
Orthogonal Over-Parameterized Training

Weiyang Liu1,2,* Rongmei Lin3,* Zhen Liu4 James M. Rehg5 Liam Paull4 Li Xiong3 Le Song5 Adrian Weller1,6

1University of Cambridge 2Max Planck Institute for Intelligent Systems 3Emory University
4Mila, Université de Montréal 5Georgia Institute of Technology 6Alan Turing Institute *Equal Contribution

Abstract

The inductive bias of a neural network is largely deter-

mined by the architecture and the training algorithm. To

achieve good generalization, how to effectively train a neural

network is of great importance. We propose a novel orthogo-

nal over-parameterized training (OPT) framework that can

provably minimize the hyperspherical energy which charac-

terizes the diversity of neurons on a hypersphere. By main-

taining the minimum hyperspherical energy during train-

ing, OPT can greatly improve the empirical generalization.

Specifically, OPT fixes the randomly initialized weights of

the neurons and learns an orthogonal transformation that

applies to these neurons. We consider multiple ways to learn

such an orthogonal transformation, including unrolling or-

thogonalization algorithms, applying orthogonal parame-

terization, and designing orthogonality-preserving gradient

descent. For better scalability, we propose the stochastic

OPT which performs orthogonal transformation stochasti-

cally for partial dimensions of neurons. Interestingly, OPT

reveals that learning a proper coordinate system for neurons

is crucial to generalization. We provide some insights on

why OPT yields better generalization. Extensive experiments

validate the superiority of OPT over the standard training.

1. Introduction

The inductive bias encoded in a neural network is gen-

erally determined by two major aspects: how the neural

network is structured (i.e., network architecture) and how

the neural network is optimized (i.e., training algorithm). For

the same network architecture, using different training algo-

rithms could lead to a dramatic difference in generalization

performance [36, 60] even if the training loss is close to zero,

implying that different training procedures lead to different

inductive biases. Therefore, how to effectively train a neural

network that generalize well remains an open challenge.

Recent theories [16, 15, 34, 45] suggest the importance

of over-parameterization in linear neural networks. For

example, [16] shows that optimizing an underdetermined

quadratic objective over a matrix M with gradient descent

Random initialized neurons 

in the same layer

Hyperspherical energy 
characterizes relative positions

Learnable 
orthogonal R

Learning the coordinate system

Final neurons
in the same layer

{v1,...,vn}
{Rv1,...,Rvn}

{v1,...,vn}
stay fixed 

Input Output

Figure 1: Overview of the orthogonal over-parameterized training frame-

work. OPT learns an orthogonal transformation for each layer in the neural

network, while keeping the randomly initialized neuron weights fixed.

on a factorization of M leads to an implicit regularization

that may improve generalization. There is also strong em-

pirical evidence [11, 51] that over-parameterzing the con-

volutional filters under some regularity is beneficial to gen-

eralization. Our paper aims to leverage the power of over-

parameterization and explore more intrinsic structural priors

in order to train a well-performing neural network.

Motivated by this goal, we propose a generic orthogo-

nal over-parameterized training (OPT) framework for neu-

ral networks. Different from conventional neural training,

OPT over-parameterizes a neuron w∈R
d with the mul-

tiplication of a learnable layer-shared orthogonal matrix

R∈R
d×d and a fixed randomly-initialized weight vector

v∈R
d, and it follows that the equivalent weight for the neu-

ron is w=Rv. Once each element of the neuron weight

v has been randomly initialized by a zero-mean Gaussian

distribution [20, 14], we fix them throughout the entire train-

ing process. Then OPT learns a layer-shared orthogonal

transformation R that is applied to all the neurons (in the

same layer). An illustration of OPT is given in Fig. 1. In

contrast to standard neural training, OPT decomposes the

neuron into an orthogonal transformation R that learns a

proper coordinate system, and a weight vector v that con-

trols the specific position of the neuron. Essentially, the

weights {v1, · · · ,vn∈R
d} of different neurons determine

the relative positions, while the layer-shared orthogonal ma-

trix R specifies the coordinate system. Such a decoupled

parameterization enables strong modeling flexibility.

Another motivation of OPT comes from an empirical ob-

servation that neural networks with lower hyperspherical

7251



energy generalize better [49]. Hyperspherical energy quanti-

fies the diversity of neurons on a hypersphere, and essentially

characterizes the relative positions among neurons via this

form of diversity. [49] introduces hyperspherical energy as a

regularization in the network but do not guarantee that the

hyperspherical energy can be effectively minimized (due to

the existence of data fitting loss). To address this issue, we

leverage the property of hyperspherical energy that it is inde-

pendent of the coordinate system in which the neurons live

and only depends on their relative positions. Specifically,

we prove that, if we randomly initialize the neuron weight

v with certain distributions, these neurons are guaranteed

to attain minimum hyperspherical energy in expectation. It

follows that OPT maintains the minimum energy during

training by learning a coordinate system (i.e., layer-shared

orthogonal matrix) for the neurons. Therefore, OPT is able

to provably minimize the hyperspherical energy.

We consider several ways to learn the orthogonal trans-

formation. First, we unroll different orthogonalization algo-

rithms such as Gram-Schmidt process, Householder reflec-

tion and Löwdin’s symmetric orthogonalization. Different

unrolled algorithms yield different implicit regularizations

to construct the neuron weights. For example, symmetric

orthogonalization guarantees that the new orthogonal basis

has the least distance in the Hilbert space from the original

non-orthogonal basis. Second, we consider to use a special

parameterization (e.g., Cayley parameterization) to construct

the orthogonal matrix, which is more efficient in training.

Third, we consider an orthogonality-preserving gradient de-

scent to ensure that the matrix R stays orthogonal after each

gradient update. Last, we relax the original optimization

problem by making the orthogonality constraint a regular-

ization for the matrix R. Different ways of learning the

orthogonal transformation may encode different inductive

biases. We note that OPT aims to utilize orthogonalization

as a tool to learn neurons that maintain small hyperspheri-

cal energy, rather than to study a specific orthogonalization

method. Furthermore, we propose a refinement strategy to

reduce the hyperspherical energy for the randomly initial-

ized neuron weights {v1, · · · ,vn}. In specific, we directly

minimize the hyperspherical energy of these random weights

as a preprocessing step before training them on actual data.

To improve scalability, we further propose the stochastic

OPT that randomly samples neuron dimensions to perform

orthogonal transformation. The random sampling process is

repeated many times such that each dimension of the neuron

is sufficiently learned. Finally, we provide some theoretical

insights and discussions to justify the effectiveness of OPT.

The advantages of OPT are summarized as follows:

• OPT is a generic neural network training framework with

strong flexibility. There are many different ways to learn

the orthogonal transformations and each one imposes a

unique inductive bias. Our paper compares how different

orthogonalizations may affect generalization in OPT.

• OPT is the first training framework where the hyperspher-

ical energy is provably minimized (in contrast to [49]),

leading to better empirical generalization. OPT reveals

that learning a proper coordinate system is crucial to gen-

eralization, and the hyperspherical energy is sufficiently

expressive to characterize relative neuron positions.

• There is no extra computational cost for the OPT-trained

neural network in inference. In the testing stage, it has

the same inference speed and model size as the normally

trained network. Our experiments also show that OPT

performs well on a diverse class of neural networks and

therefore is agnostic to different neural architectures.

