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ORTHOGONAL POLYNOMIALS ON SEVERAL INTERVALS
VIA A POLYNOMIAL MAPPING

J. S. GERONIMO AND W. VAN ASSCHE

ABSTRACT. Starting from a sequence {pn{x; no)} of orthogonal polynomials
with an orthogonality measure yurj supported on Eo C [—1,1], we construct
a new sequence {p„(x;fi)} of orthogonal polynomials on£ = T~1(Eq) (T is
a polynomial of degree TV) with an orthogonality measure [i that is related
to no- If Eo = [—1,1], then E = T_1([-l,l]) will in general consist of TV
intervals. We give explicit formulas relating {pn(x;fi)} and {pn(x;fio)} and
show how the recurrence coefficients in the three-term recurrence formulas for
these orthogonal polynomials are related. If one chooses T to be a Chebyshev
polynomial of the first kind, then one gets sieved orthogonal polynomials.

I. Introduction. Suppose a sequence of orthogonal polynomials is given with
an orthogonality measure supported on a set Po C [— 1,1]. In this paper we will
analyze how properties of these orthogonal polynomials, their measure, and the
set Po are transformed under a polynomial transformation. In particular we will
restrict our class of transformations so that the inverse of Po under the transforma-
tion will be a real set. Although special cases of this problem had been considered
by Barrucand and Dickinson [5], the general problem was posed and considered in
an important paper by Bessis and Moussa [8]. In their paper many of the alge-
braic properties of the transformed polynomials and their orthogonality measure
were discussed. Here we extend their work and apply it to a number of interesting
special cases.

If Po is an interval then the inverse image of Po (which is assumed to be real)
will in general be a finite number of disjoint intervals, and we are led to the problem
of polynomials orthogonal with respect to a measure supported on several intervals.
Besides being of interest in its own right (Aptekarev [3], Geronimo and Van Assche
[12], Geronimus [13-14], this problem is of interest in numerical analysis when one
tries to solve large indefinite linear systems using Richardson iteration (de Boor
and Rice [11], Lebedev [18], Saad [23]). Applications of these types of polynomials
have also appeared in quantum chemistry (Wheeler [27]) and physics (Pettifor and
Weaire [22]). Orthogonal polynomials on several intervals have also appeared in
the study of sieved orthogonal polynomials (Al-Salam, Allaway, and Askey [2],
Charris and Ismail [9], Ismail [15-17]). Many results involving sieved orthogonal
polynomials follow by taking a particular polynomial transformation.
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560 J. S. GERONIMO AND W. VAN ASSCHE

In §11 we give an outline of the general procedure of mapping Po to P = T~l (Po),
where T is a polynomial of degree TV, and describe how a measure p0 on P0 is
transformed to a measure p on P. We also describe how the associated polynomials
and their orthogonality measure transform. In §111 we give a relationship between
the Jacobi matrices for the orthogonal polynomials on P0 and on P. §IV lists
some properties of the new orthogonal polynomial system. In particular, we give
explicit formulas for some of the recurrence coefficients in the new system in terms
of those of the old system. We also discuss convergence rates of the coefficients in
the recurrence formula and growth rates of the polynomials on the spectrum. In §V
we describe some of the potential-theoretic properties of the set E and discuss some
of the properties of the polynomials associated with the equilibrium measure. In
this section we also discuss the Bernstein-Szego polynomials (Akhiezer [1]). Finally,
in §VI we discuss sieved orthogonal polynomials.

II. The general procedure. We start off with a probability measure po on a
set Po C [—1,1]. If po has an infinite support, then there exists a unique sequence
of orthogonal polynomials {pn(x; po)'- n = 0,1,2,... } for which

/   Pn(x; po)Pm(x;Po) dp0(x) = <Sm>n,        m, n > 0.
J Eo

We map the interval [—1,1] to several intervals by a polynomial transformation.

LEMMA  1.   Let T be a polynomial of degree N > 2 with real and simple zeros
x\ < x2 < ■ ■ ■ < xn-  Let 2/i < 2/2 < • • • < 2/jv-i be the zeros of V.  If \T(yj)\ >
1 (j = 1,2,... ,iV — 1),  then there exists a unique sequence of closed intervals
{Pi,P2,... , P/v} such that
'   (a) TO) = [-1,1],

(b) xteEt,
(c) Pj fl P,+i contains at most one point (i = 1,... ,N — 1).

PROOF. The statement is obvious and can most easily be verified from Figure
1. The set P, fl Pi+i will contain one point if and only if T(yi) = ±1.    D

In the remainder of this paper we suppose that T satisfies the conditions given in
Lemma 1. Following Bessis-Moussa [8], Moussa [20], and Bessis-Geronimo-Moussa
[7] we now construct a measure p on T_1(Po) starting from a given measure po on
P0. Let Wbea polynomial of degree TV - 1 such that

fo11 W{z)    _ ^     w,(x) vCn\F(2-1) Ti^-^-T-^)'        xGP0, ,eC\P,

(2.2) wt(x) >0,        xeE0, i = l,2,...,N,
N

(2.3) ^w,(x) = l,        zeP0,
t=i

where {T~l:i = 1,2, ...,7V} is a complete set of inverse branches of T with
T~1([—1,1]) = Pt- There is always at least one possible choice, namely W — V/N,
in which case wz(x) — 1/iV (i — 1,2,..., N). From (2.1) we find

(2'4) WI{X) = ^(P(x)y        • = 1'2--iV'
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ORTHOGONAL POLYNOMIALS 561

A

FIGURE 1.  The set P = T_1([-l, 1]) are the intervals
indicated by bold lines

which means that (2.2) is satisfied if and only if W has the same sign as T" on every
Ei (i = 1,2,.. .,N). In particular, this implies that the zeros z\ < z2 < ■ ■ ■ <
zn-i of W are such that Zi is between the intervals Pj and Pj+i, or possibly at
the endpoints of these intervals. We construct a measure p on E = T_1(Po) by
imposing that for every Borel set A in Po

p(T~l(A)) = j wt(x)dp0(x).

