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ABSTRACT. This is a survey of interpretations of q-hypergeometric orthogonal polynomials on 

quantum groups. The first half of the paper gives general background on Hopf algebras and quantum 

groups. The emphasis in the rest of the paper is on the SU(2) quantum group. An interpretation 

of little q-Jacobi polynomials as matrix elements of its irreducible representations is presented. In 

the last two sections new results by the author on interpretations of Askey-Wilson polynomials are 

discussed. 

1. Introduction 

Quantum groups, recently introduced by Drinfeld [11], Woronowicz [49] and Jimbo (16], are 

fascinating objects, where many different structures meet and with applications in numer

ous areas. In the present paper we want to emphasize one application which was overlooked 

by the founding fathers of the theory: the interpretation of q-hypergeometric orthogonal 

polynomials, quite analogous to the interpretation of ordinary hypergeometric functions 

and polynomials on special Lie groups, cf. Vilenkin [47]. So the tremendous amount of new 

results on q-special functions during the last 15 years, cf. Askey and Wilson [6], Gasper 

and Rahman [14], Rahman (37] is finally matched by a satisfactory "group" theoretic set

ting. Before the introduction of quantum groups we only knew about interpretations of 

q-Hahn and q-Krawtchouk polynomials on Chevalley groups (cf. Stanton [40], [41]) and of 

q-ultraspherical polynomials with q = 0 on homogeneous trees and SL2 over the p-adics 

( cf. Cartier [9]). 

Until now, the best studied quantum group is SUq(2), the quantum analogue of the group 

SU(2). Vaksman and Soibelman (45] were the first to observe that the matrix elements of 

the irreducible unitary representations of this quantum group can be expressed in terms 

of little q-Jacobi polynomials. The same observation was independently made by Masuda 

e.a. [27], (28] and by the author [21]. Various other classes of q-hypergeometric orthogonal 

polynomials have been interpreted in connection with SUq(2), see (32], [33], (17], (18] and 

[22]. In this last reference an addition formula for little q-Legendre polynomials is obtained 

which would have been hard to discover without the interpretation on the quantum group. 

Very recently, significant interpretations of special functions have been found on other 

quantum groups. On the one hand, there are results on more general "compact" quantum 
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groups like SUq( n), cf. Noumi e.a. [34]. On the other hand, work is starting now on quantum 

analogues of non-compact Lie groups like the group of plane motions ( cf. Vaksman and 

Korogodsky (44]) and SU(l, 1) (cf. Masuda e.a. [29]). 

During the preparation of this manuscript the author obtained an interpretation of contin

uous q-Legendre polynomials as "spherical" matrix elements of irreducible representations 

of SUq(2). For ordinary SU(2) the definition of spherical depends on the choice of the 

subgroup, for instance S(U(l) x U(l)) or S0(2), but, still, all one-parameter subgroups 

are conjugate and thus yield the same spherical functions. However, in the quantum group 

case the "subgroups" are no longer conjugate and give rise to different types of "spherical 

functions", for instance little q-Legendre and continuous q-Legendre polynomials. Next, by 

a further generalization of the notion of spherical element and with some inspiration from 

Noumi's and Mimachi's recent preprint [32], asimilar interpretation could be obtained for a 

two-parameter family of Askey-Wilson polynomials. As a spin-off there followed the obser

vation that one can pass from Askey-Wilson polynomials to little or big q-J acobi polynomials 

by taking suitable limits. 

The connection which has thus been made between quantum groups and the "master 

family" of Askey-Wilson polynomials looks very promising for future research, for instance, 

for giving a quantum group theoretic proof of the Rahman-Verma [38] addition formula 

for continuous q-ultraspherical polynomials and for interpreting on quantum groups Mac

donald's ((24), [25]) q-orthogonal polynomials associated with root systems. 

The contents of this paper are as follows. Section 2 is a tutorial presenting the basics 

of Hopf algebras. In section 3 we introduce compact matrix quantum groups, in particular 

SUq(2). Section 4 deals with the general representation theory, due to Woronowicz, of 

such quantum groups. In §5 this is applied to SUq(2), and little q-Jacobi polynomials 

are obtained as matrix elements of the irreducible corepresentations of the corresponding 

Hopf algebra. Section 6 briefly reviews some further interpretations of special functions on 

quantum groups. Finally, sections 7 and 8 deal with the new interpretations by the author 

of Askey- Wilson polynomials on SUq(2), for which full proofs will be published elsewhere. 

For the case of continuous q-Legendre polynomials an idea of the proof is given in §7 in fairly 

complete detail. In §8 the main results for the larger two-parameter family of Askey-Wilson 

polynomials are just stated. 

While reading these expository notes, it may be helpful to consult the tutorials by Rah

man [37] and Stanton [41] in these Proceedings. 

NOTATION. Z+ denotes the set of nonnegative integers. 

2. Hopf Algebras 

Although the term quantum group sounds quite attractive, the name is in fact somewhat 

misleading: first, because a quantum group is generally not a group, and, second, because 

the relationship with quantum mechanics is, in my opinion, not as clear and unambiguous 

as one might wish. If one still wants to get an impression of what is meant by a quantum 

group, one way would be to study a number of generally accepted examples of quantum 

groups. Another way, following Drinfeld [11], would be to define a quantum group as the 

spectrum of a (not necessarily commutative) Hopf algebra. So let us turn to Hopf algebras. 
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2.1. ALGEBRA OF FUNCTIONS ON A GROUP 

The definition of Hopf algebras may overwhelm the uninitiated reader at first confrontation. 
Therefore, we will start with a detailed discussion of the guiding example: an algebra of 
functions on a group. 

Let G be a group. Thus there is a multiplication (x,y) ....., xy:G x G --+ G, a unit 
element e E G and a mapping of taking the inverse x....., x- 1: G--+ G, which together satisfy 
the well-known group axioms. Let A := Fun(G) be some complex associative algebra 
with unit consisting of complex-valued functions on the group G, where the multiplication 
(a, b) ,...... ab: A x A --> A and the unit I E A are defined pointwise: 

(ab)(x) := a(x) b(x), I(x) := l for all x E G. 

Note that this is a commutative algebra. To start with, one may think about Fun(G) as 

the algebra of all complex-valued functions on G. 
The group operations induce certain operations on the algebra A: 

(i) A comultiplication ii>: Fun(G)--+ Fun(G x G) defined by 

(<r>(a))(x, y) := a(xy), x,y E G. 

(ii) A counit e: Fun(G)--+ C defined by 

e(a) := a(e). 

(iii) An antipode 1c Fun(G)--> Fun(G) defined by 

x E G. 

Note that the mappings ii>, e and K are unitai algebra homomorphisms. 
We will rewrite the comultiplication by using tensor products. There is a linear embedding 

of Fun( G) ® Fun( C) in Fun( G x G) such that 

(a®b)(x,y) := a(x)b(y), x,y E G, 

for all a, b E Fun( G). Hence also 

(~a;® b;) (x,y) = ~a;(x)b;(y) (finite sum). 

(To start with, the tensor products under consideration are algebraic, so they involve only 
finite sums.) In particular, if G is an algebraic group over C and if we take for A the algebra 
Pol(C) of all polynomial functions on G, then the above linear embedding becomes a line~r 
isomorphism: Pol( G) ® Pol( G) ::::: Pol( G x G). By way of example let G be the algebraic 

group 
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Let a be the polynomial function 

and let similarly /3,1,8 be the polynomial functions which map (: ~) toy, u, v, respec

tively. Then Pol(G) consists of all functions on G which can be written as polynomials in 

a,/3,1,8. 
As another example let G be a compact group and let .A := C(G), the algebra of all 

continuous functions on G. Then C(G x G) can be identified with the topological tensor 
product of C(G) with C(G), i.e., embed the algebraic tensor product of C(G) with C(G) 
in C(G x G) as before and then take the completion with respect to the supremum norm 
on G x G. 

Thus, in many cases, we can view the cornultiplication <I> as a unital algebra homo
morphism <I>: .A --> .A 0 .A. Here A 0 A is an algebra with multiplication such that 

(a 0 b)(c 0 d) = ac ® bd, and with unit I 0 J. 
We can also extend the multiplication in A, which is initially given as the bilinear mapping 

(a, b) >--+ ab: A x A --> A, to tlte linear mapping 

rn: La; ® b; ,__... L a;b;: A 0 .A ___, .A. 
i 

Note that, if F EA 0 A, then 

(rn(F))(x) = F(x,x). 

We will next rewrite the group axioms for Gin terms of axioms for <P, e and K: 

(i) The associativity (xy)z = x(yz) yields a((xy)z) = a(x(yz)) for functions a on G. Thus 
we have the coassociativity axiom 

( <P 0 id) 0 <P = (id 0 <P) 0 <P. 

(ii) ex= x = xe for x E G. Hence a(ex) = a(x) = a(xe). This yields the counit axiom 

(e@id)o<P =id= (id®e)o<P. 

(iii) If G is a commutative group then xy = yx for all x, y E G. Hence a( xy) = a(yx ). Define 
the linear mapping er: A© A --> A 0 A such that er( a 0 b) = b 0 a (the flip automorphism). 
Then we have, for commutative G, the cocommutativity property 

ao<P=<l>. 

(iv) x- 1 x = e = xx- 1 for x E G. Hence a(x- 1x) = a(e) = a(xx- 1 ). We will rewrite 
a(x- 1x) by using <P, Kand rn. Observe that 

(<l>(a))(x, y) = a(xy), hence (((/(,®id) o <P)(a))(x, y) = a(x- 1 y). 
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Thus 

((m o (x: 0 id) o <I>)(a))(x) = (((x: 0 id) o <I>)(a))(x,x) = a(x- 1 x). 

We can rewrite a( xx- 1 ) in a similar way, while a( e) = e( a )J(x ). Thus we have the antipode 

axiom 

(m o (,,; 0 id) o <I>)(a) = e(a)I = (m o (id@,,;) o <I>)(a). 

The group G can often be recovered from Fun(G). As a first example consider an algebraic 

group G and let A := Pol( G), the algebra of polynomial functions on G. Then x: A -+ C is 

a unital algebra homomorphism if and only if there exists x E G such that x(a) = a(x), and 

this establishes a one-to-one correspondence x ,.... x between characters x of A and elements 

x of G. If Xi(a) = a(x1) and X2(a) = a(x2) then 

so we can also recover the group multiplication on G from the comultiplication on A. 

