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ORTHOGONAL POLYNOMIALS AND CUBATURE FORMULAE ON
SPHERES AND ON BALLS*

YUAN XUt

Abstract. Orthogonal polynomials on the unit sphere in R4+! and on the unit ball in R% are
shown to be closely related to each other for symmetric weight functions. Furthermore, it is shown
that a large class of cubature formulae on the unit sphere can be derived from those on the unit ball
and vice versa. The results provide a new approach to study orthogonal polynomials and cubature
formulae on spheres.
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1. Introduction. We are interested in orthogonal polynomials in several vari-
ables with emphasis on those orthogonal with respect to a given measure on the unit
sphere S in R?*!. In contrast to orthogonal polynomials with respect to measures
defined on the unit ball B in R?, there have been relatively few studies on the struc-
ture of orthogonal polynomials on S¢ beyond the ordinary spherical harmonics which
are orthogonal with respect to the surface (Lebesgue) measure (cf. [2, 3, 4, 5, 6, 8]).
The classical theory of spherical harmonics is primarily based on the fact that the
ordinary harmonics satisfy the Laplace equation. Recently Dunkl (cf. [2, 3, 4, 5] and
the references therein) opened a way to study orthogonal polynomials on the spheres
with respect to measures invariant under a finite reflection group by developing a
theory of spherical harmonics analogous to the classical one. In this important the-
ory the role of Laplacian operator is replaced by a differential-difference operator in
the commutative algebra generated by a family of commuting first-order differential-
difference operators (Dunkl’s operators). Other than these results, however, we are
not aware of any other method of studying orthogonal polynomials on spheres.

A closely related question is constructing cubature formulae on spheres and on
balls. Cubature formulae with a minimal number of nodes are known to be related
to orthogonal polynomials. Over the years, a lot of effort has been put into the study
of cubature formulae for measures supported on the unit ball, or on other geometric
domains with nonempty interior in R?. In contrast, the study of cubature formulae on
the unit sphere has been more or less focused on the surface measure on the sphere;
there is little work on the construction of cubature formulae with respect to other
measures. This is partly due to the importance of cubature formulae with respect to
the surface measure, which play a role in several fields in mathematics, and perhaps
partly due to the lack of study of orthogonal polynomials with respect to a general
measure on the sphere.

One main purpose of this paper is to provide an elementary approach towards the
study of orthogonal polynomials on S? for a large class of measures. This approach is
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based on a close connection between orthogonal polynomials on S¢ and those on the
unit ball B?; a prototype of the connection is the following elementary example.

For d = 1, the spherical harmonics of degree n are given in the standard polar
coordinates by

(1.1) YD (21, 25) = r"cosnd and Y, ?(z1,25) = r"sinnd.

Under the transform x = cos 6, the polynomials T}, (z) = cosnf and U, (x) = sinnfd/sin 0
are the Chebyshev polynomials of the first and the second kind, orthogonal with re-
spect to 1/4/1 — 22 and V1 — x2, respectively, on the unit ball [-1,1] in R. Hence,
the spherical harmonics on S! can be derived from orthogonal polynomials on B!.

We shall show that for a large class of weight functions on R4t we can con-
struct homogeneous orthogonal polynomials on S¢ from the corresponding orthog-
onal polynomials on B? in a similar way. This allows us to derive properties of
orthogonal polynomials on S? from those on B¢; the latter have been studied much
more extensively. Although the approach is elementary and there is no differential
or differential-difference operator involved, the result offers a new way to study the
structure of orthogonal polynomials on S¢.

Our approach depends on an elementary formula that links the integration on B¢
to the integration on S?¢. The same formula yields an important connection between
cubature formulae on S¢ and those on B?; the result states roughly that a large class
of cubature formulae on S? is generated by cubature formulae on B? and vice versa.
In particular, it allows us to shift our attention from the study of cubature formulae
on the unit sphere to the study of cubature formulae on the unit ball; there has been
much more understanding towards the structure of the latter one. Although the result
is simple and elementary, its importance is apparent. It yields, in particular, many
new cubature formulae on spheres and on balls. Because the main focus of this paper
is on the relation between orthogonal polynomials and cubature formulae on spheres
and those on balls, we will present examples of cubature formulae in a separate paper.

The paper is organized as follows. In section 2 we introduce notation and present
the necessary preliminaries, where we also prove the basic lemma. In section 3 we
show how to construct orthogonal polynomials on S¢ from those on B?. In section
4 we discuss the relation between cubature formulae on the unit sphere and those on
the unit ball.

