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Abstract Research into ant colony algorithms for solving continuous optimization problems forms one of the most
significant and promising areas in swarm computation. Although traditional ant algorithms are designed for combinatorial
optimization, they have shown great potential in solving a wide range of optimization problems, including continuous
optimization. Aimed at solving continuous problems effectively, this paper develops a novel ant algorithm termed
“continuous orthogonal ant colony” (COAC), whose pheromone deposit mechanisms would enable ants to search for
solutions collaboratively and effectively. By using the orthogonal design method, ants in the feasible domain can explore
their chosen regions rapidly and efficiently. By implementing an “adaptive regional radius” method, the proposed
algorithm can reduce the probability of being trapped in local optima and therefore enhance the global search capability
and accuracy. An elitist strategy is also employed to reserve the most valuable points. The performance of the COAC is
compared with two other ant algorithms for continuous optimization — API and CACO by testing seventeen functions
in the continuous domain. The results demonstrate that the proposed COAC algorithm outperforms the others.

Keywords ant algorithm, function optimization, orthogonal design

1 Introduction

Recently, swarm computation has received an in-
creasing attention in computing science. A significant
benchmark application is the modeling of real ants
in foraging behavior. One of the most notable ex-
periments about ants’ behavior is the double bridge
experiment[1,2]. By sensing the pheromone existing in
the environment, the ants are able to find the short-
est path from their nest to the food. Such behavior
inspires a great deal of effort in developing ant algo-
rithms for solutions of different problems.

Since the first ant algorithm, the ant system (AS)[3],
was proposed by Dorigo in his Ph.D. dissertation in
1992, it has subsequently developed into a paradigm
of the ant colony optimization (ACO) metaheuristic[3].
It employs some basic heuristics in order to escape
from local optima and to find the global optimum in
a multimodal space. The most successful applications
of ant algorithms are combinatorial optimization and

network problems, such as the traveling sales-
man problem (TSP)[4], the vehicle routing problem
(VRP)[5,6], the job shop scheduling problem (JSP)[7],
the water distribution system (WDS)[8], data mining[9]

and network routing[10], etc. However, all these algo-
rithms are designed for solving discrete optimization
problems.

Recently, research has been carried out to ex-
tend ant algorithms for solving continuous optimiza-
tion problems. The first method is the continuous
ACO (CACO), proposed by Bilchev and Parmee in
1995[11]. It was the rudiment of CACO and later
it was consummated in [12, 13]. The CACO com-
bines both ant colony and genetic algorithm (GA)[14]

techniques together. Monmarché et al.[15] proposed
a method termed API in 2000, where the ant colony
search mechanism consists of a set of parallel local
searches on hunting sites with sensitivity to success-
ful sites and the ants’ nest is periodically moved[15].
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Other methods developed recently include the continu-
ous interacting ant colony (CIAC) algorithm[16,17], the
extended ACO to continuous domains (ACOR)[18,19],
the continuous ant colony system (CACS)[20], the bi-
nary ant system (BAS)[21], the direct application of
ACO (DACO)[22], and those algorithms reported in
[23, 24]. Hybrid ant algorithms combined with ge-
netic algorithms[23], artificial immune systems[25] and
particle swarms (PSACO)[26] have also been proposed.
These methods are able to tackle continuous optimiza-
tion problems to a certain degree.

In order to solve continuous optimization problems
effectively, this paper develops a continuous orthog-
onal ant colony (COAC) algorithm by using the or-
thogonal design method[27−32]. The orthogonal design
method, which was proposed more than fifty years ago,
is an experimental design method and has since been
widely applied in scientific research, manufacturing,
agricultural experiments and quality management. It
can be used for planning experiments and provide an
efficient way to find a near-best sample for the multi-
factor experiments. As every variable in a problem can
be regarded as a factor, the orthogonal design method
can help solve optimization problems, e.g., [33–37].
Zhang and Leung[33] and Leung and Wang[34] applied
the orthogonal design method in the crossover opera-
tion of a GA.

Different from the above approaches, however, the
algorithm developed in this paper uses a novel opera-
tion termed “orthogonal exploration” to find the opti-
mum. Here, in the problem domain, every ant in the
colony lands in a region selected under the guidance of
pheromone. The orthogonal design method is imple-
mented for the ant to search for a better point in the
region, whose size is determined by its radius. After all
ants finish searching for better points, the desirability
of each region is re-evaluated and an elitist strategy is
implemented to retain the best. Better regions in the
domain have a higher probability to survive and the
pheromone in those regions is accordingly reinforced.
Then the other regions are discarded and replaced by
randomly generated regions.

The algorithm developed in this paper also imple-
ments one additional feature to make it more robust
and faster. The radiuses of regions are adaptively
shrunk or expanded according to the prevailing search
status. If a better point is found, the radiuses of that
region will be expanded, or else the radiuses will be
shrunk. The expansion of the radiuses is to enhance
diversity to the algorithm, while shrinking is to find a
better niche to enhance accuracy.

