
 Open access  Journal Article  DOI:10.1007/S00604-018-3104-Z

Orthogonal gas sensor arrays by chemoresistive material design. — Source link 

Nicolay J. Pineau, Julia F Kompalla, Andreas T. Güntner, Sotiris E. Pratsinis

Institutions: ETH Zurich

Published on: 28 Nov 2018 - Mikrochimica Acta (Springer Vienna)

Related papers:

 Sniffing Entrapped Humans with Sensor Arrays

 Breath Sensors for Health Monitoring

 Breath acetone monitoring by portable Si:WO3 gas sensors

 Selective sensing of isoprene by Ti-doped ZnO for breath diagnostics

 Noninvasive Body Fat Burn Monitoring from Exhaled Acetone with Si-doped WO3-sensing Nanoparticles

Share this paper:    

View more about this paper here: https://typeset.io/papers/orthogonal-gas-sensor-arrays-by-chemoresistive-material-
1y0qxyojua

https://typeset.io/
https://www.doi.org/10.1007/S00604-018-3104-Z
https://typeset.io/papers/orthogonal-gas-sensor-arrays-by-chemoresistive-material-1y0qxyojua
https://typeset.io/authors/nicolay-j-pineau-2q4od6dz6i
https://typeset.io/authors/julia-f-kompalla-24tzrg99v2
https://typeset.io/authors/andreas-t-guntner-3e9u9u8fee
https://typeset.io/authors/sotiris-e-pratsinis-rk6zyd450k
https://typeset.io/institutions/eth-zurich-2cbshymp
https://typeset.io/journals/mikrochimica-acta-16lchmg6
https://typeset.io/papers/sniffing-entrapped-humans-with-sensor-arrays-50eoibd9q3
https://typeset.io/papers/breath-sensors-for-health-monitoring-3hvjfl65t7
https://typeset.io/papers/breath-acetone-monitoring-by-portable-si-wo3-gas-sensors-wsxhmxbcvj
https://typeset.io/papers/selective-sensing-of-isoprene-by-ti-doped-zno-for-breath-2fh1547b5h
https://typeset.io/papers/noninvasive-body-fat-burn-monitoring-from-exhaled-acetone-3u3smyt4t6
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/orthogonal-gas-sensor-arrays-by-chemoresistive-material-1y0qxyojua
https://twitter.com/intent/tweet?text=Orthogonal%20gas%20sensor%20arrays%20by%20chemoresistive%20material%20design.&url=https://typeset.io/papers/orthogonal-gas-sensor-arrays-by-chemoresistive-material-1y0qxyojua
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/orthogonal-gas-sensor-arrays-by-chemoresistive-material-1y0qxyojua
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/orthogonal-gas-sensor-arrays-by-chemoresistive-material-1y0qxyojua
https://typeset.io/papers/orthogonal-gas-sensor-arrays-by-chemoresistive-material-1y0qxyojua


ETH Library

Orthogonal gas sensor arrays by
chemoresistive material design

Journal Article

Author(s):
Pineau, Nicolay J.; Kompalla, Julia F.; Güntner, Andreas T.; Pratsinis, Sotiris E.

Publication date:
2018-12

Permanent link:
https://doi.org/10.3929/ethz-b-000308289

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Microchimica Acta 185(12), https://doi.org/10.1007/s00604-018-3104-z

Funding acknowledgement:
170729 - Integrated system for in operando characterization and development of portable breath analyzers (SNF)
159763 - Nanostructured metal-oxide gas sensors for non-invasive disease detection by breath analysis (SNF)

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000308289
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1007/s00604-018-3104-z
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


 

 

 

Orthogonal gas sensor arrays by chemoresistive material 

design 

 

Nicolay J. Pineau, Julia F. Kompalla, Andreas T. Güntner* and Sotiris E. Pratsinis 

 

Particle Technology Laboratory, Department of Mechanical and Process Engineering,  

ETH Zurich, CH-8092 Zurich, Switzerland 

 

 

 

 

Microchimica Acta 

submitted in Sept. 2018 

and in revised form in Nov. 2018 

 

 

 

 

 

 

 

*corresponding author: andreas.guentner@ptl.mavt.ethz.ch 



1 

 

Abstract 

Gas sensor arrays often lack discrimination power to different analytes and robustness to 

interferants, limiting their success outside of research laboratories. This is primarily due to the 

widely sensitive (thus weakly-selective) nature of the constituent sensors. Here, the effect of 

orthogonality on array accuracy and precision by selective sensor design is investigated. 

