
Orthogonal Random Forest for Causal Inference

Miruna Oprescu 1 Vasilis Syrgkanis 1 Zhiwei Steven Wu 2

Abstract

We propose the orthogonal random forest, an al-

gorithm that combines Neyman-orthogonality to

reduce sensitivity with respect to estimation er-

ror of nuisance parameters with generalized ran-

dom forests (Athey et al., 2017)—a flexible non-

parametric method for statistical estimation of

conditional moment models using random forests.

We provide a consistency rate and establish

asymptotic normality for our estimator. We show

that under mild assumptions on the consistency

rate of the nuisance estimator, we can achieve the

same error rate as an oracle with a priori knowl-

edge of these nuisance parameters. We show that

when the nuisance functions have a locally sparse

parametrization, then a local `1-penalized regres-

sion achieves the required rate. We apply our

method to estimate heterogeneous treatment ef-

fects from observational data with discrete treat-

ments or continuous treatments, and we show that,

unlike prior work, our method provably allows to

control for a high-dimensional set of variables

under standard sparsity conditions. We also pro-

vide a comprehensive empirical evaluation of our

algorithm on both synthetic and real data.

1. Introduction

Many problems that arise in causal inference can be for-

mulated in the language of conditional moment models:

given a target feature x find a solution ✓0(x) to a system of

conditional moment equations

E [ (Z; ✓, h0(x,W )) | X = x] = 0, (1)

given access to n i.i.d. samples from the data generating

distribution, where  is a known score function and h0 is an
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unknown nuisance function that also needs to be estimated

from data. Examples include non-parametric regression,

heterogeneous treatment effect estimation, instrumental vari-

able regression, local maximum likelihood estimation and

estimation of structural econometric models.1 The study of

such conditional moment restriction problems has a long

history in econometrics (see e.g. Newey (1993); Ai & Chen

(2003); Chen & Pouzo (2009); Chernozhukov et al. (2015)).

In this general estimation problem, the main goal is to esti-

mate the target parameter at a rate that is robust to the esti-

mation error of the nuisance component. This allows the use

of flexible models to fit the nuisance functions and enables

asymptotically valid inference. Almost all prior work on the

topic has focused on two settings: i) they either assume the

target function ✓0(x) takes a parametric form and allow for a

potentially high-dimensional parametric nuisance function,

e.g. (Chernozhukov et al., 2016; 2017; 2018), ii) or take a

non-parametric stance at estimating ✓0(x) but do not allow

for high-dimensional nuisance functions (Wager & Athey,

2015; Athey et al., 2017).

We propose Orthogonal Random Forest (ORF), a ran-

dom forest-based estimation algorithm, which performs

non-parametric estimation of the target parameter while

permitting more complex nuisance functions with high-

dimensional parameterizations. Our estimator is also asymp-

totically normal and hence allows for the construction of

asymptotically valid confidence intervals via plug-in or boot-

strap approaches. Our approach combines the notion of

Neyman orthogonality of the moment equations with a two-

stage random forest based algorithm, which generalizes

prior work on Generalized Random Forests (Athey et al.,

2017) and the double machine learning (double ML) ap-

proach proposed in (Chernozhukov et al., 2017). To support

our general algorithm, we also provide a novel nuisance esti-

mation algorithm—Forest Lasso—that effectively recovers

high-dimensional nuisance parameters provided they have

locally sparse structure. This result combines techniques

from Lasso theory (Hastie et al., 2015) with concentration

inequalities for U -statistics (Hoeffding, 1963).