The next section of this paper describes the trans-

formation of discrete ant algorithms for continuous op-
timization problems. The third section contains a brief
review of the orthogonal design method and discusses
the principles on which the proposed algorithm will be
based. In Section 4, the proposed COAC algorithm is
presented in detail. Section 5 describes the additional
feature of the proposed algorithm. Experimental re-
sults are reported in Section 6, where the performance
of the proposed algorithm is compared with CACO
and API by seventeen continuous optimization func-
tions. Discussions on the convergent characteristics of
the proposed algorithm are also made in Section 6.
Finally, Section 7 concludes the paper.

2 ACO to the Continuous Domain

Traditional ant colony optimization (ACO) is a
framework for discrete optimization problems. The
agents in ACO work as teammates in an exploration
team. The cooperation between the ants is based on
pheromone communication. In view of the traveling
salesman problem (TSP), which is a discrete optimiza-
tion problem, the mission for the agents is to find the
shortest way to traverse all the cities and return to the
original city. The number of roads inter-connecting
the cities is limited and fixed. However, optimiza-
tion problems in the continuous domain are different.
There are no longer “fixed” roads for agents to explore,
but walking in any directions in the n-dimensional
(n > 1) domain can lead to quite a different result.
The difficulty in solving such a problem lies in how to
find an efficient way to direct these agents to search in
the n-dimensional domain.

2.1 Discretizing the Continuous Domain

Consider a group of m agents, whose mission is
to find the lowest point in the given domain. The
simplest way is to drop the agents in the domain ran-
domly and record the best point. Then a new group of
m agents are dropped randomly to the domain again.
After several times, the best location ever been found
is taken as the result. This is a purely a-posteriori
random search procedure and no heuristics is imple-
mented in this method. Using a discrete optimization
algorithm to solve a continuous algorithm, the contin-
uous domain needs to be discretized.

When an ant locates in a domain, it stands at
a point of which the desirability is corresponding to
the optimization degree. The desirability is usually
evaluated by the objective function modeling from
the original problem. The continuous domain can be
discretized into several regions and the ants can ex-
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plore the regions instead of the whole domain. In
this paper, we assign each region i a property, radius
ri = (ri1, ri2, . . . , rin) (where n being the dimensions
of the domain), to control its range. The radius in
this paper is used by the orthogonal exploration that
will be detailed later. In a large and high-dimensional
domain, the division of the domain is difficult and in-
complete. For simplicity, this paper randomly gen-
erates initial regions in the domain. The number of
regions in this paper is defined as µ. The regions can
be moved according to the optimization process. An
example of placing three ants in four regions is shown
in Fig.1.

Fig.1. Example of placement of three ants in four regions in a

two-dimensional domain.

2.2 Communication Between the Ants

The core in ACO is the use of pheromone. An
ant can drop a certain amount of pheromone on the
way. The more ants choose the way to go, the more
pheromone accumulates on the road. If the road is
good, chances are that more ants will select the good
road and, after some time, the roads with the densest
pheromone converge. In the continuous domain, the
ideal situation is that the agents gather in the opti-
mum place.

The artificial ants in this paper behave slightly dif-
ferently from real ants. It is supposed that if an ant
found out a good point, it would add pheromone to
that region, or else nothing would be contributed to
the region. In the continuous problem, each artificial
ant is able to sense the amount of pheromone in all
of the existed regions. The regions are randomly gen-
erated with radiuses or they are bequeathed from the
past. The ants base on a rule, which defines an exact
way and a probabilistic way, to select the regions to
explore. The rule will be discussed in Section 4. Once
in a region, the ant will further explore the area of the
region to find a better point. The size of the region

influences the accuracy that the ant can gain. In this
paper, an orthogonal design method is used to guide
the search to the regions fast and completely.

In the real world, the amount of pheromone will
evaporate in the course of time. If ants do not explore
the region, the pheromone in that region will be de-
creased. If the amount of pheromone in a region is
too small, the region will be deserted. The orthogonal
method to be developed in this paper will be based
on the above background through applying ant colony
heuristics so as to make the algorithm search efficiently
in the continuous domain.

3 Orthogonal Design Method

The orthogonal design method is a way of planning
experiments and it has been widely used in multifac-
tor experiments. In an experiment, the parameters
are termed factors, while the values of these parame-
ters are termed levels. Consider an experiment with k
factors and each factor with s levels. Then there will
be sk combinations to test. This is a full-scale experi-
ment and the computation cost exponentially increases
when k and s become larger. In order to reduce the
number of experiments to make the problem tractable,
the orthogonal design method is used here.

3.1 Orthogonal Design

The so-called orthogonal design is a method that
makes complex designs of multifactor experiment fea-
sible and compact. It samples a small, but repre-
sentative set of combinations[29] by using a series of
orthogonal arrays for arrangement of experiments[30].
Rao[27] used certain kind of orthogonal arrays in “frac-
tional factorial” experiments[31] because of their desir-
able statistical properties in 1947. Since Bush[28] in-
troduced the term “orthogonal array” in 1950, orthog-
onal arrays have become essential in statistics and are
primarily used in designing experiments in most fields
such as medicine, agriculture and manufacturing.