• Stochastic OPT can greatly improve the scalability of

OPT while enjoying the same guarantee to minimize hy-

perspherical energy and having comparable performance.

2. Related Work

Orthogonality in Neural Networks. Orthogonality is

widely adopted to improve neural networks. [4, 54, 7, 26, 78]

use orthogonality as a regularization for neurons. [27, 42, 3,

75, 58, 31] use principled orthogonalization methods to guar-

antee the neurons are orthogonal to each other. In contrast to

these works, OPT does not encourage orthogonality among

neurons. Instead, OPT utilizes principled orthogonalization

for learning orthogonal transformations for (not necessarily

orthogonal) neurons to minimize hyperspherical energy.

Parameterization of Neurons. There are various ways

to parameterize a neuron for different applications. [11] over-

parameterizes a 2D convolution kernel by combining a 2D

kernel of the same size and two additional 1D asymmetric

kernels. The resulting convolution kernel has the same effec-

tive parameters during testing but more parameters during

training. [51] constructs a neuron with a bilinear parameter-

ization and regularizes the bilinear similarity matrix. [79]

reparameterizes the neuron matrix with an adaptive fastfood

transform to compress model parameters. [30, 48, 73] em-

ploy sparse and low-rank structures to construct convolution

kernels for a efficient neural network.

Hyperspherical Learning. [54, 52, 72, 10, 71, 47, 50]

propose to learn representations on a hypersphere and show

that the angular information, in contrast to magnitude infor-

mation, preserves the most semantic meaning. [49] define

the hyperspherical energy that quantifies the diversity of neu-

rons on a hypersphere and shows that the small hyperspheri-

cal energy generally improves empirical generalization.

3. Orthogonal Over-Parameterized Training

3.1. General Framework

OPT parameterizes the neuron as the multiplication of an

orthogonal matrix R∈R
d×d and a neuron weight vector v∈

R
d, and the equivalent neuron weight becomes w=Rv. The

output ŷ of this neuron can be represented by ŷ=(Rv)⊤x

7252



where x∈R
d is the input vector. In OPT, we typically fix

the randomly initialized neuron weight v and only learn the

orthogonal matrix R. In contrast, the standard neuron is

directly formulated as ŷ=v⊤x, where the weight vector v

is learned via back-propagation in training.

As an illustrative example, we consider a linear MLP with

a loss function L (e.g., the least squares loss: L(e1, e2)=
(e1−e2)

2). Specifically, the learning objective of the stan-

dard training is min{vi,ui,∀i}

∑m
j=1 L

(

y,
∑n

i=1 uiv
⊤
i xj

)

,

while differently, our OPT is formulated as

min
{R,ui,∀i}

m
∑

j=1

L
(

y,

n
∑

i=1

ui(Rvi)
⊤
xj

)

s.t. R⊤
R = RR

⊤ = I (1)

where vi∈R
d is the i-th neuron in the first layer, and

u={u1, · · · , un}∈R
n is the output neuron in the second

layer. In OPT, each element of vi is usually sampled from

a zero-mean Gaussian distribution (e.g., both Xavier [14]

and Kaiming [20] initializations belong to this class), and is

fixed throughout the entire training process. In general, OPT

learns an orthogonal matrix that is applied to all the neurons

instead of learning the individual neuron weight. Note that,

we usually do not apply OPT to neurons in the output layer

(e.g., u in this MLP example, and the final linear classifiers

in CNNs), since it makes little sense to fix a set of random

linear classifiers. Therefore, the central problem is how to

learn these layer-shared orthogonal matrices.

3.2. Hyperspherical Energy Perspective

One of the most important properties of OPT is its in-

variance to hyperspherical energy. Based on [49], the hy-

perspherical energy of n neurons is defined as E(v̂i|ni=1)=
∑n

i=1

∑n
j=1,j 6=i ‖v̂i− v̂j‖−1

in which v̂i=
vi

‖vi‖
is the i-th

neuron weight projected onto the unit hypersphere S
d−1=

{v∈R
d| ‖v‖=1}. Hyperspherical energy is used to char-

acterize the diversity of n neurons on a unit hypersphere.

Assume that we have n neurons in one layer, and we have

learned an orthogonal matrix R for these neurons. The

hyperspherical energy of these n OPT-trained neurons is

E(R̂v̂i|
n
i=1) =

n
∑

i=1

n
∑

j=1,j 6=i

‖Rv̂i −Rv̂j‖
−1

(

since ‖R‖−1 = 1
)

=
n
∑

i=1

n
∑

j=1,j 6=i

‖v̂i − v̂j‖
−1 = E(v̂i|

n
i=1)

(2)

which verifies that the hyperspherical energy does not change

in OPT. Moreover, [49] proves that minimum hyperspheri-

cal energy corresponds to the uniform distribution over the

hypersphere. As a result, if the initialization of the neurons

in the same layer follows the uniform distribution over the

hypersphere, then we can guarantee that the hyperspherical

energy is minimal in a probabilistic sense.

Theorem 1. For the neuron h={h1, · · · , hd} where hi, ∀i
are initialized i.i.d. following a zero-mean Gaussian distribu-

tion (i.e., hi∼N(0, σ2)), the projections onto a unit hyper-

sphere ĥ=h/‖h‖ where ‖h‖=(
∑d

i=1 h
2
i )

1/2 are uniformly

distributed on the unit hypersphere S
d−1. The neurons with

minimum hyperspherical energy attained asymptotically ap-

proach the uniform distribution on S
d−1.

Theorem 1 proves that, as long as we initialize the neurons

in the same layer with zero-mean Gaussian distribution, the

resulting hyperspherical energy is guaranteed to be small

(i.e., the expected energy is minimal). It is because the

neurons are uniformly distributed on the unit hypersphere

and hyperspherical energy quantifies the uniformity on the

hypersphere in some sense. More importantly, prevailing

neuron initializations such as [14] and [20] are zero-mean

Gaussian distribution. Therefore, our neurons naturally have

low hyperspherical energy from the beginning. Appendix L

gives geometric properties of the random initialized neurons.

3.3. Unrolling Orthogonalization Algorithms

Orthogonalization: 
R← Orth(P)

Trainable 
matrix: P

Untrainable neuron weight:
{v1,v2,…,vn}

Final neuron weight:
{Rv1,Rv2,…,Rvn}

Forward
Pass

Backward
Gradient

Figure 2: Unrolled orthogonalization.

In order to learn

the orthogonal trans-

formation, we unroll

classic orthogonaliza-

tion algorithms and

embed them into the

neural network such that the training can be performed in an

end-to-end fashion. We need to make every step of the or-

thogonalization algorithm differentiable, as shown in Fig. 2.

Gram-Schmidt Process. This method takes a linearly

independent set and eventually produces an orthogonal

set based on it. The Gram-Schmidt Process (GS) usu-

ally takes the following steps to orthogonalize a set of

vectors {u1, · · · ,un}∈R
n×n and obtain an orthonormal

set {e1, · · · , ei, · · · , en}∈R
n×n. First, when i=1, we

have e1=
ẽ1

‖ẽ1‖
where ẽ1=u1. Then, when n≥ i≥2, we

have ei=
ẽi

‖ẽi‖
where ẽi=ui−

∑i−1
j=1 Proj

ej
(ui). Note that,

Proj
b
(a)= 〈a,b〉

〈b,b〉 b is defined as the projection operator.