Therefore, arrays of (2 – 5) selective and non-selective sensors are formed by systematically 

altering array size and composition. Their performance is evaluated with 60 random 

combinations of ammonia, acetone and ethanol at ppb to low ppm concentrations. Best 

analyte predictions with high coefficients of determination (R2) of 0.96 for ammonia, 0.99 for 

acetone and 0.88 for ethanol are obtained with an array featuring high degree of 

orthogonality. This is achieved by using distinctly selective sensors (Si:MoO3 for ammonia 

and Si:WO3 for acetone together with Si:SnO2) that improve discrimination power and 

stability of the regression coefficients. On the other hand, arrays with collinear sensors 

(Pd:SnO2, Pt:SnO2 and Si:SnO2) hardly improve gas predictions having R2 of 0.01, 0.86 and 

0.28 for ammonia, acetone and ethanol, respectively. Sometimes they even exhibited lower 

coefficient of determination than single sensors as a Si:MoO3 sensor alone predicts ammonia 

better with a R2 of 0.68. 
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1. Introduction 

Since the introduction of gas sensor arrays in 1982 [1], they have been tested in numerous 

fields but still suffer from weak sensitivity and selectivity in gas mixtures [2]. As a result, the 

often applied “black box” approach correlating sensor signals with chemical perception (e.g., 

woody taste of wine) holds high risk of bogus correlations as the relevant analyte, responsible 

for the actual odor, aroma or disease, might not be generating the sensor outputs [2]. For 

instance when distinguishing alcoholic beverages, the sensor responses may primarily reflect 

variations in ethanol concentrations instead of wine aromas [3]. Similarly in breath analysis, 

the residues of tobacco smoke might be responsible for the diagnosis of lung cancer rather 

than actual markers [4]. This is important as lung cancer patients are most likely active or ex-

smokers. As a consequence, it is essential to quantify the relevant analytes in the gas mixture. 

For example in breath analysis, this means a targeted analysis of markers with proven 

biochemical relation to the disease [5].  

To address this, a sensor array consisting of four flame-made and differently doped (Pd, 

Pt, Ti and Si) SnO2 sensors has been successfully applied to quantify formaldehyde in 4-

analyte mixtures of main constituents of human breath at random concentrations [6]. The 

array quantified formaldehyde concentrations with an average estimation error of 9 ppb in the 

relevant range (30-180 ppb) despite much higher interferant levels (up to 2000 ppb ammonia, 

1800 ppb acetone and 600 ppb ethanol). The interferants, however, were estimated with 

higher errors, for instance ammonia with 235 ppb [6]. Apparently, the widely sensitive (thus 

weakly selective) character of the applied SnO2-based [6] sensors exhibited too small 

discrimination power to accurately resolve all compounds in the mixtures. This is problematic 

especially at relevant sub-ppm concentrations, where SnO2-based arrays are rarely tested [7]. 

 To increase the discrimination power and reduce cross-sensitivity to interferants, sensors 

with distinct selectivities are required [8]. Ideally, they combine to an array with orthogonal 



3 

 

characteristics enhancing discrimination power and estimation stability. This would improve 

precision and accuracy allowing for simultaneous quantification of multiple analytes as had 

been shown theoretically [9]. Distinct selectivity can be achieved by tailoring specific 

materials at the nanoscale (e.g. particle size, shape and film morphology) [10], exploiting 

metastable phases [11], solid solutions [12], mixed oxides [13] and by optimizing the 

operation temperature [13]. In fact, high acetone selectivity was found with Si-doped ε-WO3 

when operated at 350 °C [11]. This enabled the monitoring of fat burn during exercise and 

rest in 20 volunteers by measuring acetone in their breath (> 872 compounds) [14]. When 

combined to an array with ammonia-selective Si-doped α-MoO3 [13] and isoprene-selective 

Ti:ZnO [12], even sub-ppm concentrations of human breath- and skin-emitted acetone, 

ammonia and isoprene can be quantified [15].  

Here, the effect of orthogonality on array performance is investigated experimentally by 

systematically replacing non-selective SnO2-based sensors in an array by distinctly-selective 

Si:MoO3 [13] and Si:WO3 [11] for ammonia and acetone, respectively. The arrays are tested 

with 60 random combinations of ammonia, acetone and ethanol in the ppb to low ppm range 

at dry conditions. Next, array size and composition is varied systematically to understand the 

contribution of each sensor on analyte prediction. Finally, the stability of the extracted 

regression coefficients is evaluated. 

2. Experimental 

Sensor fabrication and characterization 

Different sensing nanoparticles, were produced by flame spray pyrolysis (FSP) and directly 

deposited [16] onto 15 × 13 × 0.8 mm Al2O3 substrates featuring interdigitated electrodes 

(Electronic Design Center, Case Western Reserve University) (figure 1a). For this, the 

substrate was mounted on a water-cooled holder 20 cm above the burner [17]. The precursor 
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solutions for Pd:SnO2 (1 mol%) [6], Si:SnO2 (6 mol%) [17], Pt:SnO2 (0.15 mol%) [18], 

Si:WO3 (10 mol%) [11] and Si:MoO3 (6.9 mol%) [13] were prepared according to the cited 

literature. The precursors were supplied at a feed rate of 5 mL min-1 through a nozzle and 

dispersed to a fine spray by 5 L min-1 oxygen at a pressure drop of 1.5 bar (1.6 bar for 

Si:MoO3). The spray was ignited by premixed methane / oxygen (1.25 L min-1 / 3.2 L min-1) 

flame surrounding the nozzle. Sheath oxygen (5 L min-1) was added through an annulus 

surrounding the flame. 