2. Preliminary and basic lemma. For x,y € R? we let x -y denote the usual
inner product of R? and |x| = (x-x)'/? the Euclidean norm of x. Let B¢ be the unit
ball of R% and S¢ be the unit sphere on R4+1; that is,

B ={xeR%:|x| <1} and S ={y e R¥": |y| =1}.

Polynomial spaces. Let Ny be the set of nonnegative integers. For o = (a,...,aq) €
Nd and x = (21,...,24) € R? we write x* = z{*---25?. The number |af; =

ai+ -+ oy is called the total degree of x*. We denote by II? the set of polynomials
in d variables on R? and by II¢ the subset of polynomials of total degree at most n.
We also denote by P¢ the space of homogeneous polynomials of degree n on R? and
we let rd = dim PZ. It is well known that

dimHi:(n;—d> and ri:(n—i—d_l >

n

Orthogonal polynomials on B%. Let W be a nonnegative weight function on B¢
and assume [, W(x)dx < oo. It is known that for each n € Ny the set of polynomials
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of degree n that are orthogonal to all polynomials of lower degree forms a vector space
V,, whose dimension is 7¢. We denote by {P{'}, 1 < k <7 and n € Ny, one family of
orthonormal polynomlals with respect to W on B? that forms a basis of I1¢, where
the superscript n means that P}’ € I1¢. The orthonormality means that

/Bd Py (x) P]" (x)W (x)dx = 6; 10m.n.-

A useful notation is P,, = (P, ..., PT, )T, which is a vector with P}" as components

(cf. [22, 24]). For each n € Ny, the polynomials P, 1 < k < rd, form an orthonormal
basis of V.. We note that there are many bases of V,,; if @) is an invertible matrix of
size r, then the components of QP,, form another basis of V,, which is orthonormal
if @ is an orthogonal matrix. For general results on orthogonal polynomials in several
variables, including some of the recent development, we refer to the survey [24] and
the references therein. One family of weight functions on B¢ whose corresponding
orthogonal polynomials have been studied in detail is (1 — |x|?)*~/2, u > 0, which
we will refer to as classical orthogonal polynomials on B? (cf. [1, 6, 25]).

Ordinary spherical harmonics. The harmonic polynomials on R? are the homo-
geneous polynomials satisfying the Laplace equation AP = 0, where

A:a§+---+a§ on R

and 0; is the ordinary partial derivative with respect to the ith coordinate. They
span a subspace H% = ker A N PZ of dimension dimP? — dim P¢_,. The spherical
harmonics are the restriction of harmonic polynomials on S¢~1. If Y,, € HZ, then Y,,
is orthogonal to @ € P;j, 0 < k < n, with respect to the surface measure dw on S%1.

Dunkl’s h-harmonics. For a nonzero vector v € R? we define the reflection o, by

xoy = x — 2(x - v)v/|[v|? x € R%.

Suppose that G is a finite reflection group on R? with the set {v; : i = 1,2,...,m} of
positive roots; assume that |v;| = |v;| whenever o; is conjugate to o; in G, where we
write o; = oy,, 1 < ¢ < m. Then G is a subgroup of the orthogonal group generated
by the reflections {oy, : 1 <1i < m}.

The h-harmonics yield orthogonal polynomials on S¢~! with respect to h2dw,
where the weight function h, is defined by

(2.1) a4 >0,

with o; = «; whenever o; is conjugate to o; in G. The function h, is a positively
homogeneous G-invariant function of degree |ajy = a3+ - -+ a;,. The key ingredient
of the theory is a family of commuting first-order differential-difference operators, D;
(Dunkl’s operators), defined by

f(xoy)
2.2 D; Tvioe,  1<i<d,
(22) Jx) = +Zag [ TB0)s e 12
where ey, ...,eq are the standard unit vectors of R?. The h-Laplacian is defined by
(see [3])

(2.3) Ay =D} + -+ D3,
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which plays the role of Laplacian in the theory of the ordinary harmonics. In par-
ticular, the h-harmonics are the homogeneous polynomials satisfying the equation
ALY = 0; in other words, they are the elements of the polynomial subspace H¢ (h?) :=
P4 Nker Aj,. The h-spherical harmonics are the restriction of h-harmonics on the
sphere.

