
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 360, Number 8, August 2008, Pages 4125–4143
S 0002-9947(08)04368-7
Article electronically published on February 27, 2008

ORTHOGONAL POLYNOMIALS
WITH A RESOLVENT-TYPE GENERATING FUNCTION

MICHAEL ANSHELEVICH

Abstract. The subject of this paper are polynomials in multiple non-com-
muting variables. For polynomials of this type orthogonal with respect to
a state, we prove a Favard-type recursion relation. On the other hand, free
Sheffer polynomials are a polynomial family in non-commuting variables with a
resolvent-type generating function. Among such families, we describe the ones
that are orthogonal. Their recursion relations have a more special form; the
best way to describe them is in terms of the free cumulant generating function
of the state of orthogonality, which turns out to satisfy a type of second-
order difference equation. If the difference equation is in fact first order, and
the state is tracial, we show that the state is necessarily a rotation of a free
product state. We also describe interesting examples of non-tracial infinitely
divisible states with orthogonal free Sheffer polynomials.

1. Introduction

Let x = (x1, . . . , xn), z = (z1, . . . , zn) be n-tuples of non-commuting indetermi-
nates, such that the x-variables commute with the z-variables. Sometimes we will
treat such n-tuples as vectors, in which case x · z denotes the scalar product.

Definition 1. Let
F (z) = 1 + higher-order terms

be a formal power series, and V be an n-tuple of formal power series,

Vi(z) = zi + higher-order terms.

Expand

F (z)
(
1 − x · V(z)

)−1

into a power series in z. The coefficient of the monomial z�u is easily seen to be a
monic polynomial P�u(x). We call {P�u} the (multivariate) free Sheffer polynomials.

The question to be investigated in this paper is: when are the free Sheffer poly-
nomials orthogonal with respect to some state ϕ? We emphasize that {x1, . . . , xn}
do not commute, and so one can talk about orthogonality of {P�u} only with respect
to a positive functional on the algebra of non-commutative polynomials R〈x〉, not
with respect to a measure on R

n.
The rest of the Introduction explains the motivation behind this question.
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4126 M. ANSHELEVICH

Let {Pn(x)} be a monic polynomial family (in on variable) with a generating
function of the form

(1)
∞∑

n=0

Pn(x)zn =
1

1 − xU(z) + R(U(z))
.

Here U = z+ higher-order terms and R = z2+ higher-order terms are formal power
series. The main theorem of Section 3 of [3] can be reformulated as follows.

Proposition 1. The polynomials with the generating function (1) are orthogonal
if and only if the following two conditions hold:

(a) U(z) = (R(z)/z)〈−1〉, and
(b) R(z)/z2 = 1 + bR(z)/z + c(R(z)/z)2.

Here F 〈−1〉 denotes the inverse under composition.
Notice the similarity of this result to the following theorem, found in various

forms by various people and going back to Meixner [15].

Proposition 2. Let {Pn(x)} be a family of Sheffer polynomials, that is, a polyno-
mial family with a generating function of the form

∞∑
n=0

1
n!

Pn(x)zn = exp
(
xU(z) − R(U(z))

)
.

Here the conditions on U and R are the same as above. These polynomials are
orthogonal if and only if the following two conditions hold:

(a) U(z) = (R′(z))〈−1〉, and
(b) R′′(z) = 1 + bR′(z) + c(R′(z))2.

In fact, polynomials satisfying the conditions of Proposition 2 can be listed ex-
plicitly. They consist of polynomials orthogonal with respect to the Gaussian,
Poisson, gamma, binomial, negative binomial, and continuous binomial (hyperbolic
secant) distributions, all important in probability and statistics. It makes sense
therefore to look at the polynomials with the generating function (1), which we
call the free Sheffer polynomials, and in particular at the polynomials satisfying
the conditions of Proposition 1, which we call the free Meixner polynomials. Here
the adjective “free” refers to their relation to free probability [20]; see [3, 4] for
more details. These polynomials can also be described explicitly; see Theorem 4
of [3]. They include Chebyshev polynomials of the 2nd kind, and other families
whose orthogonality measure may include at most two atoms; they belong to the
class investigated by Szegö and described on pages 26–28 of [5]. In particular, the
semicircular, free Poisson (Marchenko-Pastur) and free binomial distributions are
of this type. See Example 6 for more details.

The parallel between Propositions 1 and 2 can be explained by noticing that
they are both particular cases of a more general theorem involving the generating
function of a specific basic hypergeometric form; see [1] or Theorem 4.8 of [4].
Proposition 1 is recovered for q = 0, while Proposition 2 is recovered for q =
1. The general family of orthogonal polynomials involved are the Al-Salam and
Chihara polynomials; in particular, the (Rogers) continuous q-Hermite polynomials
interpolate between the Hermite polynomials and the Chebyshev polynomials of the
2nd kind.
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Despite the similarity between single-variable Propositions 1 and 2, the key point
about Definition 1 is that it involves polynomials in non-commuting variables. In
contrast, natural multivariate generalizations of Proposition 2 involve more famil-
iar polynomials in commuting variables, orthogonal with respect to n-dimensional
measures. They have been investigated by a number of people; see for example
[11, 14, 8, 17, 9, 18]. This analysis is usually performed in the context of natural
exponential families. So this paper may be a precursor to “free statistics”. For the
moment, there are two other motivations for it. First, the hope is that these objects
will turn out to play a role in free probability. Second, while there is some work
on orthogonal polynomials in non-commuting variables [6], the field appears to be
largely unexplored. In particular, while there are many interesting examples of
multivariate orthogonal polynomials in commuting variables [10], there is a paucity
of examples in the non-commutative case. The original motivation for this paper
was to provide such examples. They come from free product states (Section 4), and
from a certain exponentiation of a free semicircular system (Section 5).

