assume that the Ricean component is known, we only need to estimate H̃l. Then,

we set Kl’s to be zero and the channel is purely Rayleigh, Hl = σlH̃l. For the same

tap, the channel coefficients between any antenna pairs are correlated. The spatial

correlation can be modelled by decomposing the Rayleigh matrix into

vec(Hl) = R
1/2
l vec(Hwl), (4.7)

where Hwl is a MR × MT matrix, with i.i.d entries, {Hwl}i,j ∼ CN (0, 1), Rl =

R
1/2
l R

1/2
l is the correlation matrix of channel vector vec(H̃l). Although the above

correlation matrix can fully capture the correlation between any channel pairs, a

simpler model is efficient [84],

Hl = R
1/2
rl HwlR

1/2
tl , (4.8)
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where Rrl and Rtl are the receive and transmit correlation matrices at the l-th tap,

respectively. The tap power σ2
l is incorporated into the correlation matrix. This

model assumes that the receive correlation is same for all transmit antennas and the

transmit correlation is same for all receive antennas. The correlation between two

distinct channel connecting two different antennas at both transmitter and receiver

is equal to the product of the transmit and receive correlations. The transmit and

receive correlation matrices of each tap can be determined by power angular spectrum

of the scatter cluster [84]. Assume that the angle of departure (AOD) and angle of

arrival (AOA) present Gaussian distribution. Let θtl be the angle of departure with

mean θ̄tl and variance σ2
θtl

, θ̄rl be the angle of arrival with mean θ̄rl and variance

σ2
θrl

. For a uniform linear array (ULA), the correlation coefficients between transmit

antennas with relative spacing ∆T and receive antennas with relative spacing ∆R can

be expressed as ρ(∆T , θ̄tl, σ
2
θtl

) and ρ(∆R, θ̄rl, σ
2
θrl

), respectively. The relative spacing

between antennas is defined as ∆ = d/λ, where d is the absolute antenna spacing and

λ is the wavelength. The relation between full correlation matrix Rl and transmit-

receive correlation matrices is

Rl = Rrl ⊗ Rtl. (4.9)

Then for MIMO-OFDM systems, by (4.6) and (4.9), the correlation matrix of

channels h(n) in (4.4)is given by

Rh = E{h(n)h(n)H}

= diag([Rr0 ⊗ Rt0,Rr1 ⊗ Rt1, · · · ,Rr(L−1) ⊗ Rt(L−1)]).

(4.10)

4.2.3 Basic Channel Parameter Estimation

The spatial correlation in the real MIMO channels is usually changing very slowly

compared with the instantaneous channel, therefore, we assume that the spatial cor-

relation is static and known at the transmitter and receiver.
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Define

hf (n) =
[

vec(H(n, 0))T,vec(H(n, 1))T, · · · ,vec(H(n,N−1))
]T

as the frequency response vector. For MMSE estimation, during training period, the

transmitted signal is known and the temporal estimation of hf (n) can be obtained

by minimizing the MSE

MSE = E

{

∣

∣

∣

∣

∣

∣
ĥf (n) − hf (n)

∣

∣

∣

∣

∣

∣

2
}

= E

{

(

ĥf (n) − hf (n)
)H(

ĥf (n) − hf (n)
)

}

. (4.11)

Let F be the N ×N unitary DFT matrix, the relationship between time domain

channel responses and frequency domain channel responses is

Hv(n) =
√
N (F ⊗ IMRMT

) [hT (n), 0, · · · , 0]T

and

Ĥv(n) =
√
N (F ⊗ IMRMT

) [ĥT (n), 0, · · · , 0]T .

Since F ⊗ IMRMT
is unitary, the MSE can be expressed as

MSE = E

{

(

Ĥv(n) − Hv(n)
)H (

Ĥv(n) − Hv(n)
)

}

= NE

{

(

ˆh(n) − h(n)
)H (

ĥ(n) − h(n)
)

}

. (4.12)

This implies that the estimation of frequency domain channel responses Hv(n) can

be equivalently performed by estimating the time domain channel responses h(n).

According to (4.4), the received signal is linear for the time domain channel response

h(n), hence a linear MMSE estimation can be performed [88]

ĥ(n) = Q(n)r(n), (4.13)

where

Q(n) =

√

ρ

MT

RhA
H(n)

(

ρ

MT

A(n)RhA
H(n) + INMR

)

−1

=

√

ρ

MT

(

R−1
h +

ρ

MT

AH(n)A(n)

)−1

AH(n). (4.14)
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The error covariance is

Ce = E

{

(

h(n) − ĥ(n)
)(

h(n) − ĥ(n)
)H
}

=

(

R−1
h +

ρ

MT

AH(n)A(n)

)−1

. (4.15)

Note we assume that Rh is invertible in the above analysis. If Rh is not invertible,

we can add ǫIMRMT L to Rh, then let ǫ→ 0. The estimation error can be obtained by

MSE = Ntr (Ce) . (4.16)

4.2.4 Optimum Training Sequences

From the previous section, the estimation error depends on the channel correlation

matrix Rh and training sequences through matrix A(n). In this section, we investigate

the optimum training sequences design that minimizes the estimation error.