The mechanical stability of the nanoparticle deposits was enhanced by subsequent in situ 

annealing with a particle-free flame for 30 s [17]. So, the substrate holder was lowered to 14.5 

cm above the burner and xylene was fed at 1 L min-1 and dispersed with 5 L min-1 oxygen. 

Finally, the sensors were thermally stabilized by annealing in an oven (Carbolite Gero 30-

3000 °C) for 10 h at 500 °C (5 h at 450 °C for Si:MoO3) to prevent sintering and thus signal 

drift during operation. As a result, similar flame-made Pt:SnO2 had shown good long term 

stability over 20 days at 10% RH [18]. A Hitachi FE-SEM 4000 was used for scanning 

electron microscopy (SEM) operated at 3 kV. 

 

Sensor and array testing 

The different sensing materials were assembled to a conventional (Pd:SnO2, Si:SnO2, and 

Pt:SnO2) and an orthogonal (Si:WO3, Si:SnO2 and Si:MoO3) array by mounting the sensors 

on Macor holders [11] and placing them in a Teflon-made chamber (figure S1). Doped SnO2 

(400 °C) [6], Si:WO3 (350 °C) [11] and Si:MoO3 (400 °C) [13] were operated at their optimal 

temperature with respect to analyte sensitivity and selectivity. For this, the sensors were 

heated up through a Pt heater on the backside of the substrates by supplying constant DC 

voltages of 15.9 V and 18.2 V for 350 °C and 400 °C, respectively. The temperature was 

controlled by a Pt temperature resistance detector (RTD) on the front (figure S1c). 
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Gas tests were performed in an evaluation setup described in detail elsewhere [13]. In 

brief, dry synthetic air (Pan Gas, CnHm and NOx ≤ 100 ppb) was used as a carrier and acetone 

(50 ppm in N2, Pan Gas), ammonia (50 ppm in N2, Pan Gas), and ethanol (50 ppm in N2, Pan 

Gas) were admixed by calibrated mass flow controllers (Bronkhorst, Netherlands) to obtain 

the desired gas mixtures at a total flow rate of 1 L min-1. In total, 60 different gas mixtures 

were measured consisting of randomly combined concentrations of ammonia (250, 500, 800, 

1200, 1600 and 2000 ppb) [19], acetone (250, 400, 600, 800, 1200 and 1800 ppb) [20] and 

ethanol (50, 100, 150, 200, 400 and 600 ppb) [20] corresponding to typical human breath 

concentrations. The applied Si:WO3 sensor had lower limit of detection (at signal-to-noise-

ratio of 3) of 2.9 ppb acetone [11], Si:MoO3 of 50.7 ppb ammonia [13] and Si:SnO2 of 0.2 

ppb ethanol [6], all at 90% relative humidity (RH). Note that the RH was not included to 

demonstrate the effect of orthogonality more clearly. However, humidity effects had been 

assessed already with the single sensors (i.e., Si:MoO3 [13], Ti:ZnO [12], and Si:WO3 [11]) 

and arrays in simulated gas mixtures (at 90% RH) [6] and for breath- and skin-emissions [15]. 

 

Data analysis  

The film resistance between the interdigitated electrodes was measured continuously by a 

Multimeter (2700, Keithley). The responses of individual sensors were calculated as follows: 

  S = RairRanalyte − 1 (1) 

where Rair and Ranalyte denote the resistance measured in dry synthetic air without and with the 

analytes, respectively. The sensor sensitivity (∑) was defined as the derivative of the sensor 

response S with respect to the analyte concentration c (IUPAC): 

 ∑ = ∂S∂c (2) 
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Due to the quite linear calibration curves of the sensors, ∑ is approximated by linear 

regression over the tested analyte range. The analyte concentrations were predicted with the 

array by multivariate linear regression (MVLR) [21]. This is a suitable approach due to the 

linear calibration curves of such sensors [8] at the present concentration range, applied 

successfully already with similar arrays [6,15]. Furthermore, it allows a clear comparison 

between different array compositions due to the model’s simplicity. Therein, the 

concentration of an analyte Cx is described as a superposition of each sensor response Si 
multiplied with an individual regression coefficient ai,x and intercept bx where i and n denote 

the number of sensors in the array. 

 Cx = ∑ ai,xSi + bxn=5
i=1  (3) 

During a 6-fold cross-validation [22], data points were separated into calibration and test 

sets to assess the performance of the sensor arrays and prevent overfitting. During calibration, 

the coefficients ai,x and bx were obtained and then used to predict the concentrations Cx of the 

test set. Note that array compositions up to n = 5 sensors were tested. According to IUPAC, 

array accuracy was defined as the difference between the average predicted concentration and 

the actual one. Array precision was the standard deviation of the predicted concentrations.  

