RE/8T-86.64. 12

Orthogonal Polyhedra as Geometric Bounds

in Constructive Solid Geometry

A. Aguilera
D. Ayala

Report LSI-96-64-R,

e gemTrT et e i I e T
BIRLEOTECS B e T




ORTHOGONAL POLYHEDRA AS GEOMETRIC
BOUNDS IN CONSTRUCTIVE SOLID GEOMETRY

A. Aguilera and D. Ayala
Universitat Politécnica de Catalunya
Barcelona, Spain
ayala@lsi.upc.es, aguilera@goliat.upc.es

November 28, 1996

Abstract

Set membership classification and, specifically, the evaluation of a CSG tree are
problems of a certain complexity. Several techniques to speed up these processes have
been proposed such as Active Zones, Geometric Bounds and the Extended Convex
Differences Tree.

Boxes are the most common geometric bounds studied but other bounds such as
spheres, convex hulls and prisms have also been proposed.

On the other hand, there is an extended bibliography dealing with convex polyhe-
dra and solving problems for this class of polyhedra. Orthogonal polyhedra are also a
class of polyhedra and several problems have been solved for them.

In this work we propose orthogonal polyhedra as geometric bounds in the CSG
model. CSG primitives are approximated by orthogonal polyhedra and the orthogonal
bound of the object is obtained by applying the corresponding boolean algebra. A
specific model for orthogonal polyhedra is presented that allows a simple and robust
boolean operations algorithm between orthogonal polyhedra. This algorithm has lin-
ear complexity (is based on a merging process) and avoids floating-point computation.

1 Introduction

Constructive solid geometry is a non-ambiguous 3D model that allows to build up com-
plicated shapes from simple ones. This model is represented by a tree in which internal
nodes represent boolean regularized operations and the leaf nodes represent simple shapes
or primitives [15].

Set membership classification [20] and, specifically, the boundary evaluation of a CSG
tree are problems of a certain complexity. Until now, several accelerating techniques have
been proposed to speed up geometric computations in CSG. Among them we emphasize

on Active Zones [17], [4] the Extended Convex Differences Tree [14] and Approximating
Shapes or Geometric Bounds [8], [5]. '

The more extensively used geometric bounds are the well-known bounding boxes, but
. other shapes as spheres and convex hulls have also been proposed and studied [5]-

1




On the other hand, in several disciplines such as solid modeling and computational
geometry, it is very usual to start studying problems on simpler classes of polyhedra
rather than on the general case. The most usually chosen is the convex polyhedra class.
Convexity enables the use of efficient and simple algorithms [13], [6]. Orthogonal polyhedra
are a less used simple class. Nevertheless, some works have been published dealing with
this simpler class [10], [9], [3]. The restricted class of convex and orthogonal polyhedra,
i.e., orthogonal boxes have been widely used in many applications [13], [8], [18].

In this work we propose orthogonal polyhedra as geometric bounds in CSG. We define
a specific model to represent such class of polyhedra, the Extreme Vertices (EV) model.
Then, in order to compute the orthogonal bound for a CSG object, we have developed a
robust algorithm for regularized boolean operations. This algorithm has linear complexity
(is based on a merging process) and avoids floating- point computations.

The paper is arranged as follows. Sections 2 and 3 deal respectively on geometric
bounds and on orthogonal polyhedra, analyzing the related work on both disciplines. Sec-
tion 4 defines the Extreme Vertices, EV, model and section 5 describes the corresponding
boolean operations algorithm. Section 6 discusses the advantages and drawbacks of us-
ing orthogonal polyhedra instead of classical boxes. Finally, section 7 summarizes the
conclusions and also shows possible directions for future work.

2 Geometric Bounds

A common way to reduce the complexity of geometric computations in CSG is the use
of geometric bounds or approximating shapes. After fixing a class 3 of approximating
shapes, the process to be done consists on [8]:

1. All the primitives p in the tree are approximated with their corresponding approxi-
mating shape, p — AS(p)e>

2. A postorder tree traversal is done by applying the following rules:

(2) if T =T1UT2 — AS(T) = AS(AS(T1) U AS(T2)) = AS(T1) U AS(T?2)
(b) if T =T1NT2 - AS(T) = AS(AS(T1) N AS(T2)) = AS(T1) N AS(T2)
(¢) if T =T1 -T2 — AS(T) = AS(T1)

Hence, the approximating shapes for all the internal nodes and for the root representing
the object are determined.

The symbols Ll and M refer to operators equivalent to the boolean operations but closed
into the 3 class.

In [4] the S-bound theory is introduced and in [5] is formally developed. A class of
totally consistent bounding functions is defined and the initial principle working with
geometric bounds is extended by the application of the so called upward and downward
rules:



upward rule : is the above mentioned postorder tree traversal

downward rule : the geometric bound of each node is refined by intersecting it with the
geometric bound of its father,

AS(T) = AS(T) N AS(T. father)
Both rules are continuously applied until convergence is reached. For a detailed dis-
cussion concerning S-bounds, see [5].