2. Preliminaries

2.1. Polynomials. Let R〈x〉 = R〈x1, x2, . . . , xn〉 be all the polynomials with real
coefficients in n non-commuting variables. Multi-indices are elements �u∈{1, . . . , n}k

for k ≥ 0; for |�u| = 0 we denote �u by ∅. For two multi-indices �u,�v, denote by (�u,�v)
their concatenation. For �u with |�u| = k, denote

(�u)op = (u(k), . . . , u(2), u(1)).

Define an involution on R〈x〉 via an R-linear extension of

(x�u)∗ = x(�u)op .

Here x�u is the monomial xu(1) . . . xu(k).
A monic polynomial family in x is a family {P�u(x)} indexed by all multi-indices

∞⋃
k=1

{
�u ∈ {1, . . . , n}k

}

(with P∅ = 1 being understood) such that {P�u(x)} = x�u+ lower-order terms. Note
that P ∗

�u �= P(�u)op in general.
A polynomial family {P�u} is pseudo-orthogonal with respect to a functional ϕ if

ϕ [P ∗
�uP�v] = 0

whenever |�u| �= |�v| (including �u = ∅). The family is orthogonal if this is the case
whenever �u �= �v. Note that an orthogonal polynomial family {P�u} determines its
unital functional of orthogonality ϕ via ϕ [1] = 1, ϕ [P�u] = 0, so such a functional,
if it exists, is unique.

Most theorems about formal power series remain valid for non-commuting vari-
ables. In particular, a series F (z) = 1+ higher-order terms has a unique inverse
with respect to multiplication, always denoted by F−1. Also, an n-tuple of se-
ries U with Ui(z) = zi+ higher-order terms has a unique inverse with respect to
composition, always denoted by U〈−1〉.
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2.2. Linear functionals and free cumulants. Let ϕ be a unital real linear func-
tional on R〈x〉. It can be thought of as a moment functional of the variables
{x1, . . . , xn}. Here their joint moments are

M [x�u] = ϕ [x�u] = ϕ
[
xu(1) . . . xu(k)

]
.

Denote by

M(z) =
∞∑

k=1

∑
|�u|=k

M [x�u]z�u = ϕ
[
(1 − x · z)−1

]
− 1

the ordinary moment generating function of ϕ. Here, and in the sequel,

z = (z1, z2, . . . , zn)

are formal non-commuting indeterminates, which commute with the {xi}. Note
that M(z) completely determines ϕ.

The free cumulant functional R corresponding to ϕ is usually defined using the
lattice of non-crossing partitions: R[1] = 0 and for |�u| = k,

R[x�u] = M [x�u] −
∑

π∈NC (k),

π �=1̂

∏
B∈π

R
[∏

i∈B

xu(i)

]
,

which expresses R[x�u] in terms of the joint moments and sums of products of
lower-order free cumulants. From these, we can form the free cumulant generating
function via

(2) R(z) =
∞∑

k=1

∑
|�u|=k

R[x�u]z�u.

However, in this paper we will not use non-crossing partitions. So for the rest of the
paper, we take as the definition of free cumulants the following implicit functional
relation; see Section 13 of [16] or Proposition 3.1 of [4]:

(3) R
(
w1

(
1 + M(w)

)
, . . . , wn

(
1 + M(w)

))
= M(w).

To simplify notation, we will assume throughout the paper that the {xi} are
centered and have unit covariance,

R[xi] = ϕ [xi] = 0

and
R[xixj ] = ϕ [xixj ] − ϕ [xi] ϕ [xj ] = δij .

The results can be modified for more general (in particular, degenerate) covariance,
but the formulas become more complicated.

A state on R〈x〉 is a linear functional that is unital (that is, ϕ [1] = 1) and
positive, that is, for any polynomial A(x),

ϕ [A(x)∗A(x)] ≥ 0.

Such a functional cannot always be extended from R〈x〉 to a state on some C∗-
algebra. This is already true in the commutative case: a positive functional on
R[x1, x2] need not come from a positive measure on R

2. The issue is whether the
moment problem is solvable; for an example of a non-commutative result, see [13].

A state is faithful if ϕ [A(x)∗A(x)] = 0 only for A(x) = 0. We will only consider
faithful states in this paper; but see Remark 3.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ORTHOGONAL POLYNOMIALS 4129

For unital linear functionals

{ϕi on R[xi]}n
i=1 ,

their free product functional ϕ on R〈x1, x2, . . . , xn〉 is defined by the requirement
that

Rϕ[x�u] = 0

unless all u(j) are equal (that is, mixed free cumulants are zero), and

Rϕ[xk
i ] = Rϕi

[xk
i ].