All calculations were performed with MATLAB (version R2017b, MathWorks, Natick, MA) 

3. Results and discussion 

Designing selective sensing materials by flame aerosol synthesis 

Figure 1a shows schematically the fabrication and direct deposition of nanoparticles onto 

Al2O3 sensor substrates with interdigitated electrodes by FSP. Therein, nanoparticles with 

distinct composition, crystal phase and size at high purity (similar to optical fibers [23]) are 

formed in the gas phase and deposited as highly porous nanostructured sensing films. Top-
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view SEM of the Si:SnO2 (6 mol%) film (figure 1b) indicates fine networks of aggregated and 

agglomerated primary particles, typical for such flame-made and directly deposited layers 

[16]. During FSP, SnO2 forms the cassiterite phase featuring a tetragonal crystal structure 

(figure 1b, inset) with six coordinated Sn (red) and three coordinated O (grey) [17].  

The Si-doping thermally stabilizes SnO2 to prevent grain and particle growth during 

typical high temperature operation (e.g. 400 °C) [6]. That way, the highly porous and fine 

film morphology with its large surface area is maintained [17]. This is ideal for gas sensing, 

as analytes can easily penetrate into the open film structure resulting in fast response 

(< 1 min) and recovery times (< 4 min) with reproducible sensitivity and reversible responses. 

In fact, high sensor responses to ammonia are observed already at sub-ppm concentrations 

(e.g. S = 0.47 at 800 ppb, red squares in figure 1d) with rather linear response characteristics 

(dotted line), as expected from diffusion-reaction theory [24]. The corresponding sensitivity 

for the entire ammonia concentration range is 0.57 ppm-1. Increasing the acetone 

concentration in the gas mixture, however, shifts the response curves upwards, while 

sensitivity is not affected (similar slope for all curves). This indicates substantial cross-

sensitivity to acetone, in line with literature [6]. This, however, is an issue for selective 

ammonia sensing in complex mixtures.  

Higher selectivity is found with specifically tailored material compositions, crystal 

phases and/or morphologies, if not achieved through external filters (e.g., sorption [25] or 

molecular sieves [26]), preconcentrators [27] or gas chromatography columns [28]). For 

example, Si-doped MoO3 shows high ammonia selectivity [13]. In this case, the sensing 

structure consists of larger aggregated nanoparticles (< 100 nm) and needle-like ones up to 

several µm long (figure 1c). By systematically optimizing the Si doping content the growth of 

α-MoO3 is prevented at typical operational temperatures (e.g. 400 °C [13]).  

That phase is composed of layers of distorted MoO6 octahedra (blue shaded in inset of 

figure 1c). The corresponding Si:MoO3 sensor exhibits lower responses (figure 1e) and 
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sensitivity (∑ = 0.31 ppm-1) for ammonia but higher selectivity. In specific, the presence of 

800 ppb acetone on Si:MoO3 leads to a prediction error of 22% (974 instead of 800 ppb 

ammonia). This is significantly less compared to Si:SnO2 (119% at the same conditions, 

figure 1d). Note that 800 ppb of interfering acetone is a realistic scenario in breath analysis at 

normal conditions [20], while higher concentrations of several ppm can occur during exercise 

or fasting [29]. Since higher accuracy is needed, further optimization in arrays with statistical 

response analysis to compensate for such cross-sensitivities is required. 

 

Sensor selectivity and array orthogonality 

Figure 2a shows normalized responses of Pd:SnO2, Pt:SnO2, Si:SnO2, Si:WO3 and Si:MoO3 

to average breath concentrations [30] of ammonia (833 ppb), acetone (477 ppb) and ethanol 

(112 ppb). The SnO2-based sensors are widely sensitive and respond to all analytes, in 

agreement with literature [31,6]. Even when doping SnO2 with different elements (i.e. Pt 

group metals vs. Si), only small selectivity alterations are obtained that result in quite similar 

response patterns. The collinearity of these sensors is better visualized by displaying each 

sensor’s responses as unit vector in a 3-D analyte space with acetone, ammonia and ethanol 

representing the axes (figure 2b). For the SnO2-based sensors the response vectors nearly 

align, in particular, the Pd:SnO2 (orange) and Si:SnO2 (light blue) almost overlap. In fact, they 

differ only by an angle of 2° while the Pt:SnO2 (green) and Pd:SnO2 or Pt:SnO2 and Si:SnO2 

are separated by about 10°. When utilizing such rather similar or collinear sensors in an array 

configuration (denoted here as conventional array), the close alignment results in a high 

degree of collinearity even though being linearly independent. This can lead to unstable 

regression coefficients during MVLR: small measurement errors in sensor response result in 

large deviations in the estimated concentrations [8]. Overall, such sensor arrays feature low 

discrimination power resulting in weak analyte estimations and strong sensitivity to small 
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changes in background gases, humidity or temperature [9]. This makes the device only 

reliable within the calibrated gas mixture, if at all [32,9].  