An orthogonal array, which varies from the size of
the experiment, is used in the orthogonal design. We
define OA(N, k, s) as an orthogonal array with k fac-
tors and each factor with s levels, where N stands for
the number of combinations to be tested. Take an
orthogonal array OA(9, 4, 3) as an example, which is
shown in Table 1. Each column in the array stands for
one factor, while the numbers in the column represent
the levels of the factor. There are nine combinations
of factors with different levels in the array, so that
there are nine samples to be undertaken. The values
in the level can be mapped with the actual values of
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the parameters. Table 2 illustrates an example of ex-
perimental settings. The columns of A, B, C and D
stand for factors. In column A, there are three levels
and level 1 is mapped to 80◦C, level 2 is mapped to
85◦C, etc. The objective of the experiment is to find a
best combination of such different factors to yield an
optimal result. The use of the orthogonal array can
schedule the experiment fast because there are only a
few tests to be performed instead of a full-scale exper-
iment. Though the experiment is partial, the result of
the orthogonal experiment is still convincible for the
principles of the orthogonal design.

Table 1. Orthogonal Array OA(9, 4, 3)

Combination Factor 1 Factor 2 Factor 3 Factor 4

1 1 1 1 1

2 1 2 2 2

3 1 3 3 3

4 2 1 2 3

5 2 2 3 1

6 2 3 1 2

7 3 1 3 2

8 3 2 1 3

9 3 3 2 1

Table 2. Example of Experimental Settings for OA(9, 4, 3)

Factors

A (◦C) B (kg) C (type) D (hour)

Level 1 80 35 Type1 1

Level 2 85 48 Type2 2

Level 3 90 55 Type3 3

3.2 Principles of Orthogonal Design

The number of combinations to be tested in the
orthogonal design is much fewer than the full-scale ex-
periment. Generally, the orthogonal design method
is a partial experimental method to all the levels of
factors, but it is a full-scale experiment to any two
factors. The levels of the orthogonal array are made
to be mostly “orthogonal” with each other. Take three
factors to draw a cube, as shown in Fig.2. The three
factors are denoted as A, B and C with subscripts in-
dexing the levels. There are totally 27 combinations
of three factors, which are illustrated as spots in Fig.2.
Based on the first three columns of OA(9, 4, 3), nine
combinations are selected, which are illustrated as hol-
low spots in Fig.2. In the cube, there are three hollow
spots on every face (including the inside faces) and
one hollow spot on every edge (including the inside
edges). These nine combinations can approximately

reflect the solution space. Although the best combi-
nations in these sampled experiments may not be the
best one in the full-scale experiment, this method can
reduce the number of tests and give a direction to the
optimal combinations.

In fact, there are different types of orthogonal com-
binations with three factors. Any three columns with-
out duplication of OA(9, 4, 3) can form nine orthogonal
combinations which are composed of different spots
in Fig.2. Any orthogonal arrays with equal or more
columns than the number of factors in the given mul-
tifactor problem can be used. This means that an
orthogonal array without some columns is still an or-
thogonal array. However, an orthogonal array with
more factors is always accompanied with more com-
binations that will consume exponentially longer time
to complete the experiment.

Fig.2. Distribution model of three factors with three levels.

An orthogonal array complies with the three ele-
mentary transformations. If any two factors of an or-
thogonal array are swapped, or any two levels of an
orthogonal array are swapped, or any two levels of
a factor are swapped, the resulting array is still an
orthogonal array. In this paper, the columns of the
orthogonal array used are randomly chosen in order
to construct various kinds of orthogonal neighboring
points in the proposed algorithm.

4 Orthogonal Ant Colony Optimization

The ants which are sent to find the optimal location
in the given domain use pheromone and the orthogonal
exploration to accomplish the mission. The domain is
divided into multiple regions of various sizes. Every
region has multi-properties as the searching radiuses,
the coordinate of the center, the amount of pheromone,
and the ranks by its desirability. The desirability is
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evaluated by the objective function.

4.1 Orthogonal Exploration

In each iteration, m ants are dispatched. There are
µ regions in the domain, which are randomly gener-
ated or inherited from the previous iteration. Based
on the amount of pheromone in the regions, the ants
choose which region to explore first. A user-defined
probability q0 is used to determine whether to choose
the region with the highest pheromone or the region
selected by the roulette wheel selection method. The
rule an ant chooses region j is given by

j =
{

j|maxj∈SR
τj , if q 6 q0,

RWS, otherwise,
(1)

where SR is the set of regions, τj is the pheromone
value in region j, q is a uniform random number in [0,
1]. RWS stands for the roulette wheel selection. Here
the roulette wheel selection is based on the pheromone
value of the regions. In RWS, the probability of select-
ing a region j is given by

p(j) =
τj∑

i∈SR
τi

, if j ∈ SR. (2)

After an ant chooses a region, it applies the orthog-
onal design method to select some points in the region
to explore. Suppose the ant is now located in the cen-
ter of the region xj = (xj1, xj2, . . . , xjn) with a radius
rj = (rj1, rj2, . . . , rjn). Here n is the dimension of
the domain to be explored and it is also the number
of factors in multifactor experiments. The fact that
every dimension in the problem can be regarded as a
factor is the basis for implementing the orthogonal de-
sign method in solving the problem. The levels of the
factors (variables) are computed using the radiuses of
the region.