From this it follows that for every / E Lx(p)

TV

(2.5) /   f(x)dp = Y.       wl(x)f(T-\x))dp0(x).
J E i_ ^ J Eq

REMARK 1. From (2.2) and (2.5) we see that the absolutely continuous, singular
continuous, and discrete parts of po are mapped into, respectively, the absolutely
continuous, singular continuous, and discrete parts of p. Consequently, if <r0 and a
are, respectively, the absolutely continuous parts of po and p then

(2.6) a(x) = \W(x)\o-o(T(x)).

REMARK 2. The Stieltjes transform of a measure p is defined to be

S(z\p)= / -,        zgsupp(p).J   z - X

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



562 J. S. GERONIMO AND W. VAN ASSCHE

Setting f(x) — l/(z — x) (z $. E) in (2.5) gives the following relation among Stieltjes
transforms:

(2.7) S(z;p) = W(z)S(T(z),p0).

Let {pn(x; p):n = 0,1,2,... } be the orthonormal polynomials with orthogonality
measure p on P, i.e.,

/ Pn(x; p)pm(x; p) dp(x) = <5„,m,        n,m>0.
Je

Then there is an easy relation between pnN(x;p) and pn(x;po).

THEOREM  1   [7,  8].   Suppose po is a measure on Eo C [—1,1] and p is the
measure obtained from po by (2.5).  Then

(2.8) pnN(x;p) =pn(T(x);p0), n = 0,1,2,....

PROOF. We will show that

(2.9) / xmpn(T(x); p) dp(x) =0,        m < nN,
J E

and

(2.10) f p2n(T(x);po)dp(x) = \.
JE

To prove (2.9) we note that from (2.5)

/ xmpn(T(x);p0)dp(x)
JE

TV

= Yl /    w'(J)(Ji 1(x))mpn(x;p0)dpo(x).
i=i Je°

If we expand (2.1) into powers of \/z, then the left-hand side of (2.1) becomes

oo       1       N

n=0 i=l

and the right-hand side is
oo n

Since
w&    =o(^-)

(T(z))n+: \znN+1J,

we have
W(z)        ^    1

where IJ.m is a polynomial of degree at most m and [n/N] is the integer part of
n/N. Hence by comparing the coefficients of z~m~l

I  xmpn(T(x); po) dp(x) =        X\{m/N}(x)pn(x;po)dpo(x)
J E J Eo
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ORTHOGONAL POLYNOMIALS 563

and the latter integral is zero for m < nN. For (2.10) we have by (2.5)

/ pl(T(x);po)dp = ^2       Wi(x)pl(x;po) dpo(x)
JE j_j J Eo

and this is equal to one by (2.2) and the orthonormality of the {pn(x; Po)}-    D
A sequence {pn(x):n = 0,1,2,...} of orthogonal polynomials on the real line

satisfies a three-term recurrence formula

(2.11) xpn(x) = an+1pn+i(x)+bnpn(x)+anpn-1(x),        n = 0,1,...,

with po(x) = 1, P-i(x) — 0, an > 0, and bn G R. The fcth associated polynomials
{pn  (x), n = 0,1,2,... } (k G N) satisfy the "shifted recurrence relation"

xp{k)(x) = an+k+ip^l^x) + bn+kp{k)(x) + an+kp^l^x),        n = 0,1,2,...,

with Po = 1 and p_l(x) = 0. Let {a°+1,6°:n = 0,1,2,...} be the recurrence
coefficients for {pn(x;po)} and {an+\,bn:n = 0,1,2,... } be those for {pn(x;p)}.
Then we have

THEOREM 2.   With the same notation as in Theorem 1, we have

(2.12) p{n1)N_1(x;p) = ^W(x)p{n1l1(T(x);po),        n = 0,1,2,...."i
PROOF. It is well known (and one can easily check) that

(i) ,      > f Pn(x;p) -pn(y\p)  ,  , v
j£ a;- 2/

By (2.5) and (2.8) we have

fi)     ,    iA     n    f Pn(T(x);p0) - pn(T(y);po) j ^
Pn/v-iWW =ai /   -dp(y)je x ~~ y

Ef       , ^Pn(T(x); po) - pn(y; po)
/    My)-rr-i, ,-dp0(y).

i=1 Je0              x~Ti  \y)

Using (2.1) gives

(1)        i , un   x   f   Pn(T(x)\Po)-Pn(y\Po)    ,      ,   vP„AV_1(a;;//) = a1VK(x) /   -———-dp0(y)
je 1\x) — y

from which the desired result follows.    □
Let //(*' and p0 be the orthogonality measures associated with {pn '(x; p)} and

{pn '(x;po)} respectively. The next theorem describes how the Stieltjes transforms
associated with p^ and p0 ' are related and gives a relation analogous to (2.5)
among these two measures. A result similar to (2.13) when W(z) = T'(z)/N was
given by Barnsley, Geronimo, and Harrington [4].

THEOREM 3. Let S(z,p^) and S(z,p0 ) be the Stieltjes transforms associated
with p^ and p0    respectively.  Then

\aj W(z) p^z-p)
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564 J. S. GERONIMO AND W. VAN ASSCHE

wherep"N'_2 andpN_x are monic orthogonal polynomials. Let {zi, i = 1,2,... ,TV —

1} be the zeros ofW(z) and suppose that S(T(zt),Po   ) exists.  Then (2.13) implies
that for every bounded continuous function f,
(2.14)

+ E{(f)2sm^;Mo1)) + Cp^2fep)}^y,

where c is the leading coefficient ofT and W (see (3.6)).