As a second example let G be a compact group and let A := C(G), the algebra of 

continuous functions on G. Then C(G) is a commutative C*-algebra with unit, where the 

*-operation is given by pointwise complex conjugation: a*(x) = a(x). The Gelfand theory 

for commutative C*-algebras tells us that x: A_,. C is a unital *-algebra homomorphism if 

and only if there exists x E G such that x(a) = a(x). 

Since <I>: A _,. A 0 A is an algebra homomorphism, it is already determined by its action 

on a set of generators for the algebra A. For instance, if G := S L(2, C) and A := Pol( G) 

then the functions a,(3,1,8 which send(: ;) to x,y,u,v, respectively, form a set of 

generators of A. Let us compute, for instance, if>( a). 

= (a 0 a + f3 @ I) ( ( ~~ 

Similarly we compute the action of <I> on {3,1,6. Thus we obtain: 

<I>(a) = a@a+f3@1, <P((J) = a@f3+/3@8, 

<P(J)=10a+801, <P(8)=1®/J+o00, 

and this determines <I>( a) for all a E A. 

(2.1) 
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The above derivation can be done in a more conceptual way if we use the notion of matrix 

representation, i.e. a homomorphism 

(
7ru_(x) ... 11"1n.(x)) 

7r:x~ • . . . 
7!'n1(x) 11"nn(x) 

of the group G into the group of invertible complex n x n matrices. Then the matrix 

elements 71';; are functions on G. Under further requirements on 71' these functions may be 

continuous, C00 , analytic, polynomial, etc. Let us consider how <1.i, e and K act on the 11'i;: 

(i) We have 7r(xy) = 7r(x)7r(y), hence 11'ij(xy) = L:k 11'ik(x) ® 11"kj(y). Thus 

Cf>(7r;;) = 2: 11'ik ® 11"kj· 
k 

(ii) We have 7r(e) =I, hence 11"ij(e) = bij· Thus 

(iii) We have 7r(x-1)7r(x) = 7r(e) = 7r(x)7r(x-1), hence 

L 11';k(x-1 )11'kj(x) = 7r;;(e) = L11'ik(x)11"kj(x-1). 
k k 

Thus 

L x:(11'ik) 11'kj = O;jl = L 11'ik K(11'kj)· 
k k 

(2.2) 

In the example of SL(2, C), with g .- (: ~), we have a two-dimensional matrix 

representation 

g 1---4 ( Q(g) f3(g)) 
'Y(Y) 8(g) ' 

which explains (2.1) in view of (2.2). 

2.2. DEFINITION OF HOPF ALGEBRA 

The reader may now be sufficiently prepared to digest the general definition of a Hopf 

algebra. Let A be a complex linear space. Then A is a Hopf algebra if the following four 
properties are satisfied: 

(i) A is an associative algebra with unit I, where the multiplication (x,y) H- xy is linearly 
extended to m: A ®A -> A. 

(ii) A is a coassocia.tive coalgebrawith comultiplication CJ>:A _. A®A and counit e:A--+ C 
(linear mappings) satisfying 

(<1.i®id)o<li=(id®<li)o<li and (e®id)o<li=id=(id@e)o~. 
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(iii) .A is a biaJgebra, i.e., .A satisfies both (i) and (ii), and the mappings <I>: .A -+ .A 0 .A and 

e: .A-+ C are unital algebra homomorphisms. 

(iv) There is an antipode 1>: .A -+ .A (linear mapping) satisfying 

(m o (1> 0 id) o <I>)(a) = e(a)I = (m o (id@ 1>) o <l>)(a) for all a EA. 

In general, Ko 1> f. id (1> is not involutive) and 1>(ab) f. 1>(a)K(b) (1> is not multiplicative). 

However, it can be shown that 

1>(ab) = 1>(b)1>(a), K(l) =I, a o (1>@ 1>) o i[> =<I> o K, e o 1> = e, 

so 1> is an anti-multiplicative unital algebra homomorphism and an anti-comultiplicative 

counital coalgebra homomorphism. 

2.3. COREPRESENTATIONS OF HOPF ALGEBRAS 

Let .A be a Hopf algebra. A matrix corepresentation of .A is a matrix 

such that 

( 
uu 

u = 1l~l 
U'.:n) with Uij E .A 

Unn 

n 

<Ii(u;j) = L u;k 0 Ukj and e(u;j) = Oij· 

k=l 

(2.3) 

If .A= Fun(G) for some group G then this definition is equivalent to the definition of matrix 

representation of G. It is possible to give a more abstract definition of corepresentation 

without use of matrices, for which we refer to the literature. 

It follows from the antipode axiom that 

n n 

L K( U;k) Ukj = O;j I= L Uik !>(Ukj)· (2.4) 

k=l k=l 

Two corepresentations u and v of .A are called equivalent if u and v are matrices of the 

same size n x n and if there is an invertible complex n x n matrix s such that 

SU= VS (matrix products). 

A corepresentation u of .A is called irreducible if u is not equivalent to a corepresentation 

v of the form 

v=(~ :), 
i.e., if not for some m, 1 :5 m :5 n - 1, we have Vij = 0 for all ( i,j) such that m + 1 :5 i :5 n, 

1 :5 j :5 m. 
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2.4. NOTES 

There are two textbooks on Hopf algebras: Sweedler [42] and Abe [1 ]. A concise introduction 

to Hopf algebras is given in Hazewinkel [15, §37.1]. An informal account of some basic 

facts and examples can be found in Bergman [8]. Manin [26] discusses Hopf algebras in 

connection with quantum groups. We have introduced notation for Hopf algebra operations 

as in Woronowicz [49]. In fact, the notation ~for comultiplication, t: for counit and S for 

antipode is more common, cf. [1], [11]. This last notation will be used in §7 for dual Hopf 

algebras, in particular for (quantized) universal enveloping algebras. 

3. Quantum Groups 

In this section we will introduce our main examples of quantum groups: the quantum 

analogues of the groups SL(2, C) and SU(2). We will also give the definition of Hopf 

*-algebras and of compact matrix quantum groups. 

3.1. GENERATORS AND RELATIONS 

Many special Hopf algebras are introduced by means of generators and relations. For 

instance, let G := S L(2, C) and A := Pol( G), the algebra of polynomial functions on the 

algebraic group G. Then A as unital algebra is isomorphic to the commutative unital algebra 

with generators a,/3,7,0 and with relation ao - /37 =I. We can equivalently describe this 

algebra as the free commutative unital algebra generated by a,/3,7,0 divided out by the 

(necessarily two-sided) ideal generated by o.6 - /37 - I. 
We might also describe A as the unital algebra with a priori non-commuting generators 

a, /3, 'Y, o and relations 

a/3 - /3a = 0, 

/]'"( - 'Y/3 = 0, 

0.7 - 'YO. = o, 
ao - oa = 0, 

/38 - ofJ = 0, 'Yo - 67 = 0, 

ao - /37 - I= 0. 
(3.1) 

So A is the free non-commutative unital algebra with generators a,/3,1,0 divided out by 

the two-sided ideal generated by the left hand sides in (3.1 ). 

Note also that the generators are precisely the matrix elements of the corepresentation 

( ~ ~). This determines the Hopf algebra structure of A completely. 

In general, if a Hopf algebra is presented as algebra by means of generators and relations 

then it is sufficient to specify <I>, e and K by their action on the generators, as these operations 

are multiplicative or anti-multiplicative with respect to the multiplication. If it is already 

given that the generators are the matrix elements of a corepresentation then the action of 

<I> and e on the generators follows by (2.3), while K acting on the generators, if it exists, is 

uniquely determined by (2.4). 

3.2. THE QUANTUM SL(2,C) GROUP 

This celebrated quantum group is presented by a deformation of the relations (3.1). We 

will use a deformation parameter q, which we will fix at some nonzero complex value. For 

q = 1 the Hopf algebra Pol(SL(2, C)) will be recovered. 
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Let Aq be the unital algebra with non-commuting generators a,f37y,8 and with relations 

af3 = qf3a, a"(= q"(a, (38 = q8(3, "(C = qC"(, f3'Y = "(/3, 

ac - q/3"( = fo - q-1 f3'Y = I. 
(3.2) 

We define a comultiplication cP and a counit e on Aq by the requirement that ( ~ ~) is 

a corepresentation of Aq. This yields, by (2.3), again (2.1) for cP acting on the generators, 

and 

e(a) = e(c) = 1, e(f3) = e('Y) = 0. 

Also, if we put 

x:(a) = c, x:(c) =a, ,;,(f3) = -q-1(3, x:('Y) = -n, (3.3) 

then (2.4) is satisfied in view of the relations (3.2). The only thing left for the proof that Aq 

is a Hopf algebra, is to show that the relations (3.2) are preserved by cP and e extended as 

homomorphisms and by x: extended as anti-homomorphism. See for instance Woronowicz 

[ 50] for a proof that this is indeed the case. 

We say that the Hopf algebra Aq is associated with the quantum group SLq(2, C). Ob

serve that Aq is a deformation of the commutative Hopf algebra A 1 = Pol(S L(2, C)) into 

a. non-commutative Hopf algebra. As such, Aq is a kind of quantization of A1 , which moti

vates the name quantum group. Observe also that S L(2, C) is rigid within the category of 

complex Lie groups, but has a nontrivial deformation within the wider category of quantum 

groups. 

3.3. HOPF *-ALGEBRAS 

"We will now pass from complex to real by introducing a *-operation. Recall that a *-algebra 

is a complex associative algebra with anti-linear mapping a i-+ a• which is involutive and 

anti-multiplicative, i.e. (a*)*= a and (ab)* = b* a•. If the algebra possesses a unit I (which 

-we will always assume) then it is also required that I* =I. 

A Hopf *-algebra is a Hopf algebra A with a mapping a 1-+ a•: A -+ A such that A 
as an algebra becomes a *-algebra, the mappings cP: A -+ A © A and e: A -+ C are *· 

homomorphisms, and x: satisfies 

II': 0 * 0 II': 0 * = id. 

The two mappings x: and * will not necessarily commute. 

A matrix corepresentation u of A is called unitary if 

(3.4) 

which can, in view of (2.4), be equivalently written as 

Lui;; Ukj = C;j I= L u;k ujk· (3.5) 

k k 
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If A is presented by generators and relations, then the *-operation is already characterized 
by its action on the generators. If the generators are moreover the matrix elements of a 
unitary corepresentation of A then (3.4) shows how * acts on them. 