Given an orthogonal array OA(N, k, s), where k
must satisfy k > n, the orthogonal neighboring points
x

(i)
j (i = 1, 2, . . . , N) of the current point xj =

(xj1, xj2, . . . , xjn) is defined as follows:

x
(i)
j = (x(i)

j1 , x
(i)
j2 , . . . , x

(i)
jn) (3)

where

x
(i)
jp ← xjp +

(OAip − 1) · 2− 1
s− 1

· rjp · rand j ,

if x
(i)
jp < lp, then x

(i)
jp ← lp,

if x
(i)
jp > up, then x

(i)
jp ← up,

p = 1, 2, . . . , n, k > n, (4)

and OAip is the level of the i-th combination to the
corresponding column in the array. As the array com-
posed of any n columns without duplication in an or-
thogonal array (k > n) is still an orthogonal array,
the columns used in the orthogonal exploration are se-
lected randomly and form a new array with n columns.

By using the new orthogonal array, N orthogo-
nal neighboring points are generated. According to
the properties of an orthogonal array, the N selected
points can approximately represent the characteristic
of the surrounding region. Examples of the orthogo-
nal points an ant selects in a two-dimensional region
j with a radius rj = (rj1, rj2) using OA(9, 4, 3) and
OA(16, 5, 4) are illustrated in Fig.3. The center hollow
spot stands for the ant, while the solid spots stand for
the orthogonal neighboring points. The value rand j in
(4) is set to 1 in the figure for better explanation. Be-
cause it is a full-scale experiment to any two combina-
tions of the factors in an orthogonal array, the neigh-
boring points in two dimensions present a complete
arrangement. If rand = 1, some points will scatter on
the edge of the region. However, a random number
rand ∈ (0, 1] is used to make the orthogonal points
located in the region with a random distance from the
ant.

Fig.3. Examples of orthogonal neighboring points in two dimen-

sions using the first two columns of OA(9, 4, 3) and OA(16, 5, 4),

rand = 1.

In order to accelerate the speed and enhance the ac-
curacy of finding a good point, the radiuses of a region
will be changed according to the ants’ performance.
More details are given in Section 5.

Once a better point is found, the point will become
a new center of the region. The orthogonal exploration
for an ant in a region can be outlined as follows.

Step 1: Choose a region by (1).

Step 2: Randomly choose n different columns of the
given orthogonal array OA(N, k, s) as a new
orthogonal array.
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Step 3: Generate N neighboring points by (3) and (4).
Step 4: Adaptively adjust the radiuses of the region.

Step 5: Move the region center to the best point.

All m ants perform the above steps and then a
globally best point will be found. If the best point
ever been found is not changed for σ iterations, this
point will be discarded and replaced by a randomly
new point. The parameter σ is predefined and this
step is to add diversity to the algorithm and avoid
trapping in local optima.

4.2 Global Modulation

After all m ants have finished the orthogonal ex-
ploration, the domain has been explored for m times.
The properties of the regions have been changed and
the desirability of every region can be evaluated.

A parameter ψ ∈ [0, 1] termed elitist rate is used.
There are at most ψ × µ different regions that will be
reserved in the next iteration. The set of the regions
is initially denoted as SR. The best region in SR is se-
lected and is given a number of rank starting from one.
Then the selected region is moved to the set S′R, which
is an elitist set. Initially, S′R = ∅. The pheromone τj

on the selected region j is changed by

τj ← (1−α) ·τj +α ·T0 ·(ψ ·µ+1−rank j +visitj) (5)

where α ∈ (0, 1) is the pheromone decay parameter
and T0 is the initial pheromone value. visitj is the
number of ants having visited the region. The better
the region and the more times it was visited by ants,
the more pheromone is deposited in the region.

After the above procedure, the regions left in SR

are replaced by randomly generated regions and the
pheromone in these regions are reset to T0. Then the
reserved regions stored in S′R are moved back to the
new set SR.

The global modulation can be outlined as follows.
Step 1. Set the variable ranking = 1. S′R = ∅.
Step 2. Find the best region j in SR.
Step 3. Set rank j = ranking and update the

pheromone value of region j by (5). Move re-
gion j into S′R.

Step 4. Update ranking = ranking + 1.
Step 5. If ranking > ψ×µ, goto Step 6. Else goto Step

2.
Step 6. Randomly generate regions to replace the re-

gions left in SR. Move all regions in S′R into
the new SR.

4.3 Implementation of COAC

The main steps in continuous orthogonal ant colony
(COAC) algorithm are the orthogonal exploration and

the global modulation. An overall flowchart of COAC
is illustrated in Fig.4, where MAXITER is the prede-
fined maximum number of the iteration number. A
complete set of pseudocode of the COAC algorithm
for a minimization problem is listed in Appendix A.

Fig.4. Flowchart of the continuous orthogonal ant colony

(COAC).