To increase the degree of orthogonality, enhanced selectivity variance within the array is 

needed. This can be accomplished by exchanging collinear sensors (Pt:SnO2 and Pd:SnO2) 

with distinctly selective ones (Si:WO3 and Si:MoO3). For these materials, the strong 

selectivity variance is obtained by changing the base metal oxide (from SnO2 to WO3 and 

MoO3). For Si:WO3, this results in higher acetone selectivity over ammonia and ethanol 

(figure 2a). At the same time, Si:MoO3 exhibits higher ammonia selectivity (figure 2a). 

Together with non-specific Si:SnO2 they combine to an array (denoted here as orthogonal), 

where all vectors are clearly separated by angles ranging from 23 to 64° (figure 2c).   

This leads to a significantly higher degree of orthogonality, also visualized by the 

spanned area of the vectors (grey shaded) [9]. Hence, this orthogonal configuration should 

feature regression coefficients with increased stability, higher discrimination power between 

the analytes and therefore lead to more accurate and precise estimations for all analytes [8].  

 

Array performance in gas mixtures 

Both array configurations are “trained” and tested (6-fold cross-validation) with 60 random 

combinations of acetone (250 – 1800 ppb) [20] ammonia (250 – 2000 ppb) [19], and ethanol 

(50-600 ppb) [20] occurring typically in the breath of healthy humans. Figure 3 shows the 

array-estimated ammonia (a), ethanol (b), and acetone (c) concentrations over the actual ones 

in these mixtures. Note that symbols and error bars indicate the average concentrations and 

standard deviations, respectively, of the conventional (red circles) and the orthogonal array 

(green squares). The conventional array estimates ammonia and ethanol with large error bars 

and even fails to resolve increasing concentrations, as evident from the low coefficients of 

determination (R2) of 0.01 and 0.28, respectively. In particular for ammonia, the average 

levels are consistently estimated around 1000 ppb (figure 3a), despite the actual variations 



10 

 

between 250-2000 ppb. The poor array performance is also reflected in the low accuracy 

(large deviation from the dotted line) and low precision (large error bar), for instance at 800 

ppb of ammonia with values of 272 and 240 ppb, respectively, corresponding to an average 

error of 34%. Only for acetone, different concentrations are recognized better (R2 = 0.88, 

figure 3c) but errors increase at high concentrations (i.e. 1800 ppb). Note that increasing the 

number of calibration points of the conventional array does not improve the array 

performance (see figure S2). 

Most importantly, the orthogonal array estimates all analytes significantly better with 

outstanding R2 of 0.96, 0.88 and 0.99 for ammonia, ethanol and acetone, respectively. This 

strong array performance is a remarkable improvement compared to that of the conventional 

array. For instance at 800 ppb ammonia, the accuracy and precision are 53 and 85 ppb, 

respectively. This corresponds to an average error of 6.6%, which is much smaller than the 

34% of the conventional array. That can have significant impact on breath analysis where 

ammonia is an important marker to detect end-stage renal disease in humans and such low 

concentration differences need to be resolved especially to detect early stages [19].  

 

Influence of array size and composition on estimation performance 

To understand the improved performance of the orthogonal array, the role of each sensor on 

adjusted R2 is investigated exemplarily for ammonia in figure 4. Note that the adjusted R2 is 

calculated to account for the different number of sensors [33]. Data for all additional sensor 

combinations and other analytes are shown in figure S3. The Si:SnO2 sensor alone fails to 

resolve different ammonia concentrations, as indicated by the low adjusted R2 of 0.01 and 

expected from the strong interference of the other analytes (figures 1d & 2a). When adding 

Pd:SnO2 and Pt:SnO2 this is not improved and the adjusted R2 even decreases, most likely due 

to high collinearity (figure 2b) and the resulting amplification of noise [9]. This is in line with 

the poor ammonia estimation of the conventional array (figure 3a).  
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In contrast, Si:MoO3 allows a much better ammonia estimation (adjusted R2 of 0.68) 

already as single sensor than the SnO2-based sensors and arrays due to its higher ammonia 

selectivity (figures 1e & 2a). This is even improved when adding Si:SnO2 to it (adjusted R2 of 

0.76), due to their different selectivities (compare red and light blue vectors in figure 2c). This 

results in a higher discrimination power and therefore a better analyte estimation [9]. The 

prediction can be enhanced further by adding the Si:WO3 sensor, resulting in an adjusted R2 

of 0.96 (figure 4). As a result, the high discrimination power of an array consisting of sensors 

with distinct selectivities allows analyte estimations unachievable by conventional arrays. Out 

of curiosity also the combination of all 5 sensors was tested but the adjusted R2 (0.97) hardly 

increases further compared to the orthogonal design, showing again the redundant role of 

collinear sensors. 

