
1

Orthogonal Neighborhood Preserving Projections: A

projection-based dimensionality reduction technique

Effrosyni Kokiopoulou, Student member, IEEE, and Yousef Saad.

Abstract— This paper considers the problem of dimensionality
reduction by orthogonal projection techniques. The main feature
of the proposed techniques is that they attempt to preserve both
the intrinsic neighborhood geometry of the data samples and
the global geometry. In particular we propose a method, named
Orthogonal Neighborhood Preserving Projections, which works
by first building an “affinity” graph for the data, in a way that
is similar to the method of Locally Linear Embedding (LLE).
However, in contrast with the standard LLE where the mapping
between the input and the reduced spaces is implicit, ONPP
employs an explicit linear mapping between the two. As a result,
handling new data samples becomes straightforward, as this
amounts to a simple linear transformation. We show how to define
kernel variants of ONPP, as well as how to apply the method
in a supervised setting. Numerical experiments are reported to
illustrate the performance of ONPP and to compare it with a
few competing methods.

Index Terms— Linear Dimensionality Reduction, Face Recog-
nition, Data Visualization.

I. INTRODUCTION

The problem of dimensionality reduction appears in many

fields including data mining, machine learning and computer

vision, to name just a few. It is often a necessary preprocessing

step in many systems, usually employed for simplification

of the data and noise reduction. The goal of dimensionality

reduction is to map the high dimensional samples to a lower

dimensional space such that certain properties are preserved.

Usually, the property that is preserved is quantified by an

objective function and the dimensionality reduction problem is

formulated as an optimization problem. For instance, Principal

Components Analysis (PCA) is a traditional linear technique

which aims at preserving the global variance and relies on

the solution of an eigenvalue problem involving the sample

covariance matrix. Locally Linear Embedding (LLE) [1], [2]

is a nonlinear dimensionality reduction technique which aims

at preserving the local geometries at each neighborhood.

While PCA is good at preserving the global structure, it does

not preserve the locality of the data samples. In this paper, a

linear dimensionality reduction technique is advocated, which

preserves the intrinsic geometry of the local neighborhoods.

Work supported by NSF under grant DMS 0510131 and by the Minnesota
Supercomputing Institute.

E. Kokiopoulou is with the Swiss Federal Institute of Technology,
Lausanne (EPFL), Signal Processing Institute, LTS4 lab, Bat.
ELD 241, Station 11; CH 1015 Lausanne; Switzerland. Email:
effrosyni.kokiopoulou@epfl.ch.

Y. Saad is with the Department of Computer Science and Engineering; Uni-
versity of Minnesota; Minneapolis, MN 55455. Email: saad@cs.umn.edu.

The proposed method, named Orthogonal Neighborhood Pre-

serving Projections (ONPP) [3], projects the high dimensional

data samples on a lower dimensional space by means of a

linear transformation V . The dimensionality reduction matrix

V is obtained by minimizing an objective function which

captures the discrepancy of the intrinsic neighborhood geome-

tries in the reduced space. Note that the neighborhood sets

are not independent. In fact, since there is a great overlap

between the neighborhood sets of near-by data samples, it can

be deduced that the global geometric characteristics of the

data will be preserved as well. This can also be seen from the

fact that the mapping is an orthogonal projection. In principle,

orthogonal projections, like PCA, will be “blind” to features

that are orthogonal to the span of V . However, the projector

can be carefully selected in such a way that these features are

unimportant for the task at hand. By their linearity, they will

also give good representation of the global geometry. One can

view this class of methods as a compromise between PCA

which emphasizes global structure, and LLE which is based

mainly on preserving local structure.

While one is tempted to take examples from the 3-D to 2-

D linear projections, this situation provides too simplistic a

representation of the complex situations which occur in high

dimensional cases. As will be shown experimentally, linear

projections can be quite effective for certain tasks such as data

visualization. We provide experimental results which support

this claim. In particular, experiments will confirm that ONPP

can be an effective tool for data visualization purposes and that

it may be viewed as a synthesis of PCA and LLE. In addition,

ONPP can provide the foundation of nonlinear techniques,

such as Kernel methods [4], [5], or Isomap [6]. In particular,

we provide a framework which unifies various well-known

methods.

ONPP constructs a weighted k-nearest neighbor (k-NN)

graph which models explicitly the data topology. Similarly

to LLE, the weights are built to capture the geometry of

the neighborhood of each point. The linear projection step is

determined by imposing the constraint that each data sample in

the reduced space is reconstructed from its neighbors by the

same weights used in the input space. However, in contrast

to LLE, ONPP computes an explicit linear mapping from

the input space to the reduced space. Note that in LLE the

mapping is implicit and it is not clear how to embed new

data samples (see e.g. research efforts by Bengio et al. [7]).

In the case of ONPP the projection of a new data sample is

straightforward as it simply amounts to a matrix by vector



2

product.

ONPP shares some properties with Locality Preserving

Projections (LPP)[8]. Both are linear dimensionality reduc-

tion techniques which construct the k-NN graph in order to

model the data topology. However, our algorithm uses the

optimal data-driven weights of LLE which reflect the intrinsic

geometry of the local neighborhoods, whereas the uniform

weights (0/1) used in LPP aim at preserving locality without

explicit consideration to the local geometric structure. While

Gaussian weights can be used in LPP, these are somewhat

artificial and require the selection of an appropriate value of

the parameter σ, the width of the Gaussian envelope. This issue

is often overlooked, though it is crucial for the performance

of the method and remains a serious handicap for the use

of Gaussian weights. A second significant difference between

LPP and ONPP, is that the latter forces the projection to be

orthogonal. In LPP, the projection is defined via a certain

objective function, whose minimization leads to eigenvectors

of a generalized eigenvalue problem.

II. DIMENSIONALITY REDUCTION BY PROJECTION

Given a data set X = [x1, x2, . . . , xn] ∈ Rm×n, the goal

of dimensionality reduction is to produce a set Y which is

an accurate representation of X , but which is of dimension

d, with d ≪ m. This can be achieved in different ways by

selecting the type of the reduced dimension Y as well as the

desirable properties to be preserved. By type we mean whether

we require that Y be simply a low-rank representation of X , or

a data set in a vector space with fewer dimensions. Examples

of properties to be preserved may include the global geometry,

or neighborhood information such as local neighborhoods,

distances between data points, or angles formed by adjacent

line segments.

Projection-based techniques consist of replacing the original

data X by a matrix of the form

Y = V ⊤X, where V ∈ Rm×d. (1)

Thus, each vector xi is replaced by yi = V ⊤xi a member of

the d-dimensional space Rd. If V is a unitary matrix, then Y
represents the orthogonal projection of X into the V -space.

The best known technique in this category is Principal

Component Analysis (PCA). PCA computes V such that the

variance of the projected vectors is maximized, i.e, V is the

maximizer of

max
V ∈ Rm×d

V ⊤V = I

n
∑

i=1

∥

∥

∥

∥

∥

∥

yi −
1

n

n
∑

j=1

yj

∥

∥

∥

∥

∥

∥

2

2

, yi = V ⊤xi.

If we denote by e = [1, . . . , 1]⊤ the vector of ones, it can be

easily shown that the matrix V which maximizes the above

quantity is simply the set of left singular vectors of the matrix

X(I − 1
n
ee⊤), associated with the largest d singular values.