There is a one-to-one correspondence between the choice of a real form of a complex 
algebraic group G and the choice of a Hopf *-operation on Pol( G). For instance, if .A = 
Pol(SL(2, C)) then the group 

SU(2) := { (: -;Ti) I lxl2 + lul2 = 1} 

is a compact real form of SL(2, C). Now define a >-> a• on .A by first restricting the 
polynomial a to SU(2), then taking pointwise complex conjugates and finally extending the 
resulting function to a holomorphic polynomial on SL(2,C). Thus a*= 8 and /3* = -/. 
On the other hand, the real form SU(2) can be recovered from our knowledge of the *
operation: x:A --+ C is a unital *-homomorphism if and only if there is x E SU(2) such 
that x(a) = a(:r) for all a EA. 

3.4. THE QUANTUM SU(2) GROUP 

From now on consider the Hopf algebra Aq with 0 < q < 1. Often, the results will remain 
valid for the classical case q = 1, sometimes the case q = 1 has to be interpreted by taking 
a suitable limit. Our restriction is mainly for convenience-the assumption that q is real 
and nonzero would also be possible. 

Let a ..-. a*: Aq --+ Aq make Aq into a Hopf *-algebra such that ( ~ ~) is a unitary 

corepresentation. This yields 

a*= 5, 5* =a, /3* = -q/, 1* = -q- 1{3. 

It can be verified that the continuation of * to .Aq as an anti-linear anti-multiplicative 
mapping is well-defined in view of the relations (3.2). Thus Aq becomes a Hopf *-algebra, 
which we say to be associated with the quantum group SUq(2). 

3.5. COMPACT MATRIX QUANTUM GROUPS 

Let us bring a little analysis into this algebraic story. Given a Hopf *-algebra .A, generated 
by the matrix elements of a unitary corepresentation u of A, we want to make A into a 
normed *-algebra, by analogy to Pol(SU(2)) with respect to the sup norm. 

For a Hilbert space 1t let £(7t) be the algebra of all bounded linear operators on H. It 
is a C*-algebra, as we have !ITT*!!= l!Tlj2 . By a *-representation 7r of A on 1t we mean a 
homomorphism ir: A--> £(7t) of unital *-algebras. Define 

llall :=sup llir(a)I!, 7r running over all *-representations of .A. 
11" 

Since u is a unitary corepresentation, we have l!ir( Uij )II ~ 1 for all *-representations 7r and 
for all indices i, j. Hence, for all a E .A, Ila!! will be finite, so II ·II defines a semi norm on A 
and 

Ila* all = l!al!2 , a EA. (3.6) 
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If, moreover, a= o whenever llall = o, or if, equivalently, .A has a fait~ful *-representation, 

t.hen II ·II is a norm on A satisfying (3.6). Let A be the norm completion o~ A as a norm~d 
lmear space. Then the *-algebra operations will also extend to A and A will become a C -

algebra. Moreover, with a suitable definition of C*-tensor product A® A, Cl> also extends 

to a C*-homomorphism of A to A© A. 
We will say that A is the Hopf *-algebra and A is the Hopf C*-algebra. associated with a 

compact matrix quantum group. Here the term matrix quantum group 1s used because A 
is generated by the matrix elements of a corepresenta.tion and the quantum group is called 

compact because the *-algebra can be made into a normed *-algebra. 

By way of example, let G be a compact Lie group. Equi".alently, G is ~somorphic to a 

closed subgroup of SU(n), so we have a faithful unitary matnx rep:esentat10n o~ G. Let A 
be the Hopf *-algebra of polynomials in the matrix elements of this representation. Then 

the above construction makes A into a normed *-algebra with norm given by the supremum 

norm on G. The C*-algebra completion A of .A can be identified with the (commutative) 

C*-algebra C(G) of continuous functions on G- As we observed in §2.1, the group G can be 

recovered from A by considering the *-homomorphisms of A to C. In fact, ea.eh commutative 

Hopf C*-algebra fits into this example, cf. [49, Theorem 1.5]. 
With the above norm and C*-algebra construction we have made contact with Woro

nowicz' general theory [49] of compact matrix quantum groups. In §4 we will state the 

ma.in results of this theory. However, for special quantum groups as SUq(2), it is possible to 

derive such results without reference to the general theory, by only using the Hopf *-algebra 

structure, cf. Masuda e.a. [28], Vaksman and Soibelman [45]. 

3.6. IRREDUCIBLE *-REPRESENTATIONS OF .Aq 

For a Hopf *-algebra A associated with a compact matrix quantum group there are two 

interesting representation theories: the irreducible unitary corepresentations of A on finite 

dimensional Hilbert spaces and the irreducible *-representations of A on possibly infinite

dimensional Hilbert spaces. If A= Pol(G) with Ga compact Lie group, then the irreducible 

*-representations of A are one-dimensional and correspond to point evaluations on the 

elements of G. By analogy, for non-commutative .A, the irreducible *-representations of A 
may be considered as the elements of the underlying quantum group. 

Let us consider the classification of the irreducible *-representations of A 9 , cf. [45]. There 

is a family of one-dimensional representations x 8 (0 ~ (} < 211") and a family of infinite

dimensional representations r 8 (0 ~ (J < 271' ). The first family is given by 

The second family is defined on a Hilbert space 1t with orthonormal basis u0 , 111 , •.• : 

{ ( 1 2n)l/2 
r8(a) 'Vn = 0 - µ Vn-1 if n > 0, 

if n=O, 
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Furthermore, it can be shown that the representation r defined by the direct integral 

T := 1$ r 8 dB 
0:9<2"" 

is faithful and that llall = llr(a)ll for all a E A. Finally, each *-representation of Aq is a 

direct integral of irreducible *-representations (so is a type I representation). 

3.7. QUANTUM SUBGROUPS 

Let ]( := S(U(l) x U(l)) the subgroup of SU(2) of diagonal matrices ( e~ 8 e~iB). This 

subgroup is isomorphic to U(l). The algebra B := Pol(K) has generators a, 8 (functions 

evaluating left upper respectively right lower matrix element) with relations a8 = 8a = I 
and *-Operation given by a• = 8. There is a comultiplication '11: B --+ B ® B given by 

W(a) :=a® a, \ll(8) := 8 ® 8. Now one way of expressing that K is a closed subgroup of 

SU(2) is that there is a surjective *-homomorphism F of Pol(SU(2)) onto Pol(K) (namely 

the restriction of functions on SU(2) to K), which is moreover intertwining between the 

comultiplications on the two algebras. 

In an analogous way we can consider K as a quantum subgroup of the quantum group 

SUq(2). The mapping F:Aq--+ B, for which F(a) :=a, F(8) := 8, F(/3) := F(1) := 0, 

defines a surjective *-homomorphism and the following diagram is commutative: 

41 
Aq --+ Aq®Aq 

lF lF®F 
B B®B 

Note that the one-dimensional *-representation x8 applied to a E Aq is precisely the point 
evaluation of F(a) at diag(ei8,e-i8 ). 

3.8. NOTES 

Several motivations have been given for the particular way of defining the S L(2, C) and 

SU(2) quantum groups, cf. Woronowicz [50, Appendix Al] and Manin [26]. A strong reason 

for this particular choice is also that the Hopf algebra Aq is contained in the dual Hopf 

algebra of Jimbo's [16] quantized universal Hopf algebra for root system A1 , cf. §7.3. Thus, 

in principle, quantum analogues can be constructed of all complex or compact semisimple 

Lie groups. 

See for instance Nijenhuis and Richardson [30] for rigidity of semisimple Lie algebras. 

In (27], [28] and [32] the authors write y, v, u, x instead of our a, {3, /, 8, respectively. 

Our use of the term HopfC*-algebras (cf. §3.5) is informal. Different definitions of Hopf 

C*-algebras have been given in literature, cf. for instance Vallin [46]. 

Woronowicz [49] called compact matrix quantum groups originally compact matrix pseu
dogroups. He does not use Hopf algebras, but he starts with a pair (A, u) of a C*-algebra A 

with comultip!ication and a corepresentation u, such that the matrix elements of u generate 

a dense *-subalgebra A of A and an antipode exists on A. Our construction of the Hopf 
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C*-algebra A from the Hopf •-algebra A in §3.5 yields less general A than considered in 

[49]. For instance, in our approach the counit on A always extends to A, while this is not 

necessarily the case in (49]. 

Our definition of Hopf •-algebra in §3.3 was highly suggested by (49]. The same definition 

occurs in [44] and a quite similar definition in (26]. 
In [50] an explicit realization is given of the faithful representation T of §3.6. The operators 

r 8 (1''"r'"), r 8(a) and r 8 (a•) of §3.6 form a q-analogue of the Schrodinger representation 

of the Heisenberg algebra and were studied already by Arik and Coon [3] and Feinsilver 

[13], long before quantum groups were introduced. These authors also considered a q-Fock 
representation. In this connection it is possible to give interpretations of q-analogues of 

Herrni te polynomials. 

4. Representation Theory of Compact Matrix Quantum Groups 

Let A and A be a Hopf •-algebra, respectively Hopf C*-algebra associated with a compact 
matrix quantum group. In this section we summarize the powerful results of Woronowicz [49] 

on the representation theory of compact matrix quantum groups, i.e. the corepresentation 

theory of A and A. 

4.1. HAAR FUNCTIONAL 

The key to harmonic analysis, both on compact groups and on compact matrix quantum 

groups, is the Haar functional. Recall that, on a compact group G, we have a unique measure 

dx, the Haar measure, and corresponding functional h on C(G), the Haar functional 

h(a) := L a(x)dx, 

with the following properties: 

(i) fadx = 1. 

a E C(G), 

(ii) fa a(x) dx;::: 0 if a E C(G) is nonnegative. 

(iii) J0 a(xy)dx = J0 a(x)dx = J0 a(yx)dx if a E C(G), y E G. 

THEOREM 4.1 (Woronowicz [49]). Let A be a Hopf C*-algebra. Then there is a unique 

linear functional h on A such that: 

(i) h(I) = 1. 

(ii) h(a*a);::: 0 for all a EA. 
(iii) (h © id)(~(a)) = h(a)I =(id© h)(~(a)) for all a EA. 

Moreover, if a EA and h(a* a)= 0 then a= 0. 