Basic lemma. We let dw = dwy denote the surface measure on S¢, and the surface
area

Ww=wq = / dwg = 20 D/2 D ((d + 1) /2).
Sd

The standard change of variables from x € R to polar coordinates rx’, x' € S%1,
yields the following useful formula:

(2.4) f dx—/ = 1/ (rx" YW (rx")dwq—1dr.
gd—1

This formula connects the integral on B¢ to S9~! in a natural way. Our basic formula
in the following establishes another relation between integrations over the unit sphere
and over the unit ball.

LEMMA 2.1. Let H be defined on R4, Assume that H is symmetric with respect

to xq.1; ie., H(x,2z441) = H(x,—24+1), where x € R%. Then for any continuous
function f defined on S?,

@5 [ i@ = [ [ TP + o~y T )
H(x,/1— |x|2)dx/\/1 —[x]2.

Proof. For y € §%, we write y = (v/1 — #2x,t), where x € S9! and —1 <t < 1.
Then it follows that (cf. [21, p. 436])

dwg = (1 —t*)4=2/2dt dwy_,.

Starting from the change of variables y = (v/1 — t2x, t) in the integral, we get
LY d“’d_/ /S 1 V1= 2%, ) H(V/1 = 2%, t)dwg_1 (1 — 13) =D/ 2t
/ /Sd . VI-82x0) + f(V1-2x, —t)}H(mx Bdwa_1 (1 — £2)@=2/2gy
o R e B e (e e

Vi
dx
-/ [f(x, VIR o=/ TP B VT )5

where in the second step we have used the symmetry of H with respect to x441, in
the third step we have changed the variable ¢ — /1 — r2, and in the last step we have
used (2.4). d

As a special case of this theorem, we notice that the Lebesgue measure on S? is
related to the Chebyshev weight function 1//1 — [x|2 over B9,
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3. Orthogonal polynomials on spheres. Our main result in this section
shows a connection between orthogonal polynomials on B? and those on S?, which is
the surface of B4t by definition. To be more precise, we need some notation.

Throughout this section we fix the following notation: for y € R4+, we write

(31) y = (y17 s 7yd7yd+1) = (y/ayd-‘rl) =TX= T(X/,$d+1)7 X € Sd7 X/ € Bda

where 7 = |y| = \/yf +--- +y3,, and X' = (z1,...,24).

DEFINITION 3.1. A weight function H defined on R is called S-symmetric if it
is symmetric with respect to yq+1 and centrally symmetric with respect to the variables

vy =, ya); te.,
(3.2) H(Y',yar1) = HY', —yar1) and H(y',yas1) = H(=y',yas1)-

For examples of S-symmetric weight functions, we may take H(y) = W(y")h(ya+1),
where W is a centrally symmetric function on R? and A is an even function on R.
There are many other examples of S-symmetric functions, including

Hy)= [ W -v

1<i<j<d+1

s
7, Qg 2 07

which becomes, when «;; = «, an example of reflection invariant weight functions
considered by Dunkl (associated with the octahedral group). We note that, however,
the weight function [];_; [y; — y;|* associated with the symmetric group is not an
S-symmetric function, since it is not symmetric with respect to y44+1. Nevertheless,
this function is centrally symmetric in R%T1. In fact, it is easy to see that S-symmetry
implies central symmetry on R4t which we formally state in the following proposi-
tion.

PROPOSITION 3.2. If H is an S-symmetric weight function on R*tY, then it is
centrally symmetric on R4 ; that is, H(y) = H(—y) for all y € RI*1,

In association with a weight function H on R%t!, we define a weight function Wy
on B¢ by

(3.3) Wy (x) = H(x,y/1—-|x[?), x¢& B%

If H is S-symmetric, then the assumption that H is centrally symmetric with respect
to the first d variables implies that W is centrally symmetric on B?. We denote
by {P'} and {Q}} systems of orthonormal polynomials with respect to the weight
functions

(3.4) WP(x) =2Wy(x)/v/I—|x?7 and WP (x) = 2Wx(x)v/1— ]2,

respectively, where we keep the convention that the superscript n means that P’ and
Q} are polynomials in 1%, and the subindex k has the range 1 < k < r¢. Keeping in
mind the notation (3.1) we define

(3.5) YD) =mpPpr(x)  and Y (y) = r"eaa Qi HX),

i

where 1 <k <7l 1<j<r? | and we define Yj%) (y) = 0. These functions are, in

n—1»
fact, homogeneous polynomials in R4+1,
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THEOREM 3.3. Let H be an S-symmetric weight function defined on R¥*!. As-
sume that Wy in (3.3) is a nonzero weight function on B%. Then the functions Yk(lyz (y)

and Y;fif (y) defined in (3.5) are homogeneous polynomials of degree n on R4 and
[V o H s = bbby, 5= 1,2
s