A. LPP and OLPP

Another related technique is that of Locality Preserving

Projections (LPP) [8]. LPP projects the data so as to preserve

a certain affinity graph constructed from the data. The affinity

(or adjacency) graph is a graph G = (V, E) whose nodes V
are the data samples. The edges of this graph can be defined

for example by taking a certain nearness measure and include

all points within a radius ǫ of a given vertex, to its adjacency

list. Alternatively, one can include those k nodes that are the

nearest neighbors to xi. In the latter case it is called the k-NN

graph.

The weights can be defined in different ways as well.

Two common choices are weights of the heat kernel wij =
exp(−‖xi − xj‖

2
2/t) or constant weights (wij = 1 if i and j

are adjacent, wij = 0 otherwise). The adjacency graph along

with these weights defines a matrix W whose entries are the

weights wij’s which are nonzero only for adjacent nodes in

the graph. Note that the entries of W are nonnegative and that

W is sparse and symmetric.

LPP defines the projected points in the form yi = V ⊤xi

by putting a penalty for mapping nearest neighbor nodes in

the original graph to distant points in the projected data.

Specifically, the objective function to be minimized is

Elpp =
1

2

n
∑

i,j=1

wij‖yi − yj‖
2
2 (2)

Note that the matrix V is implicitly represented in the above

function, through the dependence of the yis on V . The

following theorem expresses the above objective function as

a trace. Note that the authors in [9], [8] give a proof for the

case of d = 1. In what follows, we provide a proof for the

general d > 1 case.

Theorem 2.1: Let W be a certain symmetric affinity graph,

and define D = diag(di) with

di =

n
∑

j=1

wij . (3)

Let the points yi be defined to be the columns of Y = V ⊤X
where V ∈ Rm×d. Then the objective function (2) is equal

to

Elpp = tr[Y (D − W )Y ⊤] = tr[V ⊤X(D − W )X⊤V ] (4)

Proof: By definition:

Elpp =
1

2

n
∑

i,j=1

wij‖yi − yj‖
2
2

=
1

2

n
∑

i,j=1

wij(yi − yj)
⊤(yi − yj)

=
1

2

n
∑

i,j=1

wijy
⊤
i yi +

1

2

n
∑

i,j=1

wijy
⊤
j yj −

n
∑

i,j=1

wijy
⊤
i yj

=

n
∑

i,j=1

wijy
⊤
i yi −

n
∑

i,j=1

wijy
⊤
i yj

=

n
∑

i

diy
⊤
i yi −

n
∑

i,j=1

wijy
⊤
i yj .

An observation will simplify the first term of the above



3

expression:

n
∑

i=1

diy
⊤
i yi = tr(DY ⊤Y ) = tr[Y DY ⊤].

Denoting by ei the i-th canonical vector, we have for the

second term,

n
∑

i,j=1

wijy
⊤
i yj =

n
∑

i

(Y ei)
⊤

n
∑

j=1

wjiyj

=

n
∑

i

e⊤i Y ⊤(Y W )ei

= tr[Y ⊤(Y W )]

= tr[Y WY ⊤] .

Putting these expressions together results in (4).

The matrix L ≡ D − W is the Laplacian of the weighted

graph defined above. Note that e⊤L = 0, so L is singular.

In order to define the yi’s by minimizing (4), we need to

add a constraint to V . From here there are several ways to

proceed depending on what is desired.

OLPP: We can simply enforce the mapping to be

orthogonal, i.e., we can impose the condition V ⊤V = I . In

this case the set V is the eigenbasis associated with the lowest

eigenmodes of the matrix

Clpp = X(D − W )X⊤. (5)

We refer to this first option as the method of Orthogonal

Locality Preserving Projections (OLPP). This option leads to

the standard eigenvalue problem:

X(D − W )X⊤vi = λivi , (6)

and leads to a matrix V with orthonormal columns. The OLPP

option is different than the original LPP approach which uses

the next option.

LPP: We can impose a condition of orthogonality on

the projected set: Y Y ⊤ = I . Note that the rows of Y are

orthogonal, which means that the d basis vectors in Rn on

which the xi’s are projected are orthogonal. Alternatively, we

can also impose an orthogonality with respect to the weight

D: Y DY ⊤ = I . (This gives bigger weights to points yi’s for

which di =
∑

j wij is large). The classical LPP option leads

to the generalized eigenvalue problem.

X(D − W )X⊤vi = λiXDX⊤vi. (7)

In both cases the smallest d eigenvalues and eigenvectors must

be computed.

A slight drawback of the scaling used by classical LPP

is that the linear transformation is no longer orthogonal.

However, the weights can be redefined (i.e., the data can be

rescaled a priori) so that the diagonal D becomes the identity.

Note that the above OLPP option that is proposed here, is

different than the one proposed in [10], which recently came to

our attention while this paper was under review. In short, the

authors in [10] enforce orthogonality of the vi’s by imposing

explicit orthogonality constraints and they propose a solution

based on Lagrange multipliers.

An interesting connection can be made with PCA as was

observed in [11]. Using a slightly different argument from

[11], suppose we take as W the (dense) matrix W = 1
n
ee⊤.

This simply puts the uniform weight 1/n to every single pair

(i, j) for the full graph. In this case, D = I and the matrix

(5) which defines the objective function becomes

Clpp = X

(

I −
1

n
ee⊤

)

X⊤ = Cpca .

PCA computes the eigenvectors associated with the largest

eigenvalues of a “global” (full) graph. In contrast, methods

based on Locality Preservation (such as LPP) compute the

eigenvectors associated with the smallest eigenvalues of a

“local” (sparse) graph. PCA seeks the largest eigenvalues due

to the fact that its goal is to maximize the variance of the

projected data. Similarly, LPP seeks the smallest eigenvalues

since it targets at minimizing the distance between similar

data samples. PCA is likely to be better at conveying global

structure, while methods based on preserving the graph will

be better at maintaining locality.

III. ONPP

The main idea of ONPP is to seek an orthogonal mapping

of a given data set so as to best preserve a graph which

describes the local geometry. It is in essence a variation of

OLPP discussed earlier, in which the graph is constructed

differently.

A. The nearest neighbor affinity graph

Consider a data set represented by the columns of a matrix

X = [x1, x2, . . . , xn] ∈ Rm×n. ONPP begins by building

an affinity matrix by computing optimal weights which will

relate a given point to its neighbors in some locally optimal

way. This phase is identical with that of LLE [1], [2].

For completeness, the process of constructing the affinity

graph is summarized here; details can be found [1], [2]. The

basic assumption is that each data sample along with its k
nearest neighbors (approximately) lies on a locally linear man-

ifold. Hence, each data sample xi is reconstructed by a linear

combination of its k nearest neighbors. The reconstruction

errors are measured by minimizing the objective function

E(W ) =
∑

i

‖xi −
∑

j

wijxj‖
2
2. (8)

The weights wij represent the linear coefficients for recon-

structing the sample xi from its neighbors {xj}. The following

constraints are imposed on the weights:

1) wij = 0, if xj is not one of the k nearest neighbors of

xi;

2)
∑

j wij = 1, that is xi is approximated by a convex

combination of its neighbors.

Note that the second constraint on the row-sum is similar

to imposing di = 1, where di is defined in eq. (3). Hence,

imposing this constraint is equivalent to rescaling the matrix

W in the previous section, so that it yields a D matrix equal

to the identity.



4

In the case when wii ≡ 0, for all i, then the problem is

equivalent to that of finding a sparse matrix Z, (Z ≡ I −
W⊤) with a specified sparsity pattern, which has ones on the

diagonal and whose row-sums are all zero.

There is a simple closed-form expression for the weights.

It is useful to point out that determining the wij’s for a given

point xi is a local calculation, in the sense that it only involves

xi and its nearest neighbors. Any algorithm for computing the

weights will be fairly inexpensive.