As a concrete example and as a main application of our

approach, we consider the problem of heterogeneous treat-

1See e.g. Reiss & Wolak (2007) and examples in Chernozhukov
et al. (2016; 2018)
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ment effect estimation. This problem is at the heart of many

decision-making processes, including clinical trial assign-

ment to patients, price adjustments of products, and ad

placement by a search engine. In many situations, we would

like to take the heterogeneity of the population into account

and estimate the heterogeneous treatment effect (HTE)—the

effect of a treatment T (e.g. drug treatment, price discount,

and ad position), on the outcome Y of interest (e.g. clinical

response, demand, and click-through-rate), as a function of

observable characteristics x of the treated subject (e.g. indi-

vidual patient, product, and ad). HTE estimation is a funda-

mental problem in causal inference from observational data

(Imbens & Rubin, 2015; Wager & Athey, 2015; Athey et al.,

2017), and is intimately related to many areas of machine

learning, including contextual bandits, off-policy evaluation

and optimization (Swaminathan et al., 2016; Wang et al.,

2017; Nie & Wager, 2017), and counterfactual prediction

(Swaminathan & Joachims, 2015; Hartford et al., 2016).

The key challenge in HTE estimation is that the observa-

tions are typically collected by a policy that depends on

confounders or control variables W , which also directly

influence the outcome. Performing a direct regression of

the outcome Y on the treatment T and features x, without

controlling for a multitude of other potential confounders,

will produce biased estimation. This leads to a regression

problem that in the language of conditional moments takes

the form:

E [Y � ✓0(x)T � f0(x,W ) | X = x] = 0 (2)

where ✓0(x) is the heterogeneous effect of the treatment

T (discrete or continuous) on the outcome Y as a function

of the features x and f0(x,W ) is an unknown nuisance

function that captures the direct effect of the control vari-

ables on the outcome. Moreover, unlike active experimenta-

tion settings such as contextual bandits, when dealing with

observational data, the actual treatment or logging policy

E [T |x,W ] = g0(x,W ) that could potentially be used to

de-bias the estimation of ✓0(x) is also unknown.

There is a surge of recent work at the interplay of machine

learning and causal inference that studies efficient estima-

tion and inference of treatment effects. Chernozhukov et al.

(2017) propose a two-stage estimation method called double

machine learning that first orthogonalizes out the effect of

high-dimensional confounding factors using sophisticated

machine learning algorithms, including Lasso, deep neu-

ral nets and random forests, and then estimates the effect

of the lower dimensional treatment variables, by running

a low-dimensional linear regression between the residual-

ized treatments and residualized outcomes. They show that

even if the estimation error of the first stage is not particu-

larly accurate, the second-stage estimate can still be n�1/2-

asymptotically normal. However, their approach requires a

parametric specification of ✓0(x). In contrast, another line

of work that brings machine learning to causal inference pro-

vides fully flexible non-parametric HTE estimation based

on random forest techniques (Wager & Athey, 2015; Athey

et al., 2017; Powers et al., 2017). However, these methods

heavily rely on low-dimensional assumptions.

Our algorithm ORF, when applied to the HTE problem

(see Section 6) allows for the non-parametric estimation

of ✓0(x) via forest based approaches while simultaneously

allowing for a high-dimensional set of control variables W .

This estimation problem is of practical importance when

a decision maker (DM) wants to optimize a policy that

depends only on a small set of variables, e.g. due to data

collection or regulatory constraints or due to interpretability

of the resulting policy, while at the same time controlling

for many potential confounders in the existing data that

could lead to biased estimates. Such settings naturally arise

in contextual pricing or personalized medicine. In such

settings the DM is faced with the problem of estimating a

conditional average treatment effect conditional on a small

set of variables while controlling for a much larger set. Our

estimator provably offers a significant statistical advantage

for this task over prior approaches.

In the HTE setting, the ORF algorithm follows the residual-

on-residual regression approach analyzed by (Chernozhukov

et al., 2016) to formulate a locally Neyman orthogonal mo-

ment and then applies our orthogonal forest algorithm to

this orthogonal moment. Notably, (Athey et al., 2017) also

recommend such a residual on residual regression approach

in their empirical evaluation, which they refer to as “local

centering”, albeit with no theoretical analysis. Our results

provide a theoretical foundation of the local centering ap-

proach through the lens of Neyman orthogonality. Moreover,

our theoretical results give rise to a slightly different overall

estimation approach than the one in (Athey et al., 2017):