Boxes have been the more widely used geometric bounds. A box is defined as:

A =< Tam, Yam, Zam, CAM, YAM ZAM >=
{(@9,2)|24m < 2 < Tar, Yam <Y < Yam, 2am < 2 < ZAM}

And the corresponding operators are defined as [11]:

C=AUB

where,
TOm = MIN(T 4m, T Bm) ToM = maz(TaM, TBM)
Yom = mMin(Yam, YBm) Yyom = maz(yam, yBm)
2cm = MiN(24m, 2Bm) zoMm = maz(2am, ZBM)

and

C=ANB

where

TCm = MAZ(Z Am, TBm)
Yom = maz(Yam, YBm)
Z20m = Max(ZAm, 2Bm)

zom = min(Tan, Tea)
Yyom = min(Yam, ygur)
zoMm = min(zam, zBM)

We can easily observe that while the operator 1 coincides with the intersection, the
Ll operator does not correspond to the union operation. The operators LI and ' over the
class bounding boxes are a non-distributive lattice instead of a boolean algebra [11]

An order relation can be defined in a lattice such as:

.

albeanb=a
and, from lattice theory, the following distributive inequalities are obtained:
(aUb)ne> (anc)u (bne)
(@and)Uc = (aUc)N(bUc)

Based on these inequalities, in [11] the authors show that the bounding box size of
a CSG depends on the form of its algebraic expression and that the smallest bounding

3



box is obtained when this algebraic expression is in the normal disjunctive form (DF) or
union of intersections form (UOI). The authors also show that, in general, this technique
produces better bounds than the S-bounds technique. In [7] an algorithm is presented
that converts a CSG expression into its DF.

In [16] other advantages of DF are shown:

1. DF only requires a stack of depth 1 and then it has been used for evaluating CSG
trees in parallel.

2. When CSG primitives are halfspaces, intersections are convex polyhedra and then
the CSG object can be represented as the union of convex polyhedra.

3. We can avoid visiting all the primitives for all intersections. When the intersection
currently visited contains a combination of primitives that resulted in empty bounds
for a previously visited intersection, then we can state that this current intersection
is empty without visiting its remaining terms. This fact is referred as culling up
empty intersections.

Nevertheless, the size of the DF grows exponentially in the number of primitives of
the original tree. So, in order to alleviate the need of storing such a large tree in [16] an
algorithm is presented that processes the DF directly from the initial tree.

3 Orthogonal Polyhedra

Orthogonal polyhedra (OP) are polyhedra with all their faces oriented in three orthogonal
directions. In this work we will consider only two-manifold OP.

This class of polyhedra implies a restriction of the general case concerning with the
geometry. In an OP, all planes and lines are parallel to three orthogonal axes, the number
of incident edges for any vertex can be only three, four or six [9] and faces have an even
number of edges (vertices). These geometric characteristics make OP be a more restricted
class than convex polyhedra. However, concerning with the topology, OP do not imply
any restriction at all. OP allow any number of rings on faces, holes (they can be of any
genus) and shells. Then, they represent a radically different class of polyhedra than the
convex class represents.

There is a large amount of work concerning with convex polyhedra but its study is not
the purpose of the present work.

OP are a less used simple class though some studies have been published dealing with
or using them. In [10] a B-Rep to CSG conversion algorithm is presented that works for
a restricted class of OP. The obtained CSG expression is a Peterson-style formula and the
restricted class are the acyclic OP. In [9] the same author extends the domain for a certain
class of cyclic OP. In [12] an octree to B-Rep conversion algorithm is presented and an OP
is obtained. In [3] an algorithm that simplifies geometry is presented for the particular
case of OP; a more complex algorithm is needed for the general case of polyhedra [2].



Boxes, which are both convex and orthogonal, have been widely used in many appli-
cations [13], [8], [18] and have been used as approximations as has been explained in the
previous section.

4 Extreme Vertices Model for Orthogonal Polyhedra

In this section we present a model for two-manifold OP. We consider that all the OP, as
well as their geometric elements (faces and edges) with which we operate, are in the same
iso-oriented coordinate system.

The Extreme Vertices model, EV, represents OP in a complete and compact way.
The model is complete because we can infer from it all the topological and geometric
information of the polyhedron.

Splitting and boolean set operations can be done on EV in linear time. Although input
data (i.e., coordinates vertices) are floating-point values, no time-consuming floating-point
arithmetic is ever performed, so there are no propagation errors. All results are obtained
by just classifying vertices coordinates of the initial data.

Other operations such as computing the perimeter, area and volume of OP as well as
conversion algorithms between EV and hierarchical B-Rep, Classical Octrees and Extended
Octrees have also been developed [1].

As mentioned in the previous section, in an OP the number of edges incident on a
vertex can be 3, 4 or 6. From now o we will refer to them as V3, V4 or Ve.

Definition 4.1 A brink is the longest uninterrupted segment, built out of a sequence of
contiguous collinear edges of an OP.

Every edge belongs to a brink, whereas every brink consists of one or more edges and
contains as many vertices as the number of edges plus one (see figure 1 right).

Edges meeting at a V3 vertex are all linearly independent whereas edges meeting at
V4 or V6 vertices are not. Edges meeting at a V4 (V6) vertex belong to two (three)
perpendicular directions, that is, they are members of two (three) perpendicular brinks
and, hence, they appear as two (three) couples of collinear edges (see figure 1 left). Also
every V4 or V6 incident edge has a neighbour in the brink corresponding to its direction.