Let us give h explicitly on Aq· For this we use a certain basis of Aq: 

PROPOSITION 4.2 (Woronowicz [50]). The elements ak 'Ym (1'*)n (k, m, n ~ 0) and 

(a*)k'i'm (7*)n (k > O, m,n;::: 0) form a basis of Aq· 
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Now we have (cf. Woronowicz (49, Appendix A.l]): 

h(cl1m(7T) = 0 = h((o:*)kim (1*t) if k > 0 or m f; n, 

h((n*n = 1 ~ ~2~:2. 
Hence, for a polynomial p we have 

(4.1) 

where we used the notation for q-integrals (cf. (37]). However, quite surprisingly, it is also 
shown in (50, Appendix A.1] that 

h(p(Ha-+o:*)))= - p(x)~dx, 2 jl 
7r -I 

(4.2) 

an ordinary integral. 
The polynomials in 11* respectively (a+ a-*)/2 are the U(l)-biinvariant respectively 

cocentral elements of .Aq. Here a is called U(l)-biinvariant if 

(x 8 @id)(<I>(a)) =a= (id 0 i)(<I>(a)) for all 8, 

and a is called cocentral if <Jo <I>( a) = <I>( a). 

4.2. SCHUR TYPE ORTHOGONALITY RELATIONS 

Let G be a compact Lie group. Choose for each equivalence class of irreducible unitary 
representations of Ga matrix representation (t~n)m,n=1, ... ,da as representative. Then the 
well-known Schur orthogonality relations state that 

(4.3) 

If, moreover, G is a closed subgroup of some U(n) and if .A is the *-algebra generated by 
the matrix elements of the natural representation of G then all t~n are contained in .A and 
they form a basis of .A. 

Woronowicz [49] obtained the quantum group analogue of ( 4.3). In order to formulate 
this, let .A be a Hopf *-algebra associated with a compact matrix quantum group and choose 
for each equivalence class of irreducible unitary corepresentations of .A a representative 

(t~n)m,n=1, ... ,da · 

THEOREM 4.3. There exists a unique unital multiplicative linear functional f on A such 
that 

f ((tcr )* tT ) _ 8,JT Dmn J((t/k)*) 
1· ·km In - d 

!('£1~1 tfi) 

Furthermore, the t~n form a basis of .A. Any finite-dimensional matrix corepresentation of 
.A is equivalent to a direct sum of irreducible corepresentations of A. 
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The occurrence off in this quantum Schur theorem is a new phenomenon, by which ma

trix elements belonging to the same representation are no longer orthogonal in a straightfor

ward way. This phenomenon is related to the fact that the Haar functional is not necessarily 

central, i.e. h(ab) f h(ba) in general. 

For Aq the unital multiplicative linear functional f was computed in (49, Appendix A.1]. 

The result is: 

f(<X)=q- 1 , f(o)=q, !((3)=!(-y)=O. ( 4.4) 

5. Little q-Jacobi Polynomials Interpreted on SUq(2) 

Given an explicit compact matrix quantum group like SUq(2) one may try to realize the 

following program: 

(i)-Classify the irreducible unitary corepresentations t 17 • 

(ii) Choose suitable bases of the corepresentation spaces, by which one obtains matrix 

corepresentations ( t~n ). 

(iii) Compute the t~n as polynomials in the generators or other suitable primitives. 

(iv) Recognize these polynomials as special functions and rewrite the Schur type orthogo

nality relations as orthogonality relations for these special functions. 

We will discuss this program here for the case SUq(2). Let us first recall the classical case 

of SU(2), cf. for instance Vilenkin (47, Ch. 3) or Stanton's tutorial [41]. 

5.1. IRREDUCIBLE UNITARY REPRESENTATIONS OF SU(2) 

Let l E tz+. Consider the (21+1 )-dimensional space of homogeneous polynomials of degree 

21 in two complex variables, with inner product such that the polynomials 

n = -l,-1+1, ... ,1, 

form an orthonormal basis. Define a representation t1 of SU(2) on this vector space by 

(t' ( ~ ~) f) (~,77) := J(x~ + u17,y~ + vry). 

If t1 has matrix elements t;,,n with respect to the basis vectors e~ then it follows that 

The basis is such that the matrix (t;,,n(g)) becomes diagonal when g is in the diagonal 

subgroup U(l): 

0 ) ) -2in8 c e-i8 = e Umn· 
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We know that the representations t1 = (t~n) are unitary and irreducible and that each 

irreducible unitary representation of SU(2) is equivalent to a t1• Furthermore, the t~n are 

expressible in terms of Jacobi polynomials, and the Schur orthogonality relations 

f I -1,-- -~ 
Jc tmn(g)tmn(g)dg - 21+1 

are equivalent to orthogonality relations for Jacobi polynomials. 

5.2. IRREDUCIBLE UNITARY COREPRESENTATIONS OF Aq 

These can be classified by various methods, cf. Woronowicz [50], Vaksman and Soibelman 

[45], Masuda e.a. [27], [28], and the author [21]. Here we follow the approach of [21]. 

Fix 0 < q < 1. Let 

[n] ·- (q; q)n 
k q .- (q;q)k(q;q)n-k 0 

We will use the following lemma, which follows easily by complete induction: 

LEMMA 5.1. Let xy = qyx. Then 

(5.1) 

Let l,n E tZ+· By definition of <I> acting on Aq we have 

(5.2) 

Now expand the right hand side of (5.2) by use of (5.1) and (3.2), such that we get monomials 

o:1-m -/+m in the tensor factors on the right. Then 

I [ 21 ] 1/2 
= L t~m 0 0,1-m ·/+m' 

m=-1 l - m q-2 

(5.3) 

where the sum runs over m = -l, -l + 1, ... , l and the t~m are certain elements of Aq· 

Application of the coassociativity and counit axioms to the left hand side of (5.2) and the 

right hand side of (5.3) shows that t1 = (t~m) is a matrix corepresentation of .A9 • One also 

sees that (t~m) becomes diagonal with respect to the quantum subgroup U(l): 

xe(t~m) = e-2inegnm· 
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Formula (5.3) can be considered as a generating function for the matrix elements t~m· 

From (5.3) another generating function can be derived which sums both over m and n. 

The coefficients [,~'nJ :~~ in ( 5.2), ( 5.3) were inserted, because it will turn out that they 

make the corepresentations unitary. They also make the matrix elements more symmetric, 

as we will state now. Let a( o., /3, "Y, o) be some algebraic expression in the generators o:, f3, /, o 
of .Aq, which yields an element of A 9 • Let ii( a.,/3, 1, o) be the expression obtained by 

reversing the order of the factors in all terms of a(a.,/3,1,0). Now it follows from the 

relations (3.2) that the mapping 

a(a.,/3,1,0) >--> a(o.,1,/3,8) 

is an algebra isomorphism of Aq, while the mapping 

a(a.,/3,1,0) >--> ii(o,/3,1,a) 

is an algebra anti-isomorphism of Aq- Write t~m(a.,/3,1,8) in order to emphasize that t~m is 

some algebraic expression in a.,/3,/,0. It turns out, just by inspecting (5.3) and the double 

sum generating function, that the t~m satisfy the following symmetries: 

= (t~n.-mn8,1,J3,a.) 

= (t~m -nno,/3, 1,a.). 

(5.4) 

(5.5) 

(5.6) 

THEOREM 5.2. The corepresentations t1 are unitary and irreducible. Moreover, each 

irreducible unitary matrix corepresentation of A9 is equivalent to some t1• 

Here the unitariness follows from (S.4), the irreducibility from reduction to the quantum 

subgroup U(l) and the nonvanishing of the t~ 1 , the completeness by observing from a 

somewhat more explicit expression for the t~m that these elements form a basis of .Aq· 

5.3. LITTLE q-JACOBI POLYNOMIALS 

Recall ( cf. [2]) that little q-Jacobi polynomials are defined by 

(
q-n,qn+lab ) 

Pn(x;a,b;q):=2c/>1 aq ;q,qx (5.7) 

and that they satisfy orthogonality relations 

a.,j3 > -1. (5.8) 

We call the special polynomials Pn(x; 1, 1; q) little q-Legendre polynomials. Now we obtain 

from (5.3), by straightforward but somewhat tedious computations: 
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THEOREM 5.3. We have 

(5.9) 

where n 2:'.: m 2:'.: -n and 

[ ] 
1/2 [ l ] 1/2 I ·- [ - m + n -(n-m)(l-n) 

Cnm ·- q · 
n - m q• n - m q2 

(5.10) 

This theorem was successively but independently proved by Vaksman and Soibelman [45], 

Masuda e.a. [27], [28], and the author [21]. Expressions for t~m in case of the other three 

possibilities for n and m follow from (5.9) and the symmetries (5.4)-(5.6). In particular, 

for l E Z+ we have 

t&o = P1( n*; 1, 1; q2 ), (5.11) 

a little q-Legendre polynomial of argument 11*. 

The Schur type orthogonality (cf. Theorem 4.3 and formula (4.4)) yields 

k * 1 _ q2(1-n) (1 _ q2) 
h((tpr) tnm) - bk/ bpn brm l _ q2(21+1) (5.12) 

By substitution of (5.9) and ( 4.1) this is seen to be equivalent to the orthogonality relations 

(5.8) for little q-Jacobi polynomials. 

It is also possible to identify the matrix elements as special orthogonal polynomials, when 

we use (5.12) and have some a priori information about the algebraic structure of the matrix 

elements. For instance, if we already know that, for l E Z+, t&0 is a polynomial pi of degree 

l in 11* then we obtain from (5.12), fork f: l: 

0 = h((t~ 0 )*t& 0 ) = fo1 
P1(x)pk(x)dq2x, 

from which we conclude that P1(x) = canst. p1(x; 1, 1; q2 ). 

5.4. NOTES 

Lemma 5.1 is a folk lemma which was often reproved in the literature. In a different 

formulation it seems to be present already in the works of Netto and MacMahon. It can 

also be found in Schiitzenberger [39], Cigler [10] and Feinsilver [12]. 

In [45], [27] and [28] the second order q-difference eigenvalue equation for the little q

Jacobi polynomials was obtained from the interpretation on SUq(2) by use of the Casimir 

element in the dual Hopf algebra to .Aq. 