5 Additional Features

In order to enhance the flexibility of the algorithm,
an additional feature, “Adaptive Regional Radius”, is
introduced to the proposed algorithm.

The search radiuses of a region are able to adap-
tively shrink and expand according to whether a better
region point has been found or not. At first, µ regions
are randomly generated within the given domain. The
initial radius rji (i = 1, 2, . . . , n) for a region j is set
as a random value in (0, ui − li], where li is the lower
bound and ui is the upper bound of the variable. If
a better point is found by the orthogonal exploration,
the radiuses of the region will be expanded in order to
cover a wider range of neighboring points for more di-
versity. If no better points are found by the orthogonal
exploration, the radiuses of the region will be shrunk to
achieve a higher sensitivity by investigating its smaller
neighborhood.

The radius shrinking equation for a region j is

rji ← rji · shrink , i = 1, . . . , n (6)

where shrink is a constant number in (0, 1].
When the value of shrink in (6) becomes 1/shrink
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Table 3. List of Test Functions

Test Functions Domain Optimum

f1 =
∑n

i=1 x2
i [−100, 100]n 0

f2 =
∑n

i=1 |xi|+
∏n

i |xi| [−10, 10]n 0

f3 =
∑n

i=1

( ∑i
j=1 xj

)2

[−100, 100]n 0

f4 =
∑n−1

i=1 [100(xi+1 − x2
i )2 + (xi − 1)2] [−100, 100]n 0

f5 =
∑n

i=1(bxi + 0.5c)2 [−100, 100]n 0

f6 =
∑n

i=1 ix4
i [−1.28, 1.28]n 0

f7 =
∑n

i=1−xi sin(
√

xi) [−500, 500]n −1675.93∗

f8 =
∑n

i=1[x2
i − 10 cos(2πxi) + 10] [−5.12, 5.12]n 0

f9 = −20 exp(−0.2
√

1/n
∑n

i=1 x2
i )− exp

(
1/n

∑n
i=1 cos 2πxi

)
+ 20 + e [−32, 32]n 0

f10 = π/n
{

10 sin2(3πy1) +
∑n−1

i=1 (yi − 1)2[1 + sin2(3πyi+1)]
[−50, 50]n 0

+(yn − 1)2[1 + sin2(2πxn)]
}

+
∑n

i=1 u(xi, 5, 100, 4)∗∗

f11 = 1/10
{

sin2(3πx1) +
∑n−1

i=1 (xi − 1)2[1 + sin2(3πxi+1)]
[−50, 50]n 0

+(xn − 1)2[1 + sin2(2πxn)]
}

+
∑n

i=1 u(xi, 10, 100, 4)∗∗

f12 =
∑11

i=1[ai − xi(b
2
i + bixi)/(b2i + bix3 + x4)]2∗∗ [−5, 5]n 3.075× 10−4∗

f13 = −∑5
i=1[(x− ai)(x− ai)

T + ci]
−1∗∗ [0, 10]n −10.1532∗

f14 = −∑7
i=1[(x− ai)(x− ai)

T + ci]
−1∗∗ [0, 10]n −10.4029∗

f15 = −∑10
i=1[(x− ai)(x− ai)

T + ci]
−1∗∗ [0, 10]n −10.5364∗

f16 =
∑n

i=1[y2
i − 10 cos(2πyi) + 10], yT = M · xT [−5.12, 5.12]n 0

f17 = −20 exp
(
− 0.2

√
1/n

∑n
i=1 y2

i

)
− exp

(
1/n

∑n
i=1 cos 2πyi

)

[−32, 32]n 0
+20 + e, yT = M · xT

Note: n = dimension of the problem, Optimum = the known best value
∗The accurate minimum values of these functions are not known. The values shown above are approximate values.
∗∗Detailed descriptions of these functions are given in Appendix B.

as in

rji ← rji/shrink , i = 1, . . . , n (7)

the radius is expanded. Note that the radius may be
shrunk too small to take any effect. Therefore, when
the radius is smaller than a lower bound ϕ, the radius
of the i-th variable is reset as a random value within
[ϕ, ui − li].

6 Experimental Discussions

The algorithm proposed in this paper is designed for
solving continuous optimization problems. The most
common form of continuous optimization is function
optimization. In this section, seventeen continuous
functions are tested.

6.1 Problem Definitions

The test functions are all minimization problems
with the form

minimize f(x),

subject to l 6 x 6 u,

where x = (x1, x2, . . . , xn), n is the dimensions of the
problem. l = (l1, l2, . . . , ln) and u = (u1, u2, . . . , un)
are the lower bounds and the upper bounds of the
corresponding variables in x, which define the feasible
domain of the problem.

The seventeen test functions are listed in Table 3,
where f1 to f6 are unimodal functions, f7 to f15 are
multimodal functions with some local optima, f16 and
f17 are rotated multimodal functions. The rotated ma-
trix M is generated by Salomon’s method in [38].

6.2 Comparisons Between COAC and Other
Ant Algorithms

In this subsection, the performance of our pro-
posed continuous orthogonal ant colony (COAC) algo-
rithm will be compared with two other ant algorithms,
namely, API[15] and continuous ACO (CACO)[13].
The dimensions for the functions are all set as four.