Let G be the local Grammian matrix associated with point

i, whose entries are defined by

gpl = (xi − xp)
⊤(xi − xl) ∈ Rk×k.

Thus, G contains the pairwise inner products among the

neighbors of xi, given that the neighbors are centered with

respect to xi. Denoting by X(i) a system of vectors consisting

of xi and its neighbors, we need to solve the least-squares

(X(i) − xie
⊤)wi,: = 0 subject to the constraint e⊤wi,: = 1.

It can be shown that the solution wi,: of this constrained least

squares problem is given by the following formula [1] which

involves the inverse of G,

wi,: =
G−1e

e⊤G−1e
. (9)

(recall that e is the vector of all ones). The weights wij satisfy

certain optimality properties. They are invariant to rotations,

isotropic scalings, and translations. As a consequence of these

properties the affinity graph preserves the intrinsic geometric

characteristics of each neighborhood.

B. The algorithm

Assume that each data point xi ∈ Rm is mapped to a lower

dimensional point yi ∈ Rd, d ≪ m. Since LLE seeks to

preserve the intrinsic geometric properties of the local neigh-

borhoods, it assumes that the same weights which reconstruct

the point xi by its neighbors in the high dimensional space,

will also reconstruct its image yi in the low dimensional space,

by its corresponding neighbors. In order to compute the yi’s

for i = 1, . . . , n, LLE employs the objective function:

F(Y ) =
∑

i

‖yi −
∑

j

wijyj‖
2
2. (10)

In this case the weights W are fixed and we need to min-

imize the above objective function with respect to Y =
[y1, y2, . . . , yn] ∈ Rd×n.

Similar to the case of LPP and OLPP, some constraints

must be imposed on the yi’s. This optimization problem is

formulated under the following constraints in order to make

the problem well-posed:

1)
∑

i yi = 0 i.e., the mapped coordinates are centered at

the origin and

2) 1
n

∑

i yiy
⊤
i = I , that is the embedding vectors have unit

covariance.

LLE does not impose any other specific constraints on the

projected points, it only aims at reproducing the graph. So the

objective function (10) is minimized with the above constraints

on Y .

Algorithm: ONPP

Input: Data set X ∈ Rm×n and d: dimension of
reduced space.

Output: Embedding vectors Y ∈ Rd×n.
1. Compute the k nearest neighbors of data points.
2. Compute the weights wij which give the best

linear reconstruction of each data point xi

by its neighbors (Equ. (9)).
3. Compute V the matrix whose column vectors are the d

eigenvectors of

M̃ = X(I − W⊤)(I − W )X⊤

associated with 2nd to (d + 1)st smallest eigenvalues.

4. Compute the projected vectors yi = V ⊤xi.

TABLE I

THE ONPP ALGORITHM.

Note that F(Y ) can be written F(Y ) = ‖Y −Y W⊤‖2
F , so

F(Y ) = ‖Y (I − W⊤)‖2
F

= tr
[

Y (I − W⊤)(I − W )Y ⊤
]

. (11)

The problem will amount to computing the d smallest eigen-

values of the matrix M = (I − W⊤)(I − W⊤)⊤, and the

associated eigenvectors.

In ONPP an explicit linear mapping from X to Y is imposed

which is in the form (1). So we have yi = V ⊤xi, i = 1, . . . , n
for a certain matrix matrix V ∈ Rm×d to be determined. In

order to determine the matrix V , ONPP imposes the constraint

that each data sample yi in the reduced space is reconstructed

from its k neighbors by exactly the same weights as in the

input space. This means that we will minimize the same

objective function (11) as in the LLE approach, but now Y
is restricted to being related to X by (1). When expressed

in terms of the unknown matrix V , the objective function

becomes

F(Y ) = ‖V ⊤X(I − W⊤)‖2
F

= tr
[

V ⊤X(I − W⊤)(I − W )X⊤V
]

. (12)

If we impose the additional constraint that the columns of

V are orthonormal, i.e. V ⊤V = I , then the solution V to the

above optimization problem is the basis of the eigenvectors

associated with the d smallest eigenvalues of the matrix

M̃ = X(I − W⊤)(I − W )X⊤ = XMX⊤ . (13)

The assumptions that were made when defining the weights

wij at the beginning of this section, imply that the matrix

I − W is singular. In the case when m > n the matrix

M̃ , which is of size m × m, is at most of rank n and it

is therefore singular. In the case when m ≤ n, M̃ is not

necessarily singular. However, it can be observed in practice

that ignoring the smallest eigenvalue of M̃ , is helpful. This is

explained in detail in Section III-C. Note that the embedding

vectors of LLE are obtained by computing the eigenvectors

of M associated with its smallest eigenvalues. This is to be

contrasted with ONPP which computes these vectors as V ⊤X ,

where V is the set of eigenvectors of M̃ associated with its

smallest eigenvalues.

An important property of ONPP is that mapping new data

points to the lower dimensional space is trivial once the matrix



5

V is determined. Consider a new test data sample xt that needs

to be projected. The test sample is projected onto the subspace

using the dimensionality reduction matrix V , so

yt = V ⊤xt. (14)

Therefore, mapping the new data point reduces to a simple

matrix vector product.

In terms of computational cost, the first part of ONPP

consists of forming the k-NN graph. This scales as O(n2). Its

second part requires the computation of a few of the smallest

eigenvectors of M̃ . Observe that in practice this matrix is

not computed explicitly. Rather, iterative techniques are used

to compute the corresponding smallest singular vectors of

matrix X(I − W )⊤ [12]. The main computational operation

of these techniques is the matrix-vector product which scales

quadratically with the dimensions of the matrix at hand.

C. Discussion

We can also think of developing a technique based on

enforcing an orthogonality relationship between the projected

points instead of the V ’s. Making the projection orthogonal

will tend to preserve distances for data points xi, xj whose

difference xi −xj is close to the subspace span(V ). Because

of linearity, the overall geometry will also tend to be preserved.

In contrast, imposing the condition Y Y ⊤ = I , will lead to a

criterion that is similar to that of PCA: the points yi will tend

to be different from one another (because of the orthogonality

of the rows of Y ). This maximum variance criterion is also

used by LLE. In essence, the main difference between LLE

and ONPP is in the selection of the orthogonality to enforce.

The two optimization problems are shown below:

LLE : minY ∈Rn×d; Y Y ⊤=I tr[Y MY ⊤]
ONPP : minY =V ⊤X;V ∈Rm×d; V ⊤V =I tr[Y MY ⊤]

.

Yet, another point of view is to think in terms of null spaces

or approximate null spaces of the matrix I −W⊤. LLE builds

a matrix W so that X is approximately a left null space for

I − W⊤, i.e., so that X(I − W⊤) is close to zero. Then,

in a second step, it tries to find a d × n matrix Y so that

Y is an approximate null space for I − W⊤, by minimizing

‖Y (I−W⊤)‖2
F = tr(Y MY ⊤). The second step of ONPP tries

also to find Y so that it is close to a null space for I − W⊤,

but it does so by restricting the reduced dimension data to

be an orthogonal projection of the original data. Interestingly,

when X(I −W⊤) is small then so is V ⊤X(I −W⊤). If the

rows of X happen to be linearly dependent (or very close to

being linearly dependent), then a zero row (or a very close to

zero row) will appear in the projected data Y . This situation

indicates redundancies in the information given on the data. A

result is that a linear combination of this information (rows of

X) will be zero and this means that a zero row will result in the

projected data Y . This zero row should be ignored. This is the

reason why one should always discard eigenvectors associated

with very small eigenvalues.