6. Summary of Further Interpretations on Quantum Groups 

In this section we briefly indicate some other classes of q-hypergeometric orthogonal poly

nomials and functions which have an interpretation on quantum groups. 
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6.1. q-MEIXNER-KRAWTCHOUK POLYNOMIALS 

For fixed g E SU(2) the representation matrix (t~n(g)) dicussed in §5.1 is unitary. It is 

possible to express these matrix elements in terms of Krawtchouk polynomials, such that the 

orthogonality relations between the rows or columns of the unitary matrix are equivalent to 

the orthogonality relations for the Krawtchouk polynomials, cf. [31, §12.7] and [20, §2]. In 

a similar way ( cf. Koornwinder (21]) we can rewrite the orthogonality relations (3.5) for the 

unitary matrix corepresentation (t~m) of Aq as orthogonality relations for the q-Meixner
Krawtchouk polynomials 

I<n(q-x;b,N;q) := 2</>1(q-n,q-x;q-N;q,bqn+l), n,x = 0,1, ... ,N, 

(an ad hoe notation). Before [21] these polynomials had not been recognized in literature 

as a separate family of orthogonal polynomials. They are q-analogues of Krawtchouk poly

norrtials which can be obtained from the q-Meixner polynomials by specializing a parameter 

such that the support of the orthogonality measure becomes finite. Note that the orthog

onality relations (3.5) are identities in Aq· These can be made into scalar identities by 

first rewriting them as operator identities by means of the representations r 8 of §3.6, and 

next taking matrix elements of these operators with respect to the basis vectors Vn of the 

representation space. 

6.2. q-HAIIN and q-RACAH POLYNOMIALS 

Cle bsch-Gordan coefficients obtained by decomposing the tensor product of two irreducible 

representations of SU(2) as a direct sum of irreducible representations, can be expressed 

in terms of Hahn polynomials ( cf. for instance [19]). Racah coefficients, which give the 

transformation between two canonical ways of decomposing a threefold tensor product of 

irreducible representations of SU(2) as a direct sum of irreducible representations, can be 

expressed in terms of Racah polynomials (cf. [48]). There are analogous results for SUq(2). 

Define the tensor product of two matrix corepresentations ( Uij) and ( v;i) of a Hopf algebra 

A as the matrix corepresentation ( w;k,jl ), where Wik,jl := Uij Vk/· Then, for the tensor 

product of matrix corepresentations (t~m) of Aq we have the direct sum decomposition 

(6.1) 

l=li +12,11 +12-1, ... ,11,-121 

Clebsch-Gordan coefficients for this decomposition were considered by Kirillov and Reshe

tikhin (17], Vaksman (43] and Koelink and Koornwinder [18]. Here we sketch the approach 

of (18]. Consider the linear subspace of Aq with basis vectors 

There is a natural realization of the corepresentation t 11 0 t 12 on this space. Another basis of 

this space is given by the matrix elements t~. 1 ,_ 11 , where l = l1+12,/1 +ii -1, ... , Iii - l2I, 
n = -l, -l + 1, ... , l, and the direct summands in (6.1) have a natural realization on vectors 

in this second basis. The matrix elements of the transformation matrix from the first to 

the second basis are called Clebsch-Gordan coefficients. It was shown in [18] that they can 

be expressed in terms of q-Hahn polynomials. 
Racah coefficients associated with decompositions of threefold tensor products of corep

resentations t 1 of Aq were studied by Kirillov and Reshetikhin [17]. They expressed them 

in terms of q- Racah polynomials. 
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6.3. ADDITION FORMULA AND WALL POLYNOMIALS 

Let l E Z+, g,h E SU(2), t1 as in §5.1. Then 

I 

t&0(gh) = L t&k(g) t~ 0 ( h ). 
k=-1 

By expressing g and h in a suitable way in terms of coordinates on the group, we get the 

addition formula for Legendre polynomials from this identity, cf. for instance (47, Ch. 3]. 

Something analogous for SUq(2) was done in Koornwinder (22]. For the corepresentation 

t1 of Aq we have 

I 

<l>(ibo) = L tbk ® tio· 
k=-1 

If we substitute (5.9), (5.10) and, in particular (5.11), then we get an identity in Aq ® Aq 
which can be considered as an expansion of the little q-Legendre polynomial of degree l and 

of argument <I>( 'Y'Y*), quite analogous to the addition formula for Legendre polynomials. 

The passage to a scalar identity is along similar lines as in §6.1. However, now we have 

to take matrix elements of operators on 1t ® 1t, where 1t is the representation space of 

the representation r 8 of §3.6. These matrix elements are taken on one side with respect to 

the standard basis, but on the other side with respect to a basis defined by means of Wall 

polynomials 

Pn(x;a,O;q) := 24>1(q-",O;aq;q,qx), 

(specialization oflittle q-Jacobi polynomials (5.7)). The resulting addition formula for little 

q-Jacobi polynomials, cf. (22, Theorem 4.1], expands a left hand side 

P1(q"'; 1, 1; q)py(q"; q"', O; q), 

considered as a function of q•, in terms of Wall polynomials Py+k( q•; q"', O; q ). A typical 

term in the expansion equals 

const. P1-1c( q"'+Y; qk, qk; q) Pl-k( qY; qk, qk; q) Py+k(q"; q"', 0; q). 

Subsequently, Rahman [36) has given an analytic proof of this addition formula, while 

van Assche and Koornwinder [7] have shown that the formula tends to the addition formula 

for Legendre polynomials as q tends to 1. 

In yet unpublished work the author has given a conceptual interpretation of the occur

rence of Wall polynomials in the addition formula. It turns out that Wall polynomials occur 

as Clebsch-Gordan coefficients in the direct integral decomposition for r 81 ® r 82 • 

6.4. SPHERICAL FUNCTIONS FOR SUq( n + 1 )/ SUq( n) 

Recently, Noumi, Yamada and Mimachi (34) announced an interpretation of little q-Jacobi 

polynomials Pm( z; q2< n-l), q2(l-m); q2 ) as matrix elements of irreducible corepresentations of 

the quantum group SUq( n + 1) which are biinvariant with respect to the quantum subgroup 
SUq(n). This result strengthens the expectation that, parallel to the theory of spherical 

functions on compact symmetric (or other homogeneous) spaces, a similar theory can be 

developed for quantum groups. 
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6.5. QUANTUM 2-SPHERES AND BIG q-JACOBI POLYNOMIALS 

Let A be a Hopf algebra and B be an associative algebra. By a coaction of A on B we mean 

a unital algebra homomorphism W: A-+ A® B such that (i) (<P @id) o 1l1 =(id© 1P) o 1l1 and 

(ii) (e ©id) o W) =id. The guiding example is the case that G is a group acting on a space 

X, A= Fun(G), B = Fun(X) and (w(b))(g,x) := b(g.x). If A is a Hopf *-algebra and Ba 

*-algebra we define a *-coaction as a coaction W which is also a *-homomorphism. One can 

think about A as the dual of a quantum group G and about B as the dual of a quantum 
space X. Then one has a quantum action of G on X. A coaction of A on B defines a 

(usually infinite-dimensional) corepresentation of A on B. One can try to decompose this 
into irreducible subspaces. 

For the case SUq(2) Podles [35] has defined quantum actions on so called quantum 

spheres. Next, Noumi and Mimachi [32] have given explicit orthogonal bases for the ir

reducible subspaces of the algebras corresponding to these quantum spheres. These bases 

are chosen such that the action of the quantum subgroup U(l) is diagonalized. They obtain 

big q-Jacobi polynomials P~"'· 13 \ x; c, d; q) and also, for certain quantum spheres, q-Hahn 

polynomials Qn(x;q"',qli,N;q), in both cases with a= f3 and q replaced by q2 • Next, in 

[33], Noumi and Mimachi also find a realization for the nonsymmetric case a =f: /3, this time 
on quantum 3-spheres. 

6.6. QUANTUM GROUP OF PLANE MOTIONS AND q-BESSEL FUNCTIONS 

Vaksman and Korogodsky [44] studied the quantum analogue of the group of Euclidean 

motions of the plane. This work is extremely interesting, since it is the first example of 

harmonic analysis on a quantum analogue of a noncompact Lie group. Just as the irreducible 

unitary representations of the group of plane motions have matrix elements expressible in 

terms of Bessel functions (cf. for instance [47]), so the matrix elements in the quantum 

case are expressible in terms of q-Bessel functions given as 1 </>1 q-hypergeometric series, i.e., 

different from the more common notion ( cf. [14]) of q-Bessel functions as o</>1 functions. 

6.7. QUANTUM SU(l,1) GROUP 

In [29] Masuda e.a. studied the quantum group SUq(l, 1), the quantum analogue of the non

compact semisimple Lie group SU(l, 1). The authors obtained series of infinite-dimensional 

unitary representations of this quantum group. They computed matrix elements of these 

representations in terms of 2</>1 q-hypergeometric functions. 

6.8. q-EXPONENTIAL FUNCTION 

If xy = qyx then eq( x + y) = eq(Y) eq(x ), where eq(x) is the q-exponential function 
L,~ 0 xk /(q; q)k· This result, due to Schiitzenberger [39], follows easily from Lemma 5.1. 

In yet unpublished work the author has shown that the functions x >-+ eq(cx) occur as 

one-dimensional representations of a quantum group version of the additive group R of real 

numbers. For the construction of this quantum group one needs a slight generalization of 

the definition of Hopf algebra A. The usual definition of multiplication on A® A can be 

viewed as the mapping (m ® m) o (id® u ®id) from A® A® A© A to A® A. Here u is 

the flip automorphism. In our generalization we change the definition of this flip. 
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Let A be the free unital algebra generated by one indeterminate a. Fix q f 0. Define 

a( a"' 0 oJ) := q2kl al 0 a"'. 

Then multiplication on A 0 A satisfies 

(ak @a')( am 0 an)= q21m ak+m 0 1+n. 

We can extend the comultiplication, defined on the generator by 

<I>(a) :=a 0 I+ I 0 a, 

to an algebra homomorphism <I>: A ....... A® A by putting 

Now <I>(a) =a 0 a if a= eq2(ca). 