ϕ is a state if ϕi’s are. Conversely, if ϕ happens to be of this form, we say that {xi}
are freely independent with respect to it. See [20] or [19] for a lot more about this,
and in particular for an explanation of the terminology. If a similar definition is
given for the algebra of commutative polynomials in terms of the usual cumulants,
one obtains exactly product states, corresponding to product measures, and the
notion of independence.

Example 1. If ϕ1 is a state on R[x1], ϕ2 is a state on R[x2], and ϕ is their free
product state on R〈x1, x2〉, then

ϕ [x1x2 + x1x2x1 + x1x2x1x2] = ϕ1[x1]ϕ2[x2] + ϕ1[x2
1]ϕ2[x2]

+
(
ϕ1[x1]2ϕ2[x2

2] + ϕ1[x2
1]ϕ2[x2]2 − ϕ1[x1]2ϕ2[x2]2

)
.

2.3. Operators. Define the left partial derivative with respect to zi, Di by

Di(1) = 0,

Dizj = δij ,

Di(zjz�u) = δijz�u.

Denote by D = (D1, D2, . . . , Dn) the left gradient.
Given a monic polynomials family {P�u}, define the right partial lowering operator

with respect xi, Li, by

Li(1) = 0,

LiPj(x) = δij ,

LiP(�u,j)(x) = δijP�u(x).

3. Free Meixner families

Proposition 3. Monic polynomials are orthogonal with respect to some faithful
state if and only if they satisfy a recursion

(4) xiP�u = P(i,�u) +
∑

|�w|=|�u|
Bi,�w,�uP�w +

∑
|�v|=|�u|−1

Ci,�v,�uP�v

with
(a) Ci,�s,�u = 0 unless �u = (i, �s), and Ci,�s,(i,�s) > 0,
(b) denoting �sj = (s(j), . . . , s(k)),

Bi,�s,�u

k∏
j=1

Cs(j),�sj+1,�sj
= Bi,�u,�s

k∏
j=1

Cu(j),�uj+1,�uj
.
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Proof. First assume that the polynomials are orthogonal with respect to some faith-
ful state ϕ. Denote

〈S(x), T (x)〉 = ϕ [S(x)∗T (x)] .

Since the polynomials are monic, for any fixed �u, i,

xiP�u = P(i,�u) +
∑

|�v|≤|�u|
αi,�v,�uP�v

for some coefficients αi,�v,�u. Also,

〈P�v, xiP�u〉 = ϕ [P ∗
�v (xiP�u)] = ϕ [(xiP�v)∗P�u] = 〈xiP�v, P�u〉 = 0

for |�v| ≤ |�u| − 2. It follows that the polynomials satisfy a recursion of the type (4).
In that case, for general �u and �s

〈xiP�u, P�s〉 =
〈
P(i,�u), P�s

〉
+

∑
|�w|=|�u|

Bi,�w,�u 〈P�w, P�s〉 +
∑

|�v|=|�u|−1

Ci,�v,�u 〈P�v, P�s〉

= 〈P�u, xiP�s〉 =
〈
P�u, P(i,�s)

〉
+

∑
|�w|=|�s|

Bi,�w,�s 〈P�u, P�w〉 +
∑

|�v|=|�s|−1

Ci,�v,�s 〈P�u, P�v〉 .
(5)

Pseudo-orthogonality implies that for |�s| = |�u| − 1∑
|�v|=|�u|−1

Ci,�v,�u 〈P�v, P�s〉 =
〈
P�u, P(i,�s)

〉
,

and for |�s| = |�u| ∑
|�w|=|�u|

Bi,�w,�u 〈P�w, P�s〉 =
∑

|�w|=|�s|
Bi,�w,�s 〈P�u, P�w〉

(the case |�s| = |�u| + 1 is redundant). Using the orthogonality assumption,

Ci,�s,�uV�s�s = δ�u,(i,�s)V�u�u

and
Bi,�s,�uV�s�s = Bi,�u,�sV�u�u,

where
V�u�u = 〈P�u, P�u〉 .

It follows that

V�u�u =
k∏

j=1

Cu(j),�uj+1,�uj
,(6)

Ci,�s,�u

k−1∏
j=1

Cs(j),�sj+1,�sj
= δ�u,(i,�s)

k∏
j=1

Cu(j),�uj+1,�uj
(7)

and

(8) Bi,�s,�u

k∏
j=1

Cs(j),�sj+1,�sj
= Bi,�u,�s

k∏
j=1

Cu(j),�uj+1,�uj
.

Equation (8) is condition (b). Equation (7) is equivalent to requiring that Ci,�s,�u = 0
unless �u = (i, �s), and faithfulness of ϕ implies that Ci,�s,(i,�s) > 0, which together
form condition (a).
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Conversely, assume that the polynomials satisfy the recursion (4) with the con-
ditions of the proposition. On R〈x〉, define the functional ϕ by requiring that the
induced inner product

〈S(x), T (x)〉 = ϕ [S(x)∗T (x)]

satisfies

〈P�u, P�v〉 = δ�u�vV�u�u =

{
0 if �u �= �v,

V�u�u if �u = �v,

where V�u�u is now defined via equation (6), and extending linearly. So for S(x) =
σ∅ +

∑
�u σ�uP�u(x), T (x) = τ∅ +

∑
�u τ�uP�u(x),

〈S(x), T (x)〉 = σ∅τ∅ +
∑

�u

σ�uτ�uV�u�u.