It is also possible to enforce a linear relation between the

Y and X data, but require the same orthogonality as LLE.

We will refer to this procedure as Neighborhood Preserving

Projections (NPP). In NPP, the objective function is the same

as with ONPP and is given by (12). However, the constraint

is now Y Y ⊤ = I which yields, V ⊤XX⊤V = I . What this

means is that NPP is a linear variant of LLE which makes

the same requirement on preserving the affinity graph and

obtaining a data set Y which satisfies Y Y ⊤ = I:

NPP : minY =V ⊤X;V ∈Rm×d; Y Y ⊤=I tr[Y MY ⊤]

If we define G = XX⊤, then this leads to the problem,

min
V ∈ Rm×d, V ⊤GV =I

tr[V ⊤M̃V ] . (15)

The solution of the above problem can be obtained by solving

the generalized eigenvalue problem M̃v = λGv. We note that

in practice, the vectors V obtained in this way need to be

scaled, for example, so that their columns have unit 2-norms.

IV. SUPERVISED ONPP

ONPP can be implemented in either an unsupervised or a

supervised setting. In the later case where the class labels are

available, ONPP can be modified appropriately and yield a

projection which carries not only geometric information but

discriminating information as well. In a supervised setting we

first build the data graph G = (N , E), where the nodes N
correspond to data samples and an edge eij = (xi, xj) exists

if and only if xi and xj belong to the same class. In other

words, we make adjacent those nodes (data samples) which

belong to the same class. Notice that in this case one does not

need to set the parameter k, the number of nearest neighbors,

and the method becomes fully automatic.

Denote by c the number of classes and ni the number of

data samples which belong to the i-th class. The data graph G
consists of c cliques, since the adjacency relationship between

two nodes reflects their class relationship. This implies that

with an appropriate reordering of the columns and rows, the

weight matrix W will have a block diagonal form where the

size of the i-th block is equal to the size ni of the i-th class.

In this case W will be of the following form,

W = diag(W1,W2, . . . , Wc).

The weights Wi within each class are computed in the usual

way, as described by equation (9). The rank of W defined

above, is restricted as is explained by the following proposi-

tion.

Proposition 4.1: The rank of I − W is at most n − c.

Proof: Recall that the row sum of the weight matrix Wi

is equal to 1, because of the constraint (2). This implies that

Wiei = ei, ei = [1, . . . , 1]⊤ ∈ Rni . Thus, the following c
vectors





e1 0 · · · 0
0 e2 · · · 0
0 0 · · · ec



 ,

are linearly independent and belong to the null space of I−W .

Therefore, the rank of I − W is at most n − c.

Consider now the case m > n where the number of samples

(n) is less than their dimension (m). This case is known as the

undersampled size problem. A direct consequence of the above

proposition is that in this case, the matrix M̃ ∈ Rm×m will



6

have rank at most n − c. In order to ensure that the resulting

matrix M̃ will be nonsingular, we may employ an initial PCA

projection that reduces the dimensionality of the data vectors

to n − c. Call VPCA the dimensionality reduction matrix of

PCA. Then the ONPP algorithm is performed and the total

dimensionality reduction matrix is given by

V = VPCAVONPP,

where VONPP is the dimensionality reduction matrix of ONPP.

V. KERNEL ONPP

It is possible to formulate a kernelized version of ONPP.

Kernels have been extensively used in the context of Support

Vector Machines (SVMs), see, e.g., [4], [5]. Essentially, a

nonlinear mapping Φ : Rm → H is employed, where H is

a certain high-dimensional feature space. Denote by Φ(X) =
[Φ(x1), Φ(x2), . . . ,Φ(xn)] the transformed data set in H.

The main idea of Kernel ONPP rests on the premise that

the transformation Φ is only known through its Grammian on

the data X . In other words, what is known is the matrix K
whose entries are

Kij ≡ k(xi, xj) = 〈Φ(xi), Φ(xj)〉. (16)

This is the Gram matrix induced by the kernel k(x, y) associ-

ated with the feature space. In fact, another interpretation of

the Kernel mapping is that we are defining an alternative inner

product in the X-space, which is expressed through the inner

product of every pair (xi, xj) as < xi, xj >= kij .

Formally, ONPP can be realized in a kernel form by simply

applying it to the set Φ(X). Define

K ≡ Φ(X)⊤Φ(X) . (17)

There are two implications of this definition. The first is that

the mapping W has to be defined using this new inner product.

The second is that the optimization problem too has to take

the inner product into account.

A. Computation of the graph weights

Consider first the graph definition. In the feature space we

would like to minimize

m
∑

i=1

‖Φ(xi) −
∑

j

wijΦ(xj)‖
2
2.

This is the same as the cost function (8) evaluated on the set

Φ(X) as desired, and therefore an alternative expression for

it is

E(W ) = ‖Φ(X)(I − W⊤)‖2
F

= tr[(I − W )Φ(X)⊤Φ(X)(I − W⊤)]

= tr[(I − W )K(I − W⊤)]

Note that K is dense and n×n. The easiest way to solve the

above problem is to extract a low rank approximation to the

Grammian K, e.g.,

K = US2U⊤ = (US)(US)⊤,

where U ∈ Rn×ℓ and S ∈ Rℓ×ℓ. Then the above problem

becomes one of minimizing

E(W ) = tr(I − W )USSU⊤(I − W )⊤ (18)

= ‖(I − W )US‖2
F (19)

= ‖SU⊤(I − W⊤)‖2
F . (20)

Therefore, W is constructed similarly as was described in

Section III-A, but now SU⊤ replaces X .

Note that the low rank approximation of K is suggested

above mostly for computational efficiency. One may well

choose to use ℓ = n and in this case the resulting graph

weights will be exact.

B. Computation of the projection matrix

Consider now the problem of obtaining the projection

matrix V in a kernel framework. Formally, if we were to

work in feature space, then the projection would take the form

Y = V ⊤Φ(X), with V ∈ RL×d, where L is the (typically

large and unknown) dimension of the feature space. Now the

cost function (12) would become

F(Y ) = tr
[

V ⊤Φ(X)MΦ(X)⊤V
]

, (21)

where we have used that M = (I−W⊤)(I−W ). Since Φ(X)
is not explicitly known (and is of large dimension) this direct

approach does not work. We propose two different approaches

to attack this problem.

a) Strategy 1: The first way out is to restrict V to be

in the range of Φ(X). This is natural since each column of

V is in RL the row-space of Φ(X). Specifically, we write

V = Φ(X)Z where Z ∈ Rn×d is to be determined and

Z⊤Z = I . Then (21) becomes

F(Y ) = tr
[

Z⊤Φ(X)⊤Φ(X)MΦ(X)⊤Φ(X)Z
]

= tr
[

Z⊤KMKZ
]

. (22)

Thus, Z is determined by the eigenvectors of KMK corre-

sponding to its smallest eigenvalues.

In a testing phase, we need to project a test point xt onto

the space of lower dimension, i.e., we need to generalize (14).