Denote the eigen-decomposition of transmit and receive corrlation matrix as

Rrl = UlΛrlU
H
l ,

Rtl = VlΛtlV
H
l ,

where Ul, Vl are MR×MR and MT ×MT unitary matrices, respectively, and Λrl, Λtl

are diagnal matrices. By the property of Kronecker product,

Rl = (Ul ⊗ Vl) (Λrl ⊗ Λtl) (Ul ⊗ Vl)
H . (4.17)

From (4.10) and (4.17), the eigen-decomposition of Rh can be expressed as,

Rh = UhΛhU
H
h , (4.18)

where

Uh = diag([U0 ⊗ V0,U1 ⊗ V1, · · · ,UL−1 ⊗ VL−1]),

and

Λh = diag([Λr0 ⊗ Λt0,Λr1 ⊗ Λt1, · · · ,Λr(L−1) ⊗ Λt(L−1)]).
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From the decomposition (4.15) and (4.18), we have

MSE = Ntr (Ce)

= Ntr
(

UH
h CeUh

)

= Ntr

(

(

Λ−1
h +

ρ

MT

UH
h AH(n)A(n)Uh

)−1
)

, (4.19)

By the theory of majorization [86], the matrix UH
h AH(n)UhA(n) must be diagonal

to minimize the MSE. i.e.,

UH
h AH(n)A(n)Uh = Λs (4.20)

for some diagonal matrix Λs. This condition implies that the columns of matrix

A(n)Uh have to be orthogonal. Note that Uh is a block diagonal matrix, then we

have

A(n)Uh=



















B0(n, 0) B1(n, 0) · · · BL−1(n, 0)

B0(n, 1) B1(n, 1) · · · BL−1(n, 1)

...
...

. . .
...

B0(n,N − 1) B1(n,N − 1) · · · BL−1(n,N − 1)



















,

where submatrix

Bl(n, k) = Dl(n, k) (Ul ⊗ Vl)

= e−2π kl
N

(

sT (n, k)Ul

)

⊗ Vl. (4.21)

Let

fl =
1√
N

[

1, e−2πl/N , · · · , e−2π(N−1)l/N
]T

be the (l + 1)-th column of the unitary DFT matrix F,

S(n) = [s(n, 1), s(n, 2), · · · , s(n,N)]T (4.22)

be the training signal matrix at n-th block,

S̃(n) =
[

S̃1(n), S̃2(n), · · · , S̃L(n)
]

= S(n) [U1,U2, · · · ,UL] , (4.23)
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and Bl(n) =
[

BT
l (n, 1),Bl(n, 2), · · · ,BT

l (n,N)
]T

. Then Bl(n) can be expressed as

Bl(n) =
√
N
(

diag(fl)S̃l(n)
)

⊗ Vl. (4.24)

To satisfy equation (4.20), we have

BT
l (n)BT

l (n) = N
(

S̃H
l (n)S̃l(n)

)

⊗
(

VH
l Vl

)

= N
(

S̃H
l (n)S̃l(n)

)

⊗ IMR
(4.25)

to be diagonal matrix, or

S̃H
l (n)S̃l(n) = UH

l SH(n)S(n)Ul, (4.26)

be diagonal matrix. And

BT
l′ (n)BT

l (n) = N
(

S̃H
l′ (n)diag(fl−l′)S̃l(n)

)

⊗
(

VH
l′ Vl

)

= 0MRMT
, (4.27)

where l 6= l′. This is equivalent to

S̃H
l′ (n)diag(fl−l′)S̃l(n) = UH

l′ S
H(n)diag(fl−l′)S(n)Ul

= 0MT
(4.28)

or

SH(n)diag(fl−l′)S(n) = 0MT
. (4.29)

Then, the conditions for the optimum training sequences become equation (4.26) and

(4.29). The resulting optimum training sequences depend on the unitary matrices

Ul’s, or transmit correlation matrices Rtl’s, which is determined by the angle spread

of l-th scatterer cluster. If the angular spread is large, Rtl has high rank; otherwise,

the rank of Rtl will decrease. In the extreme case where the angular spread is zero,

Rtl degrades to rank one matrix and can be written as Rtl = βla(θlt)a
H(θlt) with
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a(θlt) being the array response vector. For uniform linear array, the array response is

given by

a(θlt) = [1, e2π∆ cos(θlt), · · · , e2π∆(MT−1) cos(θlt)]T . (4.30)

In the following, we will discuss the optimum training sequence design for two

kinds of cases.

4.2.4.1 General Cases

In this case, we assume arbitrary transmit correlation matrices. Then Equation (4.26)

is satisfied if and only if

SH(n)S(n) = NIMT
. (4.31)

To satisfy the second condition (4.29), the columns of S(n) have to satisfy

(si(n) ⊙ s∗i′(n))T fm = 0N×1, (4.32)

where −L + 1 ≤ m ≤ L − 1 and si(n), si′(n) are i and i′-th column of S(n). One

optimum training sequence design satisfying (4.31) and (4.32) is given at [82],

s0(n) ⊙ s∗i (n) =
√
N fiL̄,

where i = 1, · · · ,MT −1, and L̄ ≥ L. s0(n) can be any vector with constant-modulus,

|s0(n, k)| = 1. The above optimum training sequences require that L̄(MT − 1) ≤

(N − L). Therefore the number of optimum training sequences is limited. Since

L̄ ≥ L, we have MT ≤ N/L. For an OFDM system with 64 subchannels and the tap

number L = 7, the transmit antennas can be at most 9.

Another simple training design satisfying the conditions is circularly equal-spaced

and equal power sequences, which is similar as in [83]. The training sequences for

different transmit antennas are transmitted through distinct subset of subchannels.

Let Ω = {0, 1, · · · , N−1} be set of all subchannels and Pi = {i0, i1, · · · , iP−1} ⊆ Ω be
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subchannel subset for the training sequence corresponding to i-th transmit antenna.

To satisfy (4.32), we set Pi ∩ Pi′ = 0 for i 6= i′. Then, si(n) ⊙ s∗i′(n) = 0. For

constant-modulus and i′ = i, (4.32) becomes

(si(n) ⊙ s∗i′(n))T fm =

√
N

P

P−1
∑

p=0

e−2π
mip
N = 0.

