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ORTHOGONAL POLYNOMIALS, MEASURES AND RECURRENCE
RELATIONS*

JOANNE DOMBROWSKIt AND PAUL NEVAI

Abstract. Properties of measures associated with orthogonal polynomials are investigated in terms of the
coefficients of the three term recurrence formula satisfied by the orthogonal polynomials.

AMS(MOS) subject classification. Primary 43C05

Key words, orthogonal polynomials, recurrence relations, Szeg/5’s theory

1. Introduction. Let da be a positive measure on the real line with finite moments
and infinite support, and let (Pn}n%0, Pn(X)=’&x’+’" ", )’,>0, be the system of
orthonormal polynomials associated with da. The polynomials Pn satisfy the recurrence
formula

(1) xp,,=an+lPn+ + bnPn+ anPn_l, n=0, 1,. .,
where P-l=0, p0=70, a0=0 an=’Yn_l/’Yn and

x , (xle (xl.

By J. Favard’s theorem [10, p. 60] every system of polynomials generated by (1) where
a.> 0 (n 1, 2,... and b N is in fact a system of orthonormal polynomials. The
corresponding measure d is uniquely determined if and only if the associated moment
problem has a unique solution, and the latter holds if, say, both sequences { a } and
{ b } are bounded. Recently there has been an upsurge in research activity concerning
the determination of the relationship between orthogonal polynomials, recurrence rela-
tions and measures. Several such papers are listed in the references. In particular, R.
Askey and M. Ismail [1, p. 102] asked whether it is true that if

1 c
(2) an=-+-+O(n-2) and bn=0n

where c > 0 then the absolutely continuous portion of the corresponding measure dec is
in SzegYs class which means that loga’(cost) L1. One of the main goals of this paper
is to show that the Askey-Isrnail problem can essentially be solved. More precisely, it
follows from Theorem 3 below that if (2) is replaced by

1 c d -2an=-+-+n-+(n ) and b,=0

where c > 0 and d then log a’(cost) L1. While we suspect that condition (2) fails to
imply the integrability of log a’(cost), we do not have evidence supporting our claim at
the present time. Let us point out that Theorem 2 in fact yields a’(x)>= constv/1-x
Ixl< 1, if only a $1/2 and b=0. The latter is quite a surprise if compared with J.
Shohat’s result [26, p. 50] claiming that if supp(da)=[-1,1] then loga’(cost)L if
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ORTHOGONAL POLYNOMIALS 753

and only if

k=l k=l

and

k=l

The natural way to connect the recursion coefficients with the measure is via
Stieltjes transforms (see e.g. [1]). However, it seems that this approach is feasible only
when the recursion coefficients are given in terms of explicitly defined expressions such
as rational functions of n. The general cases can better be handled by techniques
introduced on one side in [5]-[9] and on the other side in [15], [16], [18], [19] and [20].

If p, is generated by (1), then we define S, by

2 2]p(x)+a [bk_bg ]p, l(x)pk(x)}"(3) Sn(x)= {[ak+l ak k -1
k=0

All of our results are based on the formula

(4) Sn(x)=a22n+1Pn (X)-- x-bnpn(x)Pn+l(x)+p+l(X)]an+l
proved in [8]. (Caution: the notation in [8] is somewhat different!) The second of us
believes that the significance of (4) cannot be overestimated, and it will play a funda-
mental role in future research on general orthogonal polynomials (see e.g. [22]). The
other ingredient of this paper comes from [16] where the necessary spectral analysis was
accomplished.

In order not to interrupt our forthcoming discussion, we first prove the following
technical proposition. In what follows a+ denotes the positive part of a and log + and
log- are also defined in the usual way.