Based on the difficulties of the functions, some ba-
sic parameters in COAC are set separately to different
functions as in Table 4. These basic parameters in-
clude the number of regions µ, the number of ants m
and the maximum function evaluations MAXEVALS
in each trial. The value of q0 used in the orthog-



Xiao-Min Hu et al.: Orthogonal Methods Based Ant Colony Search for Solving Continuous Optimization Problems 9

onal exploration and the shrinking ratio shrink are
also set. The value of ERROR is used to measure
the fact that whether the optimization is successful.
If the errors between the result and the known opti-
mum is smaller than or equal to ERROR (ERROR 6
|result−optimum|), this trial is regarded as successful.

Table 4. Basic Parameter Settings for Test

Functions in COAC

F µ m MAXEVALS q0 shrink ERROR

f1 30 20 170 000 0.5 0.3 0.1

f2 30 20 170 000 0.5 0.3 0.1

f3 30 20 170 000 0.5 0.5 0.1

f4 50 50 400 000 0.5 0.7 1.0

f5 30 20 170 000 0.5 0.2 0.1

f6 30 20 170 000 0.5 0.4 0.1

f7 200 100 900 000 0.3 0.7 1.0

f8 200 100 900 000 0.3 0.8 0.1

f9 200 100 900 000 0.3 0.4 0.1

f10 50 50 400 000 0.3 0.8 0.1

f11 50 50 400 000 0.3 0.8 0.1

f12 50 50 1 000 000 0.3 0.9 0.0001

f13 30 20 170 000 0.3 0.3 0.1

f14 30 20 170 000 0.3 0.3 0.1

f15 30 20 170 000 0.3 0.8 0.1

f16 200 100 900 000 0.3 0.8 0.1

f17 200 100 900 000 0.3 0.4 0.1

The values of α, T0, the elitist rate ψ in (5) and
the parameters σ and ϕ are set as 0.1, 0.0001, 10%,
20, 9.99×10−324 respectively. The number of levels
used is set as s = 3. Each function is tested for 100
independent trials with the same parameter settings.

The parameter settings in API are: the number of
ants m = 20; the default number of sites memorized in
each ant’s memory p = 2; the number of explorations
performed by each ant between two nest moves T = 50.
Please refer to [15] for more details about API. The pa-
rameter settings in CACO are: the number of regions
µ = 200, the number of local ants L = 10, the number
of global ants G = 90. Please refer to [13] for more de-
tails about CACO. The maximum function evaluations
before termination are the same as that of COAC.

In Tables 5 and 6, computational data of API,
CACO and COAC are listed. The accuracy compar-
isons in Table 5 are made by the mean values (mean)
and the standard deviation (dev) of the functions. The
performances between COAC and API, COAC and
CACO are judged by using a two-tailed test. Com-
pared with the other two algorithms, in most cases
the enhancements by COAC are significant. It can
be seen that the proposed COAC can solve unimodal
functions with higher accuracy. Although API and
CACO achieve better mean values than COAC in f8,
the differences are not significant. To most of the mul-
timodal functions, COAC can find out near optimum

Table 5. Accuracy Comparisons Between API, CACO, and COAC

F Optimum
API CACO COAC COAC-API COAC-CACO

mean dev mean dev mean dev t-test t-test

f1 0 1.04× 10−3 5.59× 10−4 8.77× 10−35 4.09× 10−34 0 0 −18.6572† −2.1451†

f2 0 6.35× 10−3 1.70× 10−3 3.85× 10−21 2.36× 10−20 0 0 −37.2742† −1.6340†

f3 0 2.34× 10−3 1.34× 10−3 6.66× 10−23 1.49× 10−22 0 0 −17.4707† −4.4602†

f4 0 4.91× 10−1 2.54× 100 7.35× 10−1 1.97× 100 1.98× 10−1 5.44× 10−1 −1.1275 −2.6229†

f5 0 0 0 0 0 0 0 0 0

f6 0 5.18× 10−14 5.40× 10−14 2.89× 10−75 1.19× 10−74 0 0 −9.5841† −2.4464†

f7 −1675.93∗ −1427.21 119.63 −1675.93 4.34× 10−12 −1675.93 4.32× 10−12 −20.7912† 0

f8 0 2.49× 10−4 1.39× 10−4 9.95× 10−3 9.95× 10−2 1.99× 10−2 1.3× 10−1 1.4036 0.5793

f9 0 1.44× 10−2 4.61× 10−3 6.95× 10−16 6.09× 10−16 5.89× 10−16 0 −31.1873† −1.7498

f10 0 1.27× 10−4 7.42× 10−5 1.18× 10−31 1.32× 10−46 1.18× 10−31 1.32× 10−46 −17.1474† 0

f11 0 2.67× 10−4 1.58× 10−4 1.35× 10−32 2.48× 10−47 1.35× 10−32 2.48× 10−47 −16.8937† 0