PROOF. A well-known relation between S(z;p) and S(z;p^) is given by

(2-15) S{z;p) =-\--m.z — bo — a\b(z\p^i)

If we use this relation for po and pQ    with z replaced by T(z), we find

(2.16) S(T(z); p0) =--^.
T(z)-bO-(a1)2S(T(z),p^)

Multiply both sides of this equation by W(z). Then by (2.7)

q(      v      _W(z)_
S(z;p) =-—-tt^-

T(z)-b^-(a^2S(T(z),p01])

Substituting this result into (2.16) and then solving the resulting equation for
S(z,pW) yields

*,, „(ih _ (a°i V SiTjz);^)      (z-bo)W(z)-T(z) + bo>

From (2.12) with n = 1 and the definition of W(z) we have that pN_x(z) = W(z)/c.
Furthermore (2.8) with n = 1 tells us that

. T(z) - b°p
Pn(z) =--■

c

The result now follows from the fact that a2p^N_2(z) = (z - bo)pN_1(z) - pn(z)
(see also (3.10)). To prove (2.14) it is sufficient to take f(x) = \/(z — x). Utilizing
the fact that

TVl        i      _ A       l_1_l
W(z) T(z) - x ~ ^ W(T~\x)) T'(T-\x)) z - T~\x)

^      1 11
+ ^ W'(zi)T(zl)-xz-zl

and (2.4), in (2.13) gives (2.14) for f(x) = l/(z - x).    D
REMARK 3. We note that if one wishes to start with a measure p0    one must

check that supp/io is contained in [—1,1]-   (2.13) shows that mass points at the
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ORTHOGONAL POLYNOMIALS 565

zeros of W(z) may appear in the measure p^\ Letting c^1' be the absolutely
continuous part of p^ and a0 be the absolutely continuous part of p0 , we see
that

(2.17) ,«(,) = (£)2^^>(r(*)),      ier'(-i,i).

From (2.8) we see that there is a simple relation between the zeros of pnTv(z; p) and
pn(x;po)- Let {x°n,i = 1,2,... ,n} denote the zeros of pn(x;po)- Then the zeros
{xi,j,nN, i = 1,2,..., TV, y = 1,2, ...,n} of pnN(x;p) are given by

Xi,;,„/v = Pi-1 (a£„),        1 < j < n, 1 < i < N.

Recall that the Christoffel numbers {Xj,n'-1 < J < ^i, n — 1, 2,... } for a system
of orthogonal polynomials {pn (x)} with spectral measure p are the Cotes numbers
for the Gauss-Jacobi quadrature

/ ir(x)dp(x) = >,Aj,n7r(gj,w),
j=i

which holds for every polynomial 7r of degree at most 2n — 1. These Christoffel
numbers are also equal to the residues of

Pn-l(x)  _ V"^      -^j'.n

Pn{X) .       X — Xj^n

THEOREM 4. Let {A°n} be the Christoffel numbers for the spectral mesure po
on Eo and {Xj<n} those for the measure p on E.  Then

Kj.nN = A°nws(z°J,        1 < j < n, 1 < i < TV.

PROOF. From (2.8) and (2.12) we see that the [(nTV-l)/nTV] Pade approximant
to S(z,p) is

PnTV-l(*;M)  = w       p^UnxYpp)
pnN(x;p) pn(T(x);po)

where pi denotes the monic orthogonal polynomial of degree i. Evaluating the
residues of the above rational fractions and using the relation between the zeros of
PnN(x;p) and pn(x;po) given above gives the result.    □

If one uses Chebyshev polynomials of the first kind on [—1,1], then it is well
known that X°jn = 1/n (j = l,...,n). Choosing W(x) = T'(x)/N gives Christoffel
numbers \j,nN = 1/nN and the Gauss-Jacobi quadrature uses equal weights under
these conditions.

III. Jacobi matrices. Let {pn(x):n = 0,1,2,... } be a sequence of orthogonal
polynomials that satisfy the recurrence relation (2.11); then closely related to these
polynomials is the Jacobi matrix

(b0    a, 0 \
ai    bi    a2

J =      0     a2    b2     a3

V ■)
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566 J. S. GERONIMO AND W. VAN ASSCHE

Let l2 be the square summable sequences {tp — (ip(0),ip(l),ip(2),.. ■ )-J2n<'=o'^2(n)
< 00}. Then J acts as an operator from l2 to l2. There is an easy relationship
between the resolvents of the Jacobi matrices of {pn(x;po)} and {pn(x;p)}\

THEOREM 5 [6]. Let {a° + 1,6°:n = 0,1,2,...} be the recurrence coefficients
for the measure po on E0 C [—1,1] with Jacobi matrix Jo and {an+i,bn:n =
0,1,2,... } the recurrence coefficients for p on E = T_1 (Po) with Jacobi matrix J.
Then

(3.1) W(z)(T(z)-JQr1=D(z-jy1D*,        z#E,

where D:l2 —► l2 acts as (Dip)(n) = ip(nN) and D* is the adjoint (transpose) of
D.

PROOF. The (n,m)-entry of (z — J)-1 is given by

(3.2) l(z-J)-%,m=[P^^X>^dp(x)
Je z - x

(Stone [24, p. 546]). By (2.8) we then have

[D(z - J)-lD*]n<m = [(z - JTXn^n
f Pn(T(x); p0)pm(T(x); po) ^

Je z-x
Next use (2.5), (2.1), and (2.8) in the integral to find

me        n-in*i un \ f   Pn(x;Po)pm(x;pp)[D(z-J)    D\n,m=W(z)        -——-dp0(x),
J E0 1\z)~x

and the last integral is the (n,m)-entry of (T(z) — Jo)-1-    d
The resolvent formula (3.1) uniquely determines the recurrence coefficients

{an+i,bn:n = 0,1,2,... } when {a° + 1,6°:n = 0,1,2,...} are given. This follows
by looking at the (0,0)-entries in (3.1).

If one wants to solve (3.1) for J, then one runs into problems since D is not
invertible. In order to get around that problem we introduce the projections

P = D*D,    Q = I-P.
Following Bellissard [6], we arrive at the following Schur decomposition.

LEMMA 2.   LetJ = QJQ.  Then for z G C\(P U {0})

(3.3) D(z - J)~lD* = [z- DJD* - DJQ(z - j^QJD"]-1.

PROOF. We will show that

D(z - J)"1!)*^ - DJD* - DJQ(z - J)-XQJD*] = I.

The left-hand side of this equation is equal to

(3.4) zD(z - J)~lD* - D(z - J)~lPJD* - D(z - J)~1PJQ(z - J)_1QJD*.

By the definition of Q

Jm,n = [QJQ]m,n =0, m = 0 (mod TV) or n = 0 (mod TV)
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ORTHOGONAL POLYNOMIALS 567

so that
[(z-J)~1}mN,n=0,        n^nM.

We then easily find
P(z-J)~1Q = 0.