Proof. From the definition of Wy in (3.3), it follows that both WI({D and Wl(f)
in (3.4) are centrally symmetric weight functions on B?. As a consequence, the
polynomials P’ and Q} are even functions if n is even and odd functions if n is odd.
In fact, recall the notation PP, in section 2; it is known (cf. [22]) that there exist proper
matrices D,, ; and F;, such that

n+1 Z l'zDrz;i]P)n + Fn]P)nflv

from which this conclusion follows easily from induction (cf. [23, p. 20]). This allows
us to write, for example,

n
= Z Z ae(x')%, ae €R, x' € BY,
7=0 |a|y=2j
where o € N¢, which implies that

n

1 n n n— [e3
YO ) =Py =3 e ST gy

k=0 o1 =2k

Since r? = yi + - +yj, and y’ = (y1,...,ya), this shows that Y;l?)n(y) is a ho-
mogeneous polynomial of degree 2n in y. Similar proof can be adopted to show that
Yk(,lg)n_1 is homogeneous of degree 2n — 1 and, using the fact rzgy1 = yg+1, that Yk(zrz
are homogeneous of degree n.

Since Y( ), when restricted to S¢, is independent of 4,1 and Yk( 2) contains a
single factor a:d+1, it follows that

Y %)Y (x)H(x)dwa = / a1 PP (x)QP (x') H (x)dwg = 0

Sd Sd

for any (k,n) and (I,m). By the basic formula (2.6),

dx’
YV (%)Y (x) H(x)d :2/ PMx) P (X VH (X, /1 — %) e
/sd k,n()lm() (x)dwa . % (x') P (x")H (X, [x'[?) 1— X2

- / PR ) P WD (%)X = 8516
Btl

and similarly, using the fact that 23, , =1 —[x|?,

Yo (Y, () H <x>dwd=2/3d<1—|x| QT QP O H VI K

Sd

X)W (x)dx" = 84.16n.m.

dxl _ n—1/_/
y 1_|X,|2_/Bdczk (')
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This completes the proof. ]
The assumption that H is S-symmetry in Theorem 3.3 is necessary; it is used to
show that Yk(iz and Yk(ZTB in (3.5) are indeed polynomials in y.

Ezample 3.4. If H(y) = 1, then Y(ll) and Y( L) are orthonormal with respect
to the surface measure dw; they are the ordmary spherlcal harmonics. According to

Theorem 3.3, the harmonics are related to the orthogonal polynomials with respect to
the radial weight functions Wy(x) = 1/4/1 — |x|2 and Wy (x) = /1 — [x|2 on B%, both
of which belong to the family of weight functions W, (x) = W, 4(x) = w,(1— x[2)k—z,
p > —1/2; whose corresponding orthogonal polynomials have been studied in [1, 6,
25]. For d = 1, the spherical harmonics are given in the polar coordinates (y1,y2) =

r(x1,x2) = r(cosd,sin @) by the formula (1.1), which can be written as
YV (yr,92) = 7" Tu(z1) and Y, (y1,40) = r"woUn-1(21),

where, with ¢t = cosf, T,(t) = cosnf and U,(t) = sinnfd/sinf are the Chebyshev
polynomials of the first and the second kind, which are orthogonal with respect to
1/v/1 =22 and /1 — 22, respectively. It is this example that motivates our present
consideration. O

DEFINITION 3.5. We define a subspace HIt1(H) of P4+ by

HY(H) = span{Yk(}n), 1<k<r® and v® 1<j< rd 1}

g

THEOREM 3.6. Let H be an S-symmetric function on R, For each n € Ny,

dim HI Y (H) = ( ntd ) - ( ntd-2 ) = dim P2 — dim PHHL,

d d
Proof. From the orthogonality in Theorem 3.3, the polynomials in {Yk " j(i)}
are linearly independent. Hence, it follows readily that
dim M (H) = rd 40l = ( ntd—1 ) N ( n+d—2 )
n n—1
where we use the convention that (’;) = 0 if j < 0. Using the identity (”*m) —

() = (e

n n—1

), it is easy to verify that

. d+1 _(ntd\ [ n+d-2
dimH; ™ (H) = < d ) ( d ,
which is the desired result. 0

THEOREM 3.7. Let H be an S-symmetric function on R, For n € Ny,

in/2)
Pt = EB [y M (HD);

that is, if P € PYtL, then there is a unique decomposition

[n/2]
Z ‘y|2kpn Qk ) Pn—2k € H;iztlmc(H)
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Proof. Since P is homogeneous of degree n, we can write P(y) = r"P(x), where
we use the notation in (3.1) again. According to the power of y441 being even or odd
and using 2 g =1-x |2 whenever possible, we can further write