namely we residualize locally around the target estimation

point x, as opposed to performing an overall residualiza-

tion step and then calling the Generalized Random Forest

algorithm on the residuals. The latter stems from the fact

that our results require that the nuisance estimator achieve a

good estimation rate only around the target point x. Hence,

residualizing locally seems more appropriate than running

a global nuisance estimation, which would typically min-

imize a non-local mean squared error. Our experimental

findings reinforce this intuition (see e.g. comparison be-

tween ORF and the GRF-Res benchmark). Another notable

work that combines the residualization idea with flexible het-

erogeneous effect estimation is that of (Nie & Wager, 2017),

who formulate the problem as an appropriate residual-based

square loss minimization over an arbitrary hypothesis space

for the heterogeneous effect function ✓(x). Formally, they

show robustness, with respect to nuisance estimation errors,

of the mean squared error (MSE) of the resulting estimate in

expectation over the distribution X and for the case where
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Figure 1: ORF estimates for the effect of orange juice price on
demand from a high-dimensional dataset. We depict the estimated
heterogeneity in elasticity by income level. The shaded region
depicts the 1%-99% confidence interval obtained via bootstrap.

the hypothesis space is a reproducing kernel Hilbert space

(RKHS). Our work differs primarily by: i) focusing on sup-

norm estimation error at any target point x as opposed to

MSE, ii) using forest based estimation as opposed to find-

ing a function in an RKHS, iii) working with the general

orthogonal conditional moment problems, and iv) providing

asymptotic normality results and hence valid inference.

We provide a comprehensive empirical comparison of ORF

with several benchmarks, including three variants of GRF.

We show that by setting the parameters according to what

our theory suggests, ORF consistently outperforms all of

the benchmarks. Moreover, we show that bootstrap based

confidence intervals provide good finite sample coverage.

Finally, to motivate the usage of the ORF, we applied our

technique to Dominick’s dataset, a popular historical dataset

of store-level orange juice prices and sales provided by Uni-

versity of Chicago Booth School of Business. The dataset

is comprised of a large number of covariates W , but eco-

nomics researchers might only be interested in learning the

elasticity of demand as a function of a few variables x such

as income or education. We applied our method (see Ap-

pendix G for details) to estimate orange juice price elasticity

as a function of income, and our results, depicted in Fig-

ure 1, unveil the natural phenomenon that lower income

consumers are more price-sensitive.

2. Estimation via Local Orthogonal Moments

We study non-parametric estimation of models defined via

conditional moment restrictions, in the presence of nui-

sance functions. Suppose we have a set of 2n observations

Z1, . . . , Z2n drawn independently from some underlying

distribution D over the observation domain Z . Each obser-

vation Zi contains a feature vector Xi 2 X ..= [0, 1]d.

Given a target feature x 2 X , our goal is to estimate a

parameter vector ✓0(x) 2 R
p that is defined via a local

moment condition, i.e. for all x 2 X , ✓0(x) is the unique

solution with respect to ✓ of:

E [ (Z; ✓, h0(x,W )) | X = x] = 0, (3)

where  : Z ⇥ R
p ⇥ R

` ! R
p is a score function that

maps an observation Z, parameter vector ✓(x) 2 Θ ⇢
R

p, and nuisance vector h(x,w) to a vector-valued score

 (z; ✓(x), h(x,w)) and h0 2 H ✓
�

R
d ⇥ R

L ! R
`
�

is

an unknown nuisance function that takes as input X and a

subvector W of Z, and outputs a nuisance vector in R
`. For

any feature x 2 X , parameter ✓ 2 Θ, and nuisance function

h 2 H , we define the moment function as:

m(x; ✓, h) = E [ (Z; ✓, h(X,W )) | X = x] (4)

We assume that the dimensions p, `, d are constants, while

the dimension L of W can be growing with n.

We will analyze the following two-stage estimation process.

1. First stage. Compute a nuisance estimate ĥ for h0

using data {Zn+1, . . . , Z2n} with some guarantee on

the conditional root mean squared error:2

E(ĥ) =

r

E

h

kĥ(x,W )� h0(x,W )k2 | X = x
i

2. Second stage. Compute a set of similarity weights {ai}
over the data {Z1, . . . , Zn} that measure the similar-

ity between their feature vectors Xi and the target x.