Then, ip’s have to be circularly equal-spaced, i.e., ip − i0 = pδ and N = Pδ. For this

training sequence, δ = N/P must be an integer and δ ≥ 2. To reduce the leakage,

the number of subchannels of each training sequence, P , must be as large as possible

[38]. For both optimum training sequence designs, we have AH(n)A(n) = NILMRMT
,

then

Q(n) =

√

ρ

MT

Uh

(

Λ−1
h +

Nρ

MT

ILMT MR

)−1

UH
h AH(n). (4.33)

The corresponding MSE is

MSE =

LMT MR−1
∑

i=0

Nλi(Rh)

1 + Nρ
MT
λi(Rh)

. (4.34)

4.2.4.2 Special Cases

Here we investigate training design under two special environments. In the first

case, there is a dominant tap (assume the first tap for convenience), then we only

need to design the training according to the correlation of the dominate tap and

ignore the correlations of the other taps. For the second case, all taps have the same

transmit correlation matrices, i.e., U0 = U1 = · · · = UL−1 = Ũ. This happens

when all the taps emanate from the same angle with the same angle spread. In

both cases, the training design is optimized according to only one correlation matrix.

The first condition (4.26) can be satisfied if the columns of S(n)Ũ are orthogonal.

Let S(n)U = [
√
β0s̃0(n),

√
β1s̃1(n), · · · ,

√

βMT
s̃MT

(n)], where si(n)’s are normalized

vectors and
∑MT

i=0 βi = NMT . To satisfy the second condition (4.29), we can choose

s̃i(n)’s the same as ones for the general cases. By (4.19), the MSE can be expressed
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as

MSE =

MT−1
∑

i=0

MR
∑

j=0

L
∑

l=0

1
ρ

MT
βi + (λi(Rtl)λj(Rrl))

−1 . (4.35)

For the second case, Rtl = σlIMT
, l > 0. Then, we can further optimize the pa-

rameter βi to minimize the MSE. The optimization problem can be solved through

Langrange multipliers. The optimum training sequence design can be regarded as a

power allocation problem. The transmitter allocates the power over the eigen-modes

of the transmit correlation to minimize the estimation error. Unfortunately, there is

no close-form solution in general. We shall therefore resort to the solution at high

SNR and low SNR regions.

1) High SNR Solution At high SNR, ρ→ +∞, the MSE can be approximated as

MSE ≈
MT−1
∑

i=0

ci
ρ

MT
βi

, (4.36)

where ci is the number of nonzero eigenvalues corresponding to βi. Minimizing

(4.36) with respect to βi’s by using Langrange multipliers, we obtain

βi =
NMT

√
ci

∑MT

k=0

√
ck
, (4.37)

If all of the correlation matrices are full rank, the optimum training sequence design

assigns equal powers, which results in the same design as in the general cases.

2) Low SNR Solution When SNR is small, using Taylor expansion, we have

1
ρ

MT
βi + (λi(Rtl)λj(Rrl))

−1

≈ (λi(Rtl)λj(Rrl)) − (λi(Rtl)λj(Rrl))
2 ρ

MT
βi.

(4.38)

By (4.35), minimize MSE is equivalent to maximize the following quantity

Ψ =
ρ

MT

MT−1
∑

i=0

(

MR
∑

j=0

L
∑

l=0

(λi(Rtl)λj(Rrl))
2

)

βi. (4.39)

Let

k = arg max
i

(

MR
∑

j=0

L
∑

l=0

(λi(Rtl)λj(Rrl))
2

)

, (4.40)
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then the solution for βi is,

βi =











NMT , i = k

0, i 6= k
. (4.41)

That implies that the optimum training sequence design assigns the total power to

one best favorable eigen-space when SNR is low.

In the above discussion, we have developed the optimum design of training se-

quences. With the knowledge of the spatial correlation of MIMO broadband channel,

we can design training sequences to minimize channel estimation error of broadband

MIMO channels. Note the estimation we obtained is based on only one OFDM block.

If multiple training blocks or decision-directed estimation are used, more accurate

estimation can be obtained by exploiting the time correlation of channel parameters

using the method developed in [38].
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Figure 4.2: MSE of OFDM system with L = MT = MR = 2.
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4.2.5 Simulation Results

In this section, we present our simulation results to demonstrate the performance of

the proposed channel estimation approaches and the training sequence designs. To

study the impact of the propagation parameters, we use a simple channel model in

Examples 1 and 2. In the simulated system, two transmit antennas and two receive

antennas are used, that is, MR = MT = 2. The entire channel is divided into 32

subchannels, and the cyclic prefix is longer than the delay spread. The channel has

two taps with the power σ2
0 = 0.8 and σ2

1 = 0.2, respectively. The relative antenna

space is ∆ = 1.

4.2.5.1 Simulation Example 1

In first example, we study the impact of the angular spread on the performance of

the estimation. The mean angles of departure are θ̄t0 = 13.5◦, θ̄t1 = 26.4◦ and the

angles of arrival are θ̄r0 = 290.3◦, θ̄r1 = 332.3◦. The angle spread for all tap at both

transmitter and receiver are same.

0 11.5 22.9 34.4 45.8 57.3
−25

−24

−23

−22

−21

−20

−19

−18

Angle spread σ 

M
S

E
 (

dB
)

LS
MMSE

SNR=10dB 

Figure 4.3: MSE vs. angle spread at a 10 dB SNR.
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Figure 4.2 demonstrates the estimation MSE for different angle spread. For com-

parison, we also give the MSE of LS estimation. From the figure, the performance of

the MMSE estimator is always better than the LS estimator. However, the improve-

ment diminishes with the increase of SNR for nonzero angle spread. This effect can

be derived from (4.15). When SNR approach infinity, the error covariance is close to

the error covariance of LS estimation. We also observe that the MSE is decreasing

when the angle spread decreases. That shows that the MMSE estimator can capture

the spatial correlations of MIMO channels. While the performance of LS estimator

is independent of the angle spread. The impact of angle spread can be seen clearly

in Figure 4.3. When the angle spread is equal to zero, the correlation matrices have

rank one, the total parameters to be estimated decrease from 8 to 2;, therefore a 6

dB improvement is obtained for all SNR.

4.2.5.2 Simulation Example 2
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Figure 4.4: MSE of estimation for the MIMO channel with the same angle of
departure.
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Figure 4.5: Optimum power allocation of the training sequences.