Using this we can rewrite the last term in (3.4) as

D(z - J)-X{PJQ + Pz\(z - J)QJD*.
Since P = I — Q and DQ = 0 this is equal to

D(z - J)-1[(z -J)-(z- J)Q](z - J)~lQJD* = D(z - jy^QJD*.

Therefore (3.4) becomes

zD(z - J)_1P* - D(z - J^PJD* - D(z - J)-XQJD*
= D(z - J)-X[z -PJ - QJ]D* = DD*

and since DD* = I this proves the result.    D
A combination of (3.1) and (3.3) gives

(3.5) T(z) - J0 = W(z)[z - DJD* - DJQ(z - J^QJD*}.
This equation then leads to

THEOREM 6 [8].   Let

T(z) = czN + a!*""1 + a2zN~2 + ■ • ■ + aN,
W(Z) = CZN~l + pXZN~2 + ■■■ + 0N-L

Then

(3.7) bnN = h^l,        n = 0,l,2,...,
c

N 1
(3.8) ~[anN+i = -a° + 1,        n = 0,1,2,...,

i=i c

(3.9) p{^1)(z;p) = -W(z), n = 0,1,2,...,

2      -(nTV-TV+1)/ >,   ,      2 .(rjTV + 2), A
anNPN-2 (2;W+<AH-lP/v-2       (^ W

(3J0) =l{%-T(z)+(z-^)w(z)},        n = 0,l,2,...,

where ao = 0 anrfpn   (2;/^) is Me monic associated polynomial of order k (i.e., with
leading coefficient one).

PROOF. If one compares the coefficients of zN~l in (3.5), then

(3.11) (p1-a1)I = cDJD*

and since
[DJD*]n^n = JnN,nN = bnN
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568 J. S. GERONIMO AND W. VAN ASSCHE

this gives (3.7). From (3.5) we also find, using (3.11),

(3.12) W(z)[DJQ(z - J)-lQJD*]n,n+1 = a°n+1.
Let J(") (n = 0,1,2,...) be a (TV - 1) x (TV - 1) Jacobi matrix defined by

/^nTV + l      GnTV+2 \
O-nN + 2      &nJV + 2      O-nN+3

J        = flnJV + 3      &nTV+3   <
* * • . ' '   OnTV+TV-l

\ * anN+N-i      bnN+N-l '

Then J is a block diagonal matrix with the j'n) matrices on the diagonal separated
in the (nN, nTV)-entries by zeros:

f° \J(0)
0

J= 0

0
V "•/

and therefore
fl/z \

(z-jM)'1
1/2

(z-J)   x = {z-jW)-1

1/z

V '■)
Some simple algebraic manipulations show that

[DJQ(z - J)-1gjP*]n,„+1 = [JQ(z - J)-1QJ]„AT,„Ar+/v

= anN + ianN + N[(z — J)      ]nTV+l,nTV + TV-l-

Now
nTV-li = 1    anN+i

[{Z-J)      \nN+l,nN + N-l  — [{Z- J'   ')      \l,N-l ~     (nN+1),-T>
Pn-i    (z;p)

the last equation follows by calculating (z — j(™))_1 using cofactors. If we insert
this in (3.12), we find

TV

W(z)WanN+l/p(^l)(z;p) =a°+1,
i=i

and this implies both (3.8) and (3.9).  In a similar way we find from (3.5), using
(3.11),

W(z)[DJQ(z - J)-lQJD*}n,n = b°n- T(z) + (z - Pl ~ ai ) W(z).
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ORTHOGONAL POLYNOMIALS 569

Some easy algebra gives

[DJQ(z - J)-lQJD'\n,n = [JQ(z - JyiQJUrf.nN
= anN[(z ~ J)~  ]nTV-l,r»JV-l

+ anN + ll(z ~ J)~   ]nJV+l,nTV + l

where for n = 0 we set ao = 0. Now

\(z - j")-1 w-i,«tv-i = \(z - /("-^rv-i.Tv-i
ti»2N+l\z;p)

v{nN+2)(z-u)
u n-ll -\( r(n)\-li ^TV-2 V^tPT
[(Z-J)      \nN + l,nN+l -[(Z- J"   ')      Jl,l -     ,nN + 1).-"i

Pat-i      i^P)
and (3.10) follows by using (3.8) and (3.9).    □

If one uses the formulas

/ 0i-ai\W(z) x„(nJV+l)/        x[z-—J—^ = (z-bnN)pKN_1   >(z;p)

and
/ ,        ,JnN+l), n -(nN), v   ,      2 .(nTV+2)/ x
(z - bnN)p'N_1   >(z;p)=p'N   '(z;p)+anN+1p'N_2   '(z;p),

then (3.10) becomes

(3.13) *®f& = #"W) -«^j£f W+1W).
IV. Properties of the new orthogonal polynomials. So far we have a

simple relation between the polynomials pnN(x; p) and pn(x; po) given by Theorem
1, and a similar relation between p„^_ j (x;p) and p„_1(x; po) given by Theorem 2.

A natural question then is to find a formula for pnN+j(x;p) and pn^r+j_1(x;p) in

terms of the initial system pn(x;po) and p)n_1(x;po)- We will give such formulas
by using some Wronskian formulas. If {un} and {vn} are two solutions of the
recurrence relation (2.11), then their Wronskian is defined to be

W(un,vn) =an+1
un+l      Vn + 1

= an+i(unVn+i - Un+iVn).

One can easily verify that W(un, vn) is independent of n.

THEOREM 7.   Let j be any integer such that 0 < j < N.  Then

l        -, 1        an+l anN+\      (nN+j+l),        n      frr/   \        \
pnN+J(x;p) = TjTT-r--<-P/v-j-i   '(x;p)pn(T(x);po)

,. .-. W(x) anN+i  (anN+j + i       J

+ p\n_Nl+1)(x;p)pn+1(T(x);p0)}
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and

,. 2} al anN+l   (a„N+j + l

+ p(Jn_N1^(x;p)pW(T(x);po)Y

PROOF. Let n,N and j be fixed integers. Then the sequences p(n+i)N+k(x;p),

P/v+fc-i (z; M)i and P/v+fc-j'-i (x' A*) are solutions of the recurrence relation

zufc = anN+k+iuk+i + bnN+kuk + anN+kuk-i.