This is done by noting that the projection is performed from

the feature space, so we now need to project Φ(xt) using the

matrix V :

yt = V ⊤Φ(xt) = Z⊤Φ(X)⊤Φ(xt) = Z⊤K(·, xt) . (23)

Here the notation K(·, xt) represents the vector

(k(xj , xt))j=1:n.

b) Strategy 2: It is somewhat unnatural that the matrix

K is involved quadratically in the expression (22). Equation

(21) suggests that we should really obtain K not K2, since

Φ(X)⊤Φ(X) = K. For example, in the trivial case when

W ≡ 0, then (21) would become tr(V ⊤Φ(X)Φ(X)⊤V )
whereas (22) would yield tr(Z⊤K2Z). The second solution

is to exploit an implicit QR factorization (or an implicit polar

decomposition) of Φ(X). In the following we will employ a

QR factorization of the form:

Φ(X) = QR (24)



7

where R is upper triangular and Q is unitary i.e., Q⊤Q = I .

This factorization is only implicit since Φ(X) is not available.

Note that

R⊤R = Φ(X)⊤Φ(X) = K (25)

so that R⊤R is the Cholesky factorization of K. In addition,

Q is now an orthogonal basis of the range of Φ(X), so that

we can use as a projector in feature space a matrix of the form

V = QZ, with Z ∈ Rn×d, Z⊤Z = I . The projected data in

reduced space is

Y = V ⊤Φ(X) = Z⊤Q⊤Φ(X) = Z⊤Q⊤QR = Z⊤R. (26)

In this case, the objective function (21) becomes

F(Y ) = tr
[

Z⊤R(I − W⊤)(I − W )R⊤Z
]

= tr
[

Z⊤R M R⊤Z
]

. (27)

As a result the columns z of the optimal Z are just the set of

eigenvectors of the problem
[

R(I − W⊤)(I − W )R⊤
]

z = λz (28)

associated with the smallest d eigenvalues. The matrix R can

be obtained in practice from the Cholesky factorization of K.

However, as we show in the sequel, the problem can also be

reformulated to avoid the explicit computation of R.

Indeed, let z be a column of Z, an eigenvector of the matrix

R(I − W⊤)(I − W )R⊤ associated with some eigenvalue λ.

Define y = R⊤z and observe that y is a transposed row (a row

written as a column vector) of the reduced dimension matrix,

Y = Z⊤R, per equation (26). We then have:

R(I − W⊤)(I − W )R⊤z = λz →

R⊤R(I − W⊤)(I − W )R⊤z = λR⊤z →

K
[

(I − W⊤)(I − W )
]

y = λy. (29)

Thus, the eigenvectors of K
[

(I − W⊤)(I − W )
]

associated

with the smallest d eigenvalues will directly yield the trans-

posed rows of the sought projected data Y . In other words,

the rows of Y can be directly computed at the smallest left

eigenvectors of the matrix (I − W⊤)(I − W )K. Though the

matrix in (29) is nonsymmetric, the problem is similar to

the eigenvalue problem My = λK−1y and therefore, the

eigenvectors are orthogonal with respect to the K−1-inner

product. Using this observation, one may compute directly the

projected data set Y , without computing explicitly the matrix

R.

Now consider again the testing phase and the analogue of

(14). Noting that Q = Φ(X)R−1 we write

yt = V ⊤Φ(xt) = Z⊤Q⊤Φ(xt)

= Z⊤R−⊤Φ(X)⊤Φ(xt)

= Z⊤R−⊤ K(·, xt) (30)

= Z⊤R(R−1R−⊤)Φ(X)⊤Φ(xt)

= Y K−1 K(·, xt) . (31)

Equations (30) and (31) provide two alternative ways of

computing yt, one for when Z is computed by (28) and the

other for when Y is computed directly by (29). In either case,

the computation will be cubic in n, so this approach is bound

to be limited to relatively small data sets. If d is very small and

the size of the test data is large, it is of course more economical

to compute Z⊤R−⊤ = (R−1Z)⊤ in (30) once and for all at

the outset. Similarly, for (31), Y K−1 = (K−1Y ⊤)⊤ can also

be computed once for all training data. Note that in practice,

we don’t compute the inverse explicitly, but solve d linear

systems instead (one for each different right hand side). Thus,

in both cases, d linear systems need to be solved (since both

Z and Y ⊤ have d columns).

C. Discussion

−1
0

1 0
2

4
6−1

−0.5

0

0.5

1

1.5

2

2.5

3

Random points on a 3−D S−curve

−10
0

10
20

0

10

20

30

−15

−10

−5

0

5

10

15

Random points on a Swissroll

Fig. 1. Two examples of data points randomly taken on 3-D manifolds.

−1 0 1 2 3

−2

−1

0

1

ONPP

−2 −1 0 1 2 3

−1.5

−1

−0.5

0

0.5

1

1.5

NPP

0 2 4
−3

−2

−1

0

1

2

3

LPP

−1 0 1 2
−3

−2

−1

0

1

OLPP

Fig. 2. Results of four related methods applied to the s-curve example.

We conclude this section with an important observation.

The new eigenvalue problem that is solved in Kernel ONPP,

whether by (28) or (29), does not involve the data set X
explicitly, in contrast with the eigenvalue problem related to

the matrix (13). In essence, the data is hidden in the Gram

matrix K or its Cholesky factor R. In fact, recalling (26),

we observe that (27) is simply tr(Y MY ⊤) and minimizing

this trace subject to the condition Z⊤Z = I is equivalent to

solving

min
Y ∈ Rm×d Y K−1Y ⊤=I

tr
[

Y MY ⊤
]

. (32)



8

−10 −5 0 5 10 15

−10

−5

0

5

10

15

ONPP

−10 0 10

−10

−5

0

5

10

NPP

−20 −10 0

−15

−10

−5

0

5

10

15

LPP

−10 −5 0 5 10 15

−10

−5

0

5

10

OLPP

Fig. 3. Results of four related methods applied to the swissroll example.

Recalling also the LLE problem from Section III-C, this shows

that in effect, Kernel ONPP is mathematically equivalent to

LLE with the K−1-inner product. For example, LLE can be

obtained by defining K = I as a particular case of Kernel

ONPP.

This can be pursued a little further by considering the

objective function (27) which involves a factor R such that

R⊤R = Φ(X)⊤Φ(X). Of course we can define R by using

other factorizations (for instance, we mentioned above the

polar decomposition). Hence, if we use for K the Grammian

X⊤X , then we might define R to be simply X , since

R⊤R = K, even though R is no longer an n×n matrix. The

dimension of Z must be changed accordingly to being m×d.

This will yield the standard ONPP according to (27). This

unconventional extension, allowing R to be an p × n matrix

and Z a p×d matrix can open some interesting connections. In

particular it puts under the same framework LLE, Laplacian

eigenmaps [9] alongside with OLPP, and ONPP, by simply

changing the matrices R and M . Under this extension, the

distinction between LLE, Laplacian Eigenmaps, ONPP, OLPP,

and Kernel ONPP, lies in the definitions of the matrices R, and

M . Table II indicates the connections between the different

methods and the corresponding choices of matrices R and M .

VI. EXPERIMENTAL RESULTS

In this section we evaluate all four linear dimensionality

reduction methods LPP, NPP, OLPP and ONPP. We use an

implementation of LPP which is publicly available1. The

implementation of OLPP is based on a slight modification of

the publically available LPP code.