Householder Reflection. A Householder reflector is de-

fined as H=I−2uu
⊤

‖u‖2 where u is perpendicular to the

reflection hyperplane. In QR factorization, Householder re-

flection (HR) is used to transform a (non-singular) square

matrix into an orthogonal matrix and an upper triangular

matrix. Given a matrix U={u1, · · · ,un}∈R
n×n, we con-

sider the first column vector u1. We use Householder

reflector to transform u1 to e1={1, 0, · · · , 0}. Specifi-

cally, we construct an orthogonal matrix H1 with H1=

I−2 (u1−‖u1‖e1)(u1−‖u1‖e1)
⊤

‖u1−‖u1‖e1‖
2 . The first column of H1U

becomes {‖u1‖, 0, · · · , 0}. At the k-th step, we can view

the sub-matrix U(k:n,k:n) as a new U , and use the same pro-

cedure to construct the Householder transformation H̃k∈
R

(n−k)×(n−k). We construct the final Householder transfor-

mation as Hk=Diag(Ik, H̃k). Now we can gradually trans-

form U to an upper triangular matrix with n Householder

reflections. Therefore, we have that Hn · · ·H2H1U=Rup

where Rup is an upper triangular matrix and the obtained

7253



orthogonal set is Q⊤=Hn · · ·H2H1.

Löwdin’s Symmetric Orthogonalization. Let the ma-

trix U={u1, · · · ,un}∈R
n×n be a given set of linearly

independent vectors in an n-dimensional space. A non-

singular linear transformation A can transform the basis

U to an orthogonal basis R: R=UA. The matrix R will

be orthogonal if R⊤R=(UA)⊤UA=A⊤MA=I where

M=U⊤U is the Gram matrix of the given set U . We ob-

tain a general solution to the orthogonalization problem via

the substitution: A=M− 1

2B where B is an arbitrary uni-

tary matrix. The specific choice B=I gives the Löwdin’s

symmetric orthogonalization (LS): R=UM− 1

2 . We can

analytically obtain the symmetric orthogonalization from

the singular value decomposition: U=WΣV ⊤. Then LS

gives R=WV ⊤ as the orthogonal set for U . LS has a

unique property which the other orthogonalizations do not

have. The orthogonal set resembles the original set in a

nearest-neighbour sense. More specifically, LS guarantees

that
∑

i ‖Ri −Ui‖2 (where Ri and Ui are the i-th column

of R and U , respectively) is minimized. Intuitively, LS indi-

cates the gentlest pushing of the directions of the vectors in

order to get them orthogonal to each other.

Discussion. These orthogonalization algorithms are fully

differentiable and end-to-end trainable. For accurate orthog-

onality, these algorithms can be used repeatedly and unrolled

with multiple steps. Empirically, one-step unrolling already

works well. Givens rotations can also construct the orthog-

onal matrix, but it requires traversing all lower triangular

elements in the original set U , which takes O(n2) complex-

ity and is too costly. Interestingly, each orthogonalization

encodes a unique inductive bias to the neurons by imposing

implicit regularizations (e.g., least distance in Hilbert space

for LS). Details about these orthogonalizations are in Ap-

pendix A. Unrolling orthogonalization has been considered

in different scenarios [27, 69, 56]. More orthogonalization

methods [41] can be applied in OPT, but exhaustively apply-

ing them to OPT is out of the scope of this paper.

3.4. Orthogonal Parameterization

A convenient way to ensure orthogonality while learning

the matrix R is to use a special parameterization that inher-

ently guarantees orthogonality. The exponential parameter-

ization use R=exp(W ) (where exp(·) denotes the matrix

exponential) to represent an orthogonal matrix from a skew-

symmetric matrix W . The Cayley parameterization (CP) is a

Padé approximation of the exponential parameterization, and

is a more natural choice due to its simplicity. CP uses the fol-

lowing transform to construct an orthogonal matrix R from

a skew-symmetric matrix W : R = (I +W )(I −W )−1

where W =−W⊤. We note that CP only produces the

orthogonal matrices with determinant 1, which belong to

the special orthogonal group and thus R∈SO(n). Specif-

ically, it suffices to learn the upper or lower triangular of

the matrix W with unconstrained optimization to obtain a

desired orthogonal matrix R. Cayley parameterization does

not cover the entire orthogonal group and is less flexible in

terms of representation power, which serves as an explicit

regularization for the neurons.

3.5. Orthogonality­Preserving Gradient Descent

An alternative way to guarantee orthogonality is to mod-

ify the gradient update for the matrix R. The idea is to

initialize R with an arbitrary orthogonal matrix and then

ensure each gradient update is to apply an orthogonal trans-

formation to R. It is essentially conducting gradient de-

scent on the Stiefel manifold [44, 74, 75, 42, 3, 22, 33].

Given a matrix U(0)∈R
n×n that is initialized as an orthog-

onal matrix, we aim to construct an orthogonal transfor-

mation as the gradient update. We use the Cayley trans-

form to compute a parametric curve on the Stiefel manifold

Ms={U ∈R
n×n :U⊤U=I} with a specific metric via a

skew-symmetric matrix W and use it as the update rule:

Y (λ) = (I −
λ

2
W )−1(I +

λ

2
W )U(i), U(i+1) = Y (λ) (3)

where Ŵ =∇f(U(i))U
⊤
(i)− 1

2U(i)(U
⊤
(i)∇f(U(i)U

⊤
(i)) and

W =Ŵ −Ŵ⊤. U(i) denotes the orthogonal matrix in the

i-th iteration. ∇f(U(i)) denotes the original gradient of the

loss function w.r.t. U(i). We term this gradient update as

orthogonal-preserving gradient descent (OGD). To reduce

the computational cost of the matrix inverse in Eq. 3, we use

an iterative method [44] to approximate the Cayley transform

without matrix inverse. We arrive at the fixed-point iteration:

Y (λ) = U(i) +
λ

2
W

(

U(i) + Y (λ)
)

(4)

which converges to the closed-form Cayley transform with a

rate of o(λ2+n) (n is the iteration number). In practice, two

iterations suffice for a reasonable approximation accuracy.

3.6. Relaxation to Orthogonal Regularization

Alternatively, we also consider relaxing the original op-

timization with an orthogonality constraint to an uncon-

strained optimization with orthogonality regularization (OR).

Specifically, we remove the orthogonality constraint, and

adopt an orthogonality regularization for R, i.e., ‖R⊤R−
I‖2F . However, OR cannot guarantee the energy stays un-

changed. Taking Eq. 1 as an example, the objective becomes

min
R,ui,∀i

m
∑

j=1

L
(

y,

n
∑

i=1

ui(Rvi)
⊤
xj

)

+ β‖R⊤
R− I‖2F (5)

where β is a hyperparameter. This serves as an relaxation

of the original OPT objective. Note that, OR is imposed to

R instead of neurons and is quite different from the existing

orthogonality regularization on neurons [54, 4, 27, 78, 7].