Since this is a linear recurrence relation of second order, these three solutions have
to be linearly dependent and therefore there exist A, B, and C (independent of k)
such that

(4.3) ^PN+fc^l (*; /*) = BPN+k-t-l (x! /*) + ^(n+lJiV+fcCi; /*)•

Setting fc equal to j — TV gives

J4p('»JV+1)(a.;//) = CpnN+J(x;p),

and setting fc equal to j — N + 1 gives

Ap']nN+1)(x;p) = B + CpnN+j+1(x;p).

Therefore

PnN+j(x;p)

and

P= -;-r{p["N+1)'(a:;p)pnN+j(x;p) -p[^_N1+l)(x;p)pnN+j+i(x;p)}
PnN+j(x;p)    J J

A * ri// (r»TV+l)x
= -7-v-W^(PnTV+fc,Pfc_l        )•

PnN+j(X; p) anN+j+l

We can evaluate the Wronskian by choosing fc = 0, giving

(4.4) W(pnN+k,pkn"1 + 1)) =anN+ipnN(x;p)

so that (4.3) becomes

/ x   (nTV + 1), x QnN + 1       (nN+j+l), x , x
PnN+j(x;p)pKN+k_((x;p) =-PN+kJj^i(x;p)pnN(x;p)

anN+j + l

+ pj"T+1)(z; p)p{n+i)N+k(x; p).

Let fc = 0 in this formula and use (3.8) and (3.9); then (4.1) follows. Similar rea-
soning using the solutions p\1J+1)N+k_1(x; p),p{^k_1(x; p), and p^+it-i-i faM)
will lead to (4.2).    □

The next theorem shows us how to relate anN to a°.
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THEOREM 8.   Let (zjY = (z\,z32,... ,zjN_1), where {zi'.i = 1,2,... ,TV - 1} are
the zeros ofW(z) and let (7„)' = (7i,n,72,n, ■ ■ ■ , 7TV-i,n), where

(4.5) 7,n=-a"+1   ^^ y        i=l,2,...,N-l.
c     pn+i(T(zi);po)

Then
ia a\ „2 _    det[l,z,z2,...,7ra]
(4'6j a("+Dw ~ det[l,z,Z2,...,z"-2]

and

p^2+1)(z;p) = zN-2+Yjclz\
i=0

where
(A 7\     ,      dettLz^2,...,^-1^,,,^1,...^^-2] _
(47)    C' =-det[l,z,z2,...,z--3,7n]-•        -0,1,2,.,.,TV-3.
Furthermore this allows us to calculate {anM+i'-i — 1,2,... ,TV —1} and {bnN+i'-i =
1,2,... ,TV — 1} in terms of ratios pn(z\ Po) / Pn+i(z\ Po) ■

PROOF. Consider the Wronskian (4.4) for fc = TV - 1. Then

anTV + lPnTv(z;M) = a(n+l)Tv{P(n + l)TV-l (x\ P)Pn-1       (X'i P)

- P(n+i)N(x; p)pn-2+1)(x; p)}-

If we evaluate the above Wronskian at a zero z* of W(z) and use (3.9), we obtain

anTV+lPnTv(Zi;p) = -a(n+l)NPN-2       (zi' P)P(u+1)n(zu P)-

The fact that

Pa?_i+1)(«;^) =-Pn-2+1)(z;p)
anN+2anN+3 ■ ■ ■ anN+N-i

_    anN+ia(„+l)N .(nTV+1)/   .    x
— C -g Pn-2       \ziP)

an + l

(see (3.8)) and Theorem 1 give

2 .(nTV+i)r        x _ -a°+i   Pn(T(Zj);po)    _
a(n+l)NPN-2       \znP)~-"-~-(rp,     x.„   x   - 7t,n, I - 1, 2, . . . , TV - 1.

C        Pn+l(J(zi)\Po)
If we write

TV-2

a2n+l)NPN-2+1)(Z;P) =   J2 kiZ%
i=0

and then solve for ki using Cramer's rule, we find

.   _det[l,z,...,z'-1,7n,zI+1,...,zJV-2]
det[l,z,z2,...,z^-2]

From this we find (4.6) when i = N — 1 and (4.7) since fcj = aL+ix^Ci.
To show the last assertion we write

(4.8) p(n"+1)(z)=Q,(z)=z' + £<7t,^,        i = l,2,...,iV-2.
j=0
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Since

(4-9)     a2nN+l_lQl-3(z) = (z-bnN+l-1)Ql_2(z)-Qi-i(z),        i = 3,...,N,

we have the following formulas which follow by equating like powers of z:

(4-10) bnN+t-l = -<7i-l,j-2 + <7t-2,»-3i

(4-11) anjV+i-l = Qi-2,1-4 - Qi-l,i-3 - bnN+i-iqi-2,i-3,

and

(4.12) q.-3j=*-2*-1~9i-2l*~bn',+i-iqi-2J,        j = 0,l,...,i-2.
anN+i-l

Since qN-i,j and qN-2,j are known, (4.10) gives us 6„jv+tv-i from which follows
a2lN+N_1 by (4.11). We then calculate qN-zt]- Continuing this procedure reducing
TV by one each time gives the result.    D

REMARK 4. The denominator in (4.6) is a Vandermonde determinant which for
some classical polynomials is also referred to as a discriminant. Explicit formulas
are available for classical polynomials (Szego [25, p. 143]).

Let 4>(T, W) denote the mapping that maps polynomials orthonormal on P0 to
polynomials orthonormal on P given by (2.5) or (3.1). The above theorem allows
us to determine some classes of polynomials that are mapped into each other under
4>.

A system of orthonormal polynomials {pn(x)} with orthogonality set A is in
Mk(A) iff there exists {anj^Lj and {bn}%L0 with an+k = an > 0, and ~bn+k = bn
real and

lim \an — an\ =0    and      lim \bn — bn\ =0,
n—>oo n—>oo

where the {an} and {bn} are the coefficients in (2.11). A system of orthonormal
polynomials {pn(x)} with orthogonality set A is in M%k(A) C Mk(A) (i = 0,1) iff

oo

(4.13) ^V{|an-an| + |6„_, -/5n_,|}<oo        (* = 0,1).
n = l

THEOREM 9. Suppose the zeros ofW(z) are not in E — T_1(Po) and suppose
Eo supports a class Mk for some fc.   Then

(4.14) <A(T, W): Mfc(Po) - MNk(E).