LEMMA 1. Let ( a } and ( b ) satisfy an+ >= 1/2(1 + [bn[) for n > N and let Pn and S
be defined by (1) and (3) respectively. Then

(6)
(7)

(8)

(1 -x) 4Sn(x ) Ixl<- 1,

(1 -x2)p(x) <= 4Sn(x ), Ixl=<l,
max p,2 (x)<4(n+2)maxlS,(x)l+
Ixl__<l Ixl__<l

maxp(x) =< 4(n + 1):z max ISn(x)l,
Ixl__<l Ixl=<l

 11++ Ixn+.-an+ an+l +1

l_x2

and

(10) maxSn+l(x)maxSn(x).exp{4(n + 2)2([an+22 a+2 11+-an+llbn+l-b.I) }
ixl=<l ixl__<

holdfor n > N.
Proof. By (4)

n+l Pn(X) Pn+l(x) + 4an+l (x-bn)2
Pn+l2an+l
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754 JOANNE DOMBROWSKI AND PAUL NEVAI

and

2[ I(X)_Sn(x)=an+l Pn+
x-b, )]22an+l

pn(x 1[ an+ (x b.) p(x)+-4 - 2]

If 2a,+l>_l+lb, then 4an+l-(X-bn)2_>_l-x 2 for Ixl<_l. Thus (5) and (6) are
satisfied. Inequalities (7) and (8) follow from (5), (6) and Bernstein’s theorem [17, p.
139]. Writing

[2 2]2 [b _bn]pnPnan+l-an an+2-an+l Pn+l+an+l +1 +

and applying (5)-(8), inequalities (9) and (10) follow immediately.
THEOREM 1. If lim, 1/2, lim, b, 0 and

(11) E {lan+l--anl+ [bn+l-b,I} < oo
n=O

then the orthogonal polynomials Pn generated by (1) and the corresponding measure da
satisfy

(12)
o I_x2

Z, i -l<x<l,
k=O

and the convergence is uniform on every closed subinterval of (- 1,1).
Proof. Theorem I follows immediately from (3), (4) and

x b 2lim p(x)- ai Pn(X)Pn+l(X)+Pn+l(X )
21/i-x 2

which holds uniformly on every closed subinterval of (- 1,1) if (11) is satisfied [16].
THEOREM 2. Let (a )n=l and (b)%o satisfy an+ >= 1/2(1 + Ibl) for n > N,

lim an 1/2, lim bn 0 and., .2{[an+x-a.]++ [b.+l-b.I } < oo.
n-----1

Then there exist a constant K> 0 such that for the orthogonal polynomials Pn defined by
(1) andfor the associated measure da we have

(13) /a-xZlpn(x)[<=K, -1=<x=<1,

n 1, 2,. -, and

(14) a’(x)>=K-lvll-x 2 -1 <x<a

Proof. Repeated application of (10) shows that the sequence (S ) is uniformly
bounded in [-1,1] and then (13) follows from (6) whereas (14) follows from Theorem
1, (3) and (4).

Remark 1. The sharpness of Theorem 2 may best be illustrated by the ultraspheri-
cal polynomials which are orthogonal with respect to da(x)=(1-x2)dx in [-1,1].
For these polynomials

1 1-4e2 1 constan=+ ul----2---n+ +O(n 4) and b,=0
n
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ORTHOGONAL POLYNOMIALS 755

SO that the conditions of Theorem 2 are satisfied if and only if I1_ 1/2 whereas (14)
holds if and only if e =< -.

THEOREM 3. Let (an}= and (bn)n= o satisfy a/>-1/2(l+lbnl) for n>N,
lim, a 1/2, lim b 0 and

Y’ n([a,+x-a,]++lb,+-b] } <.
k=l

Let da be the measure associated with the orthogonalpolynomials defined by (1). Then

(15 ) da ( x ) w ( x ) dx + mass points outside ( 1,1)
where w is posit&e and continuous in (- 1,1), w vanishes outside [- 1,1] and w belongs to
SzegO s class, that is

(16) Ilog w(cos ) dt <

Remark 2. If Y’.n (la,,- 1/21 + Ibl} < then the number of mass points in do is finite
and all such mass points are located outside [- 1,1] (see [4] and [11]).