3.7. Refining the Initialization as Preprocessing

Minimizing the energy beforehand. Because we ran-

domly initialize the neurons {v1, · · · ,vn}, there exists a

variance that makes the hyperspherical energy deviate from

7254



the minima even if the hyperspherical energy is minimal in

a probabilistic sense. To further reduce the hyperspherical

energy, we propose to refine the random initialization by

minimizing its hyperspherical energy as a preprocessing step

before the OPT training. Specifically, before feeding these

neurons to OPT, we first minimize the hyperspherical en-

ergy of the initialized neurons with gradient descent (without

fitting the training data). Moreover, since the randomly ini-

tialized neurons cannot guarantee to get rid of the collinearity

redundancy as shown in [49] (i.e., two neurons are on the

same line but have opposite directions), we can perform the

half-space hyperspherical energy minimization [49].

Normalizing the neurons. The norm of the randomly

initialized neurons may have some influence on OPT, serv-

ing a role similar to weighting the importance of different

neurons. Moreover, the norm makes the hyperspherical en-

ergy less expressive to characterize the diversity of neurons,

as discussed in Section 5.3. To make the coordinate frame

(i.e. the rotation matrix R) truly independent of the relative

positions of the neurons, we propose to normalize the neuron

weights such that each neuron has unit norm. Because the

weights of the neurons {v1, · · · ,vn} are fixed during train-

ing and orthogonal matrices will not change the norm of the

neurons, we only need to normalize the randomly initialized

neuron weights as a preprocessing before the OPT training.

We have comprehensively evaluated both refinement

strategies in Section 6.2 and verified their effectiveness. Note

that the effectiveness of OPT is not dependent on these re-

finements. Our experiments do not use these refinements by

default and the results show that OPT still performs well.

4. Towards Better Scalablity for OPT

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x
OPT

x

x

x

x

S-OPTNeurons

Figure 3: S-OPT.

If the dimension of neurons becomes

extremely large, then the orthogonal ma-

trix to transform the neurons will also

be large. Therefore, it may take large

GPU memory and time to train the neural

networks with the original OPT. To ad-

dress this, we propose a scalable variant –

stochastic OPT (S-OPT). The key idea of S-OPT is to ran-

domly select some dimensions from the neurons in the same

layer and construct a small orthogonal matrix to transform

these dimensions together. The selection of dimensions is

stochastic in each outer iteration, so a small orthogonal ma-

trix is sufficient to cover all the neuron dimensions. S-OPT

aims to approximate a large orthogonal transformation for

all the neuron dimensions with many small orthogonal trans-

formations for random subsets of these dimensions, which

shares similar spirits with Givens rotation. The approxima-

tion will be more accurate when the procedure is randomized

over many times. Fig. 3 compares the size of the orthogonal

matrix in OPT and S-OPT. The orthogonal matrix in OPT

is of size d × d, while the orthogonal matrix in S-OPT is

of size p× p where p is usually much smaller than d. Most

importantly, S-OPT can still preserve the low hyperspherical

energy of neurons because of the following result.

Theorem 2. For n d-dimensional neurons, selecting any p
(p≤d) dimensions and applying an shared orthogonal trans-

formation (p×p orthogonal matrix) to these p dimensions

of all neurons will not change the hyperspherical energy.

Algorithm 1 Stochastic OPT

for i = 1, 2, · · · , Nout do

for j = 1, 2, · · · , Nin do
1. Randomly select p di-

mensions from d-dimensional

neurons in the same layer.

2. Construct an orthogonal

matrix Rp ∈ Rp×p and ini-

tialize it as identity matrix.

3. Update Rp by applying

OPT with one iteration.
end

4. Multiply Rp back to the p-dim

sub-vectors from the d-dim neu-

rons to transform these neurons.
end

A description of S-OPT

is given in Algorithm 1.

S-OPT has outer and in-

ner iterations. In each in-

ner iteration, the training

is almost the same as OPT,

except that the orthogonal

matrix transforms a subset

of the dimensions and the

learnable orthogonal ma-

trix has to be re-initialized

to an identity matrix. The

selection of neuron dimen-

sion is randomized in every outer iteration such that all

neuron dimensions can be sufficiently covered as the num-

ber of outer iterations increases. Therefore, given sufficient

number of iterations, S-OPT will perform comparably to

OPT, as empirically verified in Section 6.3. As a parallel

direction to improve the scalability, we further propose a

parameter-efficient OPT in Appendix I. This OPT variant ex-

plores structure priors in R to improve parameter efficiency.

5. Intriguing Insights and Discussions

5.1. Local Landscape

Standard training OPT

Figure 4: Training loss landscapes.

We follow [43] to visu-

alize the loss landscapes

of both standard training

and OPT in Fig. 4. For

standard training, we per-

turb the parameter space

of all the neurons (i.e., fil-

ters). For OPT, we perturb

the parameter space of all

the trainable matrices (i.e.,

P in Fig. 2), because OPT

does not directly learn neuron weights. The general idea

is to use two random vectors (e.g., normal distribution) to

perturb the parameter space and obtain the loss value with

the perturbed network parameters. Details and full results

about the visualization are given in Appendix E. The loss

landscape of standard training has extremely sharp minima.

The red region is very flat, leading to small gradients. In con-

trast, the loss landscape of OPT is much more smooth and

convex with flatter minima, well matching the finding that

flat minimizers generalize well [23, 8, 29]. Additional loss

landscape visualization results in Appendix F (with uniform

perturbation distributions) also support the same argument.

7255



Standard training OPT

Figure 5: Testing error landscapes.

We also show the land-

scape of testing error on

CIFAR-100 in Fig. 5. Full

results and details are in

Appendix E. Compared to

standard training, the test-

ing error of OPT increases

more slowly and smoothly while the network parameters

move away from the minima, which indicates that the param-

eter space of OPT yields better robustness to perturbations.

5.2. Optimization and Generalization

We discuss why OPT may improve optimization and gen-

eralization. On one hand, [77] proves that once the neurons

are hyperspherically diverse enough in a one-hidden-layer

network, the training loss is on the order of the square norm

of the gradient and the generalization error will have an ad-

ditional term Õ(1/
√
m) where m is the number of samples.

This suggests that SGD-optimized networks with minimum

hyperspherical energy (MHE) attained have no spurious lo-

cal minima. Since OPT is guaranteed to achieve MHE in

expectation, OPT-trained networks enjoy the inductive bias

induced by MHE. On the other hand, [34, 1, 12, 45, 16]

shows that over-parameterization in neural networks im-

proves the first-order optimization, leads to better general-

ization, and imposes implicit regularizations. In the light

of this, OPT also introduces over-parameterization to each

neuron, which shares similar spirits with [46]. Specifically,

one d-dimensional neuron has d2+d parameters in OPT

(with d2 being layer-shared), compared to d parameters in a

standard neuron. Although OPT uses more parameters for a

neuron in training, the equivalent number of parameters for

a neuron stays unchanged and it will not affect testing speed.

5.3. Discussions

Over-parameterization. We delve deeper into the over-

parameterization in the context of OPT. Its definition varies

in different cases. OPT is over-parameterized in terms of

training in the following sense. Although OPT-trained net-

works have the same effective number of parameters as the

standard networks in testing, the OPT neuron is decomposed

into two sets of parameters in training: orthogonal matrix

and neuron weights. It means that the same set of parameters

in a neural network can be represented by different sets of

training parameters in OPT (i.e., different combinations of

orthogonal matrices and neuron weights can lead to the same

neural network). OPT is still over-parameterized even if we

only count the number of learnable parameters. For a layer

of n d-dimensional neurons, the number of learnable param-

eters in vanilla OPT is
d(d−1)

2 in contrast to nd in standard

training. In prevailing architectures (e.g., ResNet [21]), the

neuron dimension is far larger than the number of neurons.