Lemma 4.1 In a brink both ending vertices are V3 and the remaining (interior) are V4
or V&.

Proof: Every edge meeting at vertices V4 or V6 has a neighbour in the same brink,
then such vertices cannot appear at the end of any brink. Moreover, any edge meeting at
vertices V3 has not a neighbour in the same brink and therefore such vertices must appear
only at the end of any brink.

Definition 4.2 We will call Extreme Vertices (EV) of an OP to the ending vertices of
all the OP brinks, i.e. the V3 vertices of the polyhedron.




V3 V6 V6 V4 V3

V3 V4 \'3 a b ¢ d

Figure 1: Left) Edges meeting at a V3, V4 and V6 vertex. Right) Example of a brink
containing four edges and five vertices, These vertices are respectively V3, V6, V6, V4
and V3. Edges (a, b) and (c, d) are collinear but are not contiguous and then (a, b) is a
brink and (c, d) is another brink.

Definition 4.3 We define the EV model for OP as a model that only stores all EV (V3)
vertices.

Lemma 4.2 Let P be an OP and OH(P) be its isooriented orthogonal hull or minimum
bounding boz. Then, only a subset of V3 vertices of P lies on the boundary of OH(OP)
and, therefore, all V4 and V§ vertices lie in the interior of OH(P).

Proof: The proof comes from the well-known concept of supportability {19]. Concerning
with OP, V3 vertices are locally or complementary supportable and vertices V4 and V6 are

Don-supportable [9]. Only supportable vertices of an OP can lie on its minimum bounding
box.

Lemma 4.3 Let VX = {21, 29,.. -y Tng} be the ordered set of different values for the z
coordinate of every V3 verter, nx being the total number of different z values (eand VY
and V.Z analogously for their y and z coordinates, with sizes ny and nz).

Then, for every vertes V4 or V6 with coordinates (@i yi, %), z; € {za,23,.. y Tpg-1} =
VX —{z1,2,:} (and analogously for its y and z coordinates).

Proof: Vertices V4 (V6) are in the interior of 2 (3) perpendicular brinks (they are
indeed the intersection of these brinks), so their coordinates can be obtained from the
coordinates of the V3 ending vertices of these brinks, then z; € VX, However, from
lemma 4.2, z; < Zi < Zng, and therefore V4 and V6 are in the interior of the bounding
box of their OP.

Theorem 4.1 The EV model for orthogonal polyhedra is o valid B-Rep model.

Proof: From lemma 4.3, all coordinates of vertices V4 and V6 appear as coordinates

of vertices V3. Then, although vertices V4 and V6 do not appear in the model, they can
be inferred from it.

See [1] for the conversion algorithm from EV to a hierarchical B-rep model.




5 Boolean Operations in the EV model

Our approach computes an orthogonal bound for a CSG tree. We consider CSG trees
without geometric transformations.

First, all the primitives are approximated by their bounding boxes and then a postorder
tree traversal is done applying the corresponding operations. In our case the operations
are the classical operations of the boolean algebra and so the orthogonal bound of the
CSG does not depend on the form of the CSG algebraic expression as occurred with boxes
(see section 2).

Nevertheless, the advantage of the DF form concerning with culling up empty inter-
sections, also mentioned in section 2, can be applied to our approach and, therefore, the
tree traversal is done by using the method proposed in [16]. Furthermore, being boxes the
CSG primitives, intersections are also boxes (when they are not empty) and so the CSG
bound is represented as the union of boxes.

In this section the boolean operations algorithm for OP is presented. The algorithm
basically performs a geometric merge between OP represented in a sorted EV model. The
algorithm computes a sequence of 2D sections from the 3D model and the same algorithm
is recursively applied to each of these 2D sections obtaining 1D sections. Then 1D boolean
operations are performed on these 1D sections. The recursion upwards by converting the
resulting sequence of sections into an EV model thus obtaining the corresponding result.

5.1 Operations on the EV model

Definition 5.1 An ABC-sorted EV model is an EV model where vertices V3§ are sorted
first by coordinate A, then by B and then by C.

EV models can be sorted on six different ways: XYZ, XZY, YXZ, YZX, ZXY and ZYX.
In a ZXY-sorted EV model, for instance, its vertices are arranged in planes perpendicular
to the Z axis (i.e. with the same » coordinate). In each such a plane they are arranged in
lines parallel to the Y axis (i. e. with the same z coordinate). Finally they appear as y
intervals (see figure 2).

Let us have an ABC-sorted EV model,

Definition 5.2 A plane of vertices of an OP is the set of vertices lying on a plane per-
pendicular to the A azis. We will also refer as line of vertices to the set of vertices lying
on a line parallel to the C azis within q plane of vertices.

Definition 5.3 4 strip is the region between two consecutive planes (lines) of vertices.

Definition 5.4 A section is the polygon resulting from the intersection between an OP

and an orthogonal plane perpendicular to the A axis which must not coincide with any
plane of vertices.