Compute the estimate ✓̂(x) using the nuisance estimate

ĥ via the plug-in weighted moment condition:

✓̂(x) solves:
Pn

i=1 ai (Zi; ✓, ĥ(Xi,Wi)) = 0 (5)

In practice, our framework permits the use of any method to

estimate the nuisance function in the first stage. However,

since our description is a bit too abstract let us give a special

case, which we will also need to assume for our normality

result. Consider the case when the nuisance function h takes

the form h(x,w) = g(w; ⌫(x)), for some known function

g but unknown function ⌫ : X ! R
dν (with d⌫ potentially

growing with n), i.e. locally around each x the function

h is a parametric function of w. Moreover, the parameter

⌫0(x) of the true nuisance function h0 is identified as the

minimizer of a local loss:

⌫0(x) = argmin⌫2V E [`(Z; ⌫) | X = x] (6)

Then we can estimate ⌫0(x) via a locally weighted and pe-

nalized empirical loss minimization algorithm. In particular

in Section 5 we will consider the case of local `1-penalized

estimation that we will refer to as forest lasso and which pro-

vides formal guarantees in the case where ⌫0(x) is sparse.

The key technical condition that allows us to reliably per-

form the two-stage estimation is the following local or-

thogonality condition, which can be viewed as a localized

version of the Neyman orthogonality condtion (Neyman,

2Throughout the paper we denote with k · k the euclidean norm
and with k · kp the p-norm.
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1979; Chernozhukov et al., 2017) around the neighborhood

of the target feature x. Intuitively, the condition says that

the score function  is insensitive to local perturbations in

the nuisance parameters around their true values.

Definition 2.1 (Local Orthogonality). Fix any estimator ĥ
for the nuisance function. Then the Gateaux derivative with

respect to h, denoted D [ĥ� h0 | x], is defined as:

E

h

rh (Z, ✓0(x), h0(x,W ))(ĥ(x,W )� h0(x,W )) | x
i

where rh denotes the gradient of  with respect to the final

` arguments. We say that the moment conditions are locally

orthogonal if for all x: D [ĥ� h0 | x] = 0.

3. Orthogonal Random Forest

We describe our main algorithm orthogonal random forest

(ORF) for calculating the similarity weights in the second

stage of the two stage estimation. In the next section we

will see that we will be using this algorithm for the esti-

mation of the nuisance functions, so as to perform a local

nuisance estimation. At a high level, ORF can be viewed

as an orthogonalized version of GRF that is more robust to

the nuisance estimation error. Similar to GRF, the algorithm

runs a tree learner over B random subsamples Sb (without

replacement) of size s < n, to build B trees such that each

tree indexed by b provides a tree-based weight aib for each

observation Zi in the input sample. Then the ORF weight

ai for each sample i is the average over the tree-weights aib.

The tree learner starts with a root node that contains the

entire X and recursively grows the tree to split X into a set

of leaves until the number of observations in each leaf is not

too small. The set of neighboods defined by the leaves nat-

urally gives a simlarity measure between each observation

and the target x. Following the same approach of (Tibshi-

rani et al., 2018; Wager & Athey, 2015), we maintain the

following tree properties in the process of building a tree.

Specification 1 (Forest Regularity). The tree satisfies

• Honesty: we randomly partition the input sample S
into two subsets S1, S2, then uses S1 to place splits in

the tree, and uses S2 for estimation.

• ⇢-balanced: each split leaves at least a fraction ⇢ of

the observations in S2 on each side of the split for

some parameter of ⇢  0.2.

• Minimum leaf size r: there are between r and 2r � 1
observations from S2 in each leaf of the tree.