P(y) =r"P(x) =r"[p(x') + za+1q9(x)],

where p and ¢ are polynomials of degree at most n and n — 1, respectively, in x’ € B?.
Moreover, if n is even, then p is even and ¢ is odd; if n is odd, then p is odd and ¢ is
even. Since both {P/'} and {Q7} form a basis for TI% and since the weight functions

WI(; ) and WI({2 ) in (3.4) are centrally symmetric, we have the unique expansions

[n/2] [(n—1)/2]
=2 2 sl and g = D D baQi (),
k=0 g k=0 J
where 1 < j <r¢_, . Therefore, by the definition of Yk(ln and Yk > We have
[n/2] [(n—1)/2]
P( :Z 2kzaﬂk ]n 2k )+ Z 2k 1ij n 2k+1( )
k=0 k=0

which is the desired decomposition. The uniqueness follows from the orthogonality in
Theorem 3.3. ]

For the spherical harmonics or hA-harmonics, the above theorem is usually es-
tablished using the differential or differential-difference operator (cf. [19, 2]). The
importance of the results in this section lies in the fact that they provide an approach
to studying orthogonal polynomials on S¢ with respect to a large class of measures.
For example, one of the essential ingredients in the recent work of orthogonal poly-
nomials in several variables (cf. [22, 24]) is a three-term relation in a vector-matrix
form,

—Anzpn+1+Bn1P +An 11 n—1,

where A, ; and B, ; are proper matrices, which also plays a decisive role in the study
of common zeros of P, and cubature formulae; the results in Theorem 3.3 show that
the h-spherical harmonic polynomials that are even (or odd) in 2441 also satisfy such
a three-term relation.

It is worthwhile to point out that the relation between orthogonal polynomials
on B? and those on S¢ goes both ways. In fact, the following result holds.

THEOREM 3.8. Let H be a weight function defined on R4 which is symmetric
with respect to yqi1. Assume that Wy in (3.3) is a nonzero weight function on B?.

Let Yk(lrz be the orthonormal polynomials of degree n with respect to H(y)dw on S?
that are even in yqy1, and write the orthonormal polynomials that are odd in Y441 as

deYk(?nl 1- Then

Prx) =Y (/1= [x[2) and QR(x) =Y, ) (x, /1~ [x]P)

are orthonormal polynomials of degree n in x € B¢ with respect to Wg) and Wl(f)
defined in (3.4), respectively.

Proof. The orthogonality follows easily from Lemma 2.1 as in the proof of The-
i)

orem 3.3. We show that the assumption on Yk(n is justified. Since H is symmetric
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with respect to yg+1, we can pick the orthogonal polynomials with respect to Hdw
on S¢ as either even in Ya+1 or odd in y44;1 (recall the nonuniqueness of orthonormal
bases). Indeed, if Y,, is a polynomial of degree n orthogonal to lower degree polyno-
mials with respect to Hdw, so is the polynomial Y, (y’, —y4+1) by the symmetry of H
with respect to yq4+1. Hence, if n is even, then the polynomial Y, (y) + Y. (y', —va+1)
is an orthogonal polynomial of degree n which is even in yg41; if n is odd, then we
consider Y,,(y) — Y, (y', —ya+1) instead. Therefore, the polynomials P’ and Q7 are
well defined on B¢, d

It should be noted that there is no need to assume that H is S-symmetric in the
above theorem; consequently, there is no assurance that Yk(gl are homogeneous.

In an effort to understand Dunkl’s theory of h-harmonics, we study the orthogonal
polynomials on S¢ associated to h(y) = |yi|* - |yd+1|0‘d+1 in detail in [26]. In
particular, making use of the product structure of the measure, an orthonormal basis
of h-harmonics is given in terms of the orthonormal polynomials of one variable with
respect to the measure (1 —¢2)*|t|?* on [~1,1] (which in turn can be written in terms
of Jacobi polynomials). By Theorem 3.8, we can then derive an explicit basis of
orthogonal polynomials with respect to Wi (x) = 21| - - - |xg| (1 — |x|?)¥a+1,

The theory of the h-harmonics developed by Dunkl recently is a rich one; it has
found applications in a number of fields. For numerical work, one essential problem
in dealing with h-harmonics is the construction of a workable orthonormal basis for
HI+L(h2?). So far, such a basis has been constructed only in the case of h(y) =
ly1]|®t -« - Jyge1|¥e+1, associated to the reflection group Zs X -+ X Zy. Theorem 3.3
indicates that an explicit construction of such a basis may be difficult for the reflection
invariant weight functions h associated with most of other reflection groups. We
illustrate by the following example.