Figure 2: ZXY-sorted EV model. a) A hidden line representation of an OP with one V6,
one V4 and 26 V3s. b) Its corresponding wire-frame representation. c) This representation
shows the order number for each V3 vertex and the three planes of vertices of the model
(with different marks)

All the orthogonal planes intersecting an OP in the same strip give the same section.
Hence, every strip has its representing section. Furthermore, as an OP can be interpreted
as a sequence of strips, we can define the sequence of sections for an OP.

All these concepts related to sections can be defined also in 2D. A section is also
a 1D polygon resulting from the intersection between a 2D orthogonal polygon and an

orthogonal line perpendicular to both A and B axes which must not coincide with any line
of vertices.

A sorted-EV model is a sequence of planes (lines) of vertices. The number of elements
of this sequence, np, is the number of different A coordinates in the model. The number of
sections is ns = np+ 1 because the empty sections Sp and Sy, are also considered. Figure
3 shows the sections and planes of vertices for an OP.

An ABC-sorted EV model can represent n-dimensional OP (n < 3) by taking into
account the last n coordinates. Then planes and lines of vertices of an OP will be repre-
sented also in this model. Moreover, as a section is actually an OP, 1D and 2D sections
will also be represented in this model.

Then, we define the ABCsorted type with the following operations:

FUNCTION IniEv () RETURN ABCsorted
{Returns an empty EV model}

PROCEDURE Put (INPUT plv: ABCsorted, I/0 P: ABCsorted, INPUT dim:INTEGER)
{Appends a plane (dim=2) or a line (dim=1) to an EV model}

FUNCTION Read (P: ABCsorted, dim:INTEGER) RETURN ABCsorted
{Extracts the next plane (dim=2) or line (dim=1) from an EV model}

FUNCTION End (P: ABCsorted) RETURN BOOLEAN
{Returns TRUE if the end of P has been reached}




14 n v 34
6 p 28
6 £ T > 30 2 s Y
I 24
0 32
g 13 2123
2 5 2, o
9 33
j g r 27 \J¥ X
4 d 8 24 5
k
TN \26 31N\ a6

X]

Ty

X1 X2 X3 X4 X5 @

Figure 3: This OP is represented in an XZY-sorted EV model. It has 5 planes of vertices,
X1 to X5. Each of them corresponds to the set of vertices with the same coordinate X.
The shadowed polygons are the four sections S1, S2, S3 and Sy and there are two more
empty sections, Sy and Ss.

FUNCTION MergeXor (P, Q: ABCsorted; dim: INTEGER) RETURN ABCsorted
{Applies the Exclusive OR operation to the vertices of P and Q and
returns the resulting set}

PROCEDURE SetCoord (I/0 P: ABCsorted, INPUT Coord: REAL,

INPUT dim: INTEGER)
{Sets the A (dim=2) or the B (dim=1) coordinate to Coord on every
vertex of the plane (line) of vertices P}

FUNCTION GetCoord (P: ABCsorted, dim:INTEGER) RETURN REAL
{Gets the common A (dim=2) or B (dim=1) coordinate of the plane (line)
of vertices P}

5.2 Computing sections from planes (lines) of vertices and vice versa

Any section S; is computed by doing an exclusive OR, between its previous section S;_;
and its previous plane (line) of vertices P

Si=S8i19P,Vie[l,np~ 1]

and
SO = (07 Snp = (D»

Q@ means the exclusive OR operation.

Then we define the corresponding function GetSection:




FUNCTION GetSection (s: ABCsorted, plv: ABCsorted, dim: INTEGER) RETURN
ABCsorted

{returns the next section of an OP whose pPrevious section is S. This
function works

for dimension 2 or 1. 1f dim=2 (dim=1), plv is the previous plane (line)
of vertices and S is a 2D (1D) section}

RETURN (MergeXor(s, plv, dim))
ENDFUNCTION

An algorithm that computes the sequence of sections of an OP from its EV model
using functions IniEv and GetSection is presented in [1].

A plane (line) of vertices P; of an OP is computed by doing an exclusive OR between
its previous S;_; and next S; sections:

F=S_1®85,Vie [1, np]

Then we define the corresponding function GetPlv:

FUNCTION GetPlv (si: ABCsorted, Sj: ABCsorted, dim: INTEGER) RETURN
ABCsorted

{This function also works for dimensions 2 or {.

If dim=2 (dim=1), Si and Sj are 2D (1D) consecutive sections and
returns the plane (line) of vertices between Si and Sj.}

RETURN (MergeXor (81, Sj, dim)
ENDFUNCTION

Actually, this function performs the same computations that the GetSection function,
i.e., an exclusive OR between two sets of vertices, but as they are conceptually different
we will use both of them.

5.3 Boolean Operations algorithm

Now, we are able to present the boolean operations algorithm. The algorithm merges two
OP, say P and @), represented in the same ABC-sorted EV model, in such a way that the
corresponding planes of vertices become also merged. We consider all the resulting strips.
Some of them will correspond to untouched strips of P or @ and only one section will have
to be considered. However some other strips will correspond to a part of a, P strip and a
part of a Q strip with their corresponding sections. The algorithm considers this sections
as 2D OP and operates them in the same way.