In this example, we set the angle of departure for two taps to be same. The

angle spread is 0.15 rad. The other parameters are the same as in Example 1. Then,

we can use the training design derived for the special cases. Figure 4.4 shows the

performance of estimation using LS, MMSE with equal power training and MMSE

with optimum power allocation. From the figure, the training with optimum power

allocation achieves the best performance, especially at low SNR region. Figure 4.5

gives the optimal power distribution. At low SNR, the optimum training tends to

assign all the power to one favorable branch. When SNR increase, the optimum

training assigns the power equally over all eigen-spaces. Therefore, at the high SNR

region, the performance of three approaches are close.

4.2.5.3 Simulation Example 3

In this example, we use the indoor MIMO WLAN channel model case C proposed

by the IEEE 802.11 TGn channel model special committee [93]. The MIMO-OFDM

system parameters follow the parameters of IEEE Std 802.11a. The entire bandwidth,
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Figure 4.6: MSE of estimation for a 4 × 4 system.

20 MHz, is divided into 64 sub-channels with subchannel space ∆f = 0.3125MHz.

The symbol duration is Ts = 3.2 µs. An additional 0.8 µs guard interval is used

to mitigate inter-symbol interference. Four transmit and four receive antennas are

used. The Matlab program that generates the MIMO channels was written by L.

Schumacher [94]. Since the channel correlation matrices of all taps are non-singular,

we use the training sequences given in Section 4.2.4.1. The MSEs per subchannel

for both MMSE and LS channel estimations are presented in Figure 4.6. From the

simulation results, there are 2 ∼ 6 dB performance gain for our approach than the

LS approach. As mentioned previously, the performance of both approaches tends to

be close at high SNR region.

4.3 Transmission with Channel Feedback

When the transmitter does not have any knowledge of the channel state information.

Therefore, the signal transmission will be independent of the channel information.
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However, if either full or partial channel information is available at the transmitter,

both diversity and multiplexing gain can be obtained by exploiting the channel state

information with low complexity. It has been proved that the capacity and outage

probability of a MIMO system can be substantially improved if partial channel state

information is available at the transmitter [7], [9].

The channel knowledge can be obtained either through feedback from the receiver

or exploiting reciprocity principle in a duplex system. Depending on the applications,

different levels of accuracy in CSI are needed. In single antenna systems, power and

constellation size of the modulation can be adaptively adjusted according to the

channel amplitude so that the capacity or outage probability is maximized. For

MIMO systems, both amplitude and phase of the channel are important and the

problem is more complicated. The schemes of exploiting channel information are

determined by a variety of factors such as the nature of channel information, power

constraints, choice of signaling and coding, receiver and performance criteria.

If full channel information is available at the transmitter, the optimal scheme that

maximizes the capacity is to apply a linear precoding matrix to the transmitted signal.

Let H be the MIMO channel matrix with singular value decomposition H = UΣVH .

The optimal precoding matrix can expressed as VΣ̂
1/2

, where Σ̂ is and diagonal

matrix with the diagonal elements obtained by water-pouring based power allocation

[5].

In practice, assumption of the full channel information at the transmitter appears

to be unrealistic in most of situations because only limited feedback overhead is

allowed. In some communication systems such as cellular downlink channel with

multiple antennas installed at the base station, the channel experiences transmission

correlation and the correlation matrix is known to the transmitter by either implicit

or explicit feedback. Since the transmission correlation is relatively stable compared

with the instantaneous channel matrix, only small feedback overhead is needed. For
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the MIMO channel with transmission correlation, the channel matrix can be modelled

as H = HwR
1/2
t , where Hw is a random matrix and Rt is the correlation matrix. The

optimal linear precoding matrix is similar to that of full channel information case

[10].

If the transmit provides more antennas than the transmitted substreams, the error

performance can be improved by transmit diversity. Linear precoding, which spreads

the signal over all transmit antennas using a precoding matrix, is a simple and ef-

ficient way to achieve transmit diversity [7]. However, optimal precoding requires

accurate knowledge of channel information. Sometimes, we can only feedback partial

information. In this case, we propose a precoding approach. The basic idea is to

quantize the MIMO channel using a pre-designed linear precoding codebook. Both

transmitter and receiver know the codebook. The receiver selects the best codeword

according to some performance criteria and convey the index of the codewords. The

codebook can be designed to achieve the desired performance and feedback band-

width tradeoff. For indoor MIMO-OFDM systems, the feedback bits can be further

reduced by exploiting the channel correlations at the frequency domain. In [101],

an interpolation-based beamforming approach is proposed to reduce the feedback re-

quirement. However, this approach works only for single data stream transmission

and cannot be extended to multiple data streams transmission. In this section, we

describe a new approach that is robust to any MIMO systems and works well for

multiple data stream transmission.

4.3.1 Precoded MIMO-OFDM System

The diagram for a precoded MIMO-OFDM system with MT transmit antennas and

MR (assume MT ≥ MR) receive antennas and N subcarriers is given by Figure 4.7.

OFDM converts the broadband frequency selective channel into N narrowband flat

fading subchannels provided the cyclic prefix is longer than the channel delay spread.
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Figure 4.7: Block diagram of a MIMO-OFDM system with precoding.

For each subchannel, MR data substreams are modulated and multiplied by the pre-

coding matrices Pi’s to form the signals transmitted through the antennas. The

received signal at one subchannel can be written

rk = HkPiksk + nk, (4.42)

where Hk ∈ C
MR×MT is the random channel matrix, sk is the transmitted signal

with E{sksk} = Es

MR
IMR

, Pik is a MT × MR precoding matrix, and nk is AWGN

with variance N0. To maintain the power of the transmitted signal, we restrict the

precoding matrices to be unitary, i.e., Pi ∈ UMT ,MR
with UMT ,MR

being the set of

all MT ×MR complex matrices with orthonormal columns. The receiver is assumed

to have perfect channel state information. Since the feedback channel capacity is

limited, the precoding matrices have to be quantized using a predetermined codebook

P = {P1, · · · ,PL}. The receiver picks up a codeword from the codebook P according

to some performance optimization criteria and sends the indices of the codeword to the

transmitter. Our interest focuses on the codebook design, optimal codeword selection

and feedback bit reduction for OFDM systems. We present several techniques to solve

these problems in the following sections.
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4.3.2 Codebook Construction

In this section, we first describe the problem of codebook design. A codebook of

size L is a set of MT ×MR unitary matrices P = {P1, · · · ,PL}. It is shown [100]

that the codebook should be designed as a set of subspaces rather than as a set

of matrices, i.e., the codebook is a finite set of points on the Grassmann manifold

GMT ,MR
[104], which is defined as the set of all MR-dimensional subspaces of an MT -

dimensional vector space C
MT (complex dimension). A point on Grassmann manifold

is a linear subspace, which can be specified by an arbitrary orthogonal basis stored

as an MT ×MR unitary matrix.