If this functional is well-defined, the given polynomials are orthogonal with respect
to it. Also, since V�u�u are positive, the functional will be positive and faithful.

To show that this definition is consistent, we need to show that if

(9) S(x)T (x) = S′(x)T ′(x),

then
〈S∗, T 〉 = 〈(S′)∗, T ′〉 .

For R〈x〉, the fundamental theorem of algebra no longer holds, but these polynomi-
als still form a Unique Factorization Domain. Thus the equality (9) reduces to the
situation (QS)T = Q(ST ). By linearity, we may assume that S is a monomial. But
in that case, by iteration we may assume that S = xi. Finally, by linearity again
we may assume that Q∗, T are basis polynomials. Thus we only need to satisfy the
following condition:

〈xiP�u, P�s〉 = 〈P�u, xiP�s〉

which, using the recursion relation, is equivalent to equation (5). The arguments
from the first half of the proof imply that this equality holds provided that condi-
tions (a), (b) are satisfied. �

Remark 2. It follows from the proof of the preceding proposition that any pseudo-
orthogonal polynomials satisfy a recursion of type (4).

Remark 3. If the appropriate part of condition (a) of the proposition is replaced
by the condition Ci,�s,(i,�s) ≥ 0, it follows that the corresponding polynomials are
still orthogonal with respect to a state that need not be faithful. The converse
characterization is an interesting question that is not treated in this paper.

Lemma 4. Let {P�u} be a family of free Sheffer polynomials as in Definition 1,
with

H(x, z) = 1 +
∑

�u

P�u(x)z�u = F (z)
(
1 − x · V(z)

)−1

.

Assume more particularly that F (z) = 1 −
∑n

i=1 z2
i + higher-order terms. Define

the functional ϕ on R〈x1, x2, . . . , xn〉 by ϕ [1] = 1, ϕ [P�u] = 0 for |�u| ≥ 1. Then in
fact,

H(x, z) =
(
1 − x · U(z) + R(U(z))

)−1

,
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where R(z) is the free cumulant generating function of ϕ, and Ui(z) = Vi(z)F−1(z).
We say that {P�u} is the free Sheffer family associated to the functional ϕ and the
functions U. Note that if a free Sheffer family is orthogonal, it is orthogonal with
respect to the functional ϕ to which it is associated.

Proof. By definition of ϕ and H, ϕ [H(x, z)] = 1. Then

1 = F (z)ϕ
[(

1 − x · U(z)F (z)
)−1

]
= F (z)(1 + M(U(z)F (z))).

Since the n-tuple of power series U is invertible under composition, we may write

F (z) =
(
1 + K(U(z))

)−1

for some power series K. Then

1 + K(U) = 1 + M
(
U

(
1 + K(U)

)−1
)
.

Therefore from equation (3),

R
(
U1

(
1 + K(U)

)−1
(
1 + M

(
U

(
1 + K(U)

)−1))
,

. . . , Un

(
1 + K(U)

)−1
(
1 + M

(
U

(
1 + K(U)

)−1)))
= K(U).

However, this expression also equals

R
(
U1

(
1 + K(U)

)−1(1 + K(U)), . . . , Un

(
1 + K(U)

)−1(1 + K(U))
)

= R(U).

Thus F (z) =
(
1 + R(U(z))

)−1 and

F (z)
(
1 − x · V(z)

)−1

=
(
1 − x · U(z) + R(U(z))

)−1

. �

Proposition 5 ([4, Theorem 3.21]). Suppose that a family of free Sheffer polyno-
mials is pseudo-orthogonal. Then for R, U as in Lemma 4,

(DiR)(U(z)) = zi.

Remark 4. Both DR and U are n-tuples of non-commutative power series invertible
under composition. So

(a) Given R, the preceding proposition completely determines U, and vice
versa. From now on, we will always assume this relationship between R
and U.

(b) Since the inverse under composition is unique, also

(10) Ui((DR)(z)) = zi.

Definition 2. A state ϕ on R〈x〉 is called a free Meixner state if, for R its free
cumulant generating function and U determined by the preceding remark, the free
Sheffer polynomials with the generating function(

1 − x · U(z) + R(U(z))
)−1

are orthogonal.
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Theorem 6. Suppose that a family of free Sheffer polynomials is pseudo-orthogonal.
Then

(a) The power series U satisfy the relation

zj = Uj +
∑
i,t

Bt
ijUizt +

∑
i,s,t

Cst
ij Uizszt.

In other words, denoting by A the matrix

I +
∑

t

Btzt +
∑
s,t

Cstzszt,

U = zA−1.
(b) The polynomials satisfy the recursion

xiPs = P(i,s) +
∑

j

Bs
ijPj + δis,

xiP(s,t,�u) = P(i,s,t,�u) +
∑

j

Bs
ijP(j,t,�u) +

∑
j

(δisδjt + Cst
ij )P(j,�u).

(c) The free cumulant generating function satisfies

DiDjR(z) = δij +
∑

t

Bt
ijDtR(z) +

∑
s,t

Cst
ij DsR(z) DtR(z).

Proof. By definition of the function H in Lemma 4,

LjH(x, z) = H(x, z)zj .

Also from that lemma,

(1 + R(U(z)))H = (x · U(z))H + 1.