Coordinate system and relative position. OPT shows

that learning the coordinate system yields better general-

ization than learning neuron weights directly. This implies

that the coordinate system is crucial to generalization. How-

ever, the relative position does not matter only when the

hyperspherical energy is sufficiently low, indicating that the

neurons need to be diverse enough on the unit hypersphere.

The effects of neuron norm. Because we will normalize

the neuron norm when computing the hyperspherical energy,

the effects of neuron norm will not be taken into consider-

ation. Moreover, simply learning the orthogonal matrices

will not change the neuron norm. Therefore, the neuron

norm may affect the training. We use an extreme example to

demonstrate the effects. Assume that one of the neurons has

norm 1000 and the other neurons have norm 0.01. Then no

matter what orthogonal matrices we have learned, the final

performance will be bad. In this case, the hyperspherical

energy can still be minimized to a very low value, but it

can not capture the norm distribution. Fortunately, such an

extreme case is unlikely to happen, because we are using

zero-mean Gaussian distribution to initialize the neuron and

every neuron also has the same expected value for the norm.

To eliminate the effects of norms, we can normalize the

neuron weights in training, as proposed in Section 3.7.

6. Applications and Experimental Results

We put all the experimental settings and many additional

results in Appendix D and Appendix I,K, respectively.

6.1. Ablation Study and Exploratory Experiments

Method FN LR CNN-6 CNN-9

Baseline - - 37.59 33.55

UPT ✗ U 48.47 46.72

UPT ✓ U 42.61 39.38

OPT ✗ GS 37.24 32.95

OPT ✓ GS 33.02 31.03

Table 1: Error (%) on C-100.

Orthogonality. We evaluate

whether orthogonality in OPT is

necessary. We use 6-layer and

9-layer CNN (Appendix D) on

CIFAR-100. Then we compare

OPT with unconstrained over-

parameterized training (UPT) which learns an unconstrained

matrix R (with weight decay) using the same network. In

Table 1, “FN” denotes whether the randomly initialized neu-

ron weights are fixed in training. “LR” denotes whether

the learnable matrix R is unconstrained (“U”) or orthogo-

nal (“GS” for Gram-Schmidt process). Table 1 shows that

without orthogonality, UPT performs much worse than OPT.

Fixed or learnable weights. From Table 1, we can see

that using fixed neuron weights is consistently better than

learnable neuron weights in both UPT and OPT. It indicates

that fixing the neuron weights can well maintain low hyper-

spherical energy and is beneficial to empirical generalization.

Method Original MHE HS-MHE CoMHE

OPT (GS) 33.02 32.99 32.78 32.69

OPT (LS) 34.48 34.43 34.37 34.15

OPT (CP) 33.53 33.50 33.42 33.27

Energy 3.5109 3.5003 3.4976 3.4954

Table 2: Refining initialized energy.

Refining initializa-

tion. We evaluate two

refinement methods in

Section 3.7 for neuron

initialization. First, we

consider the hyperspherical energy minimization as a prepro-

cessing for the neuron weights. Our experiment uses CNN-6

on CIFAR-100. Specifically, we run gradient descent for 5k

7256



iterations to minimize the objective of MHE/HS-MHE [49]

or CoMHE [47] before the training starts. Table 2 shows

the hyperspherical energy before and after the preprocessing.

All methods start with the same random initialization, so

all hyperspherical energies start at 3.5109. Testing errors

(%) in Table 2 show that the refinement well improves OPT.

Although using advanced regularizations such as CoMHE

as pre-processing can improve the performance significantly,

we do not use them in the other experiments in order to keep

our comparison fair and clean. More different ways to mini-

mize the hyperspherical energy can also be considered [50].

Method w/o Norm w/ Norm

Baseline 37.59 36.05

OPT (GS) 33.02 32.54

OPT (HR) 35.67 35.30

OPT (LS) 34.48 32.11

OPT (CP) 33.53 32.49

OPT (OGD) 33.37 32.70

OPT (OR) 34.70 33.27

Table 3: Normalization (%).

We evaluate the second refine-

ment strategy, i.e., neuron weight

normalization. Section 5.3 has

explained why normalizing the

neuron weights may be useful.

After initialization, we normalize

all the neuron weights to 1. Since

OPT does not change the neuron norm, the neuron will keep

the norm as 1. More importantly, the hyperspherical energy

will not be affected by the neuron normalization. We conduct

classification with CNN-6 on CIFAR-100. Testing errors in

Table 3 show that normalizing the neurons greatly improves

OPT, validating our previous analysis. Note that, these two

refinements are not used by default in other experiments.

Mean Energy Error (%)

0 3.5109 32.49

1e-3 3.5117 33.11

1e-2 3.5160 39.51

2e-2 3.5531 53.89

3e-2 3.6761 N/C

Table 4: Initial energy.

High vs. low energy. We validate

that high hyperspherical energy corre-

sponds to inferior empirical generaliza-

tion. To initialize high energy neurons,

we use [20] and set the mean as 1e-3,

1e-2, 2e-2, and 3e-2. We experiment

on CIFAR-100 with CNN-6. Table 4 (“N/C” denotes not

converged) show that higher energy generalizes worse and

also leads to difficulty in convergence. We see that a small

change in energy can lead to a dramatic generalization gap.

Method Error (%)

Baseline 38.95

HS-MHE 36.90

OPT (GS) 35.61

OPT (HR) 37.51

OPT (LS) 35.83

OPT (CP) 34.88

OPT (OGD) 35.38

Table 5: No BN.

No BatchNorm. We evaluate how

OPT performs without BatchNorm (BN)

[28]. We perform classification on

CIFAR-100 with CNN-6. In Table 5,

we see that all OPT variants consistently

outperform both the baseline and HS-

MHE [49] by a significant margin, vali-

dating that OPT can work well without BN. CP achieves the

best error with more than 4% lower than standard training.

6.2. Empirical Evaluation on OPT

Multi-layer perceptrons. We evaluate OPT on MNIST

with a 3-layer MLP. Appendix D gives specific settings. Ta-

ble 6 shows the testing error with normal initialization (MLP-

N) or Xavier initialization [14] (MLP-X). GS/HR/LS denote

different orthogonalization unrolling. CP denotes Cayley

parameterization. OGD denotes orthogonal-preserving gra-

dient descent. OR denotes relaxed orthogonal regularization.

All OPT variants outperform the others by a large margin.

Method
MNIST CIFAR-100

MLP-N MLP-X CNN-6 CNN-9 ResNet-20 ResNet-32

Baseline 6.05 2.14 37.59 33.55 31.11 30.16

Orthogonal [7] 5.78 1.93 36.32 33.24 31.06 30.05

SRIP [4] - - 34.82 32.72 30.89 29.70

HS-MHE [49] 5.57 1.88 34.97 32.87 30.98 29.76

OPT (GS) 5.11 1.45 33.02 31.03 30.49 29.34

OPT (HR) 5.31 1.60 35.67 32.75 30.73 29.56

OPT (LS) 5.32 1.54 34.48 31.22 30.51 29.42

OPT (CP) 5.14 1.49 33.53 31.28 30.47 29.31

OPT (OGD) 5.38 1.56 33.33 31.47 30.50 29.39

OPT (OR) 5.41 1.78 34.70 32.63 30.66 29.47

Table 6: Testing error (%) of OPT for MLPs and CNNs.