Proof of Theorem 3. By the conditions E(lan+ an[ + [bn+ bn[) < holds as well
so that by the Theorem in [16] and by Blumenthal’s result (see e.g. [18, Thm. 3.3.7, p.
23]) formula (15) holds with w(>0) C(-1,1) and supp(w)=[-1,1]. Therefore only
(16) needs to be proved. Let 8, be defined by

3n 4([ 2 2 1+ ,+ 1-b[)an+2--an+ +a lb+
Then by the assumptions made

(17) Y’n3<,

and applying (9) and (10) with n > N, we obtain

_(,,+:}2 log + S+:(x)
dx

fol-n
-2 log+ Sn(X)

dx q_nfll-n-2<= /1- x

+log+{ max IS. l(X) I)f1-(n+ 1)-2
ixl__<

+
dl_n_

/’J1-n-2 log+ an(s)
dx

0

(l--x)3/2

dx

2 log+(maxS,,+l(X))+n + 1 Ixl_

fol--n
-: log+ Sn(x )

-<
/1 -x

dx+2(n-1)3,+ 2 log+( max S,(x))n Ixl_l

+2(n-1)3+2( 1 ) 1 ( }lg+ maxSn+(x )
Ixl__<l
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756 JOANNE DOMBROWSKI AND PAUL NEVAI

Therefore

ea-(n+X)-2 log+ Sn+l(X)dx<_/’1-n-2 lg+ Sn(x)
dx +18n8

+ log + maxSn(X) n+l
lg+ maxS,,+t(x)

n ixl__<l ixl__<l

from which

f01-(n+1)2 log+ Sn+I(X)
dx s f01-(N+1)2 log+ S+I(X)dx+18 E k3/i --- v/1-x k=N+l

+ N+I lg+ maxS+(x
121<1

follows. Now letting n m and applying (3), (17), Theorem 1 and Fatou’s lemma, we
see that

’/
log- w(cos t) dt >

By similar arguments

f log- w(cos ) dt >
/2

holds as well. By Jensen’s inequality

logw(cos ) dt <

and thus Theorem 3 has completely been proved.

2. Applications.
A. Ya. L. Geronimus [12]-[14] raised and solved the following problem. Let rn >= 0

be a fixed integer and let (bk } ’--0 and { ak }__1 (ak > 0) be given sequences such that
bg 0 for k >= m and ak 1/2 for k > m. Let { p }o__0 be the orthogonal polynomial
system generated by (1) and let da be the corresponding measure. The problem is to
find da. We will show that on the basis of our results da can easily be found. It follows
from (3) and (4) that

(18) 4Sn=p- 2xp,,p,,+l +p2,,+ 1, n >= m,
and

(19) S=Sm, n>=m.
Thus by Theorem I and 3 and by Remark 2,

(20) d (x) 2 vq x’-
7 p2m(X)--2XPm(X)Pm+l(X)+p2m+l(X)

X(X) q-/=IE Jl (X-X,)
where X is the characteristic function of [- 1,1] and xz’s are the mass points with mass

Jz > 0. It is well known [27] that for an arbitary system of orthogonal polynomials if the
associated moment problem has a unique solution then x is a mass point for da with
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ORTHOGONAL POLYNOMIALS 757

mass J if and only if Y.p2(x) < o and then

(21)

1= p2(x) lim a,+l[P’k+l(X)p,(x)--pk+l(x)P’k(X)]J
k=0 k+o

lim a+[p+(x)/p(x)l’p(x)=- lim a+[p(x)/p+l(X)]’ 2

k--+ m

Therefore by (18) and (19) the mass points x are zeros of S,, and hence M=< 2m + 2.
However not all zeros of S,, are in fact mass points. Applying the recurrence formula
(1) and (3)-(4) we obtain

(22) 4S 2=P,,+ -P,,P,,+ 2, n >= m
so that

(23) Pn+l Pm+l n>=m, ifS,,=0.
P,, Pm

On the other hand, by (18)

(24) Pm+l =x_ V/x 2-1 if Sm=O
Pm

(here v/x 2- 1 > 0 if x > 1 and V/x 2-1 < 0 if x < 1). Thus by (21) x is a mass point if
and only if Sm(x)=O and [Pm+l(X)l<lPm(X)[. By (22)