The chordal distance in GMT ,MR
is defined as

d2
c(Pl,Pl′) =

M
∑

m=1

sin2(θm) (4.43)

= M − ‖PH
l Pl′‖2, (4.44)

where θm’s are the principle angles between the subspaces spanned by the columns

of Pl and Pl′ , and ‖ · ‖ is the Frobenius norm.

If the entries of the channel matrix H are independently Gaussian distributed, the

subspaces spanned by the eigenvectors corresponding to the maximal eigenvalues of

the channel are isotropically distributed [100]. Then the codebook design becomes to

a subspace packing in Grassmann manifold with large minimum distance. In general,

the optimal packing is difficult or impossible to find [102]. Therefore, some subopti-

mal approaches for codebook design with large minimum distance are developed for

noncoherent constellation design [103], [98]. Most of design constraints the structure

of the codebook to reduce the search area.

A simple and straightforward method to find the codebook with the required min-

imum distance is totally random search. Assume we have already a set of matrices

{P0, · · · ,Pi−1} with minimum distance larger than a predetermined value d0. Each
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step, the algorithm randomly generate MT ×MR matrix Hi with elements indepen-

dently Gaussian distributed. From the random matrix Hi, we obtain the unitary

matrix Pi with its columns spanning the same subspace as that spanned by the

columns of Hi. Calculate the minimum distance between Pi and {P0, · · · ,Pi−1}. If

the minimum distance is greater than d0, add {Pi into {P0, · · · ,Pi−1}. Otherwise,

discard it and start with a new Hi. The procedure continues till all required code-

words are found. When the codebook size is small, the random search approach is

very fast and can obtain a good codebook with a large minimum distance.

4.3.3 Precoding Matrix Selection Criteria

In this section, we introduce several selection criteria that can be used to select the

precoding codeword to optimize the performance.

4.3.3.1 Maximize the Minimum Distance for Maximum Likelihood Receiver

ML detector is an optimal detector that minimizes symbol error rate. An ML solves

the following problem

ŝk = arg min
sk

‖rk − HkPiksk‖, (4.45)

where ‖ · ‖ is Euclidean norm. Usually, the error probability of ML detector can be

upper bounded by the union bound that is determined by the minimum distance.

Therefore, the selection criterion for ML detector is to select the precoding matrix

so that the minimum distance dmin(H) of the precoded signal is maximized. For a

channel matrix H, we choose the precoding matrix as

P∗ = arg max
Pi∈P

d2
min(H,Pi) (4.46)

Assume that the minimum distance is achieved between two signal vectors S̃ = si−sj.

Then the minimum distance at the receiver is

d2
min(H) = ‖HPs̃‖2, (4.47)
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and the optimal precoding codeword is

P∗ = Pl, l = arg max
l′∈{1,··· ,L}

d2
min(H). (4.48)

The maximization is over all possible precoded signal difference vectors and requires

high computational complexity. An sub-optimal method can be obtained by using

Cauchy-Schwarz inequality

d2
min(H) = ‖HPS̃‖2 ≤ ‖HP‖2‖S̃‖2. (4.49)

Then, the selection criterion becomes to select the P that maximizes the Frobenius

norm of the equivalent channel matrix, ‖HP‖. The computational complexity is then

reduced significantly.

4.3.3.2 Minimize MSE for Zero-Forcing and MMSE Receiver

For zero-forcing and MMSE receivers, we choose the precoding codeword to minimize

the MSE. The MSE’s of two linear receivers are

MSEZF = N0tr
{

(PHHHHP)−1
}

, (4.50)

and

MSEMMSE =
Es

N0

tr

{

(

IMT
+

Es

MRN0

PHHHHP

)−1
}

. (4.51)

The optimal precoding matrix is

P∗ = arg max
Pl∈P

MSEZF (MSEMMSE). (4.52)

Let the singular value decomposition is

H = UΣVH .

It has been shown [100] that the optimal precoding matrix is

Popt = V′, (4.53)
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where V′ is the first M column of V. As an suboptimal way, we can select Pl that is

closest to the optimal precoding matrix Popt,

P∗ = arg min
Pi∈P

dc(Pi,V
′). (4.54)

The suboptimal approach does not need to calculate the matrix inversion, therefore,

the complexity is reduced.

4.3.3.3 Maximize the Instantaneous Capacity

The instantaneous capacity of a precoded system with channel matrix H is given by

C(Pl) = log det

(

IMR
+

Es

MRN0

PH
l HHHPl

)

. (4.55)

The optimal precoding matrix that maximizes the capacity is shown to be Popt =

V′, then we can use the same suboptimal selection rule as that of previous section

(4.54). At low SNR, the capacity of can be approximated as

C(Pl) ≈
Es

MRN0

Tr
{

PH
l HHHPl

}

. (4.56)

Then, we can choose the precoding codeword by

P∗ = Pl, l = arg max
l′∈{1,··· ,L}

tr
{

PH
l HHHPl

}

. (4.57)

4.3.4 Precoded MIMO-OFDM System with Limited Feedback

In the above sections, we have considered precoding only for narrow band system.