Convolutional networks. We evaluate OPT with 6/9-

layer plain CNNs and ResNet-20/32 [21] on CIFAR-100.

Detailed settings are in Appendix D. All neurons (i.e., convo-

lution kernels) are initialized by [20]. BatchNorm is used by

default. Table 6 shows that all OPT variants outperform both

baseline and HS-MHE by a large margin. HS-MHE puts

the hyperspherical energy into the loss function and naively

minimizes it along with the CNN. We observe that OPT

(HR) performs the worse among all OPT variants partially

because of its intensive unrolling computation. OPT (GS)

achieves the best testing error on CNN-6/9, while OPT (CP)

achieves the best testing error on ResNet-20/34, implying

that different OPT encodes different inductive bias.

10
4

10
4

Figure 6: Training dynamics on CIFAR-100. Left: Hyperspherical energy

vs. iteration. Right: Testing error vs. iteration.

Training dynamics. We look into how hyperspherical

energy and testing error changes in OPT. Fig. 6 shows that

the energy of the baseline will increase dramatically at the

beginning and then gradually go down, but it still stays in

a high value in the end. HS-MHE well reduces the energy

at the end of the training. In contrast, OPT variants always

maintain very small energy in training. OPT with GS, CP

and OGD keep exactly the same energy as the random initial-

ization, while OPT (OR) slightly increases the energy due to

relaxation. All OPT variants converge efficiently and stably.

Method Top-1 Top-5

Baseline 44.32 21.13

Orthogonal [7] 44.13 20.97

HS-MHE [49] 43.92 20.85

OPT (OGD) 43.81 20.49

OPT (CP) 43.67 20.26

Table 7: ImageNet (%).

Large-scale learning. To see

how OPT performs in large-scale

settings, we evaluate OPT on the

large-scale ImageNet-2012 [62].

Specifically, we use OPT with

OGD and CP to train a plain 10-

layer CNN (Appendix D) on ImageNet. Note that, our pur-

pose is to validate the superiority of OPT over the corre-

sponding baseline rather than achieving state-of-the-art re-

sults. Table 7 shows that OPT (CP) reduces top-1 and top-5

error for the baseline by ∼0.7% and ∼0.9%, respectively.

7257



Method 5-shot Acc. (%)

MAML [13] 62.71 ± 0.71

MatchingNet [70] 63.48 ± 0.66

ProtoNet [65] 64.24 ± 0.72

Baseline [9] 62.53 ± 0.69

Baseline w/ OPT 63.27 ± 0.68

Baseline++ [9] 66.43 ±0.63

Baseline++ w/ OPT 66.82 ± 0.62

Table 8: Few-shot learning.

Few-shot recognition. For

evaluating OPT on cross-task

generalization, we perform the

few-shot recognition on Mini-

ImageNet, following the same

setup as [9]. Appendix D gives

more detailed settings. We ap-

ply OPT with CP to train the baseline and baseline++ in

[9], and immediately obtain improvements. Therefore, OPT-

trained networks generalize well in this challenging scenario.

Method
GCN PointNet

Cora Pubmed MN-40

Baseline 81.3 79.0 87.1

OPT (GS) 81.9 79.4 87.23

OPT (CP) 82.0 79.4 87.81

OPT (OGD) 82.3 79.5 87.86

Table 9: Geometric networks.

Geometric learning. We

apply OPT to graph convolu-

tion network (GCN) [37] and

point cloud network (Point-

Net) [57] for graph node and

point cloud classification, re-

spectively. The training of GCN and PointNet is concep-

tually similar to MLP, and the detailed training procedures

are given in Appendix D. For GCN, we evaluate OPT on

Cora and Pubmed datsets [63]. For PointNet, we conduct

experiments on ModelNet-40 dataset [76]. Table 9 shows

that OPT effectively improves both GCN and PointNet.

6.3. Empirical Evaluation on S­OPT

Method
CIFAR-100 ImageNet

CNN-6 Params Wide CNN-9 Params ResNet-18 Params

Baseline 37.59 258K 28.03 2.99M 32.95 11.7M

HS-MHE [49] 34.97 258K 25.96 2.99M 32.50 11.7M

OPT (GS) 33.02 1.36M OOM 16.2M OOM 46.5M

S-OPT (GS) 33.70 90.9K 25.59 1.04M 32.26 3.39M

Table 10: OPT vs. S-OPT on CIFAR-100 & ImageNet.

Convolutional networks. S-OPT is a scalable OPT vari-

ant, and we evaluate its performance in terms of number

of trainable parameters and testing error. Training param-

eters are learnable variables in training, and are different

from model parameters in testing. In testing, all methods

have the same number of model parameters. We perform

classification on CIFAR-100 with CNN-6 and wide CNN-9.

We also evaluate S-OPT with standard ResNet-18 on Im-

ageNet. Detailed settings are in Appendix D. For S-OPT,

we set the sampling dimension as 25% of the original neu-

ron dimension in each layer. Table 10 shows that S-OPT

achieves a good trade-off between accuracy and scalability.

More importantly, S-OPT can be applied to large neural net-

works, making OPT more useful in practice. Additionally,

Appendix I discusses an efficient parameter sharing for OPT.

p = Error (%) Params

d OOM 16.2M

d/4 25.59 1.04M

d/8 28.61 278K

d/16 32.52 88.7K

16 33.03 27.0K

3 45.22 26.0K

0 60.64 25.6K

Table 11: Sampling dim.

Sampling dimensions. We study

how the sampling dimension p affect

the performance by performing classi-

fication with wide CNN-9 on CIFAR-

100. In Table 11, p=d/4 means that

we randomly sample 1/4 of the origi-

nal neuron dimension in each layer, so

p may vary in different layer. p=16 means that we sample

16 dimensions in each layer. Note that there are 25.6K pa-

rameters used for the final classification layer, which can not

be saved in S-OPT. Table 11 shows that S-OPT can achieve

highly competitive accuracy with a reasonably large p.

6.4. Large Categorical Training

Previously, OPT is not applied to the final classification

layer, since it makes little sense to fix random classifiers

and learn an orthogonal matrix to transform them. However,

learning the classification layer can be costly with large num-

ber of classes. The number of trainable parameters of the

classification layer grows linearly with the number of classes.

To address this, OPT can be used to learn the classification

layer, because its number of trainable parameters only de-

pends on the classifier dimension. To be fair, we only learn

the last classification layer with OPT and the other layers are

normally learned (CLS-OPT). The oracle learns the entire

network normally. Experimental details are in Appendix D.

Oracle CLS-OPT

Figure 7: Feature visualization.

We intuitively compare

the oracle and CLS-OPT by

visualizing the deep MNIST

features following [53]. The

features are the direct outputs

of CNN by setting the output

dimension as 3. Fig. 7 show

that even if CLS-OPT fixes randomly initialized classifiers,

it can still learn discriminative and separable deep features.

Method
ResNet-18A ResNet-18B

Error Params Error Params

Oracle 18.08 64.0K 12.12 512K

CLS-OPT 21.12 8.13K 12.05 131K

Table 12: CLS-OPT on ImageNet.

We evaluate its perfor-

mance on ImageNet with

1K classes. We use ResNet-

18 with different output di-

mensions (A:128, B:512).