2 Pn+2 P,,
4Sin’= ( Pn/Pn+ 1) Pn+X ( Pn+ 2/Pn+ 1)’p2,,+1, n >= m,P,, + Pn +

if S,, 0 so that by (21), (23) and (24)

2S(xt) =J-X(x,- X-I )-Jl-l(x,+ /x 1)= -2Jl-1/x-1.
Thus the mass points xt in (20) are those zeros of Pm--2XPmPm+I +pm2+l for which

Pm / ( X/)1 < Pm(XZ)I and the corresponding mass Jz is given by

S;(x,) Sm’(X,)

B. The previous analysis can be applied to the case when

1 [1/nlim a,, -- 0 and lim ]b,, [1/n O.

Without going into details we point out that in this case one can prove

limsup p.(x)]l/n< O0

uniformly on every compact set in the complex plane, and thus

S(x)= lim S,,(x)
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758 JOANNE DOMBROWSKI AND PAUL NEVAI

is an entire function. The corresponding measure da can be written as

1 V/1-x___a x2- i
da(x)=2-- S(x) X(x)dx+ E -;i-t3 13(x-x’)xtZ

where X is the characteristic function of [-1,1] and Z is the collection of those zeros
x of S for which lim,lp,+(xt)/p(xt)[< 1. Of course, Z is a finite set.

C. The Pollaczek polynomials satisfy (1) with

a (n+X+a+c)(n+X+a+c_l),
n=l,2,--.,

and

b
n=0,1,2,.bn n+X+a+c

where the parameters a, b, c and are chosen so that b R and an>0. Pollaczek [23]
(see also [3]) investigated the case when either a > Ibl, 2 + c > 0, c_>_ 0 or a >
2,+c>__ 1, c>-1 and determined that da is absolutely continuous. Hence da is
completely described by (16). The explicit expression for a’ [3, p. 185] shows that a’ is
not SzegiS’s class in this case. Since

1 a const
an= 2 2n

l- n2., + O(n )

holds, we see that the conditions of Theorem 2 are satisfied provided that a < 0, b 0,
and consequently

a’(x)>K-l/1-x2= -1 =<x<l,=

with a suitably chosen positive constant K if a < 0 and b 0. In particular, log a’(cost)
L in this case. Examples of Pollaczek polynomials with not necessarily absolutely

continuous measures have been investigated in [1], [2], [24], and [29].
D. Let { a } n--l satisfy 0 < an=< 1/2, limn-,o a, 1/2 and

E [a+x-akl < oo,
k=l

and let b,=0 for every n. Let det be the measure associated with the orthogonal
polynomials p, which are defined by (1). It is well known that in this case supp(da)=
[- 1] (see e.g. [18, Thm. 3.3.7, p. 23]). Let us show that + 1 are not mass points of da.
If x is a mass point, then by (21) limn_.oolp,(x)l=0 so that there exists n o such that
Ip,,(x)l<=p,,o(X) for every n and Ip.(x)l<lP,,o(X)l for n <n 0. By the recurrence formula

IXP,o(X)i<=ano+ [ P.o+ a(X) + ano[ P,0-(x)I < pno(X)l

and hence Ixl< 1, that is x#: + 1. It has been shown in both [8] and [16] that da is
absolutely continuous in (-1,1). Therefore da is absolutely continuous on the whole
real line and by Theorem 1

1 Vq-x2

da(x)- 2rr y’.kO=o[aZk+l--al p(x) X(x)dx
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ORTHOGONAL POLYNOMIALS 759

where X is the characteristic function of [-1,1]. By the previously quoted theorem of
Shohat [26, p. 50] loga’(cost)L if and only if (a,- 1/2)< c.

E. If there exists N such that a > an+ for n > N and lim a 1/2 and if b 0

for every n, then the conditions of Theorem 2 are satisfied. Hence a’(x)>= K-iV x 2

Ixl =< 1, holds in this case.
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