 

Regression coefficients: significance and robustness 

Another indicator of the role of a sensor within an array is the stability of its regression 

coefficient in the statistical model (i.e. ai,x in eq. 2 for MVLR, see Experimental) [34]. Figure 

5 shows the regression coefficients for all sensors in the conventional (a-c) and orthogonal (d-

e) arrays for the prediction of ammonia (a, d), acetone (b, e) and ethanol (c, f) concentrations. 

Error bars represent the variability during calibration, i.e. the change in regression coefficient 

when successively adding more data points in the least squares algorithm. The error bar in 

relation to the absolute value of a regression coefficient is indicative for the robustness against 

interfering concentrations thus stability and overall significance of a sensor in the array [35]. 

From these, also p-values can be computed as indicator of significance, most often used for 

further array optimization (e.g. by removing the least significant sensor, so called backward-

elimination) [34].  

For the conventional design (figure 5a-c), the regression coefficients exhibit rather large error 

bars for all analytes. These are especially pronounced for ammonia (figure 5a) correlating 
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with the poor analyte estimation of the conventional array (figure 3). Furthermore, the error 

bars of the Pd:SnO2 cross the zero-line (dashed) consistently for all analytes (figure 5a-c) 

revealing the insignificant role of this sensor. This is further supported by the high p-values 

(all above 0.6), an indication that this sensor introduces rather noise than new information [9]. 

As a result, this sensor is redundant for all analyte estimations, most likely due to its high 

collinearity with the Si:SnO2 sensor (compare orange and light blue vectors in figure 2b).  

The error bars of the orthogonal array (d-f) are significantly smaller for all analytes than 

for the conventional one (a-c). This is in line with theory [34], where a higher degree of 

orthogonality (grey shaded triangles in figures 2b,c) should result in more stable regression 

coefficients leading to increased discrimination power, accuracy and precision of the device, 

as demonstrated already in figure 3. Note that the acetone coefficients of the conventional 

array (figure 5b), exhibiting the smallest error bars of the 3 analytes, already allow for an 

accurate quantification of acetone (figure 3c). Nevertheless, increased stability is still 

achieved in the orthogonal design (figure 5e) resulting in an improved performance (figure 

3c). 

4. Conclusions 

We provide experimental evidence that sensor array performance depends largely on the 

orthogonality of its constituent sensors. Utilizing distinctly selective sensors in arrays 

improved discrimination power and stability of the regression coefficients, necessary for 

accurate and precise analyte predictions in relevant gas mixtures. In specific, in mixtures of 

ammonia, acetone and ethanol, R2 of 0.96, 0.99 and 0.88 are achieved, respectively. Such 

highly selective sensing materials are accessible with state-of-the-art fabrication methods by 

exploiting, for instance, unique material composition, morphologies or metastable crystal 

phases.  
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In contrast, integrating collinear sensors into arrays (conventional array) hardly improved 

or even decreased performance, probably due to amplification of noise. This resulted in low 

discrimination power and inability to distinguish different analyte concentrations in mixtures 

(R2 of 0.01 for ammonia, 0.86 for acetone and 0.28 for ethanol). As a result, this study 

highlights the importance of selective sensing material engineering and their integration into 

arrays to overcome accuracy and precision restrictions. 

Acknowledgments 

This study was financially supported by the Swiss National Science Foundation (Grant 

No.170729 & 159763) and by an ETH Research Grant (No. ETH-21 18-1). 

References 

1. Persaud K, Dodd G (1982) Analysis of discrimination mechanisms in the mammalian 

olfactory system using a model nose. Nature 299 (5881):352-355. doi:10.1038/299352a0 

2. Röck F, Barsan N, Weimar U (2008) Electronic nose: current status and future trends. 

Chem Rev 108 (2):705-725. doi:10.1021/cr068121q 

3. Ragazzo-Sanchez JA, Chalier P, Chevalier D, Ghommidh C (2006) Electronic nose 

discrimination of aroma compounds in alcoholised solutions. Sensor Actuat B-Chem 114 

(2):665-673. doi:10.1016/j.snb.2005.05.032 

4. Phillips M (2005) Can the electronic nose really sniff out lung cancer? Am J Respir Crit 

Care Med 172 (8):1060; author reply 1060-1061. doi:10.1164/ajrccm.172.8.959 

5. Pizzini A, Filipiak W, Wille J, Ager C, Wiesenhofer H, Kubinec R, Blaško J, 
Tschurtschenthaler C, Mayhew CA, Weiss G, Bellmann-Weiler R (2018) Analysis of 

volatile organic compounds in the breath of patients with stable or acute exacerbation of 

chronic obstructive pulmonary disease. J Breath Res 12 (3):036002. doi:10.1088/1752-