• ⇡-random-split: at every step, marginalizing over the

internal randomness of the learner, the probability that

the next split occurs along the j-th feature is at least

⇡/d for some 0 < ⇡  1, for all j = 1, ..., d.3

3e.g., this can be achieved by uniformly randomizing the split-
ting variable with probability π or via a Poisson sampling scheme

The key modification to GRF’s tree learner is our incor-

poration of orthogonal nuisance estimation in the splitting

criterion. While the splitting criterion does not factor into

our theoretical analysis (similar to (Tibshirani et al., 2018)),

we find it to be an effective practical heuristic.

Splitting criterion with orthogonalization. At each in-

ternal node P we perform a two-stage estimation over

(P \ S1), i.e. the set of examples in S1 that reach node

P : 1) compute a nuisance estimate ĥP using only data

P \ S1 (e.g. by estimating a parameter ⌫̂P that minimizes
P

i2(P\S1) `(Zi; ⌫)+�k⌫k1 and setting ĥP (·) = g(·; ⌫̂P )),

and then 2) form estimate ✓̂P using ĥP :4

✓̂P 2 argmin✓2Θ

�

�

�

P

i2(P\S1)  (Zi; ✓, ĥP (Wi))
�

�

�

We now generate a large random set of candidate axis-

aligned splits (satisfying Specification 1 and we want to

find the split into two children C1 and C2 such that if we

perform the same two-stage estimation separately at each

child, the new estimates ✓̂C1
and ✓̂C2

take on very different

values, so that the heterogeneity of the two children nodes is

maximized. Performing the two-stage estimation of ✓̂C1
and

✓̂C2 for all candidate splits is too computationally expensive.

Instead, we will approximate these estimates by taking a

Newton step from the parent node estimate ✓̂P : for any child

node C given by a candidate split, our proxy estimate is:

✓̃C = ✓̂P � 1
|C\S1|

P

i2Cj\S1A
�1
P  (Zi; ✓̂P , ĥP (Xi,Wi))

where AP = 1
|P\S1|

P

i2P\S1
b
r✓ (Zi; ✓̂P , ĥP (Xi,Wi)).

We select the candidate split that maximizes the following

proxy heterogeneity score: for each coordinate t 2 [p] let

∆̃t(C1, C2) =
P2

j=1
1

|Cj\S1|

⇣

P

i2Cj\S1 ⇢t,i

⌘2

(7)

where ⇢t,i = A�1
P  t(Zi; ✓̂P , ĥP (Xi,Wi)). We then create

a single heterogeneity score per split as a convex combi-

nation that puts weight ⌘ on the mean and (1 � ⌘) on the

maximum score across coordinates. ⌘ is chosen uniformly

at random in [0, 1] at each iteration of splitting. Hence, some

splits focus on heterogeneity on average, while others focus

on creating heterogeneity on individual coordinates.

ORF weights and estimator. For each tree indexed b 2
[B] based on subsample Sb, let Lb(x) ✓ X be the leaf that

contains the target feature x. We assign tree weight and

ORF weight to each observation i:

aib =
1[(Xi2Lb(x))^(Zi2S2

b )]

|Lb(x)\S2
b
|

, ai =
1
B

PB
b=1 aib

where a random subset of the variables of size m is chosen to
consider for candidate splits, with m ⇠ Poisson(λ).

4In our implementation we actually use a cross-fitting approach,
where we use half of P \ S1 to compute a nuisance function to
apply to the other half and vice versa.
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Wager & Athey (2015) show that under the structural spec-

ification of the trees, the tree weights are non-zero only

around a small neighborhood of x; a property that we will

leverage in our analysis.

Theorem 3.1 (Kernel shrinkage (Wager & Athey, 2015)).

Suppose the minimum leaf size parameter r = O(1),
the tree is ⇢-balanced and ⇡-random-split and the distri-

bution of X admits a density in [0, 1]d that is bounded

away from zero and infinity. Then the tree weights sat-

isfy E [sup{kx� xik : aib > 0}] = O(s�
1

2αd ), with ↵ =
log(⇢−1)

⇡ log((1�⇢)−1) and s the size of the subsamples.

4. Convergence and Asymptotic Analysis

The ORF estimate ✓̂ is computed by solving the weighted

moment condition in Equation (5), using the ORF weights

as described in the previous section. We now provide theo-

retical guarantees for ✓̂ under the following assumption on

the moment, score fuction and the data generating process.