7. Continuous q-Legendre Polynomials 

In the sections 5 and 6 we listed an impressive collection of q-hypergeometric orthogonal 

polynomials admitting an interpretation on the quantum group SU9(2). What we were still 

badly missing there, are the Askey-Wilson polynomials [6] themselves, i.e., polynomials 

Pn(cos 8;a,b,c,d I q) :=a-n (ab; q)n (ac; q)n (ad; q)nX 

(
q-n, qn-labcd, aeie, ae-iB ) 

x 4</J3 b d ; q, q ' a , ac,a 

(7.1) 

which are, for q,a,b,c,d E (-1,1), orthogonal polynomials on (-1,1) with respect to a 

continuous weight function. There is one case where Askey-Wilson polynomials already 

occurred in connection with SUq(2): we have the character formula 

I ( *) 1 1 a+a 
tr(t) := L tnn = U21 - 2- , 

n=-1 

cf. [49, Appendix Al]. Note that the right hand side is independent of q. Here the Un are 

the Chebyshev polynomials of the second kind 

U ( 8) ·- sin(n + 1)8 
n cos .- sin(} . 

These are usually considered as special Jacobi polynomials, but, as pointed out in [6, p.17], 

they can also be written as special Askey-Wilson polynomials: 

( B· 1/2 1/2 I ) 
U ( 8) _ Pn cos , q, -q, q , -q q 

n COS - (qn+2;q)n . 
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Note that the left hand side is independent of q, although the right hand side would suggest 

the contrary. 

It will turn out that certain Askey-Wilson polynomials can be interpreted as spherical 

matrix elements of corepresentations t1, where the notion spherical has to be specified. I 

obtained this interpretation first for the continuous q-Legendre polynomials, for which we 

use here the ad hoe notation 

Pn(cos 8. qi12 -q112 q112 -q112 I q) 
P C cos o I q) · ' ' ' ' 

n • Pn((ql/2+q-1/2)/2;ql/2,-ql/2,ql/2,-ql/2 iq) 

(
q-n,qn+1,q1/2ei8,q1/2e-i8. ) 

=4</>3 'q,q . 
q,-q,-q 

By (6, ( 4.20) and ( 4.2)] these polynomials are equal, up to a constant factor, to special 

continuous q-ultraspherical polynomials Cn( cos 8; q I q2 ). They are also Macdonald 's ((24], 
(25]) orthogonal polynomials P>. with parameters q, t and associated with root system Ai 

if t = q1. 
I obtained the key for the interpretation on SUq(2) from the formula giving the explicit 

expansion of Pn( cos(} I q) as a finite Fourier series: 

(7.2) 

cf. [4, (3.1 )]. The q = 1 analogue and limit case of this formula is the following finite Fourier 

series for Legendre polynomials: 

P. ( (}) _ ~ (1/2)k (1/2)n-k i(n-2k)8 

n cos -£:a k!(n-k)! e . (7.3) 

It turned out that the group theoretic interpretation of (7.3) could be imitated in order to 

obtain a quantum group theoretic interpretation of (7.2). 

7.1. THE FOURIER SERIES FOR LEGENDRE POLYNOMIALS INTERPRETED 

Put a8 := ( e~ 8 e~;e). Recall that, in §5.1, we considered the representation (t!nn) of 

SU(2) with respect to an orthonormal basis e~ ( n = -l, -l + 1, ... , l) of eigenvectors for 

the t1(a8): 

In particular, for l E Z+: 

I( ) I _ I t ae e0 - e0 , 

and eb is, up to a constant factor, the unique U(l)-fixed vector in the representation space 

of t1• Now consider the subgroup [( := S0(2) of SU(2). As U(l) and S0(2) are conjugate 
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subgroups of SU(2), there must be a K-fixed unit vector ek in the representation space of 

t1 ( l E Z+ ). Expand this vector in terms of the original basis: 

(7.4) 

where the c~ are yet unknown. 

Put g := ( ~ -xu). The function gr-+ P1(xx) = tb0 (g) is U(l)-biinvariant. By conju

gacy the function 

I 

I: 
n,m=-l 

is S0(2)-biinvariant. For g := ae this yields: 

/ 

Pi( cos 28) = L le~ 12 e-2in8. (7.5) 

n=-1 

So the expansion coefficients in (7.3) follow from the c~ as defined by (7.4 ). We will find 

explicit expressions for the c~ by passing to the corresponding Lie algebra representation. 

7.2. AN INFINITESIMAL APPROACH 

The Lie algebra g := sl(2, C) of the Lie group S L(2, C) consists of all complex 2 x 2 matrices 

of trace 0. It is the complexification of the Lie algebra of SU(2). A basis for g is given by 

with commutator relations 

[H,B] = 2B, [JI,C] = -2C, [B,C) =H. (7.6) 

The representation t1 of g corresponding to the representation t1 of SU(2) is defined by 

t1(X) := dd \ t1(exptX) 
t t=O 

for X in the Lie algebra of SU(2) and extended to g by complexification. The explicit 

expression for t 1 acting on the basis of g is: 

t 1 (H)e~ = -2ne~, 

t1(B) e~ = { /U- n + 1)(1 + n)e~_ 1 ifn = -l+ 1,-!+2, ... ,l, 

if n = -l, 
(7.7) 



281 

tl(C)e~={J(l-n)(l+n+l)e~+ 1 ~fn=-l,-l+l, ... ,l-1, (7.S) 
0 ifn=l. 

The 50(2)-invariance of the vector eK (cf. (7.4)) can be infinitesimally characterized as 

t 1(B - C) e~< = 0. (7.9) 

When we substitute (7.4), (7.7) and (7.8) in this formula then we obtain a two-term recur
rence relation for the c~. Up to a constant factor this can be solved by 

{ 

l 

(1/2)(1-n)/2 (1/2)(1+n)/2 "'! c~ = ( ((1-n)/2)! ({l+n)/2)! ) , l - n even, 

0, l-nodd, 
(7.10) 

where l E Z+· In view of (7.5) this yields (7.3) up to a constant factor. 

7.3. QUANTIZED UNIVERSAL ENVELOPING ALGEBRA 

There is no quantum subgroup of SUq(2) analogous to the subgroup S0(2) of SU(2). 
However, there is a quantum analogue of the infinitesimal generator B - C of 50(2). For 
this we need Jimbo's [16] quantization of the universal enveloping algebra of the Lie algebra 

sl(2, C). 
Let Uq be a Hopf algebra with unit 1, generated as algebra by elements A,B,C,D with 

relations 

AD= DA = 1, AB = qBA, AC= q- 1CA, 

A2 - D2 
BC - CB= _1 . 

q-q 

We can recover (7.6) from (7.11) by substituting in (7.11) 

A:= e~(q-I)fl, D := e-~(q-l)ll, 

(7.11) 

and by letting q tend to 1. We denote the comultiplication by 6.:Uq--> Uq @Uq. Its action 

on the generators is given by 

6.(A) =A 0 A, 6.(D) = D ® D, 

6.(B) =A 0 B + B 0 D, 

6.(C) = A 0 C + C 0 D. 

The counit, denoted by t::Uq --+ C, is given by 

s(A) = s(D) = 1, s(B) = c(C) = O. 

The antipode S:Uq --> Uq is such that 

S(A) = D, S(D) =A, S(B) = -q-1 B, S(C) = -qC. 
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It can be easily shown that ~' c and S have well-defined extensions to Uq as Hopf algebra 

operations. 

We can think about Uq as a dual Hopf algebra to Aq, i.e., Uq is embedded in the linear 

dual of Aq such that the following rules have to be satisfied for X, Y E Uq, a, b E Aq: 

(XY)(a) = (X © Y)(IP(a)), 

c:(X) = X(I), e(a) = a(l), 

(~(X))(a © b) == X(ab), 

(S(X))(a) = X(~(a)). 
(7.12) 

In view of the first two rules, it is sufficient to specify X( a) if X is a generator A, B, C or 

D and a is a generator o., (3, 'Y or o. This we declare to yield 0 except in the following cases: 

A(a)=q~, A(o)=q-!, D(a)=q-!, D(o)=q~, 

B((3) == 1, C('Y) = 1. 
(7.13) 

It can be shown (cf. Vaksman and Soibelman [45]) that (7.12) and (7.13) yield a well-defined 

nondegenerate bilinear pairing {X,a} := X(a) between Uq and Aq· 
The following observation will be important: 

~(X)=A©X+X©D ifX=B,CorA-D. (7.14) 

7.4. CONTINUOUS q-LEGENDRE POLYNOMIALS INTERPRETED 

A corepresentation t 1 of Aq yields a representation of Uq by the rule 

Indeed, we find that 

I 

t~m(XY) = L t~k(X) t~m(Y). 
k=-1 

Let the vectors e~, n = -l, -l + 1, ... , l, form the standard basis of the representation space 

of t1, so 

I 

t1(X) e;,. = L t~m(X) e~. 
n=-1 

Then the action of t 1 for the generators of Uq becomes 

(7.15) 
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where, as in (7.8) and (7.11) we suppose e~ 1 _ 1 and ei+t to be zero. 

In the case of SU(2) we found the S0(2)-invariant vector (7.4) by solving (7.9), which 

yielded coefficients c~ given by (7.10). We imitate this in the quantum case and look for a 

solution vector v := L:~=-I b~-' e~ of 

t 1(q-'B- q->-c)v = o, 

where the exponent >. is yet to be specified. In view of (7.15) this yields a two-term 

recurrence relation for the coefficients b~>., which has only the zero solution if l E ~ + Z+ 

and which gives in the case l E Z+: 

I 

v = canst. L q->.n c~ e~ 
n=-1 

l-n even 

where, for l E Z+ and n = -1, -[ + 2, ... , l, 
I 

I ·= ((q2;q4)(1-n)/2 (q2;q4)(l+n)/2) ~ 
en · ( 4 4) ( 4 4) q i q (1-n)/2 q ; q (l+n)/2 

(7.16) 

(7.17) 

Now compare with (7.2). We recognize the expansion coefficients in (7.2) as squares of 

coefficients c~ in (7 .17): 

I 

P1(cos8 I q2) = qn L (c~)z eine. 

n=-1 
l-n even 

(7.18) 

This is the crucial observation opening the road to quantum group interpretations of Askey

Wilson polynonomials. 

A function a E Pol(SU(2)) is right invariant under S0(2) iff 

dd \ a(xexp(t(B - C))) = 0, x E SU(2), (7.19) 
t t=O 

and left invariant under S0(2) iff 

dd \ a(exp(t(B-C))x) = 0, 
t t=O 

x E SU(2). 

We propose as quantum analogues of the conditions (7.19) and (7.20): 

(id 0 (q-' B - q--'c))(~(a)) = o, 

respectively 

((q-' B - q->-c) 0 id)(~(a)) = o. 