If Eo is an interval, then (4.14) is true even if the zeros ofW(z) are in P. Fur-
thermore in this case

(4.15) <p(T,W):Ml(Eo)-M*N(E)        (i = 0,1).
PROOF. We shall begin with the case when Pq is an interval which we shall take

without loss of generality, as [—1,1]. We shall also allow that the zeros of W(z) are
in P. Since P0 = [-1,1], a° = \, b°n = 0, and |T(^)| > 1, and we have (Chihara
[10, Theorems (III.6.4), (IV.2.1), and (IV.2.4)])

,.        Pn(T(zj); po)_1_
n^o Pn+iiTiZi); no) ~ T(Zi) + yjT(Zi)2 - l'
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where the square root is such that \x + sjx2 — 1| > 1 when x G C\[—1,1]. Conse-
quently we have from (4.5), (4.6), and (4.7) that

lim arn+i)N = ajv
n—»oo    v

and
,. (nTV+1)/   x (1)     I   \hm p'N_2   '(z) ^q'N_2(z),

n—*oo

where the above limit is uniform on compact subsets of C. Here qNL2 is some

polynomial of degree TV-2. Since p^_1 (z) =pN_i(z) = qNLx, we can use (4.10),
(4.11), and (4.12) to calculate di, i = 2,3,... ,N - 1, and hi, i = 1,2,.. .,TV - 1.
That 6o = bnN follows from (3.7) and we find, by equating coefficients of zN~2 in
(3.10) then taking the limit, that

,a     If                 0gi-<*i)o 1     ~2
ai = ~ \ #2 - ol2-/3i \ - a%.

(Here we have used the fact that the {an} and {bn} are periodic.) This gives us
(4.13) in the case when Po is an interval even if the zeros of W(z) are in P. To
prove the general case we note that since z% ̂  P, |P(zi)l > 1. Let g°(x) be the
orthonormal polynomials associated with {a°} and {6°}. Then it is easy to show
[12, (11.22)] that

lim    onk+a{X\ = fa(x),        8 = 0,1,2,...,fc-l,
n—*oo Q   ,  .     . , [X 1Vnk+s+1v   I

uniformly on compact sets of C\[—1,1]. By the definition of the class Mk(Eo) it
follows from Poincare's theorem that

,. Pnk + s(x;Po) , /   x
lim   -1-\   = fs(X)

n^°° Pnk+s+l(x', Po)

uniformly on compact sets of C\[—1,1]. Consequently

(4.16) lim    Pnk+s(T(^);Po)    _ fa{T{zi))
"-"» Pnk+s+l (T(Zi)\ po)

If we examine the subsequences {a^nk+3+1)^:n = 0,1,2,... } and {p]y" 2 + (x):
n = 0,1,2} (s = 0,1, 2,..., fc — 1), we can use (4.16) to repeat the same reasoning
as before and (4.14) follows.

To show (4.15) we note that from (4.5)-(4.7) and (4.10)-(4.12) it is sufficient to
show that

(4.17) f; n'    ^(T(z\po)-1
^       Pn+i(T(zt);po)     T(Zi) + ^/T(z%)2 - 1

Following [14] we let p(x) = x + \/x2 — 1 and note that p(x) satisfies the following
equation:

(4.18) p(x) = 2x- l/p(x).
From (2.11) we have that for C\[-l, 1]

,. lgx Pn(x\Po)     _ z-bn-i _ an-ipn-2(x;p0)
pn-i(x;p0) an an   pn-i(x;p0)'
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Subtracting (4.18) from (4.19) yields
Pn(x\Po) , x      2z (1 \      6n_i      /       an_i\    1

-?-r - p(x) = —    - - a„-+1-——
(4 20)        Pn-U^^o) an \2 J       an        \ an  ) p(x)

Qn-l lPn-2(j;^o)   fPn-l(x\Po) ,   x\
an   PPn-i(x;p0) \pn-2(x;po) J'

Since pn^2(x;po)/Pn-i(x\Po) —► l/p(x) uniformly on compact subsets of C\Po,
for any given compact set K (K C\E0 = 0) and e there exists an TV such that

(4.2i) i P"^) < f i yp(x)p„_i(a;;/io)        VlPMI-e/
for all n > TV and x G P. Setting

A(n) = If - On| + If ~ On-ll + |&n-l|
and

we find from (4.20) and (4.21) that

Pn{X^°\-p(x)   <62   Pn-l(^M0)_    (J)   +0(A(n)).
pn_i(x;/*o) p„_2(x;po)

Repeated application of this inequality gives

Pn(x\P0) {x)    =Q    y6(2n-2k)A{k)
p„_1(x;p0)        V [^ J

where we set at = 0 for i < 0. If we choose K so that T(zj) G K, i = 1,2,... ,iV— 1,
the assertion will have been proved if we can show that

oo n
/ = ^V^Vfc-2"A(fc) <oo,        j = 0,1.

n=l       fc=l
Interchanging summations in the above equation gives

oo oo
/ = £] A(fc)£-2fc ̂Vs2",     y = o,i.

/c=l n=k

If we are in the class M°, then
oo

/ = ^A(fc)/(l-<52) <oo.
fc=i

If we are in the class M\, then
1 °°

v     ' k=i
which gives the result.    □

REMARK 5. For other possible rates of convergence of the coefficients see Mate-
Nevai-Totik [19].

By using (2.8), Theorem 7 and Theorem 8 one shows that asymptotic formulas
generating functions, etc. for the known polynomial system pn(x; po) can be carried
over to give corresponding formulas for the system pn(x;p). A simple example of
the above is the following theorem.
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THEOREM 10. Suppose that (4.14) holds. Then there exists a constant A such
that for j = 0,1,2,...,N -1

(4.22) l|p!ft+i_i(*;.0)l|oo < Amax{||p(l1)(x;p0)||oo,||pi121(2;;po)||oo},

and if W(z) ^ 0 for z G P then there exist a constant B such that for j =
0,1,2,...,TV-1

(4.23) HpnJV+jto/iJHoo < Pmax{||pn(2:;/uo)||oo,||Pn+i(a:;Mo)||oo}.