7163/aaa4c5 

6. Güntner AT, Koren V, Chikkadi K, Righettoni M, Pratsinis SE (2016) E-nose sensing of 

low-ppb formaldehyde in gas mixtures at high relative humidity for breath screening of 

lung cancer? ACS Sens 1 (5):528-535. doi:10.1021/acssensors.6b00008 

7. Sundgren H, Winquist F, Lukkari I, Lundstrom I (1991) Artificial neural networks and gas 

sensor arrays - quantification of individual components in a gas-mixture. Meas Sci 

Technol 2 (5):464-469. doi:10.1088/0957-0233/2/5/008 

8. Carey WP, Beebe KR, Sanchez E, Geladi P, Kowalski BR (1986) Chemometric analysis of 

multisensor arrays. Sensors and Actuators 9 (3):223-234. doi:10.1016/0250-

6874(86)80023-3 

9. Pearce TC, Schiffman SS, Nagle HT, Gardner JW (2003) Handbook of machine olfaction: 

electronic nose technology. WiILEY-VCH, Weinheim. doi:10.1002/3527601597 



14 

 

10. Joshi N, Hayasaka T, Liu YM, Liu HL, Oliveira ON, Lin LW (2018) A review on 

chemiresistive room temperature gas sensors based on metal oxide nanostructures, 

graphene and 2D transition metal dichalcogenides. Microchim Acta 185 (4). 

doi:10.1007/s00604-018-2750-5 

11. Righettoni M, Tricoli A, Gass S, Schmid A, Amann A, Pratsinis SE (2012) Breath acetone 

monitoring by portable Si:WO3 gas sensors. Anal Chim Acta 738:69-75. 

doi:10.1016/j.aca.2012.06.002 

12. Güntner AT, Pineau NJ, Chie D, Krumeich F, Pratsinis SE (2016) Selective sensing of 

isoprene by Ti-doped ZnO for breath diagnostics. J Mater Chem B 4 (32):5358-5366. 

doi:10.1039/C6TB01335J 

13. Güntner AT, Righettoni M, Pratsinis SE (2016) Selective sensing of NH3 by Si-doped -

MoO3 for breath analysis. Sensor Actuat B-Chem 223:266-273. 

doi:10.1016/j.snb.2015.09.094 

14. Güntner AT, Sievi NA, Theodore SJ, Gulich T, Kohler M, Pratsinis SE (2017) 

Noninvasive body fat burn monitoring from exhaled acetone with Si-doped WO3-sensing 

nanoparticles. Anal Chem 89 (19):10578-10584. doi:10.1021/acs.analchem.7b02843 

15. Güntner AT, Pineau NJ, Mochalski P, Wiesenhofer H, Agapiou A, Mayhew CA, Pratsinis 

SE (2018) Sniffing entrapped humans with sensor arrays. Anal Chem 90 (8):4940-4945. 

doi:10.1021/acs.analchem.8b00237 

16. Mädler L, Roessler A, Pratsinis SE, Sahm T, Gurlo A, Barsan N, Weimar U (2006) Direct 

formation of highly porous gas-sensing films by in situ thermophoretic deposition of 

flame-made Pt/SnO2 nanoparticles. Sensor Actuat B-Chem 114 (1):283-295. 

doi:10.1016/j.snb.2005.05.014 

17. Tricoli A, Graf M, Pratsinis SE (2008) Optimal doping for enhanced SnO2 sensitivity and 

thermal stability. Adv Funct Mater 18 (13):1969-1976. doi:10.1002/adfm.200700784 

18. Mädler L, Sahm T, Gurlo A, Grunwaldt JD, Barsan N, Weimar U, Pratsinis SE (2006) 

Sensing low concentrations of CO using flame-spray-made Pt/SnO2 nanoparticles. J 

Nanopart Res 8 (6):783-796. doi:10.1007/s11051-005-9029-6 

19. Davies S, Spanel P, Smith D (1997) Quantitative analysis of ammonia on the breath of 

patients in end-stage renal failure. Kidney Int 52 (1):223-228. doi:10.1038/ki.1997.324 

20. Diskin AM, Spanel P, Smith D (2003) Time variation of ammonia, acetone, isoprene and 

ethanol in breath: a quantitative SIFT-MS study over 30 days. Physiol Meas 24 (1):107-

119. doi:10.1088/0967-3334/24/1/308 

21. Mardia KV, Kent JT, Bibby JM (1979) Multivariate analysis. Academic Press, Cambridge 

22. James G, Witten D, Hastie T, Tishirani R (2013) An introduction to statistical learning. 

Springer, Heidelberg. doi:0.1007/978-1-4614-7138-7 

23. Pratsinis SE (2010) Aerosol-based technologies in nanoscale manufacturing: from 

functional materials to devices through core chemical engineering. AIChE J 56 (12):3028-