Applying Lj to this expression, we get

Lj

(
(x ·U(z))H

)
= Lj

(
(1+R(U(z)))H

)
= (1+R(U(z)))Hzj = (x ·U(z))Hzj +zj .

Expanding H in powers of z, we get

Lj

(∑
i

xiUi(z)(1 +
∑

�u

P�uz�u)
)

=
∑

i

xiUi(z)(1 +
∑

�u

P�uz�u)zj + zj ,

and so

(11) Uj +
∑
�u,i

Lj(xiP�u)Ui(z)z�u = zj +
∑

i

xiUi(z)zj +
∑
�u,i

xiP�uUi(z)z�uzj ,

where we used the fact that Lj(xi) = Lj(Pi) = δij .
Since Ui = zi+ higher-order terms,

(12) zj = Uj +
∑
i,�u

ai,j,�uUi(z)z�u

for some coefficients {ai,j,�u}. Using equation (10),

DjR = zj +
∑
i,�u

ai,j,�uzi(DR)�u,
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where (DR)�u = (Du(1)R)(Du(2)R) . . . (Du(k)R). Therefore

(13) DiDjR = δij +
∑

�u

ai,j,�u(DR)�u.

Combining equations (11) and (12),

Uj +
∑
i,�u

Lj(xiP�u)Ui(z)z�u = Uj +
∑
i,�u

ai,j,�uUi(z)z�u

+
∑

i

xiUi(z)zj +
∑
i,�u

xiP�uUi(z)z�uzj .

Equating coefficients of Uiz�u,

Lj(xiP�u) = ai,j,�u + δu(k),jxiP(u(1),...,u(k−1)).

Since the polynomials are pseudo-orthogonal, they satisfy a recursion relation (4).
So

Lj(xiP�u) = δu(k),jP(i,u(1),...,u(k−1)) +
∑

|�w|=|�u|−1

Bi,(�w,j),�uP�w +
∑

|�v|=|�u|−2

Ci,(�v,j),�uP�v.

Combining the two preceding equations with equation (4) for xiP(u(1),...,u(k−1)), we
get

ai,j,�u + δu(k),j

(
P(i,u(1),...,u(k−1)) +

∑
|�w|=|�u|−1

Bi,�w,(u(1),...,u(k−1))P�w

+
∑

|�v|=|�u|−2

Ci,�v,(u(1),...,u(k−1))P�v

)

= δu(k),jP(i,u(1),...,u(k−1)) +
∑

|�w|=|�u|−1

Bi,(�w,j),�uP�w +
∑

|�v|=|�u|−2

Ci,(�v,j),�uP�v.

Equating coefficients,

ai,j,�u =
∑

|�w|=|�u|−1

(
Bi,(�w,j),�u − δu(k),jBi,�w,(u(1),...,u(k−1))

)
P�w

+
∑

|�v|=|�u|−2

(
Ci,(�v,j),�u − δu(k),jCi,�v,(u(1),...,u(k−1))

)
P�v.

In particular, for �u = t this says

ai,j,t = Bi,j,t − δjtBi,∅,∅,

and for �u = (s, t) this says

ai,j,(s,t) =
∑
w

(
Bi,(w,j),(s,t) − δjtBi,w,s

)
Pw +

(
Ci,j,(s,t) − δjtCi,∅,s

)
.

Therefore

Bi,(�w,j),�u = δu(k),jBi,�w,(u(1),...,u(k−1)); Bi,j,t = δjtBi,∅,∅ + ai,j,t,

Ci,(�v,j),�u = δu(k),jCi,�v,(u(1),...,u(k−1)); Ci,j,(s,t) = δjtCi,∅,s + ai,j,(s,t).
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So

Bi,(j,�u),(t,�u) = δjtBi,∅,∅ + ai,j,t,

Ci,(j,�u),(s,t,�u) = δjtCi,∅,s + ai,j,(s,t)

and zero otherwise.

xi = Pi + Bi,∅,∅,

xiPt = P(i,t) +
∑

s

Bi,s,tPs + Ci,∅,t.

So Bi,∅,∅ = R[xi] = 0, Ci,∅,t = R[xixt] = δit. Also, ai,j,�u = 0 for |�u| > 2. Denote
Bt

ij = ai,j,t, Cst
ij = ai,j,(s,t). Part (b) follows. For parts (a) and (c), use equations

(12), (13), respectively. �

Corollary 7. Let ϕ be a state, R its free cumulant generating function, U the
corresponding power series determined by Proposition 5, and {P�u} the correspond-
ing free Sheffer polynomials. ϕ is a faithful free Meixner state if and only if the
following equivalent conditions hold:

zj = Uj +
∑
i,t

Bt
ijUizt +

∑
i

CijUizizj ,

or

(14) DiDjR = δij +
∑

t

Bt
ijDtR + CijDiR DjR,

or

xiPt = P(i,t) +
∑

j

Bt
ijPj + δit,

xiP(t,�u) = P(i,t,�u) +
∑

j

Bt
ijP(j,�u) + δit(1 + Ci,u(1))P�u.(15)

In all cases, the coefficients have to satisfy
(a) Cij > −1.
(b) Bt

ij = Bj
it.

(c) For each j, t, either Bt
ij = 0 for all i, or Cju = Ctu for all u.