Proof. Let
C\ =   max max sup lp,-   (z;p)\,

0<i<N     k     Z&E

n an+l r, OnTV+1C2 = max-—,    63=   max max-.
n     dnN + l 0<i<N     n     anN + i+1

Then Ci, C2, C3 are bounded because of the asymptotic periodicity of the recur-
rence coefficients {an+i,bn: n = 0,1,2,... }. From (4.2) one then easily finds

llpi^-i^^lloo^ ^C'2{C3C1||pi121(x;//o)||oo + C1||p(i^(x;//o)||oo}
"1

from which (4.22) follows. If W(z) ^ 0 for z G P, then

C4 = inf |W(z)| >0
z£E

and from (4.1) we find

C2
||pnJv-(->(2:;/i)||oo < 7r{c'3Ci||pn(a:;/Wo)||oo + C1||p„+1(x;/io)||oo},

04

which leads to (4.23).    □

V. Potential theory. In this section we will relate some potential-theoretic
notions involving the set P = T_1(Po) to those related to Po. If P is a compact
set and p is a probability measure on P, then its (logarithmic) energy is

I(p)= /   /  log,--dp(x)dp(y).
Jeje     [x — y\

The (logarithmic) potential of p is

U(z; p)=      log-: dp(x).
J E \Z — x\

If Qe is the class of all probability measures on P, then the equilibrium energy of
P (Robin's constant) is

V(E) =   inf  I(p)
nsuE

and the capacity of P is C(E) = exp(-U(P)). A well-known result in potential
theory is that for every compact set P with positive capacity there exists a unique
measure pe such that V(E) = I(pe)- This measure is the equilibrium measure (or
Frostman measure) for P (Tsuji [26]). If the capacity of P is positive, then the
Green's function (7e(z) of (C U {oo})\P is the only function that is harmonic in
C\P, that behaves at 00 as

9e(z) = log |z| + harmonic function
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and for which
1™x9e(z)=0
zgE

for almost every x in P. The Green's function is actually given by

gE(z) = -U(z;nB)-iogC(E)
and

\imo{gE(z) - log |z|} = log ——.

THEOREM 11. Suppose C(E0) > 0 and let E = T~1(E0).  Then

(5-1) gE(z)=9Eo(T(z))/N

and in particular

(5.2) C(E) = {C(E0)/Cy/N.

If Pe0 is the equilibrium measure on Eo, then the equilibrium measure pe on E
can be obtained from pe0 by taking W(z) = T'(z)/N.

PROOF.  The function gE0(T(z))/N is harmonic in C\P, in the neighborhood
of infinity it behaves as

jj9e0(T(z)) = — |log|P(z)| + log | + harmonic function

= log |z| + — log c + — log + harmonic function,

and
lirn -tt9Eo(T(z)) =  lim  -tj9eo(z)=0

z—>E TV z—>E0 TV
z<£E z<£E0

almost everywhere. Therefore (5.1) and (5.2) follow immediately. Let W(z) =
T'(z)/N and take po to be the equilibrium measure pe0 in Po! then the corre-
sponding measure p in P satisfies

U(z; p)=      log-r dp(x)
Je      \z ~ x\

= ̂ S^los^fIMi'"*,(l)-
Now

Y\o%\z-T-\x)\^\o^T-^p-
«=i

so that

U{Z] "I= Jf Lolog WW^A dMx) + Tflog c
and by (5.1) and (5.2) this shows that p is the equilibrium measure pe on P.    □

If Po = [—1,1], then the equilibrium measure ps0 is the arcsine measure

dpE0(x) = -   , dx, xG[-l,l],
7T x/1 - X2
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and the equilibrium measure on P = T-1([— 1,1]) becomes by Theorem 8

.     , ,        1        |T'(z)|       ,
dpE(x) = —- dx,        xeE.

PV '     Nir x/1 - T(x)2

Theorem 9 shows that the coefficients for this system are in the class M^(E).
However in this case pn(x;p0) = Tn(x) = \(p(x)n + p(x)~n) are the Chebyshev
polynomials of the first kind. Consequently

Tn(T(Zi))        (1        if T(zi) = 1,
Tn+1(T(zt))      \  -1    ifT(z,) = -l,

and if |T(zi)| > 1 then

Thus (4.5)-(4.7) and (4.10)-(4.12) imply the following:

LEMMA 3. Let ph(x;pe) be the orthonormal polynomials associated with pe
and let {an} and {bn} be the coefficients associated with these polynomials. Fi-
nally, let {di} and {h-i} (i = 1,2,... ,TV — 1) be the limits of anN+i and 6nTV+i
respectively.  Then

\anN+i-di\ = 0(a~n)    and    \bnN+l-bi\ = O(o~n),

where a = minXi^£0{p(T(zj))}.   Here Zi,  i = 1,2,...,N — 1,  are the zeros of
T'(z).    D

REMARK 6. The Szego class on a set P consists of all measures p(x) with
absolutely continuous part a(x) having the property that In a(x) G Li(pe). Denote
by Se0 and Se the Szego classes on P0 and E respectively. Then it follows from
(2.6) that

^/W)i '-JE&L.*NirJE]       v "y/l-T{x)*

,=^jE{\lnlW(x)l\ + \lno-o(Tx)\}-^l=dx,

which implies that <f>(T,W): SEo -* SE.
REMARK 7. If we choose po such that it is absolutely continuous on [—1,1]

with weight o-0(x) = ^(l — x2)~l/2/p(x), where p is a positive polynomial of degree
/ on [—1,1], then the {pn(x;po)} are Bernstein-Szego polynomials on [—1,1] (Szego
[25, §2.6]). The measure p on P = T_1([-l, 1]) is also absolutely continuous on P
with weight

,-Tr)-1    )WW 1
*y/l-T(x)*p(T(x)Y

If W(x) has all its zeros at the endpoints of the intervals of P, then this measure
gives Bernstein-Szego polynomials on P (Akhiezer [1]).
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VI. Sieved orthogonal polynomials. If we take