Example 3.9. Consider the weight function h on R? defined by

h(y1y2,y3) = |7 — v3) (W5 — v3) (w3 — v3)|",

which is associated to the octahedral group; the group is generated by the reflections
iny; =0,1<¢<3,andy; £y; =0, 1 < 4,5 <35 it is the Weyl group of type
Bs. This weight function is one of the simplest nonproduct weight functions on S2.
According to Theorem 3.1, the h-harmonics associated to the function H(y) = h?(y)
are related to the orthogonal polynomials on the disc B? C R? with respect to the
weight function W(l) and W;IQ) in (3.4), where the weight function Wg) is given by

WP (a1, 22) = 2|(—a3) (1203 —ad)(1-aF 223/ \/1 — 2} — 23, (21,72) € B2,

An explicit basis for the h-harmonics will mean an explicit basis for orthogonal poly-

nomials with respect to WI(; ) and vice versa. However, the form of WI(; ) given above
indicates that it may be difficult to find a closed formula for such a basis. O

4. Cubature formula on spheres and on balls. In this section we discuss the
connection between cubature formulae on spheres and on balls. For a given integral
L(f) := [ fdu, where du is a nonnegative measure with support set on B, a cubature
formula of degree M is a linear functional

() =D Mf(xi), >0, x€RY
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defined on IT%, such that £(f) = Zp/(f) whenever f € 114, and L(f*) # Za(f*) for at
least one f* € 114, +1- When the measure is supported on S?, we need to replace 114,

by Uk 0 PdH in the above formulation and require x; € S?. The points x1,...,Xy
are called nodes and the numbers Aq,..., Ay are called weights. Such a formula is
called minimal if IV, the number of nodes, is minimal among all cubature formulae of
degree M.

Cubature formulae on the unit sphere have important applications in numerical
integration and in areas ranging from coding theory to isometric embeddings between
classical Banach spaces (cf. [11, 15, 16] and the references therein). Over years,
construction of cubature formulae on the unit sphere with respect to the surface
measure dw has attracted a lot of attention. For example, starting from the pioneer
work of Sobolev (cf. [17]), the Russian school of mathematicians have constructed
various cubature formulae on S? that are invariant under finite groups (cf. [14, 10]
and the references therein). There are also important studies on Chebyshev cubature
formulae, which are formulae with equal weights (cf. [9, 11, 15] and the references
therein). Nevertheless, the simple results we present below on the connection between
cubature formula on balls and on spheres do not seem to have been noticed before.

THEOREM 4.1. Let H defined on R4+ be symmetric with respect to yq,1. Suppose
that there is a cubature formula of degree M on B for Wy defined in (3.3),

(4.1 [, sominto— s S gl gem

i=1

whose N nodes lie inside the unit ball B%; that is, |x;| < 1. Then there is a cubature
formula of degree M on the unit sphere S¢,

(42) | JOHy)d
N
:ZMMm¢iﬂﬁwﬂmfﬂfﬁﬂ,erW“

Proof. Assuming (4.1), to prove (4.2) it suffices to prove, by Lemma 2.1, that

(4.3) /Bd [f()g V1= xP) +£(x, mﬂ Wi (x \/W

=3 [ TR + S~ T )]
i=1

for all polynomials f € I1¢,. We consider the basis of Uk o ”PdH consisting of mono-
mial {fa}ja|, <, Where fa( ) =y® and a € N4*L If £, is an odd function in y4. 1,
then both the left side and the right side of (4.3) are zero, so the equality holds. If
fa is even in y441, |a|1 < M, then the function

Fa(, /T = x[2) = x (1 = [x[?) 2o/,

where we write & = (o, a44+1), is a polynomial of degree at most M in x. Hence, it
follows from the cubature formula (4.1) that

N
=3 Xif(xi, £V/1 = [xi]?)