Table 12 gives the top-5 test error (%) and “Params” denotes

the number of trainable parameters in the classification layer.

CLS-OPT performs well with far less trainable parameters.

Method
512 Dim. 1024 Dim.

Error Params Error Params

Oracle 95.7 5.41M 96.4 10.83M

CLS-OPT 94.9 131K 95.8 524K

Table 13: Verification (%) on LFW.

Since face datasets usu-

ally contain large number of

identities [17], it is natural

to apply CLS-OPT to learn

face embeddings. We train

on CASIA [80] which has 0.5M face images of 10,572 iden-

tities, and test on LFW [25]. Since the training and testing

sets do not overlap, the task well evaluates the generalizabil-

ity of learned features. All methods use CNN-20 [52] and

standard softmax loss. We set the output feature dimension

as 512 or 1024. Table 13 validates CLS-OPT’s effectiveness.

7. Concluding Remarks

We propose a novel training framework for neural net-

works. By parameterizing neurons with weights and a shared

orthogonal matrix, OPT can provably achieve small hyper-

spherical energy and yield superior generalizability.

Acknowledgements. Weiyang Liu and Adrian Weller are supported by DeepMind
and the Leverhulme Trust via CFI. Adrian Weller acknowledges support from the
Alan Turing Institute under EPSRC grant EP/N510129/1 and U/B/000074. Rongmei
Lin and Li Xiong are supported by NSF under CNS-1952192, IIS-1838200.

7258



References

[1] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence

theory for deep learning via over-parameterization. arXiv preprint

arXiv:1811.03962, 2018. 6, 36

[2] Ramesh Naidu Annavarapu. Singular value decomposition and the

centrality of löwdin orthogonalizations. American Journal of Compu-

tational and Applied Mathematics, 3(1):33–35, 2013. 16

[3] Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution

recurrent neural networks. In ICML, 2016. 2, 4

[4] Nitin Bansal, Xiaohan Chen, and Zhangyang Wang. Can we gain

more from orthogonality regularizations in training deep cnns? In

NeurIPS, 2018. 2, 4, 7

[5] Johann S Brauchart, Alexander B Reznikov, Edward B Saff, Ian H

Sloan, Yu Guang Wang, and Robert S Womersley. Random point sets

on the sphere—hole radii, covering, and separation. Experimental

Mathematics, 27(1):62–81, 2018. 42

[6] Anna Breger, Martin Ehler, and Manuel Gräf. Points on manifolds

with asymptotically optimal covering radius. Journal of Complexity,

48:1–14, 2018. 42

[7] Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston.

Neural photo editing with introspective adversarial networks. In ICLR,

2017. 2, 4, 7

[8] Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun,

Carlo Baldassi, Christian Borgs, Jennifer Chayes, Levent Sagun, and

Riccardo Zecchina. Entropy-sgd: Biasing gradient descent into wide

valleys. In ICLR, 2017. 5

[9] Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank Wang,

and Jia-Bin Huang. A closer look at few-shot classification. arXiv

preprint arXiv:1904.04232, 2019. 8, 20

[10] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. Ar-

cface: Additive angular margin loss for deep face recognition. In

CVPR, 2019. 2

[11] Xiaohan Ding, Yuchen Guo, Guiguang Ding, and Jungong Han. Acnet:

Strengthening the kernel skeletons for powerful cnn via asymmetric

convolution blocks. In ICCV, 2019. 1, 2

[12] Simon S Du, Jason D Lee, Yuandong Tian, Barnabas Poczos, and

Aarti Singh. Gradient descent learns one-hidden-layer cnn: Don’t be

afraid of spurious local minima. arXiv preprint arXiv:1712.00779,

2017. 6, 36

[13] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic

meta-learning for fast adaptation of deep networks. In ICML, 2017. 8

[14] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of

training deep feedforward neural networks. In AISTATS, 2010. 1, 3, 7

[15] Suriya Gunasekar, Jason D Lee, Daniel Soudry, and Nati Srebro.

Implicit bias of gradient descent on linear convolutional networks. In

NeurIPS, 2018. 1

[16] Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli,

Behnam Neyshabur, and Nati Srebro. Implicit regularization in matrix

factorization. In NeurIPS, 2017. 1, 6

[17] Yandong Guo, Lei Zhang, Yuxiao Hu, Xiaodong He, and Jianfeng

Gao. Ms-celeb-1m: A dataset and benchmark for large-scale face

recognition. In ECCV, 2016. 8

[18] David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv

preprint arXiv:1609.09106, 2016. 40

[19] DP Hardin and EB Saff. Minimal riesz energy point configurations

for rectifiable d-dimensional manifolds. Advances in Mathematics,

193(1):174–204, 2005. 18

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving

deep into rectifiers: Surpassing human-level performance on imagenet

classification. In ICCV, 2015. 1, 3, 7

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep

residual learning for image recognition. In CVPR, 2016. 6, 7, 20, 21

[22] Mikael Henaff, Arthur Szlam, and Yann LeCun. Recurrent orthogonal

networks and long-memory tasks. arXiv preprint arXiv:1602.06662,

2016. 4

[23] Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural

Computation, 1997. 5

[24] Walter Hoffmann. Iterative algorithms for gram-schmidt orthogonal-

ization. Computing, 41(4):335–348, 1989. 14

[25] Gary B Huang, Marwan Mattar, Tamara Berg, and Eric Learned-

Miller. Labeled faces in the wild: A database forstudying face recog-

nition in unconstrained environments. Technical Report, 2008. 8

[26] Lei Huang, Li Liu, Fan Zhu, Diwen Wan, Zehuan Yuan, Bo Li, and

Ling Shao. Controllable orthogonalization in training dnns. In CVPR,

2020. 2

[27] Lei Huang, Xianglong Liu, Bo Lang, Adams Wei Yu, Yongliang

Wang, and Bo Li. Orthogonal weight normalization: Solution to

optimization over multiple dependent stiefel manifolds in deep neural

networks. In AAAI, 2018. 2, 4

[28] Sergey Ioffe and Christian Szegedy. Batch normalization: Acceler-

ating deep network training by reducing internal covariate shift. In

ICML, 2015. 7

[29] Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov,

and Andrew Gordon Wilson. Averaging weights leads to wider optima

and better generalization. In UAI, 2018. 5

[30] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up

convolutional neural networks with low rank expansions. In BMVC,

2014. 2

[31] Kui Jia, Shuai Li, Yuxin Wen, Tongliang Liu, and Dacheng Tao.

Orthogonal deep neural networks. TPAMI, 2019. 2

[32] Xu Jia, Bert De Brabandere, Tinne Tuytelaars, and Luc V Gool.

Dynamic filter networks. In NeurIPS, 2016. 40

[33] Li Jing, Yichen Shen, Tena Dubcek, John Peurifoy, Scott Skirlo, Yann

LeCun, Max Tegmark, and Marin Soljačić. Tunable efficient unitary

neural networks (eunn) and their application to rnns. In ICML, 2017.