Proof. If the free Sheffer polynomials are orthogonal with respect to the state ϕ,
then in particular ϕ [P�u] = 0, so by Lemma 4, ϕ is exactly the state with the free
cumulant generating function R.

Combine Proposition 3 with Theorem 6. It follows that Cij
st = δisδjtCij and

Ci,�u,(i,�u) = 1 + Ci,u(1)

and zero otherwise, so condition (a) follows from Proposition 3(a). Also,

Bi,(j,�u),(t,�u)V(j,�u),(j,�u) = Bi,(t,�u),(j,�u)V(t,�u),(t,�u),

so
Bt

ijV(j,�u),(j,�u) = Bj
itV(t,�u),(t,�u).

For |�u| = 0, this says
Bt

ij = Bj
it,

implying condition (b). For longer �u, this says

Bt
ijCj,�u,(j,�u) = Bj

itCt,�u,(t,�u),
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so
Bt

ij(1 + Cju) = Bj
it(1 + Ctu),

implying condition (c).
Conversely, suppose that for the state ϕ and the corresponding free Sheffer poly-

nomials {P�u}, the recursion (15) with conditions (a)-(c) holds. Then by Propo-
sition 3, the polynomials are orthogonal, necessarily with respect to ϕ, and ϕ is
faithful. The equivalence of the conditions for R, U, and the polynomials in the
corollary follows from Theorem 6. �

4. First-order, tracial case

Throughout this section, we will assume that the state ϕ is tracial, that is, for
any S, T ,

ϕ [S(x)T (x)] = ϕ [T (x)S(x)] .

This produces two simplifications. First, for any �u, i,

(16) R[x�uxi] = R[xix�u].

This is not apparent from the definition of R via equation (3), but follows easily
from the definition using non-crossing partitions.

Second, any pseudo-orthogonal polynomials can be orthogonalized (with real
coefficients).

Remark 5. Starting with an arbitrary monic polynomial family, by using the Gram-
Schmidt procedure it can be transformed into a pseudo-orthogonal family; note that
this family is still monic. Given an ordering of the monomials of the same degree,
the procedure can be applied further to produce an orthogonal family. However,
this will necessarily destroy the monic condition. Therefore, the condition that
monic orthogonal polynomials exist is rather strong, and does not hold for all
tracial states.

Lemma 8. Let B, C be as in Theorem 6. Bt
ij is invariant under cyclic permutations

of (j, i, t), and
∑

t Bt
ijB

d
ct +Ccd

ij is invariant under cyclic permutations of (j, i, c, d).

Proof. By assumption,

DiDjR = δij +
∑

t

Bt
ijDtR +

∑
s,t

Cst
ij DsR DtR,

and also

R =
∑

i

z2
i +

∑
R[xaxbxc]zazbzc +

∑
R[xaxbxcxd]zazbzczd + . . . .

Then
DjR = zj +

∑
R[xjxbxc]zbzc +

∑
R[xjxbxcxd]zbzczd + . . .

and so

DiDjR = δij +
∑

R[xjxixc]zc +
∑

R[xjxixcxd]zczd + . . .

= δij +
∑

Bt
ijzt +

∑
Bt

ijR[xtxbxc]zbzc +
∑

Ccd
ij zczd + . . . .

It follows that
R[xjxixt] = Bt

ij
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and
R[xjxixcxd] =

∑
t

Bt
ijR[xtxcxd] + Ccd

ij =
∑

t

Bt
ijB

d
ct + Ccd

ij .

So the result follows from cyclic symmetry (16). �

Lemma 9. Let O be an orthogonal transformation on R
n. Perform changes of

variables x = Oy, w = O−1z. Then

Rx(z) = Ry(w),

DRx(z) = ODRy(w),

QRx(z) = O(QRy(w))O−1,

where QijR = DiDjR.

(17)
(
1 − x · U(z) + Rx(U(z))

)−1

=
(
1 − y · V(w) + Ry(V(w))

)−1

for V(w) = O−1U(Ow). The induced functional on R〈y〉 is tracial if ϕ is tra-
cial. The polynomials with the generating function (17) are orthogonal for all such
changes of variable O if and only if, in addition to the conditions of Corollary 7,
Cij ≡ c.

Proof.
Rx(z) =

∑
�u

R[x�u]z�u.

So by linearity of R, for xi =
∑

j Oijyj ,

Rx(z) =
∑

�u

∑
|�v|=|�u|

k∏
i=1

Ou(i)v(i)R[y�v]z�u =
∑

�v

R[y�v]
∑

|�v|=|�u|

k∏
i=1

Ou(i)v(i)z�u

=
∑

�v

R[y�v]w�v = Ry(w),

where wj =
∑

i Oijzi. Also,

DiRx(z) =
∑

�v

R[y�v]
∑

|�v|=|�u|+1

Oiv(1)

k∏
j=2

Ou(j)v(j)z�u

=
∑
�v,s

R[ysy�v]Oisw�v =
∑

s

OisDsRy(w).

Similarly,
DiDjRx(z) =

∑
s,t

OisOjtDsDtRy(w).