A. Synthetic data

Let us first consider two well known synthetic data sets

from [2]: the s-curve, and the swissroll. Figure 1

1http://people.cs.uchicago.edu/∼xiaofei/LPP.m

−3 −2 −1 0 1

−2

−1

0

1

K = 5

−3−2 −1 0 1

−2

−1

0

1

K = 5

−2 −1 0 1

−3

−2

−1

0

1

K = 5

−2 −1 0 1

−3

−2

−1

0

1

K = 5

−2 −1 0 1

−3

−2

−1

0

1

K = 5

−2 0 2

−3

−2

−1

0

1

K = 5

−3 −2 −1 0 1

−3

−2

−1

0

1

K = 5

−4 −2 0

−3

−2

−1

0

1

K = 5

(a) k = 5

−2 −1 0 1

−2

−1

0

1

K = 7

−1 0 1 2

−2

−1

0

1

K = 7

−3 −2 −1 0 1

−2

−1

0

1

K = 7

−1 0 1 2 3

−2

−1

0

1

K = 7

−1 0 1 2

−2

−1

0

1

K = 7

−3 −2 −1 0 1
−3

−2

−1

0

1

K = 7

−2 0 2

−2

−1

0

1

K = 7

−1 0 1 2 3

−2

−1

0

1

K = 7

(b) k = 7

−1 0 1 2

−2

−1

0

1

K = 10

−3 −2 −1 0 1

−2

−1

0

1

K = 10

−2 −1 0 1
−3

−2

−1

0

1

K = 10

−1 0 1 2

−2

−1

0

1

K = 10

−2 −1 0 1

−3

−2

−1

0

1

K = 10

−2 −1 0 1

−2

−1

0

1

K = 10

−1 0 1 2

−2

−1

0

1

K = 10

−2 −1 0 1

−2

−1

0

1

K = 10

(c) k = 10

Fig. 4. Behavior of ONPP under different values of k on the s-curve data
set.

illustrates the 3-D randomly sampled points (n = 1000) on

the s-curve and swissroll manifolds. Figures 2 and

3 illustrate the two dimensional projections obtained by all



9

−10 0 10

−15

−10

−5

0

5

10

K = 5

−10 0 10
−15

−10

−5

0

5

10

K = 5

−10 0 10

−10

0

10

K = 5

−10 0 10

−15

−10

−5

0

5

10

K = 5

−10 0 10

−15

−10

−5

0

5

10

K = 5

−10 0 10 20
−15

−10

−5

0

5

10

K = 5

−10 0 10

−15

−10

−5

0

5

10

K = 5

−10 0 10

−15

−10

−5

0

5

10

K = 5

(a) k = 5

−10 0 10

−15

−10

−5

0

5

10

K = 7

−10 0 10

−15

−10

−5

0

5

10

K = 7

−10 0 10

−10

0

10

K = 7

−10 0 10

−15

−10

−5

0

5

10

K = 7

−10 0 10

−15

−10

−5

0

5

10

K = 7

−10 0 10

−10

−5

0

5

10

15

K = 7

−10 0 10

−15

−10

−5

0

5

10

K = 7

−10 0 10

−15

−10

−5

0

5

10

K = 7

(b) k = 7

−10 0 10

−15

−10

−5

0

5

10

K = 10

−10 0 10

−15

−10

−5

0

5

10

K = 10

−10 0 10

−15

−10

−5

0

5

10

K = 10

−10 0 10

−15

−10

−5

0

5

10

K = 10

−10 0 10

−15

−10

−5

0

5

10

K = 10

−10 0 10

−15

−10

−5

0

5

10

K = 10

−10 0 10

−15

−10

−5

0

5

10

K = 10

−10 0 10
−15

−10

−5

0

5

10

K = 10

(c) k = 10

Fig. 5. Behavior of ONPP under different values of k on the swissroll
data set.

methods in the s-curve and swissroll data sets. The

affinity graphs were all constructed using k = 10 nearest

neighbor points. Observe that the performance of LPP parallels

Method Matrix M Matrix R

LLE (I − W⊤
a )(I − Wa) I

Laplacian Eigenmaps (D − W⊤

L
) I

ONPP (I − W⊤
a )(I − Wa) X

OLPP (D − W⊤

L
) X

K-ONPP with Kernel K (I − W⊤)(I − W ) R⊤R = K (Chol.)

TABLE II

DIFFERENT METHODS AND THE CORRESPONDING CHOICES FOR THE

MATRICES R AND M . THE MATRIX Wa CORRESPONDS TO THE AFFINITY

GRAPH IN LLE AND ONPP, SEE SECTION III-A FOR DETAILS. THE

MATRIX D − WL IS THE LAPLACIAN GRAPH USED IN LAPLACIAN

EIGENMAPS AND OLPP, SEE SEC. II-A AND [9], [8] FOR DETAILS.

that of NPP and, similarly, the performance of OLPP parallels

that of ONPP. Note that all methods preserve locality which

is indicated by the gray scale darkness value. However, the

orthogonal methods i.e., OLPP and ONPP preserve global

geometric characteristics as well, since they give faithful

projections which convey information about how the manifold

is folded in the high dimensional space. This may be the result

of the great overlap among the neighbor sets of data samples

that are close by.

Figures 4 and 5 illustrate the sensitivity of ONPP with

respect to random realizations of the data set, for different

values of k, for the s-curve and the swissroll manifolds

respectively. We test with a few representative values of k
and we compute eight projections for eight different random

realizations of the data sets. The number of samples was set

to n = 1000. Notice that when k is small, the k-NN graph is

not able to capture effectively the geometry of the data set. In

some cases this results in the method yielding slightly different

projections for different realizations of the data set. However,

as k increases, the k-NN graph captures more effectively the

data geometry and ONPP yields a stable result across the

different realizations of the data set.

B. Digit visualization

The next experiment involves digit visualization. We use

20 × 16 images of handwritten digits which are publically

available from S. Roweis’ web page2. The data set contains 39

samples from each class (digits from ’0’-’9’). Each digit image

sample is represented lexicographically as a high dimensional

vector of length 320. For the purpose of comparison with PCA,

we first project the data set in the two dimensional space using

PCA and the results are depicted in Figure 6. In the sequel we

project the data set in two dimensions using all four methods.

The results are illustrated in Figures 7 (digits ’0’-’4’) and 8

(digits ’5’-’9’). We use k = 6 for constructing the affinity

graphs of all methods.

Observe that the projections of PCA are spread out since

PCA aims at maximizing the variance. However, the classes

of different digits seem to heavily overlap. This means that

PCA is not well suited for discriminating between data. On

the other hand, observe that all the four graph-based methods

2http://www.cs.toronto.edu/∼roweis/data.html



10

−15 −10 −5 0
−8

−6

−4

−2

0

2

4
PCA, digits: 0−4

−5 0 5 10
−4

−2

0

2

4

6

8
PCA, digits: 5−9

Fig. 6. Two dimensional projections of digits using PCA. Left panel: ‘+’ denotes 0, ‘x’ denotes 1, ‘o’ denotes 2, ‘△’ denotes 3 and ‘¤’ denotes 4. Right
panel: ‘+’ denotes 5, ‘x’ denotes 6, ‘o’ denotes 7, ‘△’ denotes 8 and ‘¤’ denotes 9.

−0.5 0 0.5 1
−1

−0.5

0

0.5

1
NPP, digits: 0−4

−0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0
ONPP, digits: 0−4

0.5 1 1.5 2 2.5 3
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
LPP, digits: 0−4

−0.4 −0.2 0 0.2 0.4 0.6
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
OLPP, digits: 0−4

Fig. 7. Two dimensional projections of digits using four related methods, where ‘+’ denotes 0, ‘x’ denotes 1, ‘o’ denotes 2, ‘△’ denotes 3 and ‘¤’ denotes
4.

yield more meaningful projections since samples of the same

class are mapped close to each other. This is because these

methods aim at preserving locality. Finally, ONPP seems to

provide slightly better projections than the other methods since

its clusters appear more cohesive.