We can explain the algorithm as follows. The sequence of sections for objects P and
@ are computed. Then these sections are merged in order to compute the sequence of

10




sections of the R resulting object. Finally, from this sequence of sections, the EV model
of the resulting object R is obtained. Nevertheless, the implemented algorithm does not
work in this sequential form; it actually works in a wholly merged form and only needs to
store one section for each of the P and @ operands and two consecutive sections for the
result R. Then, the algorithm is O(n) as merging-like algorithms are.

TYPE Object = ENUM {P, Q} ENDTYPE
FUNCTION OpBool (P, Q: ABCsorted, {the input objects}
dim: INTEGER, {dimension of P and Q}
op: BoolOp) {the Boolean operation}
RETURN ABCsorted
VAR
s[P..Q]: ABCsorted {s[P], s[Q]: current sections of P, Q}
sRprevious, sRcurrent: ABCsorted {sections of the result, R}
plvi, plvo: ABCsorted {input and output planes (lines) of vertices}
obj: Object {the current selected object}
coord: REAL {The common coordinate of a plane (line) of vertices}
ENDVAR
IF dim = 1 THEN
RETURN (OpBooliD(P, Q, op))

ELSE
dim:= dim - 1
s[P]:= IniEv()
s[Q]:= IniEv()

sReurrent:= IniEv()

GetPlane(P, Q, dim, plvi, coord, obj)

WHILE NOT End(P) AND NOT End(Q) DO
S[objl:= GetSection(plvi, Slobjl, dim)
sRprevious:= sRcurrent
sRecurrent:= OpBool(s[P], s[Q], dim, op)
plvo:= GetPlv(sRprevious, sRcurrent, dim)
SetCoord(plvo, coord, dim)
Put(plvo, R, dim)
GetPlane(P, Q, dim, plvi, coord, obj)

ENDWHILE

WHILE NOT End(P) DO
PutBool(plvi, R, op); plvi:

ENDWHILE

WHILE NOT End(Q) DO
PutBool(plvi, R, op); plvi:

ENDWHILE

RETURN (R)

ENDIF
ENDFUNCTION

Read(P, dim)

Read(Q, dim)

Function OpBoollD performs 1D boolean operations between P and @ that now are

11




SP1 SP2 SP3

PL: P2

P3 -

P6 P7

P8

:SR4 I SR5:SR6=5R7:SR3: SR9

R10 R11

R12

plvi s[Q] sRanterior sRactual plvo
Pl | SP1 =P1 0 0 SP1 Rl1=P1
P2 SP2 0 SP1 SP2 R2 = P2
P3 SP3 0 SP2 SP3 R3 = P3
Q1 SP3 SQ1 = Q1 SP3 SR4 = SP3 U SQ1 R4
Q2 SP3 SQ2 SR4 SR5 = SP3 U SQ2 R5

P4 SP4 SQ2 SR5 SR6 = SP4 U SQ2 R6
Q3 SP4 SQ3 SR6 SR7T=SP4USQ3| R7=0
P5 SP5 SQ3 SR7 SR8 = SP5 U SQ3 R8
Q4 SP5 SQ4 =10 SR8 SR9 = SP5 U SQ4 R9

P6 R10 = P6
pP7 Ri11 =P7
P8 R12 = P8

Figure 4: Boolean Operations runnj
We can observe that SR6=SR7 since

ng example. End(Q)is TRUE when Q4 is selected.

SP4 U SQ2 = SP4 U SQ3, thus making R7 = ()

12




collinear lines of vertices.

Procedure GetPlane gets the next plane (line) of vertices plvi of P or Q, with its
common coordinate coord, and to which of these ob jects obj it belongs. The plane (line)
of vertices is obtained using function Read and its common coordinate using function
GetCoord (see section 5.1). This procedure works as in a merging process.

Functions GetSection and GetPlv perform an exclusive OR between the sets of vertices
of their operands (see subsection 5.2).

OpBool works for 3D QP (dim=3) and for 2D orthogonal polygons (dim=2). The
recursive case of this procedure is a merging-like algorithm.

When the end of one of the objects is reached, the main iteration finishes and the
remaining planes (lines) of vertices of the other object are either appended or not to the
result object depending on the considered boolean operation. Procedure PutBool performs
this boolean operation based appending process.

Figure 4 shows a 2D running example and figure 5 shows a 3D example.

6 Comparison between geometric bounds

In this work we propose the EV Model as a new model for representing valid OP in a
compact way. This model allows performing robust Boolean operations in O(n) complexity.

We have also developed classification algorithms for OP (represented in the mentioned
ABC-sorted model). In (1] an O(n) splitting algorithm and an O(lgn) point classification
algorithm are proposed.

We want now to compare OP with simple boxes as geometric bounds. Boolean oper-
ations on boxes are of constant complexity whereas boolean operations on OP are O(n).
Classification algorithms are also more complex for OP than for boxes (for boxes are of
constant complexity). So, our approach will be more time consuming than boxes based
approaches when the CSG geometric bound is computed and when classification tests are
performed on it. Nevertheless, OP are tighter than boxes, therefore classification tests will
be more deterministic.