T(x) = cfN(x) = c2~N+1TN(x),

where TN (x) is the Chebyshev polynomial of the first kind of degree TV and W —
T'(x)/N = cUN-!(x) = c2-N+lUN-1(x), where Pjv-i is the Chebyshev polyno-
mial of the second kind of degree TV - 1, then T and W satisfy all the conditions
of Lemma 1 if c > 2N~X. This special case gives rise to so-called sieved orthogonal
polynomials, studied by Al-Salam, Allaway, and Askey [2], Charris and Ismail [9]
and Ismail [15-17]. The use of the polynomial mapping T gives a new approach to
studying sieved orthogonal polynomials and enables one to rediscover many results
found by the previously mentioned authors. If we start with a weight function ct0(:e)
on [-1,1], then from (2.6) we see that the orthogonal polynomials on T_1[-l, 1]
have the weight function

a(x) = c\UN-i(x)\a0(cfN(x)).

Alternatively letting a0 be the weight function for the associated polynomials we
find from (2.17) and (2.14) that for appropriate <r0   (x),

dp^(x)= (^-)   —r-—o-01](cfN(x))dx+ YjPt8(x-xi)dx,
\aij   c\UN-i(x)\ £1

where Xi, i= 1,2,..., TV — 1, are the zeros of Un-i(x) and

._ (a°1)2S(cfN(xi); po) - cfN(Xl) + b°p

a\cU1N_l(xi)

Specific choices of <70 or appropriate a0 ' (see Remark 3) (Ultraspherical weights,
Pollaczek weights) then give the formula for the weight function obtained in [2,
15-16]. If the spectral measure po on [—1,1] is symmetric, then one can explicitly
find the recurrence coefficients for the new orthogonal polynomials in terms of the
recurrence coefficients of the polynomials on [—1,1].

THEOREM 12. Suppose T(x) = cfN(x) and W(x) = cUN-i(x) with c > 2N~1
and let 6° = 0 (n = 0,1,2,...). Then the recurrence coefficients {an+i,bn:n =
0,1,2,... } of the new orthogonal system are given by

(6.1) bn = 0,

(6.2) On/v+i=2'        j = 2,...,N-l,

,R,x „2      _ QnoTV-2Pr.-l(c2"Ar + 1;^0)
(6-3) «nTV--2 pn(c2-TV + l;/io)    •

{6A) QnN+l ~ 2 - T2 Pn(c2-^;p0)   ■

PROOF. First consider the rational function

Pn-i(s;/0 = Un-i(x)
pN(x;p) TN(x)
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where the equality follows from Theorems 1 and 2. The coefficients of the (Jacobi)
continued fraction are {bo;a2,6n:n = 1,...,N — 1} and because we are dealing
with Chebyshev polynomials we have

ai = 1/V^;        b0 = 6i = 0,

ai = \'        6; = °>        j' = 2,3,...,TV-l.
Suppose next that we have proved

anTV+j = X'    ^nN+j = 0       (j — 2,3,...,N - 1);    6„at+i = 0

for every n = 0,1,..., k — 1. Formula (3.10) becomes for n = fc

aU*N_2+l)(z;p) +a2kN+1p^2+2)(z;p) = 2^+1Pw_2(z).

Comparing the leading coefficients gives

(6.5) akN + akN+1 = ^

and by hypothesis p^N_~N+1)(z;p) = 2~N+2UN-2(x); therefore

a^+1p^2+2)(z;p) =2-N+2UN-2(x){\ - a2kN}

from which we find p{^2)(z;p) = 2~N+2UN^2(x). The coefficients in the (Ja-
cobi) continued fraction for

P(N-22)(x;p) _ 1 UN-2(x)

p^1](x;p)~^UN^i(x)

are {bkN+\; akN+,,bkN+j-j = 2,..., TV - 1} and since we are dealing with Cheby-
shev polynomials of the second kind we have

bkN+J=0,        j = l,...,N-l,

akN+]■ = \,       j = 2, ...,N- 1.
Also bkN = 0 by (3.7), so that (6.1) and (6.2) are true for every n. Because of (6.1)
and (6.2) we have p(„"+1](z;p) = 2~N+2UN-2(z) so that (4.7) becomes

2 <    27V~2    p„_1(T(zi);p0)
QnN c UN.2(Zl)   pn(T(zi);po)   '

where Zi is a zero of P/v-i- Now U^-2(zi) = —T^(zi) = ±1 from which (6.3)
follows. The result in (6.4) is a combination of (6.3) and (6.5).    □

The formulas for the intermediate polynomials pnN+j(x;p) and pn^+j_1(x;p)
in Theorem 7 become quite simple. Indeed, because of (6.1) and (6.2) we have for
i = l,...,7V-2

2a(n+i)NP^^1+1)(a;;p) = PAr_J_1(x),        p^+1)(x;p) = Uj-i(x)

so that under the conditions of Theorem 12 we have for 1 < j < N

pnN+j(x;p) =-ri±^- I   nN+1 UN-j-i(x)pn(T(x)\po)
C      O.nN + 1    (.OnTV + n

+ P^_1(x)pn+1(T(2;);po)|/P/v-i(x)
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and

P&W-ita/O = -7^3^ (?^±i^-,-1(x)pi121(r(x);po)
\J2a\ anN+i  \anN+n

+ U]-i(x)P^(T(x);po)y

The special case c = 2N~l gives a mapping such that T-1([-l, 1]) = [-1,1]. The
weight function a may vanish at the zeros of the Chebyshev polynomial J7jv-i. As
for the associated polynomials we see that for appropriate weight functions <7q we
may find mass points of p^ in [—1,1]. For example if one chooses

r(o + |)(i-x2r
y/TrT(a+l)

then

S(±l,p^) = ±^±
a

[25, p. 77] and we find that

+ El(«-(a + 2)(aW)Sin2(^y(x-coS^')dx,
i = l \       /        \ /

where one must choose (a°J2 < a/(a + |) (see Remark 3).
We note that the above calculations easily carry over to the case when pg    is a

Jacobi weight with a, (3 > 0.
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