The precoding method can be directly extended to a broadband MIMO system using

OFDM modulation. For the direct extension of the precoding method, the receiver

selects the optimal precoding matrix from the same codebook for each subchannel.

Therefore, the feedback bits is proportional to the number of the subcarriers of the

OFDM system. If the codebook size is L and there are N subcarriers, we need to use

N log2 L feedback bits totally.
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It is observed that the channels responses for the subchannels in an OFDM system

are highly correlated [38]. The correlation is fully determined by the channel delay

spread and independent of the number of the subcarrier. Then, we can make use of

the channel correlation to reduce the feedback bit rate. However, we cannot directly

use the correlation because the optimal precoding matrix contains only the subspace

information of the MIMO channels. While the exact channel information has not only

subspace information but the amplitude of the MIMO channel at the subspaces [54].

One method to exploit the channel correlation is to feedback both channel subspace

and amplitude information. This is the approach by Choi and Heath [101]. However,

this approach is only applicable for single data stream transmission as shown in [101].

We propose to use a method based on the idea of subspace tracking. In the

proposed method, only channel subspace information is fed back. To reduce the

feedback bits, we select the precoding codewords from a subset of the codebook,

therefore at each step, the feedback bit rate can be reduced significantly. We found

this approach is robust to multiple data stream transmission.

4.3.4.1 Interpolation Based Beamforming

In this section, we introduce the interpolation-based approach [101]. To reduce the

feedback bit rate, we combine the K adjacent subcarriers into a cluster, and each

cluster uses one precoding matrix. This method is called clustering method. Using

clustering method, the feedback rate can be reduced by 1/K. The disadvantages of

clustering method is that the performance at the boundaries of the cluster is degraded

significantly. As an alternative, interpolation approach can improve the performance

with a small increased feedback bits. The proposed interpolation approach is de-

scribed as follows. Assume the precoding matrices of two adjacent clusters are PlK+1

and P(l+1)K+1, then the precoding matrices at the subcarriers between the two clusters
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can be obtained through following interpolation formula,

P̂lK+k;θl
=

(1 − λk)PlK+1 + λke
θlP(l+1)K+1

‖(1 − λk)PlK+1 + λkeθlP(l+1)K+1‖
, (4.58)

where λk = (k − 1)/K is a linear weight, θl is a phase rotation, which gives part

of information of the channel complex amplitude. With the phase θl, the distortion

caused by the amplitude ambiguous can be partially corrected.

To optimize the interpolation performance, the receiver quantize the phase and

select the best one to send back to the transmitter as well as the indices of the

precoding matrices. Since there is only one data stream, the optimization criterion is

simplified to maximize the channel gain. To minimize the error rate, we only need to

maximize the minimal channel gain. That is

θl = arg max
θ∈Θ

{‖H(lk + k)P̂(lK + k; θ)‖, 1 ≤ l ≤ K} (4.59)

The phase can also be optimized with respect to other criteria, such as capacity.

The drawback of interpolation-based approach is that it is applicable only for sin-

gle data stream transmission since the both subspace and amplitude of the channel

should be conveyed through feedback channel. For multiple data stream transmis-

sion, the amplitude information requires much more feedback bits to achieve good

performance. This can be explained as follows.

For a MT ×MR MIMO system, the random channel matrix H ∈ C
MR×MT can

be regarded as to belong to a vector space C
MT MR with dimension MTMR. We

can change the coordinate system as C
MR×MT → C

MR×MR × GMT ,MR
. The Grass-

mann manifold contains the information of channel subspace and has dimension of

MR(MT −MR). Consider MIMO systems with 4 transmit antennas, MT = 4. For sin-

gle data stream transmission MR = 1, the dimension of channel subspace information

is MR(MT −MR) = 3 and the channel amplitude information has dimension M2
R = 1.

Therefore, only a few bits is needed to represent the amplitude information. However,

for multiple data transmission, for example MR = 2, the subspace information has
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dimension MR(MT −MR) = 4 and the amplitude information has dimension M2
R = 4.

Then, to represent the amplitude information, we need to use the same amount of bits

as to represent the subspace information. Consequently, the interpolation approach

is hard to extend to the general case where multiple data streams are transmitted.

4.3.4.2 Tracking Based Precoding

To overcome the drawback of the interpolation approach, we propose a subspace

tracking based approach that is robust to multiple data transmission. For an OFDM

system, the channel responses at the adjacent subchannels are highly correlated,

therefore, there is high correlation between the precoding matrices. However, the

correlation of subspace is different from the exact channel correlation because the

precoding matrices are points on the Grassmann manifold. We cannot use the linear

interpolation directly to obtain the precoding matrices of other subchannels. There

are many possible paths between precoding matrices corresponding to two correlated

subchannels. For general subspace tracking method, we have to pick up a step size and

quantize the orientation of the subspace evolution, which complicates the problem.

Here we propose a simplified version of subspace tracking where precoding matrices

are chosen to be dependent across the subchannels.

The idea originates from the fact that due to the statistical correlation between two

neighboring subchannels, it is highly likely that the two desired precoding matrices

reside within a small neighborhood in the high-dimensional Grassmann manifold.

Let P be the precoding codebook with size L = 2q, and for each codewords Pi,

we assign a small neighborhood subset of Wi ⊂ P with size L′ = 2q′ , where q′ < q.

The subset Wi contains all L′ matrices of the codebook that are closest to Pi. We

also define a step size K that is determined by the channel statistics. The precoding

matrix is updated for every K subchannels. In the tracking algorithm, we start with

the first K subchannels and use the full precision (q = log2 L bits) to select one
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of the best precoding matrix, P0, out of L possibilities. Observing that the best

precoding matrix for the second step, P1 , lies in a small neighborhood of P0, i.e.,

W0, we are able to narrow down our search. Since q′ < q, we effectively reduce the

number of feedback bits needed for the second step to q′. Recursively repeating this

process to cover all N subchannels involved, and we end up with a total requirement

of q+(N/K− 1)q′ feedback bits, which is much less than the N ∗ q bits necessary for

the non-tracking approach. The search for P1 in the neighborhood of P0 is illustrated

in Figure 4.8.