Moreover, the bounding OP used for a primitive is just its bounding box and we will
traverse the CSG tree in its DF using the method presented in [16] i.e. performing unions
of intersections.. Then, when performing intersections our method deals also with boxes
and has constant complexity. Obviously, the method must finally perform unions between
the intersection results and then complexity is O(n).

7 Conclusions and Future work

In this work we have proposed the use of OP as geometric bounds in CSG. The proposal
is based on the fact that a simple boolean operations algorithm can be applied for OP.
This boolean operations algorithm is a merging-like algorithm and runs in O(n).

Although input data (i.e. coordinates vertices) are floating-point values, no time-

13




Figure 5: Boolean Operations: 3D example. (a),(b) Two OP. (c),(d) Sections of these OP.
(e) OP in overlapping position and the corresponding overlapping sections. (),(g).(h)
The resulting sections and OP (wireframe and HLR). (i),(i) The resulting OP (HLR and

shaded).
14




consuming floating-point arithmetic is ever performed, so there are no propagation errors.
All results are obtained by just classifying vertex coordinates of the initial data. Moreover,
round-off errors in the in put data can be avoided by performing a space discretization based
on the primitive bounding boxes.

computing the bound and when classification algorithms are applied. However OP are
tighter than boxes, therefore classification tests will be more deterministic.

As a future work we are intended to compare these theoretical results with experimental
ones. We also are extending the EV model and the corresponding operations for non-
manifold OP and, finally, we will study other applications of OP.,

8 Acknowledgments

We thank P. Brunet and R. Joan-Arinyo for their valuable comments and suggestions.

References

[1] A. Aguilera and D. Ayala. The EV model for orthogonal polyhedra. Technical Report
in preparation, LSI-Universitat Politecnica de Catalunya, 1996.

(2] C. Anddjar, D. Ayala, P. Brunet, R. Joan-Arinyo, and J. Solé. Automatic generation
of multiresolution boundary representations. volume 15. EUROGRAPHICS’96, 1996.

[3] D. Ayala, C. Anddjar, and P. Brunet. Automatic simplification of orthogonal poly-
hedra. In D. Fellner, editor, Modeling, Virtual Worlds, Distributed Graphics: Pro-
ceedings of the International MVD’96 Workshop. Infix, 1995.

[4] S. Cameron and J -R. Rossignac. Relationship between S-bounds and Active Zones
in Constructive Solid Geometry. Proceedings of the International Conference on the
Theory and Practice of Geometric Modelling. FRG, 1988.

[5] S. Cameron and C. Yap. Refinement methods for geometric bounds in Constructive
Solid Geometry. ACM Transactions on Graphics, 11(1):12 - 39, 1992.

[6] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer Verlag, 1987.

[7] J. Goldfeather, S. Molnar, G. Turk, and H. Fuchs. Near real-time CSG rendering using
tree normalization and geometric pruning. IEEE Computer Graphics & Applications.

(8] C. M. Hoffmann. Geometric and Solid Modeling. Morgan Kauffmann Publishers, Inc.,
1989.

[9] R. Joan-Arinyo. Domain extension of isothetic polyhedra with minimal CSG repre-
sentation. Computer Graphics Forum, (5):281 - 293, 1995.

15




[10] R. Juan-Arinyo. On Boundary to CSG and Extended Octrees to CSG conversions.
In W. Strasser, editor, Theory and Practice of Geometric Modeling, pages 349-367.
Springer-Verlag, 1989.

[11] M. Mazzetti and L. Ciminiera. Computing CSG-tree boundaries as algebraic expres-
sions. CAD, 26(6):417 — 425, 1994,

[12] C. Montani and R. Scopigno. Graphics Gems II, chapter IV.7 Quadtree/Octree to
boundary conversion, pages 202 - 218. Academic Press, Inc, 1991.

[13] F.P. Preparata and M.I. Shamos. Computational Geometry: an Introduction.
Springer-Verlag, 1985.

[14] A. Rappoport. The n-dimensional Extended Convex Differences Tree (ECDT) for
representing polyhedra. In J. Rossignac and J. Turner, editors, Symposium on Solid
Modeling Foundations and CAD/CAM Applications, 1991.

[15] A. Requicha. Representations for rigid solids: Theory, methods, and systems. Com-
puting Surveys of the ACM, 12:437-464, 1980.

[16] J. Rossignac. Proceesing disjunctive forms directly from CSG grafs. In CSG 94. Set-
theoretic Solid Modelling Technigues and Applications, pages 55 — 70. Information
Geometers Ltd, 1994.

[17] J. R. Rossignac and H. B. Voelcker. Active zones in CSG for accelerating boundary
evaluation, redundancy elimination, interference detection and shading algorithms.
ACM Transactions on Graphics, 8(1):51 — 87, 1989.

[18] H. Samet. The Design and Analysis of Spatial Data Structures. Addison Wesley
Publ., Reading, MA, 1989.

[19] K. Tang and T. Woo. Algorithmic aspects of alternating sum of volumes. Part 2:
Nonconvergence and its remedy. CAD, 23(6):435 — 443, 1991.