(7.20) 

(7.21) 

(7.22) 

Here>. is a constant which has yet to be specified. We might say that (7.21) respectively 

(7.22) express the right respectively left invariance of a E Aq under the virtual quantum 

subgroup S0(2). 

If X E Uq then t..(X) will be a finite sum of elements of the form Y 0 Z, where Y, Z E Uq. 

We express this formally as 

t..(X) = L x<1i 0 x<2i· 
(X) 

Then it can easily be shown that: 

(7.23) 
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LEMMA 7 .1. If D.( X) is given by (7 .23) and a, b E .Aq then 

(id 0 X)(<t>(ab)) = I)id ® x(l))(.P(a)) (id 0 x(2))(<li(b)), 

(X) 

(X 0 id)(<t>(ab)) = :l)X(l) 0 id)(<li(a))(X(2) 0 id)(<P(b)). 

(X) 

Now it follows from (7.14) that: 

PROPOSITION 7.2. The elements a satisfying (7.21) respectively (7.22) form a unital 

subalgebra of Aq· 

It is not difficult to show from (7.16) that the elements a E Span{t~m} which satisfy 

both (7.21) and (7.22), are just the null element if l E ! + Z+, and form for l E Z+ a 

one-dimensional subspace of elements 

a= const. 

I 

I: 
n,m=-l 

l-n,l-m even 

(7.24) 

where c~ is given by (7.17). Let us compute (7.24) explicitly for l = 1. From Theorem 5.3 

we get 

1 2 
t2,2 =a ' 

Thus the element a E Span{t~m} satisfying both (7.21) and (7.22) equals, up to a constant 

factor, 

Now we would like to have this element a self-adjoint, i.e., a = a*. This forces us to take 

Re A = !· From the point of view of interpretations of special functions, the choice A := ! 

will be sufficient for our purposes. For the moment we call an element a E .Aq spherical if 

a satisfies (7.21) and (7.22) with>.=!· Put 

Then p spans the spherical elements in Span{t;m}· All a:= p(p), with pa polynomial, are 

also spherical. Actually we can prove: 

THEOREM 7.3. a E Aq is spherical if and only if a is of the form p(p), with pa polynomial. 
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In particular, we can apply this theorem to the spherical elements given by (7.24). Then 

I 

L q<n-m)/2 c~ c~ t~m = L bk/ (7.25) 
n,m=-1 k 

l-n,l-m even 

for certain coefficients bk. Now apply the characters x8 to both sides of (7.25). This yields 

I 

L (c~)2e-2in8 = Lbk(cos28)k. 
n=-1 k 

1-n even 

In view of (7 .18) we have 

Hence 

q-n P1(cos28 I q2 ) = L bk (cos Wt. 
k 

q-n P1(p I q2) = Lbkpk. 
k 

So we obtain: 

(7.26) 

THEOREM 7.4. Let l E Z+. Then, up to a constant factor, the spherical element in 

Span{t~m} is given by P1(P I q2 ), a continuous q-Legendre polynomial of degree l in p. 

We compare next the known orthogonality relations 

( q4, q4 ; q4 ) 00 

27r ( q2' q2 j q4) 00 

1,,. I (e2i8.q4) 
1

2 

Pk(cosfJ I q2 )P1(cosfJ I q2 ) ( 2 2 ;~. 4) dfJ 
o qe ,qoo 

1 - q2 

1 - q2(21+1) Ck1 

(7.27) 

of the continuous q-Legendre polynomials with the Schur type orthogonality relations. From 

(7.25), (7.26) we obtain 

I 

L: 
n,m=-l 

l-n,l-m even 

q(n-m)/2 c~ c~ t~m· 

Now substitute (7.28) twice into (7.27) and apply (5.12). This yields 

( 1 2) 21 I 2 

h(Pk(P I q2)P1(P I q2)) = 8kl 1 _-;(2l!l) ( L q-n(c~) 2 ) 
q n=-1 

1-n even 

(7.28) 

(l-q2)q21 _ 1 2 2 (7.29) 
= 8k1 l - qZ(Zl+l) (P1((q + q )/21 q )) 

1 - q2 

= 1 - q2(21+1) . 

By comparing (7.27) with (7.29) we conclude: 
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THEOREM 7.5. Let p be a polynomial. Then 

(q4,q4; q4)oo r ' (e2i8; q4)oo 12 
h(p(p)) = 2ir(q2,q2;q4)oo Jo p(cos8) (q2e2iB;q4)oo d8. (7.30) 

So, beside polynomials in 7*7 and (a+ a*)/2 ( cf. ( 4.1 ), ( 4.2) ), the Haar functional can now 

also be evaluated when acting on polynomials in p. Note that our derivation of (7.30) is 

very indirect, without computation of moments as for ( 4.1 ). 

8. Askey-Wilson Polynomials 

The theorems in §7 are not the end of the story. In §6.5 we mentioned the interpretation 

by Noumi and Mimachi [32] of big q-Jacobi polynomials 

with a = f3 on quantum 2-spheres. In particular, they found an interpretation of big q

Legendre polynomials PA0 •0\x; c, d; q) as zonal spherical elements on quantum 2-spheres. It 

was tempting to relate their results to the approach of §7. A first link could be made by 

proving the following 

PROPOSITION 8.1. Let l E Z+ and a E Span{t~m}· Then a satisfies both 

(id@ (q! B- q-!C))(<I>(a)) = 0 ("quantum right S0(2)-invariance") (8.1) 

and 

(x 9 0 id)('l>(a)) =a (left U ( 1 )-invariance) (8.2) 

if and only if 

The left U(l)-invariance (8.2) can also be expressed by 

((A- D) 0id)(<I>(a)) = O. (8.3) 

Recall that (7.14) is also satisfied for X := A - D. This suggests that we may gen

eralize Proposition 8.1 such that we get interpretations of big q-Legendre polynomials 

PA0 •0)(x; c, d; q) with c f' d by keeping (8.2) and replacing (8.1) by 

(id 0 (q~ B - q-~c + const.(A - D)))(<I>(a)) = 0. 

This was the starting point for some very recent results by the author (yet unpublished), 

which we will summarize now. 



8.1. (er, r )-SPHERICAL ELEMENTS 

Let er, r E R. We will call an element a E .Aq (a, r )-spherical if 

(d 0 (iq! B - iq-~C - q;:1 ~~(A - D))) (<P(a)) = 0, 

( (iq~ B - iq-!c - qq-:1 ~~(A - D)) 0 id) (<P(a)) = 0. 

If r = ±oo then we replace (8.5) by (8.3), and similarly for a= ±oo. Put 

Pen :=~ ( a2 + ( a*)2 + q( / 2 + (1*)2 ) + iq( q-(f - q(f)( a*1 - 1*a)+ 

+ iq( q_,,. - q,,.)( a*1* -1a) - q( q-(f - q(f)(q_,,. - q")/*1) = p~,,.. 

Put, for l = 0, 1, ... and n = -l, -l + 1, ... , l: 

in q-(l+<f)n qn2 /2 
c1•(f ·- x 

n ·- 1/2 1/2 
(q2; q2)1+n (q2;q2)1-n 

,/.. ' ' 2 2 /,(f ( 
q-21+2n q-21 -q-21-20" ) 

X3'1'2 q-41,0 ;q ,q =c-n. 
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(8.4) 

(8.5) 

THEOREM 8.2. Let a E .A. Then a is (a, r)-spherical if and only if it is a polynomial 

in Pen· 

THEOREM 8.3. Let l E Z+. The space of (a,r)-spherical elements in Span{t~m} is 

one-dimensional and spanned by an element which we can represent in the following two 

ways: 

I 

I: q(n-m)/2 cl,u c'·" tl 
m n nm 

n,m=-1 (8.6) 

Here the PI at the right hand side of (8.6) is an Askey-Wilson polynomial (7.1). So 

we have given a quantum group interpretation of a two-parameter family of Askey-Wilson 

polynomials_ 

What about the limit cases as a and/or T tend to oo? We should get little or big 

q-Jacobi polynomials, but these latter polynomials have discrete orthogonality meMures, 

while the Askey-Wilson polynomials have absolutely continuous orthogonality measure, at 

least as the parameters stay within (-1, 1). However, some parameters of the Askey-Wilson 

polynomials in (8.6) tend to oo a.5 a or r tend to oo. Then discrete mass points are added, 

cf. [6, Theorems 2.4, 2.5]. If we make, at the same time, a scale transformation, such that 

the continuous spectrum shrinks, then we will arrive in the limit at infinitely many mass 
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points and no continuous spectrum left. In fact, it follows immediately from (7.1), with the 

normalization 

_ ( I ) Pn(x;a,b,c,d I q) 
Pn x;a,b,c,d q := (( _1 / 2)· b d I )' Pn a + a , a, , c, q 

that we have the two following limits: 

P- ( -X . -q(t+a+b)/2 -q(l-a-b)/2 q(l+a-b)/2 q(l-a+b)/2 J q) 
n 2q(a+b-1)/2' ' ' ' 

( 
-n n+l ) 

a~ 3ef>2 q q:~qb+~qx ;q,q =big q-Jacobi polynomial 

(8.7) 

and 

P- ( -X . -ql/2+a -ql/2-a ql/2 ql/2 J q) 
n 2qa-1/2' ' ' ' 

( 
-n n+l ) 

a~ 3ef>2 q , q , qx; q, q =little q-Jacobi polynomial. 
q,O 

(8.8) 

R. Askey told me that he has known such limit transitions already for several years, but 

never published them. 

We also get new expressions for the Haar functional. Let dm(x) = dma,b,c,d;q(x) be the 

normalized orthogonality measure for the Askey-Wilson polynomials: 

f 1 ( )( . b d I ) d ( ) _ b (1 - q-1abcd)( q, ab, ac, ad, be, bd, cd; q)n 
-1 PmPn x, a, 'c, q m x - mn (1 - q2n-labcd)(q-labcd; q)n . 

THEOREM 8.4. Let p be a polynomial. Leth be the Haar functional on A. Then 

By putting a= r = 0 in the Theorems 8.2-8.4, we get back the results of §7.4. If we put 

<1 = r and let a --> oo then we approach, by (8.8), the little q-Legendre case. If we fix u 
and let r--> oo then, by (8.7), we approach the big q-Jacobi case. It should be possible to 

relate this last case to the results in [32]. 