Grassmann
Manifold

Codebook
L =2q points

Neighbourhood of P0 ,
size 2q’

Optimal precoding
matrix for the first

subcarrier, P0
Optimal precoding

matrix for the second
step, P1

Figure 4.8: Illustration of subspace tracking in Grassmann Manifold.

We summarize the subspace tracking precoding scheme as follows. Note here we

assume that the codebook is the for all the subchannels.

1. Set step size K and use the full q bits to select the optimal precoding matrix P0

for the first K subchannels.

2. Select the best precoding matrix Pi+1 from the neighborhood subset of previous

precoding matrix (Pi) for next K subchannels.

3. Repeat step 2 for all subchannels.

This is a very simple and efficient approach for low bit feedback precoding. It is easy

to achieve the best performance/feedback bandwidth tradeoff by selecting the step

92



size K and neighborhood subset size q′. The size of subset Wi can be determined

according to the dimension of the Grassmann manifolds GMT ,MR
. Heuristically, we

can choose L′ = 1 ∼ 2(2MR(MT −MR)).

4.3.5 Simulation Results

In this section, we present simulation results. In the simulation, the entire channel is

divided into 64 subcarriers. We employ discrete channel model that has 6 taps with

uniform profile and i.i.d. complex Gaussian distribution with zero-mean. The cyclic

prefix is longer than the delay profile. Assume that the feedback channel has no delay

and no error. The receiver knows the perfect channel information and uses MMSE

detection.

We first look at the performance for narrow band MIMO systems. Figure 4.9 gives

the BER for a MIMO system with 4 transmit antennas and 2 receive antennas. Two

data streams are transmitted using BPSK modulation. The BER of 2 × 2 system

without precoding is also given for comparison. From the figure, we can see that

the precoded system has much better BER performance than uncoded system. For

MMSE criterion, the precoded system provides about a 4 dB gain. And the slope

of the BER curves are the same as the uncoded system with ML receiver. For ML

precoded system, there is about a 4 dB gain over the MMSE precoded system. We

also give the performance for different feedback bits. Using 4 8 bits quantization of

precoding matrices, the performance is very close to the optimal one.

Figures 4.10∼4.14 address the BER performance of MIMO-OFDM system with

different antennas for uncoded QPSK modulation. The precoding matrices are quan-

tized by 6 bits. In ideal case, the receiver sends back the indices of the precoding

matrix at each subcarrier and there are 384 feedback bits for one OFDM symbol.

Using clustering approach, the receiver sends back one precoding matrix for each K

adjacent subcarriers. In our simulation, we have performed the clustering approach
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Figure 4.9: Narrow band MIMO system with precoding.

for K = 4 and 8, which means 96 bits and 48 bits feedback. In the tracking based

approach, the precoding matrix is updated every 4 subcarriers and there are 4 bits for

each step. Then plus 6 bits for the initial precoding matrix, total 66 bits are assigned.

For comparison, we also present the performance of selection diversity. The selection

diversity means to select the best transmit antennas within all transmit antennas. In

Figures 4.10 and 4.11, the interpolation approach uses 64 feedback bits [101]. The

subsampling rate is K=8, and 2 bits quantization of the rotation phase is used. From

Figures 4.10 and 4.11, the interpolation (64 bits), tracking (66 bits) and clustering

(96 bits) have the similar performance. The selection diversity approach is worse than

the three approaches at low SNR. While the interpolation and tracking approaches

have much lower feedback rates , however, their performance are very similar. From

the figure, 48 bits clustering has the worst performance.

Figures 4.12∼4.14 show the performance of a precoded MIMO-OFDM system

with multiple data stream transmission. In these systems, the interpolation approach
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fails. From these figures, the tracking approach still works well in different systems

with low feedback bits, where the selection and low rate clustering approaches suffer

from performance degradation.
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Figure 4.10: BER of a 3 × 1 MIMO-OFDM system with precoding.

4.4 Summary

In this chapter, we address channel estimation for MIMO-OFDM systems in spatially

correlated fading channels. Exploiting the spatial correlation, the proposed channel

estimator can achieve better performance than the LS estimator. Based on the MMSE

estimation, we derive the conditions for the optimum training sequences and provide

two optimum training sequence design approaches for arbitrary transmit correlation.

The proposed approaches can be used in wireless LAN where MIMO channels are

correlated.

Exploiting partial channel information can significantly improve the error perfor-

mance of MIMO systems. For MIMO-OFDM systems, the previous work is based on
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Figure 4.11: BER of a 4 × 1 MIMO-OFDM system with precoding.

interpolation that is designed only for single data stream transmission. Therefore, we

propose a subspace tracking based approach that is robust to multiple data stream

transmission. The simulation results show that the subspace tracking based approach

can reduce the feedback bit rate significantly.
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Figure 4.12: BER of a 3 × 2 MIMO-OFDM system with precoding.
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Figure 4.13: BER of a 4 × 2 MIMO-OFDM system with precoding.
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CHAPTER V

CONCLUSIONS AND FUTURE RESEARCH

WORK

5.1 Summary of Contributions

The work in the thesis focuses on the techniques to improve the reliability and ca-

pacity of OFDM-based wireless communication systems. The specific areas of our

contributions are as follows:

1. ICI suppression for OFDM systems

2. Interference suppression for clustered OFDM

3. Clustered OFDM based anti-jamming modulation

4. Channel estimation for MIMO-OFDM

5. Precoding for MIMO-OFDM with limited feedback

In Chapter 2, We propose a frequency domain partial response coding for Sup-

pressing ICI resulting from the Doppler frequency. We derive the ICI power for

OFDM systems with PRC. Based on the general expression of the ICI power, the

approximately optimal weights for PRC that minimize the ICI power are obtained.

The numerical and simulation results show that PRC effectively reduces the error

floor caused by Doppler frequency shift or carrier offset.