3035. doi:10.1002/aic.12478 

24. Gardner JW (1989) A diffusion-reaction model of electrical-conduction in tin oxide gas 

sensors. Semicond Sci Tech 4 (5):345-350. doi:10.1088/0268-1242/4/5/003 

25. van den Broek J, Güntner AT, Pratsinis SE (2018) Highly selective and rapid breath 

isoprene sensing enabled by activated alumina filter. ACS Sens 3 (3):677-683. 

doi:10.1021/acssensors.7b00976 

26. Güntner AT, Abegg S, Wegner K, Pratsinis SE (2018) Zeolite membranes for highly 

selective formaldehyde sensors. Sensor Actuat B-Chem 257:916-923. 

doi:10.1016/j.snb.2017.11.035 

27. McCartney MM, Zrodnikov Y, Fung AG, LeVasseur MK, Pedersen JM, Zamuruyev KO, 

Aksenov AA, Kenyon NJ, Davis CE (2017) An easy to manufacture micro gas 

preconcentrator for chemical sensing applications. ACS Sens 2 (8):1167-1174. 

doi:10.1021/acssensors.7b00289 



15 

 

28. Itoh T, Miwa T, Tsuruta A, Akamatsu T, Izu N, Shin W, Park J, Hida T, Eda T, Setoguchi 

Y (2016) Development of an exhaled breath monitoring system with semiconductive gas 

sensors, a gas condenser unit, and gas chromatograph columns. Sensors 16 (11). 

doi:10.3390/s16111891 

29. Anderson JC (2015) Measuring breath acetone for monitoring fat loss: review. Obesity 23 

(12):2327-2334. doi:10.1002/oby.21242 

30. Smith D, Turner C, Spanel P (2007) Volatile metabolites in the exhaled breath of healthy 

volunteers: their levels and distributions. J Breath Res 1 (1):014004. doi:10.1088/1752-

7155/1/1/014004 

31. McAleer JF, Moseley PT, Norris JOW, Williams DE, Taylor P, Tofield BC (1987) Tin 

oxide based gas sensors. Mater Chem Phys 17 (6):577-583. doi:10.1016/0254-

0584(87)90017-4 

32. Gardner JW, Boilot P, Hines EL (2005) Enhancing electronic nose performance by sensor 

selection using a new integer-based genetic algorithm approach. Sensor Actuat B-Chem 

106 (1):114-121. doi:10.1016/j.snb.2004.05.043 

33. Olive DJ (2017) Linear regression. Springer, Heidelberg. doi:10.1007/978-3-319-55252-1 

34. Harrell FE (2001) Regression Modeling Strategies. Springer Series in Statistics. Springer, 

Heidelberg. doi:10.1007/978-1-4757-3462-1 

35. King G (1986) How not to lie with statistics - avoiding common mistakes in quantitative 

political-science. Am J Polit Sci 30 (3):666-687. doi:10.2307/2111095 

 



16 

 

Figures and Captions 

 

Figure 1 | (a) Sensing nanoparticles are produced by flame spray pyrolysis (FSP) and are 

deposited directly onto sensor substrates. SEM image (top view) of highly porous (b) Si:SnO2 

and (c) Si:MoO3 films. Each sensing material features a distinct composition, morphology and 

crystal structure (insets) affecting analyte sensitivities, and thus selectivity. Sensor responses 

of (d) Si:SnO2 and (e) Si:MoO3 to ammonia (0-2000 ppb) at various interfering acetone 

concentrations (0-1800 ppb).  
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Figure 2 | (a) Normalized responses for breath-average (healthy) relevant concentrations of 

ammonia (833 ppb, red), acetone (477 ppb, green) and ethanol (112 ppb, blue) of Pd:SnO2, 

Pt:SnO2, Si:SnO2, Si:WO3 and Si:MoO3 sensors. Note that responses are normalized to the 

maximum of each sensor for a better comparability of the selectivity. The collinearity of the 

sensors is visualized by showing their normalized responses as unit vectors in a 3-D analyte 

space for the (b) conventional and (c) orthogonal array designs with sensor compositions as 

indicated. The degree of orthogonality is indicated by their spanned areas (grey shaded). 
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Figure 3 | Sensor array estimation of the conventional (red circles) and orthogonal designs 

(green squares) for (a) ammonia, (b) ethanol and (c) acetone concentrations in 60 different 3-

analyte mixtures. Symbols and error bars represent the average and standard deviation of the 

estimated concentrations, respectively.   
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Figure 4 | Ammonia estimation performance (adjusted R2) in 3-analyte mixtures by singe 

sensors and arrays of 2 - 5 sensors. Note that that the adjusted R2 is calculated to account for 

the different number of sensors. Improved performance is depicted from red (> 0.25) over 

yellow to green (< 0.85). 
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Figure 5 | Regression coefficients for the conventional (a-c) and orthogonal (d-f) arrays. The 

error bars represent the variability during calibration shown along with p-values. 

 

 