f12 3.075× 10−4∗ 4.09× 10−3 7.67× 10−3 4.49× 10−4 1.16× 10−4 3.09× 10−4 8.73× 10−6 −4.9356† −12.0371†

f13 −10.1532∗ −8.7365 2.2828 −7.8333 3.4229 −10.1532 1.86× 10−14 −6.2061† −6.7796†

f14 −10.4029∗ −9.3475 2.1210 −9.4478 2.4887 −10.4029 1.52× 10−14 −4.9762† −3.8381†

f15 −10.5364∗ −9.4104 2.1944 −10.2491 1.4180 −10.5364 1.43× 10−14 −5.1314† −2.0263†

f16 0 2.61× 10−4 1.24× 10−4 1.08 8.50× 10−1 2.06× 10−1 4.27× 10−1 4.8259† −9.2332†

f17 0 1.41× 10−2 4.01× 10−3 6.60× 10−16 5.00× 10−16 5.89× 10−16 0 −35.2578† −1.4214
†The value of t with 198 degrees of freedom is significant at a = 0.05 by a two-tailed test.
∗The accurate minimum values of these functions are not known. The values shown above are approximate values.
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Table 6. Speed Comparisons Between API, CACO and COAC

F
API CACO COAC

evals err evals %ok evals err evals %ok evals err evals %ok

f1 88 754 4 202 100 169 669 2 151 100 44 076 915 100

f2 85 613 5 679 100 169 460 1 507 100 94 953 968 100

f3 85 655 6 157 100 169 820 3 705 100 52 473 1 061 100

f4 253 490 57 883 96 399 148 14 365 88 395 808 46 086 97

f5 3 641 3 641 100 1 537 1 537 100 743 743 100

f6 92 550 1 561 100 167 731 203 100 26 498 147 100

f7 417 581 5 547 6 69 202 1 940 100 264 230 158 730 100

f8 507 354 60 570 100 50 235 2 200 99 137 395 84 991 98

f9 428 845 8 206 100 227 616 2 633 100 58 522 10 901 100

f10 191 756 5 929 100 109 224 1 619 100 37 697 5 418 100

f11 202 759 3 651 100 120 924 1 744 100 39 637 1 850 100

f12 585 770 105 426 62 957 071 280 064 44 582 348 187 214 100

f13 100 652 13 939 72 27 904 6 860 68 46 209 7 510 100

f14 93 497 12 936 80 45 205 3 530 87 49 252 7 339 100

f15 96 741 13 376 79 36 680 3 700 96 45 774 8 798 100

f16 477 496 46 333 100 48 705 7 978 25 298 129 268 555 80

f17 471 245 8 113 100 204 240 2 767 100 47 409 9 078 100

results in all trials. COAC can also solve rotated mul-
timodal functions. Note that the mean value by API
in f16 is better than COAC and CACO for it has a
higher success rate, as shown in Table 6. COAC is
better than CACO and API in solving f17. The con-
vergent curves of the COAC, CACO and API of some
selected functions are drawn in Fig.5 to illustrate the
average trends and the best trends in the optimization
process.

In Table 6, speed comparisons are made. The col-
umn “evals” stands for the average function evalua-
tions in the trials for obtaining the result. The col-
umn “err evals” stands for the average function eval-
uations when the successful results within predefined
errors listed in Table 4 have been obtained. The col-
umn “%ok” stands for the success rate within the
errors. The average number of function evaluations
(evals) in COAC is smaller than that in CACO except
for f7, f8, f13, f14, f15, f16 and is smaller than that
in API except for f2 and f4. The proposed COAC
needs more function evaluations than CACO in solv-
ing f7, f8, because it takes time to locate the globally
best region. Although COAC uses more evaluations
than CACO in f13, f14, f15, its success rates are much
higher. To f16, API is the best, COAC is the sec-
ond and CACO succeeds in only 25%. The average
function evaluations within the errors (err evals) re-
flect the convergent speed when a near best value is
obtained. COAC shows a dominate advantage in solv-
ing unimodal functions fast and accurately. Although
COAC is slower to converge than API and CACO to
multimodal functions in the early function evaluations,
COAC can always approach to the optimum with high

accuracy and its success rates are higher than API and
CACO. Fig.6 demonstrates the convergent speed be-
tween COAC, CACO and API within the defined er-
rors. The x-coordinates in these figures stand for func-
tion evaluations, while the y-coordinates stand for the
accumulated times for the success counts in the 100
trials within the errors.

6.3 Analysis of the Radiuses in the
Orthogonal Exploration

Fig.7 illustrates the changing process of radiuses
compared with the resulting function value in one trial.
The radius of the first variable of the best region is
drawn in each graph. Although the initial radiuses of
each variable are different, their changing processes are
similar. So the curves in the graphs can represent the
basic situations of all the radiuses. It can be seen that
the radiuses are closely related to the resulting func-
tion values. The behavior of the adaptively changing
radiuses can be concluded as follows.

1) The frequency of shrinking the radiuses is higher
than that of expanding them, so that the radiuses tend
to shrink with time. The reason is that better points
are harder to find as the optimization goes on, so the
radiuses shrunk to hold onto the optimal niches.