In Chapter 3, we address two techniques for clustered OFDM : interference sup-

pression for clustered OFDM with adaptive antenna arrays and clustered OFDM

based anti-jamming modulation.
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For a polynomial-based parameter estimator for clustered OFDM with receive

antenna arrays for interference suppression is proposed to combat severe leakage of

the DFT based estimator. The developed estimator can be used in clustered OFDM

systems with antenna arrays for interference suppression.

To calculate the weights of MMSE-DC in the clustered OFDM system with receive

antenna arrays for interference suppression, instantaneous correlations of the received

signals and channel responses corresponding to the desired signals have to be esti-

mated. We propose a polynomial-based estimator to obtain the required parameters.

Two issues are important for the polynomial-based estimator: the polynomial order

and window size of the estimation. We study the impact of the polynomial order and

window size on the estimation error. We develop an adaptive algorithm to obtain the

optimal window size. With the adaptive algorithm, the polynomial-based estimator

has no leakage and is robust to the channel statistics. Simulation results show that

the developed algorithm improves performance of the clustered OFDM system with

adaptive antenna array significantly.

For clustered OFDM used in military communications , we propose a clustered

OFDM based spread spectrum system for anti-jamming. The proposed system has

both advantages of clustered OFDM and spread spectrum. We analyze the perfor-

mance for broadband and partial band jamming. For broadband jamming, we use the

exponential correlation matrix to approximate the exact channel correlation matrix

and obtain an approximate expression of the BER. The simulation results show that

the approximate expression is very accurate for all SJR region. We also give the

diversity and coding gain of the system that determine the error performance at high

SJR. From the analytical results, high performance gain can be obtained for broad-

band jamming. However, the performance is degraded severely by the worst case

partial band jamming. Our analysis shows that no diversity gain can be obtained at
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the worst case jamming. To recover the performance loss, channel coding and inter-

leaving are used. We evaluate the performance of the coded system using cutoff rate

and upper bound. Two decoding schemes are investigated, hard-decision decoding

and soft-decision decoding. Hard-decision decoding has low complexity and can re-

cover most of the performance loss. To further improve the performance, soft-decision

decoding is used. The analysis and simulation show that the soft-decision decoding

can almost recover the performance loss. Since soft-decision decoding requires the

jamming state information, we develop a simplified jamming state estimator. The

simulation results show that the receiver with the estimated JSI performs very well

over the receiver without JSI.

In Chapter 4, we investigate the OFDM system employing multiple antennas

at both transmitter and receiver. The channel estimation and linear precoding for

MIMO-OFDM systems are studied.

For MIMO-OFDM systems in correlated fading channels, we develop an MMSE

channel estimator that makes full use of the spatial and frequency correlations. We

also investigate the training sequence design for the estimator. By the conditions of

the optimum training sequences, the training sequence design is only dependent on

the transmit correlations. Then, we design the training sequences for two different

cases. In the general cases, two optimum training sequences are proposed. For the

special cases, the optimum training schemes are to assign the power over the eigen-

modes of the dominant correlation matrix. The exact solution can be numerically

calculated using Langrange multipliers. For high and low SNR region, we derive the

close-form solutions.

For MIMO-OFDM systems in slow varying fading channels, partial channel infor-

mation can be obtained through limited feedback. We propose to use linear precoding

to achieve the diversity gain and array gain. The receiver selects the best precoding

matrix from a codebook and conveys the index of the matrix to the transmitter. We
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first investigate the codebook design and develop a random search algorithm. Then,

we discuss the precoding matrix selection. Some commonly use selection criteria are

introduced and the suboptimal selection criteria are proposed to reduce the compu-

tational complexity. In general MIMO-OFDM systems, the subchannels are highly

correlated. Exploiting the property, we propose a scheme to reduce the required feed-

back bits. Previous work based on interpolation is only valid for single data stream

transmission. We propose a subspace tracking based approach. The proposed ap-

proach is robust for multiple data stream transmission. Our approach do not need to

recalculate the precoding matrices and can significantly reduce the feedback bits and

selection complexity.

5.2 Future Research Work

MIMO-OFDM technique is a promising solution to high-data-rate wireless commu-

nications. In the thesis, techniques for channel estimation and linear precoding are

proposed to increase the system performance. There are still challenging issues on

MIMO-OFDM. Specifically, we will investigate the following issues:

• Theoretical analysis is needed for a better understanding of the precoded sys-

tems. With the theoretical analysis, we are able to determine some system pa-

rameters such as codebook size, step size so that the best performance/feedback

bandwidth tradeoff can be achieved. In practice, wireless channel is time-

varying and there is also feedback delay. Therefore, the precoding matrix se-

lection algorithm should also consider these issues. The feedback rate is also

determined by the characteristics of time-varying channel. Those issues are

important for the realistic system design.

• Linear precoding for interference suppression: When multiple users are sharing

the same channel, the signals from different users interfere each other. Like

adaptive antenna array, multiple transmit antennas can also be used to suppress
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interference. If the interference statistics can be tracked, then the receiver can

choose the best precoding matrix for the transmitter to maximize the signal to

interference-plus-noise ratio(SINR).

104



REFERENCES

[1] J. G. Proakis, Digital communications, 4rd ed., New York, McGraw-Hill, 2000.

[2] S. B. Weinstein and P. M. Ebert, “Data transmission by frequency-division mul-
tiplexing using the discrete Fourier transform,” IEEE Trans. on Comm., vol.
COM-19, pp. 628-634, Oct. 1971.

[3] L. J. Cimini, Jr., “Analysis and simulation of a digital mobile channel using
orthogonal frequency division multiplexing,” IEEE Trans. on Comm., vol. 33,
pp. 665-765, July 1985.

[4] R. W. Chang, “Synthesis of band-limited orthogonal signals for multichannel
data transmission”, Bell Syst. Tech. J., vol. 45, pp. 1775-1796, Dec. 1966.

[5] T. Cover and J. Thomas, Elements of Information Theory, New York, Wiley,
1991.
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