8.2. DUAL q-KRAWTCHOUK POLYNOMIALS INTERPRETED 

It is possible to give an explicit matrix for the transition in the representation space of t1 

from the basis of eigenvectors e~ for t1( A - D) to a basis of eigenvectors for t1( Hu), where 
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(Observe that (8.4) can be written as (id 0 Ha)( <I>( a)) = 0 and that JI a is self-adjoint if we 

make Uq into a *-algebra such that A* = A, D* = D, B* = C. Then t 1 is a *-representation 

of Uq.) 

We define dual q-Krawtchouk polynomials by 

Rn(q-x - qx-N-c;qc,N I q) := 3rJ>2(q-n,q-x,-qx-N-c;O,q-N;q,q). 

These are special q-Racah polynomials and satisfy the orthogonality relations 

1 N 

(-c.) l:(RnRm)(q-x-qx-N-c;qc,NJq)X 
q 'q N x=O 

(1 + 2x-N-c)( -N-c -N ) ( ) 
X q -q ,q ;qx -8 q;qn ( -N-c)n 

(l+q N c)(q,-q-c-1;q)x(-qx-2N-c)x- nm(q-N;q)n -q ' 

where n, m = 0, ... , N. See Askey and Wilson [5] and Stanton [40]. 

THEOREM 8.5. t 1( Ha) has simple spectrum consisting of eigenvalues 

q2j-a _ qa-2j + q" _ q-a 
x. ·- ----'---~-~-

J .- q-I - q j=-l,-l+l, ... ,l. 

An eigenvector corresponding to eigenvalue Xj is given by 

21 

L i-n qn<r qn(n+l)/2 (q2;q2);_1/2 (q4l;q-2)~f2x 

n=O 

x Rn(q-2t-2i _ q2i-2t-2a; q2", 211 q2) e~_z. 

Noumi and Mimachi told me that, in a follow-up to [32], they have also obtained such 

an interpretation of q-Krawtchouk polynomials. 

References 

[1] E. Abe, Hopf Algebras, Cambridge University Press, 1980. 

[2] G. E. Andrews an R. Askey, 'Enumeration of partitions: the role of Eulerian series and 

q-orthogonal polynomials', pp. 3-26 in Higher Combinatorics (M. Aigner, ed.), Reidel, 

1977. 

[3) M. Arik and D. D. Coon, 'Hilbert spaces of analytic functions and generalized coherent 

states', J. Math. Phys. 17 (1976), 524-527. 

[4] R. Askey and M. E. H. Ismail, 'A generalization of ultraspherical polynomials', pp. 

55-78 in Studies in Pure Mathematics (P. Erdos, ed.), Birkhauser, 1983. 

[5) R. Askey and J. Wilson, 'A set of orthogonal polynomials that generalize the Racah 

coefficients or 6-j symbols', SIAM J. Math. Anal. 10 (1979), 1008-1016. 

[6) R. Askey and J. Wilson, Some basic hypergeometric orthogonal polynomials that gen

eralize Jacobi polynomials, Memoirs Amer. Math. Soc. 54 (198.5) No. 319. 



290 

[7] W. Van Assche and T. H. Koornwinder, Asymptotic behaviour for Wall polynomials 
and the addition formula for little q-Legendre polynomials, preprint, 1989. 

[8] G. M. Bergman, 'Everybody knows what a Hopf algebra is', Contemp. Math. 43 (198.5), 

25-48. 

[9] P. Cartier, Harmonic analysis on trees, Proc. Sympos. Pure Math. 26 (1973), 419-424. 

[10] J. Cigler, 'Operatormethoden fiir q-Identitaten', Monatsh. Math. 88 (1979), 87-105. 

[11] V. G. Drinfeld, 'Quantum groups', pp. 798-820 in Proceedings of the International 

Congress of Mathematicians, Berkeley, 1986, American Mathematical Society, 1987. 

[12] Ph. Feinsilver, 'Commutators, anti-commutators and Eulerian calculus', Rocky Moun

tain J. Math. 12 (1982), 171-183. 

[13] Ph. Feinsilver, 'Discrete analogues of the Heisenberg-Weyl algebra', Monatsh. Math. 
104 (1987), 89-108. 

[14] G. Gasper and M. Rahman, Basic hypergeometric series, Cambridge University Press, 

1989. 

[15] M. Hazewinkel, Formal groups and applications, Academic Press, 1978. 

[16) M. Jimbo, 'A q-difference analogue of U(g) and the Yang-Baxter equation', Lett. Math. 
Phys. 10 (1985), 63-69. 

[17) A. N. Kirillov and N. Yu. Reshetikhin, Representations of the algebra Uq(sl(2)), q
orthogonaJ polynomials and invariants of links, LOMI Preprints E-9-88, Leningrad, 

1988. 

[18) H. T. Koelink and T. H. Koornwinder, 'The Clebsch-Gordan coefficients for the quan
tum group SµU(2) and q-Hahn polynomials', Nederl. Akad. Wetensch. Proc. Ser. A, 
to appear. 

[19) T. H. Koornwinder, 'Clebsch-Gordan coefficients for SU(2) and Hahn polynomials', 

Nieuw Archie[ Wisk. (3) 29 (1981), 140-155. 

[20] T. H. Koornwinder, 'Krawtchouk polynomials, a unification of two different group 

theoretic interpretations', SIAM J. Math. Anal. 13 (1982), 1011-1023. 

[21] T. H. Koornwinder, 'Representations of the twisted SU(2) quantum group and some 

q-hypergeometric orthogonal polynomials', Nederl. Akad. Wetensch. Proc. Ser. A 92 

(1989), 97-117. 

[22] T. H. Koornwinder, The addition formula for little q-Legendre polynomials and the 
SU(2) quantum group, CWI Rep. AM-R8906, preprint, 1989. 

[23] T. H. Koornwinder, 'Continuous q-Legendre polynomials are spherical matrix elements 
of irreducible representations of the quantum SU(2) group', CWI Quarterly, to appear_ 

[24] I. G. Macdonald, Orthogonal polynomials associated with root systems, preprint, 1988. 

[25] I. G. Macdonald, 'Orthogonal polynomials associated with root systems', These Pro
ceedings. 

(26) Yu. I. Manin, Quantum groups and non-commutative geometry, Centre de Recherches 
Mathematiques, Montreal, 1988. 

[27] T. Masuda, K. Mimachi, Y. Nakagami, M. Noumi and K. Ueno, 'Representations of 

quantum groups and a q-analogue of orthogonal polynomials', C. R. Acad. Sci. Paris, 
Ser. I Math. 307 (1988), 559-564. 



291 

[28] T. Masuda, K. Mimachi, Y. Nakagami, M. Noumi and K. Ueno, 'Representations of 

the quantum group SUq(2) and the little q-Jacobi polynomials', J. Functional Anal., 
to appear. 

[29] T. Masuda, K. Mimachi, Y. Nakagami, M. Noumi, Y. Saburi and K. Ueno, Unitary 
representations of the quantum group SUq(l, 1), I, II, preprint, 1989. 

(30] A. Nijenhuis and R. W. Richardson, 'Deformations of Lie algebra structures', J. Math. 
Mech. 17 (1967), 89-105. 

(31] A. F. Nikiforov and V. B. Ugarov, Special Functions of Mathematical Pl1ysics, Birk
hauser, 1988. 

(32] M. Noumi and K. Mimachi, Quantum 2-spheres and big q-Jacobi polynomials, preprint, 
1989. 

[33] M. N oumi and K. Mimachi, Big q-Jacobi polynomials, q-Halrn polynomials and a family 
of quantum 3-spheres, preprint, 1989. 

(34] M. Noumi, H. Yamada and K. Mimachi, ZonaJ spherical functions on the quantum 

homogeneous space SUq(n + 1)/SUq(n), Proc. Japan Acad. 65 (1989), 169-171. 

(35] P. Podles, 'Quantum spheres', Lett. Math. Phys. 14 (1987), 193-202. 

[36] M. Rahman, A simple proof of Ifoornwinder's addition formula for t/Je little q-Legendre 
polynomials, preprint, 1988. 

[37] M. Rahman, 'Some extensions of the beta integral and the hypergeometric function', 

These Proceedings. 

[38] M. Rahman and A. Verma, 'Product and addition formula for the continuous q-ultra

spherical polynomials', SIAM J. Math. Anal. 17 (1986), 1461-1474. 

[39] M. P. Schiitzenberger, 'Une interpretation de certa.ines solutions de l'equation fonc

tionnelle: F(x + y) = F(x)F(y)', C.R. Acad. Sci. Paris 236 (1953), 352-353. 

(40] D. Stanton, 'Orthogonal polynomials and Chevalley groups' pp. 87-128 in Special 
Functions: Group Theoretic Aspects and Applications (R. A. Askey, T. H. Koornwinder 

and W. Schempp, eds.), Reidel, 1984. 

[41] D. Stanton, 'An introduction to group representations and orthogonal polynomials', 

These Proceedings. 

[42] M. E. Sweedler, Hopf Algebras, Benjamin, 1969. 

[43] L. 1. Vaksman, q-Analogues of Clebsch-Gordan coefficients in the algebra of functions 

on the quantum group SU(2), 1989. 

(44] L. 1. Vaksman and L. I. Korogodsky, 'Algebra of bounded functions on the quantum 

group of plane motions and q-analogues of Bessel functions', Dokl. Akad. Nauk SSSR 

304 (1989), 1036-1040 (in Russian). 

[45] L. L. Vaksman and Ya. S. Soibelman, 'Algebra of functions on the quantum group 

SU(2)', Functional Anal. Appl. 22 (1988), 170-181. 

(46] J .-M. Vallin, 'C*-algebres de Hopf et C*-algebres de Kac', Proc. London Math. Soc. 

(3) 50 (1985), 131-174. 

[47] N. Ya. Vilenkin, Special Functions and the Theory of Group Representations, Amer. 

Math. Soc. Transl. of Math. Monographs, Vol. 22, 1968. 



292 

[48] J. A. Wilson, 'Some hypergeometric orthogonal polynomials', SIAM J. Math. Anal. 
11 (1980), 690-701. 

[49] S. L. \Voronowicz, 'Compact matrix pseudogroups', Comm. Math. Phys. 111 (1987), 
613-665. 

[50] S. L. Woronowicz, 'Twisted SU(2) group. An example of a non-commutative differen
tial calculus', Publ. Res. Inst. Afath. Sci. 23 (1987), 117-181. 