[20] R. B. Tilove. Set membership classification: a unified approach to geometric inter-
section problems. IEEE Transactions on Computers, 29(10):874 — 883, 1980.

16




LSI-96-1-R

LSI-96-2-R

LSI-96-3-R

LSI-96—4-R

LSI-96-5-R

LSI-96-6-R

LSI-96-7-R

LSI-96-8-R

LSI-96-9-R

LSI-96-10-R

LSI-96-11-R

LSI-96-12-R

LSI-96-13-R

LSI-96-14-R,

LSI-96-15-R

LSI-96-16-R

Departament de Llenguatges i Sistemes Informatics
Universitat Politécnica de Catalunya

Research Reports — 1996

“(Pure) Logic out of Probability”, Ton Sales.

“Automatic Generation of Multiresolution Boundary Representations”, C. Andijar, D. Ayala,
P. Brunet, R. Joan-Arinyo, and J. Solé.

“A Frame-Dependent Oracle for Linear Hierarchical Radiosity: A Step towards Frame-to-Frame
Coherent Radiosity”, Ignacio Martin, Dani Tost, and Xavier Pueyo.

“Skip-Trees, an Alternative Data Structure to Skip-Lists in a Concurrent Approach”, Xavier
Messeguer. '

“Change of Belief in SKL Model Frames (Automatization Based on Analytic Tableaux)”, Mat{as
Alvarado and Gustavo Nufiez.

“Compressibility of Infinite Binary Sequences”, José L. Balcézar, Ricard Gavalda, and Montser-
rat Hermo.

“A Proposal for Word Sense Disambiguation using Conceptual Distance”, Eneko Agirre and
German Rigau.

“Word Sense Disambiguation Using Conceptual Density”, Eneko Agirre and German Rigau.

“Towards Learning a Constraint Grammar from Annotated Corpora Using Decision Trees”,
Lluis Marquez and Horacio Rodriguez.

“POS Tagging Using Relaxation Labelling”, Lluis Padré.

“Hybrid Techniques for Training HMM Part-of-Speech Taggers”, Ted Briscoe, Greg Grefen-
stette, Lluis Padr6, and Iskander Serail.

“Using Bidirectional Chart Parsing for Corpus Analysis”, A. Ageno and H. Rodriguez.
“Limited Logical Belief Analysis”, Antonio Moreno.
“Logic as General Rationality: A Survey”, Ton Sales.

“A Syntactic Characterization of Bounded-Rank Decision Trees in Terms of Decision Lists”,
Nicola Galesi.

“Algebraic Transformation of Unary Partial Algebras I: Double-Pushout Approach”, P. Bur-
meister, F. Rosselld, J. Torrens, and G. Valiente.




LSI-96-17-R

LSI-96-18-R

LSI-96-19-R

LSI-96-20-R

LSI-96-21-R.

LSI-96-22-R

LSI-96-23-R.

LSI-96-24-R

LSI-96-25-R.

LSI-96-26-R.

LSI-96-27-R.

LSI-96-28-R

LSI-96-29-R

LSI-96-30-R

LSI-96-31-R

LSI-96-32-R

LSI-96-33-R

LSI-96-34-R

LSI-96-35-R.

LSI-96-36-R

“Rewriting in Categories of Spans”, Miquel Monserrat, Francesc Rossellé, Joan Torrens, and
Gabriel Valiente.

“On the Depth of Randomly Generated Circuits”, Tatsuie Tsukiji and Fatos Xhafa.
“Learning Causal Networks from Data”, Ramon Sangiiesa i Solé.

“Boundary Generation from Voxel-based Volume Representations”, R. J oan-Arinyo and J. Solé.
“Exact Learning of Subclasses of CDNF Formulas with Membership Queries”, Carlos Domingo.

“Modeling the Thermal Behavior of Biosphere 2 in a Non-Controlled Environment Using Bond
Graphs”, Angela Nebot, Frangois E. Cellier, and Francisco Mugica.

“Obtaining Synchronization-Free Code with Maximum Parallelism”, Ricard Gavaldé, Eduard
Ayguadé, and Jordi Torres.

“Memoisation of Categorial Proof Nets: Parallelism in Categorial Processing”, Glyn Morrill.
“Decision Trees Have Approximate Fingerprints”, Victor Lavin and Vijay Raghavan.

“Visible Semantics: An Algebraic Semantics for Automatic Verification of Algorithms”, Vicent-
Ramon Palasi Lallana.

“Massively Parallel and Distributed Dictionaries on AVL and Brother Trees”, Joaquim Gabarré
and Xavier Messeguer.

“A Maple package for semidefinite programming”, Fatos Xhafa and Gonzalo Navarro.

“Bounding the expected length of longest common subsequences and forests”, Ricardo A. Baeza-
Yates, Ricard Gavalda, and Gonzalo Navarro.

“Parallel Computation: Models and Complexity Issues”, Raymond Greenlaw and H. James
Hoover.

“ParaDict, a Data Parallel Library for Dictionaries (Extended Abstract)”, Joaquim Gabarré
and Jordi Petit i Silvestre.

“Neural Networks as Pattern Recognition Systems”, Lourdes Calderdn.