Equation (17) follows. The tracial property is clear.
If

DiDjRx(z) = δij +
∑

t

Bt
ijDtRx(z) + CijDiRx(z) DjRx(z),

then

DiDjRy(w) = δij +
∑

Bt
αβOαiOβjOtsDsRy(w)

+
∑

CstOsiOtjOsuOtvDuRy(w) DvRy(w).
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For orthogonality of the induced free Sheffer polynomials in y, we check the condi-
tions of Corollary 7. By Lemma 8,

Bt
αβOαiOβjOts = Bβ

αtOαiOβjOts = Bt
αβOαiOtjOβs,

so this expression is symmetric in j, s. On the other hand, we also need∑
s,t

CstOsiOtjOsuOtv = δiuδjvEij .

Taking the sum of these expressions with respect to
∑

i,j OaiObj , we get

CabOauObv = EuvOauObv.

It follows that for all a, b, u, v, Cab = Euv, hence Cab ≡ c. Finally, for constant C
the last condition of the corollary is trivially true. �

Corollary 10. Let B, C be as in Corollary 7. Then Bt
ij is symmetric under all

permutations of (i, j, t), and Cij is symmetric in its arguments. If C ≡ 0, all the
matrices {Bt} commute.

Proof. The symmetry of Bt
ij comes by combining the cyclic symmetry from Lemma

8 with the transposition symmetry from Corollary 7. Also from that lemma,

R[xjxixixj ] =
∑

t

Bt
ijB

j
it + Cij ,

while
R[xixjxjxi] =

∑
t

Bt
jiB

i
jt + Cji.

It follows that Cji = Cij . Using the cyclic symmetry from the lemma again and
setting C ≡ 0, ∑

t

Bt
ijB

d
ct =

∑
t

Bt
ciB

j
dt.

So
(BjBc)id =

∑
t

Bj
itB

c
td =

∑
t

Bc
itB

j
td = (BcBj)id. �

Example 6 (Product states). Let ϕb,c be a one-dimensional free Meixner state,
that is, the state on R[x] whose free cumulant generating function satisfies the
equation in Proposition 1. The solution of this equation is

R(z) = z
z−1 − b −

√
(z−1 − b)2 − 4c

2c
.

Note that the free cumulant generating function R differs from a more familiar
R-transform by a factor of z. ϕb,c itself can be identified with the measure

1
2π

√
4(1 + c) − (x − b)2

1 + bx + cx2
dx + zero, one, or two atoms;

see Theorem 4 of [3] for a more detailed description, with different normalizations.
Here b ∈ R, and c ≥ −1 (for c = −1, the measure is purely atomic, so the corre-
sponding state is not faithful). In particular, the free Gamma case corresponds to
b2 = 4c, the free Poisson case to c = 0, and the free Gaussian (semicircular) case
to b = c = 0. See also [7] for related results.
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Let ϕ be the free product state of
{
ϕbi,ci , i = 1, . . . , n

}
. The free cumulant

generating function of ϕ is simply

R(z) =
n∑

i=1

Ri(zi),

where Ri is the free cumulant generating function of ϕbi,ci , satisfying

Ri(zi)/z2
i = 1 + biRi(zi)/zi + ci(Ri(zi)/zi)2.

Let Ui(z) = (Ri(zi)/zi)〈−1〉. Then the free Sheffer polynomials corresponding to
(R,U) are orthogonal. Indeed, these polynomials satisfy the recursion

yiP(j,�u) = P(i,j,�u),

yiP(i,j,�u) = P(i,i,j,�u) + biP(i,j,�u) + P(j,�u),

yiP(i,i,�u) = P(i,i,i,�u) + biP(i,i,�u) + (1 + ci)P(i,�u),

for i �= j. So
Bi,(α,β,�w),(s,t,�u) = δ�w,�uδsiδαsδβtbi

and
Ci,(α,�w),(s,t,�u) = δ�w,�uδsiδαt(1 + δtici).

The conditions of Proposition 3 are satisfied, so the polynomials are orthogonal.
Explicitly, these polynomials are free products. Denote by

{
P b,c

k

}
the one-

variable free Meixner polynomials from Proposition 1. Decompose a multi-index �u
so that

x�u = x
i(1)
v(1)x

i(2)
v(2) . . . x

i(k)
v(k),

where the consecutive indices v(j) �= v(j + 1), although non-consecutive indices
may coincide. Then

P�u(x) =
k∏

j=1

P
bv(j),cv(j)

i(j) (xv(j)).

Thus free products of one-dimensional free Meixner states are free Meixner. The
following proposition provides a partial converse.

Proposition 11. Suppose that ϕ is a tracial free Meixner state with

DiDjRϕ = δij +
∑

t

Bt
ijDtRϕ.

Then up to a rotation, ϕ is a free product state of semicircular and free Poisson
distributions.

Proof. It follows from Corollary 10 that the matrices {Br} are all symmetric and
mutually commuting. So we can find an orthogonal transformation O such that
(O−1BrO)ij = δijb

r
i for all r. Performing the change of variable in Lemma 9, we

get
O(QRy(w))O−1 = I + B · ODRy(w).

So
QRy(w) = I + O−1(B · ODRy(w))O.

Note that Bk
ij =

∑
Oisb

k
sOjs is also equal to Bj

ik =
∑

Oisb
j
sOks. Then

(O−1(B · Ow)O)αβ =
∑
k,l

δαβbk
αOklwl.
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On the other hand, it is also equal to∑
i,j,s,k,l

OiαOisb
j
sOksOjβOklwl =

∑
j

bj
αOjβwα.