/fx:l: 1—|x]2)Wg(x \/7‘2
i=1
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holds. Adding the above equations for f(x,+/1 — |x|?) and for f(x,—+/1— |x]?)

together proves (4.3). O
The theorem states that each cubature formula on the unit ball B? leads to a
cubature formula on the unit sphere S¢. The converse of this result is also true.
THEOREM 4.2. Let H be a weight function on R which is symmetric with
respect to xq11. Suppose that there is a cubature formula of degree M on the sphere

Sd
(4.4) f( dw—ZAfyl fe Updﬂ

whose nodes are all located on S®. Then there is a cubature formula of degree M on
the unit ball B¢

4.5 2/ g(x Aig(x;), g e ¢
( ) B ( m Z M

i=1

where x; € B are the first d components of y;; that is, y; = (Xi, Tat1,i)-
Proof. By Lemma 2.1, the cubature formula (4.4) is equivalent to

(16) [ [506 VIR + st~V P W) - ;)\fyz

If we write y = (x,7441) € R where x € R?, then for every monomial g, (x) =
x® € 4, the function f, defined by fu(y) = ga(x) is a polynomial in PZ ™!, where
laly = &k < M. We can apply cubature formula (4.4) to it. Since f so defined is
apparently even in x441, the cubature (4.6) becomes cubature formula (4.5). d

Although these theorems are simple to state, they have important implications.
They allow us to fit a large class of cubature formula on spheres into the structure
of cubature formulae on balls, which suggests an alternative approach to study and
construct cubature formulae.

Ezample 4.3. In the case d = 1, the formula (4.1) under the change of variable
x = cos § becomes

™ N
/ g(cos )W (cos6)db = Z Aig(cosb;).
0

i=1
On the other hand, we can write the integral over S* in the polar coordinates as

2
f(y)H(y)dw = f(cos,sin0)H(cos 8, sin 0)d6.
1 0

Since H is symmetric with respect to xg, it follows that Wy (cos@) = H(cos8,sin )
in the notation of (3.3). Hence, (4.2) becomes

2m N
f(cos,sin )Wy (cos6)dl = Z Ai [f(cos 0;,sin0;) + f(cosb;, —sin 01)}
0 i=1

From these formulae the relation between (4.1) and (4.2) is evident. |
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In a separate paper we will present a number of examples on S? that are obtained
using this approach. Here we concentrate on the theoretic side of the matter. What
we are interested in is the minimal cubature formula, or cubature formula whose
number of nodes is close to minimal.

We state the lower bounds on the number of nodes of cubature formulae, which
are used to test whether a given cubature is minimal. Let us denote by Ng« the
number of nodes for a cubature formula on B¢, and by Nga the number of nodes for
a cubature formula on S?. It is well known (cf. [7, 18]) that

(4.7) NdedimH‘fL:<nZd>, M=2n or M =2n+1,

and

(4.8) N5d>ZdimHﬁ“:(n:d) +(”;§f;1)7 M=2nor M=2n+]1,
k=0

where the equal sign in (4.8) follows from the formula for dim H{™ (cf. Theorem
3.6 with H = 1) and simple computation. Moreover, for centrally symmetric weight
functions there are improved lower bounds for cubature formula of odd degree, due
to Moller for Nga and to Mysovskikh for Nga (cf. [13, 14]), which states that

n -+ 2 n+1 _
(4.9) NBzz( : >+{ . } M=2n+1,
and
(4.10) Nsd>2(":d), M=2n+1,

where, for simplicity, we have restricted the lower bound of Nga to the case d = 2.
Several characterizations of cubature formulas on B¢ that attain the lower bound

in (4.7), or (4.9), are known. For example, there is a cubature formula that attains

the bound (4.7) for M = 2n + 1 if, and only if, the corresponding orthogonal polyno-

mials P1"+1, ceey Pﬁfl of degree n + 1 have dim I1¢ many distinct real common zeros.
n+1

The characterization for the case (4.7) with M = 2n and the case (4.9) for centrally
symmetric weight functions will involve common zeros of quasi-orthogonal polynomi-
als. For these characterizations and extensions of them we refer to [12, 14, 23, 24]
and the references therein. In view of the results in section 3, we see that when H is
centrally symmetric, we can relate these characterizations to orthogonal polynomials
on spheres.

Let us consider the number of nodes of the cubature formulae in (4.2) and (4.5).

Remark 4.4. In Theorem 4.1, the number of nodes in the cubature formula (4.2)
may be less than 2N, since if one of the nodes of (4.1), say x;, lies on the boundary
OB = S471 then |x;| = 1 and two nodes (x;,1/1 — |x;|2) and (x;, —/1 — |x;|?) in

(4.2) become one. That is,
(4.11) number of nodes of (4.2) = 2N — number of x; on S9!,

Similarly, in Theorem 4.2, the number of nodes in the cubature formula (4.5) may
be less than N, since different y; € S¢ may have the same first d components, which
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happens when y; and y; form a symmetric pair with respect to the last component;
ie., yi = (xi,xay1) and y; = (X4, —@g41) with xq11 # 0. We conclude that

(4.12)  number of nodes of (4.5) = N — number of symmetric pairs among y;.