C. Face recognition

In this section we evaluate all methods for the problem of

face recognition. We used three data sets which are publically

available: UMIST [13], ORL [14] and AR [15]. The size of

the images is 112×92 in all data sets. As is common practice

the images in all databases were downsampled to size 38×31,

for computational efficiency. Thus, each facial image was

represented lexicographically as a high dimensional vector of

length 1,178. In order to measure the recognition performance,

we use a random subset of facial expressions/poses from each

subject as training set and the remaining as test set. The

test samples are projected in the reduced space using the



11

−2 −1.5 −1 −0.5 0 0.5
−1.5

−1

−0.5

0

0.5

1
NPP, digits: 5−9

−1.5 −1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1
ONPP, digits: 5−9

−2.5 −2 −1.5 −1 −0.5
−1

−0.5

0

0.5

1

1.5

2
LPP, digits: 5−9

−0.2 0 0.2 0.4 0.6
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
OLPP, digits: 5−9

Fig. 8. Two dimensional projections of digits using four related methods, ‘+’ denotes 5, ‘x’ denotes 6, ‘o’ denotes 7, ‘△’ denotes 8 and ‘¤’ denotes 9.

Fig. 9. Sample face images from the UMIST database. The number of
different poses poses for each subject is varying.

Fig. 10. Sample face images from the ORL database. There are 10 available
facial expressions and poses for each subject.

dimensionality reduction matrix V which is learned from the

training samples. Then, recognition is performed in the low

dimensional space using nearest-neighbor (NN) classification.

In order to ensure that our results are not biased from a

specific random realization of the training/test set, we perform

20 different random realizations of the training/test sets and

we report the average error rate.

We also compare all four methods with Fisherfaces [16],

a well known method for face recognition. Fisherfaces is

a supervised method which determines V by using Linear

Discriminant Analysis (LDA). LDA works by extracting a

Fig. 11. Sample face images from the AR database. Facial expressions from
left to right: ‘natural expression’, ‘smile’, ‘anger’, ‘scream’, ‘left light on’,
‘right light on’, ‘all side lights on’ and ‘wearing sun glasses’.

set of “optimal” discriminating axes. Assume that we have c
classes and that class i has ni data points. Define the between-

class scatter matrix

SB =

c
∑

i=1

ni(µ
(i) − µ)(µ(i) − µ)⊤

and the within-class scatter matrix

SW =

c
∑

i=1





ni
∑

j=1

(x
(i)
j − µ(i))(x

(i)
j − µ(i))⊤





where µ(i) is the centroid of the i-th class and µ the global

centroid. In LDA the columns of V are the eigenvectors asso-

ciated with largest eigenvalues of the generalized eigenvalue

problem

SBw = λSW w. (33)



12

10 20 30 40 50 60 70
0

2

4

6

8

10

12

14
UMIST

dimension of reduced space

e
rr

o
r 

ra
te

 (
%

) LPP

OLPP

PCA

ONPP

NPP

LDA

Fig. 12. Error rates with respect to the reduced dimension d, for the UMIST
data set.

Intuitively, the matrix V of LDA maximizes the ratio of inter-

class variance over the intra-class variance. Note that the rank

of SB is at most c− 1, which implies that the above problem

has only c − 1 generalized eigenvalues. Therefore, LDA can

yield at most c − 1 discriminant axes.

We have observed experimentally that employing supervised

graphs boosts the classification performance of the methods.

This is also a common practice (e.g., see also [10]). Recall

that in this case the affinity graph is constructed in a special

way which exploits the class labels (see Section IV for more

details on the supervised version of ONPP). For example, the

best performance of the supervised ONPP on the UMIST

dabase (see description later) is 1.11% and is reached at

d = 55. However the best performance of the unsupervised

ONPP is 5.6% and is reached at k = 20, for the same d.

Thus, we have chosen to use the supervised versions of the

four methods in the tests which follow. Note that with the

supervised construction of the affinity graph, the parameter k
need not be determined by the user, since it is set automatically

to be the cardinality of each class.

In the LPP and OLPP methods, we employ Gaussian

weights. We determine the value of the width σ of the

Gaussian envelope as follows. First, we sample 1000 points

randomly and then compute the pairwise distances among

them. Then σ is set equal to half the median of those pairwise

distances. This gives a good and reasonable estimate for the

value of σ.

1) UMIST: The UMIST database [13] contains 20 people

under different poses. The number of different views per

subject varies from 19 to 48. We used a cropped version

of the UMIST database that is publically available from S.

Roweis’ web page3. Figure 9 illustrates a sample subject from

the UMIST database along with its first 20 views. We form

the training set by a random subset of 15 different poses per

subject (300 images in total) and use the remaining poses as

a test set. We experiment with the dimension of the reduced

space d from 10 to 70 with step 5. For each value of d, we

3http://www.cs.toronto.edu/∼roweis/data.html

0 50 100 150
5

10

15

20

25
ORL

dimension of reduced space

e
rr

o
r 

ra
te

 (
%

)

LPP

OLPP

PCA

ONPP

NPP

LDA

Fig. 13. Error rates with respect to the reduced dimension d, for the ORL
data set.

30 40 50 60 70 80 90 100
0

5

10

15

20

25

30
AR

dimension of reduced space

e
rr

o
r 

ra
te

 (
%

)

LPP

OLPP

PCA

ONPP

NPP

LDA

Fig. 14. Error rate with respect to the reduced dimension d, for the AR data
set.

plot the average error rate across 20 random realizations of

the training/set set. The results are illustrated in Figure 12.

Concerning the method of Fisherfaces note that there are

only c − 1 generalized eigenvalues, where c is the number of

subjects in the data set. Thus, d cannot exceed c − 1 and so

we plot only the best achieved error rate by Fisherfaces across

the various values of d. Observe again that NPP and LPP have

similar performance and that ONPP competes with OLPP and

they both outperform the other methods across all values of

d. We also report the best error rate achieved by each method

and the corresponding dimension d of the reduced space. The

results are tabulated in the left portion of Table III. Notice that

PCA works surprisingly well in this database.

2) ORL: The ORL (formerly Olivetti) database [14] con-

tains 40 individuals and 10 different images for each individual

including variation in facial expression (smiling/non smiling)

and pose. Figure 10 illustrates two sample subjects of the ORL

database along with variations in facial expression and pose.

We form the training set by a random subset of 5 different



13

UMIST ORL AR

d error (%) d error (%) d error (%)

PCA 70 1.94 40 6.9 90 18.29

LDA 20 12.63 70 10.37 90 8.25

LPP 40 2.31 40 10.6 100 7.79

NPP 65 2.49 50 10.35 100 8.27

OLPP 30 1.27 50 5.38 100 4.44

ONPP 55 1.11 110 5.9 100 4.74

TABLE III

THE BEST ERROR RATE ACHIEVED BY ALL METHODS ON THE UMIST,

ORL, AND AR DATABASES RESPECTIVELY.

facial expressions/poses per subject and use the remaining 5

as a test set. We experiment with the dimension of the reduced

space d from 10 to 150 with step 10. For each value of d we

compute the average error rate across 20 random realizations

of the training set.

Figure 13 illustrates the results. Here, LPP and NPP exhibit

an unusual behavior: Their error rates initially decrease with

the dimension d and then start growing after some point.

Notice also that the orthogonal methods ONPP and OLPP

outperform again the remaining methods and that the former

seems to be slightly better than the latter, overall. The best

error rates achieved by each method are tabulated in Table III

along with the corresponding value of d.