As a result,
∑

k δαβbk
αOkl =

∑
j δαlb

j
αOjβ and

(O−1(B · Ow)O)αβ = δαβ

(∑
bk
αOkα

)
wα.

Denote bα =
∑

k bk
αOkα. Then

DiDjRy(w) = δij + δijbiDiRy(w) = δij

(
1 + biDiRy(w))

)
.

Therefore

Ry(w) =
n∑

i=1

Ryi
(wi),

so all the mixed cumulants are zero and the components are freely independent.
Moreover, each Ri satisfies the equation

Ri/w2
i = 1 + biRi/wi.

This is exactly the equation in Proposition 1 for the free Poisson case, or for the
semicircular case if bi = 0. �

5. A freely infinitely divisible example

Definition 3. A state ϕ is freely infinitely divisible if for all t > 0, the functional
ϕt with the free cumulant generating function

Rϕt(z) = tRϕ(z)

is also positive definite.

Remark 7. One-dimensional free Meixner states ϕb,c of Proposition 1 and Exam-
ple 6 are freely infinitely divisible for c ≥ 0, and are not freely infinitely divisible
for −1 ≤ c < 0. In fact, in this case ϕt is a state only for t ≥ −c.

Thus all the states of Proposition 11 are freely infinitely divisible, but some more
general free product states of Example 6 are not. In this section, we construct an
example of a freely infinitely divisible free Meixner state that is not a free product
state.

Definition 4. A functional ψ on R〈x〉 is conditionally positive definite if it is
positive definite on polynomials of degree at least 2.

Lemma 12. ϕ is freely infinitely divisible if and only if its free cumulant functional
is conditionally positive definite.

Proof. Rϕ[x�u] = d
dt

∣∣
t=0

Mϕt [x�u]. So if each ϕt is conditionally positive definite, so
is Rϕ. For the converse, starting with a conditionally positive linear functional, one
constructs symmetric operators with the joint distribution ϕ. See [12] or Section 4
of [2]. �

The following lemma is reminiscent of the Kolmogorov representation for infin-
itely divisible measures with finite variance.
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Lemma 13. Let {ϕi, i = 1, . . . , n} be positive definite functionals on R〈x〉. Define
the functional ψ on R〈x〉 as follows:

ψ[1] = ψ[xi] = 0,

ψ[xixj ] = δij ,

ψ[xiP (x)xj] = δijϕi[P (x)].

Then ψ is conditionally positive definite.

Proof. For such ψ,

ψ
[(∑

i

Pi(x)xi

)∗(∑
j

Pj(x)xj

)]
= ψ

[(∑
i

xiPi(x)∗
)(∑

j

Pj(x)xj

)]

= ψ
[∑

i

xiPi(x)∗Pi(x)xi

]

=
∑

i

ϕi[Pi(x)∗Pi(x)] ≥ 0,

so ψ is conditionally positive definite. �
We will denote ψ as above by exp(ϕ1 ⊕ . . . ⊕ ϕn).
The following result was already used in the proof of Theorem 3.21 of [4]; here

we formulate it as a lemma. Considering how different the relation (3) is from
the logarithmic relation between moments and the usual cumulants, this result is
surprisingly similar to the identity (log f)′ = f ′/f .

Lemma 14. For zi = wi(1 + M(w)), we have

(1 + M(w))Dzi
R(z) = Dwi

M(w).

Proof. The result follows immediately from the relation (3). �
Proposition 15. Let ψ be the distribution of a free semicircular system with means
bi and variances ci. In other words, ψ is the state with the free cumulants

Rψ[xi] = bi, Rψ[x2
i ] = ci,

and all the other free cumulants are zero. Define the state ϕ by Rϕ = exp(ψ⊕n).
Then ϕ is a free Meixner state.

Proof. By definition,
Rψ(z) =

∑
i

(
bizi + ciz

2
i

)
.

So
DiRψ(z) = bi + cizi.

Using the change of variables zk = wk

(
1 + Mψ(w)

)
and Lemma 14, we get(

1 + Mψ(w)
)−1

DiMψ(w) = bi + ciwi

(
1 + Mψ(w)

)
,

and so

DiMψ(w) = bi

(
1 + Mψ(w)

)
+ ci

(
1 + Mψ(w)

)
wi

(
1 + Mψ(w)

)
.

The combination of Lemmas 12 and 13 shows that ϕ is a well-defined freely infinitely
divisible state. Its free cumulant generating function is

Rϕ(w) =
∑

j

wj(1 + Mψ(w))wj.
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Then
DjRϕ(w) = (1 + Mψ(w))wj

and
DiDjRϕ(w) = δij + DiMψ(w)wj

= δij + bi

(
1 + Mψ(w)

)
wj + ci

(
1 + Mψ(w)

)
wi

(
1 + Mψ(w)

)
wj

= δij + biDjRϕ(w) + ciDiRϕ(w) DjRϕ(w).

Thus Bt
ij = δjtbi, the conditions of Corollary 7 are satisfied, and the free Sheffer

polynomials corresponding to ϕ are orthogonal. �

Note that unless all bi = ci = 0, ϕ is not a tracial state.
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