2) Except the shrinking of the radiuses, there are
three cases that the radius of the best region is ex-
panded. (a) It happens when the best region in this
iteration is the one from the previous iteration and a
better point is found by the orthogonal exploration.
The expansion of radius can help reduce the shrinking
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Fig.5. Convergent curves comparing the scalability of COAC, CACO and API for selected functions.

To be continued
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Fig.6. Success rates of results within ERROR in Table 4.
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Fig.7. Function values and radius values by the COAC in one

trial.

speed and avoid trapping in local optima and converge
prematurely. (b) The best region becomes a region
with a larger radius in the current iteration. (c) If the
radius is smaller than the predefined value, it will be
reset to a random value that may be larger than the
previous one.

For unimodal functions, the radiuses are gradually
reduced except for f4 in Fig.7. For multimodal func-
tions and f4, whose global optima are harder to find,
the radiuses fluctuate with step changes. Each step
jump accompanies a great reduction of the function
values, where large radiuses can help jump out of lo-
cal optima.

3) As the graphs are drawn by radiuses and function
values of the best results, the radiuses are unchanged
if no better results have been found. Hence, horizon
lines are shown in the graph, such as the radiuses of
f1 and f3 etc.

It can be seen from the graphs that the sizes of the
radiuses control the accuracy of the resulting function
value. The smaller the radiuses, the higher the accu-
racy of the result is achieved.

7 Conclusions

This paper has developed a novel algorithm, contin-
uous orthogonal ant colony (COAC), to solve continu-
ous optimization problems. It utilizes the orthogonal
design method for ant colony optimization (ACO) to
search the continuous domain completely and effec-
tively.

The performance of the proposed COAC algorithm
has been compared with that of two other ant algo-
rithms, API and CACO, in solving seventeen contin-
uous functions. The results show that the proposed
COAC algorithm is among the fastest and the most
accurate in solving unimodal functions. Although

COAC converges slower at an early stage than API and
CACO in solving some multimodal functions, in most
cases it can find global optimum values with higher
accuracy and higher success rates.

Moreover, the orthogonal design method and the
adaptive radius adjustment method present great po-
tentials to the optimization field. These methods
will be extended to other relevant algorithms for de-
livering wider advantages in solving those problems.
Currently, research is carried out to make the radius
changing criterion more sensible to the dynamical op-
timization process.
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Appendix A COAC ALGORITHM

1) /* Initialization phase */
For each region j do

CreateRegion(j)
End-for
best := MAXVALUE
localBest := MAXVALUE
countE := 0

2) /* Orthogonal exploration phase */
For each region j do visitj := 0 End-for
For k := 1 to m do

Choose the next region j according to (1) (2)
visitj := visitj + 1
OrthogonalExplore(j) /* Do orthogonal exploration
to region j */
If (Function(j) < localBest) then

localBest := Function(j)
If (localBest < best) then

best := localBest
End-if

End-if
End-for
If (lastBest = localBest) then

countE := countE + 1
Else

lastBest := localBest
countE := 0

End-if
If (countE > σ) then

CreateRegion(localbestRegion)
localBest := MAXVALUE

End-if
3) /* Global modulation phase */

countG := 0
SjR := ∅
S′jR = ∅
For j := 1 to µ do

rank j := 0
Add region j to SjR

End-for
For i :=1 to ψ × µ do

Find the region j with the minimum value satisfied
j ∈ SjR

Update the pheromone in region j according to (5)
Move region j to S′jR /* Region j is deleted in SjR*/

End-for
For all region j ∈ SjR do

CreateRegion(j)
End-for
Move all regions in S′jR to SjR

4) If (End condition = True) then print best
Else goto Phase 2)

Appendix B Detailed Description of Some
Test Functions

1) f10 and f11

yi = 1 +
1

4
(xi + 1),

u(xi, a, p, j) =





p(xi − a)j , xi > a,

0, −a 6 xi 6 a,

p(−xi − a)j , xi < −a,

2) f12

f12 =

11∑
i=1

[
ai − x1(b

2
i + bix2)

b2
i + bix3 + x4

]2

,

ai and b−1
i are as follows:

i 1 2 3 4 5 6

ai 0.1957 0.1947 0.1735 0.1600 0.0844 0.0627

b−1
i 0.25 0.5 1 2 4 6

i 7 8 9 10 11

ai 0.0456 0.0342 0.0323 0.0235 0.0246

b−1
i 8 10 12 14 16

3) f13 ∼ f15

f(x) = −
p∑

i=1

[(x− ai)(x− ai)
T + ci]

−1

where ai is as follows:

i aij , j = 1, 2, . . . , 4 ci

1 4 4 4 4 0.1

2 1 1 1 1 0.2

3 8 8 8 8 0.2

4 6 6 6 6 0.4

5 3 7 3 7 0.4

6 2 9 2 9 0.6

7 5 5 3 3 0.3

8 8 1 8 1 0.7

9 6 2 6 2 0.5

10 7 3.6 7 3.6 0.5

The value of p is equal to 5, 7, and 10 respectively from
f13 ∼ f15.