Clearly, the number of nodes in (4.5) satisfies a lower bound N/2, which is attained
when the nodes of (4.4) consist of only symmetric pairs. 0

It is important to remark that even if the cubature formula (4.1) on B¢ in Theorem
4.1 attains the lower bound (4.7) or (4.9), the cubature formula (4.2) on S¢ may not
attain the lower bound (4.8) or (4.10), respectively. For example, when d = 1, the
formula (4.1) for M = 2n + 1 attains the lower bound (4.7) with Ng: = n + 1, which
is the classical Gaussian quadrature formula. On the other hand, the corresponding
formula in (4.2) attains the lower bound (4.8) with Ng1 = 2n + 1 only when z = 1
or x = —1 is a node of (4.1), which does not hold in general since the nodes of a
Gaussian quadrature formula on [—1, 1] are zeros of orthogonal polynomials and are
located in (—1,1).

As an immediate consequence of these lower bounds and Theorems 4.1 and 4.2,
we formulate a corollary that seems to be of independent interest.

COROLLARY 4.5. Let H be an S-symmetric weight function on R3. If there is
a cubature formula of degree 2n + 1 with respect to H on S? that attains the lower
bound in (4.10), then it contains at least 2[(n + 1)/2] nodes which are not symmetric
with respect to xs.

Proof. Assume that a cubature formula with respect to H on S? exists which
attains the lower bound in (4.10). Let E be the number of symmetric pairs among
the nodes of the cubature. By Theorem 4.2 and (4.12), there is a cubature formula on
B? with Ngo —E = 2(":2) — FE many nodes. Moreover, the weight function associated
with the new cubature formula is centrally symmetric on B2. Hence, by (4.9), we have
the inequality that

st—E:2( n+2>_E2 ( 71—}—2)4_{71—1—1}7

n n 2
from which we get an upper bound for E. Evidently, the number of nodes that do not
contain symmetric pairs is equal to Ng2 — 2F. Hence, the upper bound for F leads
to a lower bound on the number of nodes that are not symmetric with respect to zs,
which gives the desired result. 0

In particular, if the cubature formula on S? is symmetric with respect to s,
which means that the node of the cubature always contains the pair (z1, 22, z3) and
(21, %2, —x3) whenever 3 > 0, then there are at least 2[(n + 1)/2] many nodes on the
largest circle 3 + 22 = 1 which is perpendicular to z3 axis. Results as such provide
necessary conditions on the minimal cubature formulae; they may provide insight in
the construction of the minimal formula or can be used to prove that such a formula
does not exist. An analogue of Corollary 4.5 is as follows.

COROLLARY 4.6. If there is a cubature formula on B? that attains the lower
bound in (4.9) with all nodes in B?, then it can have no more than 2[(n+1)/2] points
on the boundary 0B? = S'.

Proof. If a cubature formula on B? as stated exists which attains the lower bound
(4.9), then by Theorem 4.1 and (4.11) there is a cubature formula on S? with

1
N522( n:2 >+2[n—2|— }fnumberofnodesonSl.
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The desired result then follows from the lower bound (4.10). a

We conclude this paper with another simple application dealing with Chebyshev
cubature formulae, which are cubature formulae with equal weights. It is proved in [9]
that the number of nodes of a Chebyshev cubature formula of degree M with respect
to 1/4/1 — |x[2on B? is of order O(M?3). Furthermore, it is conjectured there that
the number of nodes of a Chebyshev cubature formula of degree M with respect to
the surface measure on S? is of order O(M?).

COROLLARY 4.7. If there is a Chebyshev cubature formula of degree M with
respect to the surface measure on S* whose number of nodes is of order O(M?), then
its nodes cannot all be symmetric with respect to a plane that contains one largest
circle of S% and none of the nodes.

Indeed, if such a cubature formula exists, we may assume that the plane is the
coordinate plane perpendicular to the x3 axis since the integral is invariant under
rotation. Then there are an even number of nodes and all nodes form symmetric
pairs. Therefore, by Theorem 4.2, there would be a Chebyshev cubature formula of
degree M with respect to 1/4/1 — [x|2 on B? with the number of nodes in the order
of O(M?), which leads to a contradiction.
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