3) AR: We use a subset of the AR face database [15] which

contains 126 subjects under 8 different facial expressions and

variable lighting conditions for each individual. Figure 11

depicts two subjects randomly selected from the AR database

under various facial expressions and illumination. We form

the training set by a random subset of 4 different facial

expressions/poses per subject and use the remaining 4 as a

test set. We plot the error rate across 20 random realizations

of the training/test set, for different values of d between 30
and 100 with step 10.

The results are illustrated in Figure 14. Once again we

observe that ONPP and OLPP outperform the remaining

methods across all values of d. In addition, notice that NPP has

parallel performance with LPP and they are both competitive

to Fisherfaces. Furthermore, Table III reports the best achieved

error rate and the corresponding value of d. Finally, observe

that for this database, PCA has poor performance. In addition,

OLPP and ONPP yield very similar performances for this case.

In all previous experiments, we observe a consistent su-

periority in the performance of the orthogonal methods i.e.,

ONPP and OLPP versus their non-orthogonal counterparts i.e.,

NPP and LPP. Thus, the experimental results suggest that the

orthogonality of the columns of the dimensionality reduction

matrix V is important for data visualization and classification

purposes. This is more evident in the case of face recognition,

where this particular feature turned out to be crucial for the

performance of the method at hand.

It is interesting to observe that that “neighborhood-based

methods”, i.e., LPP, OLPP, ONPP, work rather well in spite of

some intrinsic geometric limitations. Specifically, it is difficult

to capture the local (as well as global) geometry of a complex

data set in high dimensional spaces. For example, a cusp on

a sharp curvature on a high-dimensional manifold would need

a high value of k to be well-captured. The choice of k, or

more generally, the means in which geometry can be better

represented in such situations deserves further study. Note for

example, that PCA did quite well on at least two examples,

suggesting that for these test cases, the local geometry be-

comes harder to capture by neighborhood-based methods and

easier to capture by PCA.

It appears from the experiments shown here that the

weighted graph used by ONPP (based on the one in LLE)

to represent locality does better that the simpler technique

used by OLPP (based on the one in LPP). However, this

comparison does not take cost into account. When cost is taken

into account, the comparison may not be so clear since a larger

k can be taken for LPP/OLPP to compensate for the higher

cost of the mapping of LLE/ONPP.

VII. CONCLUSION

The Orthogonal Neighborhood Preserving Projections

(ONPP) introduced in this paper is a linear dimensionality

reduction technique, which will tend to preserve not only the

locality but also the local and global geometry of the high

dimensional data samples. It can be extended to a supervised

method and it can also be combined with kernel techniques.

We introduced three methods with parallel characteristics and

compared their performance in both synthetic and real life data

sets. We showed that ONPP and OLPP can be very effective

for data visualization, and that they can be implemented in a

supervised setting to yield a robust recognition technique.

Acknowledgements: We are grateful to Prof. D. Boley for

his valuable help and insightful discussions on various aspects

of the paper.

REFERENCES

[1] S. Roweis and L. Saul. Nonlinear Dimensionality Reduction by Locally
Linear Embedding. Science, 290:2323–2326, 2000.

[2] L. Saul and S. Roweis. Think Globally, Fit Locally: Unsupervised Learn-
ing of Nonlinear Manifolds. Journal of Machine Learning Research,
4:119–155, 2003.

[3] E. Kokiopoulou and Y. Saad. Orthogonal Neighborhood Preserving
Projections. IEEE Int. Conf. on Data Mining (ICDM), November 2005.

[4] K. R. Müller, S. Mika, G. Ratsch, K. Tsuda, and B. Schölkopf. An
Introduction to Kernel-based Learning Algorithms. IEEE Transactions

on Neural Networks, 12:181–201, 2001.
[5] V. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.
[6] V. de Silva J. B. Tenenbaum and J. C. Langford. A Global Geo-

metric Framework for Nonlinear Dimensionality Reduction. Science,
290(5500):2319–2323, 2000.

[7] Y. Bengio, J-F Paiement, P. Vincent, O. Delalleau, N. Le Roux, and
M. Ouimet. Out-of-Sample Extensions for LLE, Isomap, MDS, Eigen-
maps, and Spectral Clustering. In Sebastian Thrun, Lawrence Saul, and
Bernhard Schölkopf, editors, Advances in Neural Information Processing

Systems 16. MIT Press, Cambridge, MA, 2004.
[8] X. He and P. Niyogi. Locality Preserving Projections. Advances

in Neural Information Processing Systems 16 (NIPS 2003), 2003.
Vancouver, Canada.

[9] M. Belkin and P. Niyogi. Laplacian Eigenmaps for Dimensionality
Reduction and Data Representation. Neural Comput., 15(6):1373–1396,
2003.

[10] D. Cai and X. He. Orthogonal Locality Preserving Indexing. ACM
SIGIR, Salvador, Brazil, August 15-19, 2005.

[11] X. He, S. Yan, Y. Hu, P. Niyogi, and H-J Zhang. Face recognition using
Laplacianfaces. IEEE TPAMI, 27(3):328–340, March 2005.

[12] Y. Saad. Numerical Methods for Large Eigenvalue Problems. Halstead
Press, New York, 1992.



14

[13] D. B Graham and N. M Allinson. Characterizing Virtual Eigensignatures
for General Purpose Face Recognition. Face Recognition: From Theory

to Applications, 163:446–456, 1998.
[14] F. Samaria and A. Harter. Parameterisation of a Stochastic Model for

Human Face Identification. In 2nd IEEE Workshop on Applications of

Computer Vision, Sarasota FL, December 1994.
[15] A.M. Martinez and R. Benavente. The AR Face Database. Technical

report, CVC no. 24, 1998.
[16] P. Belhumeur, J. Hespanha, and D. Kriegman. Eigenfaces vs. Fish-

erfaces: Recognition Using Class Specific Linear Projection. IEEE

Trans. Pattern Analysis and Machine Intelligence, Special Issue on Face

Recognition, 19(7):711—20, July 1997.

Effrosyni Kokiopoulou received her Diploma in
Engineering in June 2002, from the Computer Engi-
neering and Informatics Department of the Univer-
sity of Patras, Greece. In June 2005, she received a
Msc degree in Computer Science from the Computer
Science and Engineering Department of the Univer-
sity of Minnesota, USA, under the supervision of
prof. Yousef Saad. In September 2005, she joined
the LTS4 Lab of the Signal Processing Institute, in
the Swiss Federal Institute of Technology (EPFL),
Lausanne, Switzerland. She is currently working

towards her PhD degree under the supervision of prof. Pascal Frossard. Her
research interests include multimedia data mining, machine learning, computer
vision and numerical linear algebra. She is a student member of the IEEE.

Yousef Saad Yousef Saad is an Institute of Tech-
nology (I.T.) distinguished professor with the de-
partment of computer science and engineering at the
University of Minnesota. He received the ”Doctorat
d’Etat” from the university of Grenoble (France) in
1983. He joined the university of Minnesota in 1990
as a Professor of computer science and a Fellow
of the Minnesota Supercomputer Institute. He was
head of the department of Computer Science and
Engineering from January 1997 to June 2000, and
became an IT distinguished professor in May 2005.

From 1981 to 1990, he held positions at the University of California at
Berkeley, Yale, the University of Illinois, and the Research Institute for
Advanced Computer Science (RIACS). His current research interests include:
numerical linear algebra, sparse matrix computations, iterative methods, par-
allel computing, numerical methods for electronic structure, and data analysis.
He is the author of two (single authored) books and over 120 journal articles.
He is also the developer or co-developer of several software packages for
solving sparse linear systems of equations including SPARSKIT, pARMS,
and ITSOL.