4

[34] Kenji Kawaguchi. Deep learning without poor local minima. In

NeurIPS, 2016. 1, 6, 36

[35] Kenji Kawaguchi, Bo Xie, and Le Song. Deep semi-random features

for nonlinear function approximation. In AAAI, 2018. 37

[36] Nitish Shirish Keskar and Richard Socher. Improving generaliza-

tion performance by switching from adam to sgd. arXiv preprint

arXiv:1712.07628, 2017. 1

[37] Thomas N Kipf and Max Welling. Semi-supervised classification

with graph convolutional networks. arXiv preprint arXiv:1609.02907,

2016. 8

[38] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet

classification with deep convolutional neural networks. In NeurIPS,

2012. 21

[39] N.S. Landkof. Foundations of modern potential theory. Springer-

Verlag, 1972. 18

[40] Jason D Lee, Max Simchowitz, Michael I Jordan, and Benjamin Recht.

Gradient descent only converges to minimizers. In COLT, 2016. 36

[41] Mario Lezcano-Casado. Trivializations for gradient-based optimiza-

tion on manifolds. In NeurIPS, 2019. 4

[42] Mario Lezcano-Casado and David Martı́nez-Rubio. Cheap orthogo-

nal constraints in neural networks: A simple parametrization of the

orthogonal and unitary group. In ICML, 2019. 2, 4

[43] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Gold-

stein. Visualizing the loss landscape of neural nets. In NeurIPS, 2018.

5, 23, 30

[44] Jun Li, Fuxin Li, and Sinisa Todorovic. Efficient riemannian opti-

mization on the stiefel manifold via the cayley transform. In ICLR,

2020. 4

[45] Yuanzhi Li, Tengyu Ma, and Hongyang Zhang. Algorithmic regu-

larization in over-parameterized matrix sensing and neural networks

with quadratic activations. In COLT, 2018. 1, 6

[46] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv

preprint arXiv:1312.4400, 2013. 6, 40

7259



[47] Rongmei Lin, Weiyang Liu, Zhen Liu, Chen Feng, Zhiding Yu,

James M. Rehg, Li Xiong, and Le Song. Regularizing neural networks

via minimizing hyperspherical energy. In CVPR, 2020. 2, 7

[48] Baoyuan Liu, Min Wang, Hassan Foroosh, Marshall Tappen, and

Marianna Pensky. Sparse convolutional neural networks. In CVPR,

2015. 2

[49] Weiyang Liu, Rongmei Lin, Zhen Liu, Lixin Liu, Zhiding Yu, Bo Dai,

and Le Song. Learning towards minimum hyperspherical energy. In

NeurIPS, 2018. 2, 3, 5, 7, 8, 23, 30, 36, 43

[50] Weiyang Liu, Rongmei Lin, Zhen Liu, Li Xiong, Bernhard Schölkopf,

and Adrian Weller. Learning with hyperspherical uniformity. In

AISTATS, 2021. 2, 7

[51] Weiyang Liu, Zhen Liu, James M Rehg, and Le Song. Neural similar-

ity learning. In NeurIPS, 2019. 1, 2, 40

[52] Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj,

and Le Song. Sphereface: Deep hypersphere embedding for face

recognition. In CVPR, 2017. 2, 8, 22

[53] Weiyang Liu, Yandong Wen, Zhiding Yu, and Meng Yang. Large-

margin softmax loss for convolutional neural networks. In ICML,

2016. 8

[54] Weiyang Liu, Yan-Ming Zhang, Xingguo Li, Zhiding Yu, Bo Dai,

Tuo Zhao, and Le Song. Deep hyperspherical learning. In NeurIPS,

2017. 2, 4, 21

[55] Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggyback:

Adapting a single network to multiple tasks by learning to mask

weights. In ECCV, 2018. 37

[56] Zakaria Mhammedi, Andrew Hellicar, Ashfaqur Rahman, and James

Bailey. Efficient orthogonal parametrisation of recurrent neural net-

works using householder reflections. In ICML, 2017. 4

[57] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet:

Deep learning on point sets for 3d classification and segmentation. In

CVPR, 2017. 8, 21

[58] Haozhi Qi, Chong You, Xiaolong Wang, Yi Ma, and Jitendra Ma-

lik. Deep isometric learning for visual recognition. arXiv preprint

arXiv:2006.16992, 2020. 2

[59] Ali Rahimi and Benjamin Recht. Random features for large-scale

kernel machines. In NeurIPS, 2008. 37

[60] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence

of adam and beyond. arXiv preprint arXiv:1904.09237, 2019. 1

[61] Matthias Reitzner. Stochastical approximation of smooth convex

bodies. Mathematika, 51(1-2):11–29, 2004. 42

[62] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev

Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,

Michael Bernstein, et al. Imagenet large scale visual recognition

challenge. IJCV, 2015. 7

[63] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian

Galligher, and Tina Eliassi-Rad. Collective classification in network

data. AI magazine, 2008. 8, 21

[64] Ian H Sloan and Robert S Womersley. Extremal systems of points

and numerical integration on the sphere. Advances in Computational

Mathematics, 21(1-2):107–125, 2004. 43

[65] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks

for few-shot learning. In NeurIPS, 2017. 8

[66] Daniel Soudry and Yair Carmon. No bad local minima: Data indepen-

dent training error guarantees for multilayer neural networks. arXiv

preprint arXiv:1605.08361, 2016. 36

[67] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,

and Ruslan Salakhutdinov. Dropout: a simple way to prevent neural

networks from overfitting. JMLR, 2014. 37

[68] Vipin Srivastava. A unified view of the orthogonalization methods.

Journal of Physics A: Mathematical and General, 33(35):6219, 2000.

16

[69] Yun Tang, Jing Huang, Guangtao Wang, Xiaodong He, and Bowen

Zhou. Orthogonal relation transforms with graph context modeling

for knowledge graph embedding. In ACL, 2020. 4

[70] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra,

et al. Matching networks for one shot learning. In NeurIPS, 2016. 8

[71] Feng Wang, Weiyang Liu, Haijun Liu, and Jian Cheng. Additive mar-

gin softmax for face verification. arXiv preprint arXiv:1801.05599,

2018. 2

[72] Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong,

Jingchao Zhou, Zhifeng Li, and Wei Liu. Cosface: Large margin

cosine loss for deep face recognition. In CVPR, 2018. 2

[73] Min Wang, Baoyuan Liu, and Hassan Foroosh. Factorized convolu-

tional neural networks. In ICCV Workshops, 2017. 2

[74] Zaiwen Wen and Wotao Yin. A feasible method for optimization with

orthogonality constraints. Mathematical Programming, 2013. 4

[75] Scott Wisdom, Thomas Powers, John Hershey, Jonathan Le Roux,

and Les Atlas. Full-capacity unitary recurrent neural networks. In

NeurIPS, 2016. 2, 4

[76] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang

Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d shapenets: A deep

representation for volumetric shapes. In CVPR, 2015. 8, 21

[77] Bo Xie, Yingyu Liang, and Le Song. Diverse neural network learns

true target functions. In AISTATS, 2017. 6, 36, 37

[78] Di Xie, Jiang Xiong, and Shiliang Pu. All you need is beyond a good

init: Exploring better solution for training extremely deep convolu-

tional neural networks with orthonormality and modulation. In CVPR,

2017. 2, 4

[79] Zichao Yang, Marcin Moczulski, Misha Denil, Nando de Freitas, Alex

Smola, Le Song, and Ziyu Wang. Deep fried convnets. In ICCV, 2015.

2

[80] Dong Yi, Zhen Lei, Shengcai Liao, and Stan Z Li. Learning face

representation from scratch. arXiv preprint arXiv:1411.7923, 2014. 8

7260