“Semantica externa: una variant interessant de la semantica de comportament” (written in
Catalan), Vicent-Ramon Palasi Lallana.

“Automatic verification of programs: algorithm ALICE”, V.R. Palasf Lallana.

“Multiresolution Approximation ‘of Polyhedral Solids”, D. Ayala, P. Brunet, R. Joan-Arinyo,
1. Navazo.

“Algebraic Transformation of Unary Partial Algebras II: Single-Pushout Approach”, P. Bur-
meister, M. Montserrat, F. Rossell6, and G. Valiente. -




LSI-96-37-R “Probabilistic Conditional Independence: A Similarity-Based Measure and its Application to
Causal Network Learning”, Ramon Sangiiesa Solé, Joan Cabés Fabregat, and Ulises Cortés
Garcia.

LSI-96-38-R. “Analysing the Process of Enforcing Integrity Constraints”, Enric Mayol and Ernest Teniente.

LSI-96-39-R “Reduccié de Pequivaléncia inicial visible a teoremes inductius” (written in Catalan), Vicent-
Ramon Palasi Lallana.

LSI-96-40-R “A Compendium of Problems Complete for Symmetric Logarithmic Space”, Carme Alvarez
and Raymond Greenlaw.

LSI-96-41-R “Semantica algebraica del llenguatge AL: Palgorisme o” (written in Catalan), V.R. Palasi
Lallana.

LSI-96-42-R “Partial Occam’s Razor and its Applications”, Carlos Domingo, Tatsuie Tsujiki, and Osamu
Watanabe.

LSI-96-43-R “Transparent Distributed Problem Resolution in the MAKILA Multi-Agent System”, Karmelo
Urzelai.

LSI-96-44-R “The Intensional Events Method for Consistent View Updating”, Dolors Costal, Ernest Te-
niente, and Toni Urpi.

LSI-96-45-R “Extending Eiffel as a Full Life-cycle Language”, Alonso J. Peralta and Joan Serras.

LSI-96-46-R, “Analysis of Methods for Generating Octree Models of Objects from Their Silhouettes”, Marta
Franquesa and Pere Brunet.

LSI-96-47-R “Learning nearly monotone k-term DNF”, Jorge Castro, David Guijarro, and Victor Lavin.
LSI-96-48-R “Learning Monotone Term Decision Lists”, David Guijarro, Victor Lavin, and Vijay Raghavan.

LSI-96-49-R “Coding Complexity: The Computational Complexity of Succinct Descriptions”, José L. Bal-
cazar, Ricard Gavalda, and Osamu Watanabe,

LSI-96-50-R “Algorithms for Learning Finite Automata from Queries: A Unified View”, José L. Balcézar,
Josep Diaz, Ricard Gavalda, and Osamu Watanabe,

LSI-96-51-R “Metodes de validacié d’esquemes de bases de dades deductives” (written in Catalan), Carles
Farré.

LSI-96-52-R “The Parallel Complexity of Positive Linear Programming”, Luca Trevisan and Fatos Xhafa.
LSI-96-53-R “Polynomial-Time Algorithms for Some Self-Duality Problems”, Carlos Domingo.

LSI-96-54-R “Patterns in Random Binary Search Trees”, Philippe Flajolet, Xavier Gourdon, and Conrado
Martinez.




LSI-96-55-R

LSI-96-56-R

LSI-96-57-R

LSI-96-58-R

LSI-96-59-R

LSI-96-60-R

LSI-96-61-R

L.SI-96-62-R

LSI-96-63-R

LSI-96-64-R

“El llenguatge ROSES. Part I” (written in Catalan), M. Barceld, P. Costa, D. Costal, A. Olivé,
C. Quer, A. Rosellé, M.R. Sancho.

“Double-Pushout Hypergraph Rewriting through Free Completions” , P. Burmeister, F. Rossell
G. Valiente. '

?

“On User-Defined Features”, Christoph M. Hoffmann and Robert Joan-Arinyo.

“Light Transfer Equations for Volume Visualization”, Francesc Sala i Valcarcel and Daniela
Tost i Pardell.

“Computing the Medial Axis Transform of Polygonal Objects by Testing Discs”, Josep Vila-
plana.

“Linear Lower Bounds and Simulations in Frege Systems with Substitutions”, M. Bonet and
N. Galesi.

“Prototipado de programas usando especificaciones funcionales y no funcionales” (written in
Spanish), Xavier Franch and Pere Botella.

“Transformacién de restricciones de integridad dindmicas definidas hacia el futuro en una forma
definida hacia el pasado”, Maria Amélia Pacheco Silva and Maria Ribera Sancho i Samsé.

“New Results about the List Access Problem”, Salvador Roura and Conrado Martinez.

“Orthogonal polyhedra as geometric bounds in constructive solid geometry”, A. Aguilera and
D. Ayala.

Hardcopies of reports can be ordered from:

Nuria Sanchez
Departament de Llenguatges i Sistemes Informatics
Universitat Politécnica de Catalunya
Pau Gargallo, 5
08028 Barcelona, Spain
secrelsi@lsi.upc.es

See also the Department WWW pages, http://www-1si.upc.es/www/

&
1