Assumption 4.1. The moment condition and the score func-

tion satisfy the following:

1. Local Orthogonality. The moment condition satisfies

local orthogonality.

2. Identifiability. The moments m(x; ✓, h0) = 0 has a

unique solution ✓0(x).
3. Smooth Signal. The moments m(x; ✓, h) are O(1)-

Lipschitz in x for any ✓ 2 Θ, h 2 H .

4. Curvature. The Jacobian r✓m(x; ✓0(x), h0) has min-

imum eigenvalue bounded away from zero.

5. Smoothness of scores. For every j 2 [p] and for

all ✓ and h, the eigenvalues of the expected Hessian

E

h

r2
(✓,h) j(Z; ✓, h(W )) | x,W

i

are bounded above

by a constant O(1). For any Z, the score  (Z; ✓, ⇠) is

O(1)-Lipschitz in ✓ for any ⇠ and O(1)-Lipschitz in ⇠

for any ✓. The gradient of the score with respect to ✓ is

O(1)-Lipschitz in ⇠.

6. Boundedness. The parameter set Θ has constant di-

ameter. There exists a bound  max such that for any

observation Z, the first-stage nuisance estimate ĥ sat-

isfies k (Z; ✓, ĥ)k1   max for any ✓ 2 Θ.

7. Full Support X . The distribution of X admits a den-

sity that is bounded away from zero and infinity.

All the results presented in the remainder of the paper will

assume these conditions and we omit stating so in each

of the theorems. Any extra conditions required for each

theorem will be explicitly provided. Note that except for

the local orthogonality condition, all of the assumptions are

imposing standard boundedness and regularity conditions

of the moments.

Theorem 4.2 (Lq-Error Bound). Suppose that:

E

h

E(ĥ)2q
i1/2q

 �n,2q . Then:

E

h

k✓̂ � ✓0kq
i1/q

= O

✓

1

s
1

2αd

+

q

s log(n
s
)

n + �2
n,2q

◆

Theorem 4.3 (High Probability Error Bound). Suppose that

the score is the gradient of a convex loss and let � > 0 de-

note the minimum eigenvalue of the jacobian M . Moreover,

suppose that the nuisance estimate satisfies that w.p. 1� �:

E(ĥ)  �n,� . Then w.p. 1� 2�:

k✓̂ � ✓0k =
O

✓

s−
1

2αd +

q

s log( n
s δ

)

n
+�2

n,δ

◆

��O(�n,δ)
(8)

For asymptotic normality we will restrict our framework to

the case of parametric nuisance functions, i.e. h(X,W ) =
g(W ; ⌫(X)) for some known function g and to a particular

type of nuisance estimators that recover the true parameter

⌫0(x). Albeit we note that the parameter ⌫(X) can be an

arbitrary non-parametric function of X and can also be high-

dimensional. We will further assume that the moments also

have a smooth co-variance structure in X , i.e. if we let

V =  (Z; ✓0(x), g(W ; ⌫0(x)))

then Var(V | X = x0) is Lipschitz in x0 for any x0 2 [0, 1]d.

Theorem 4.4 (Asymptotic Normality). Suppose that

h0(X,W ) takes a locally parametric form g(W ; ⌫0(X)),
for some known function g(·; ⌫) that is O(1)-Lipschitz in ⌫

w.r.t. the `r norm for some r � 1 and the nuisance estimate

is of the form ĥ(X,W ) = g(W ; ⌫̂(x)) and satisfies:

E

h

k⌫̂(x)� ⌫0(x)k4r
i1/4

 �n,4 = o
⇣

(s/n)
1/4

⌘

Suppose that s is chosen such that: s�1/(2↵d) =
o((s/n)1/2�"), for any " > 0, and s = o(n). Moreover,

Var(V | X = x0) is Lipschitz in x0 for any x0 2 [0, 1]d.

Then for any coefficient � 2 R
p, with k�k  1, assuming

Var(�|M�1V |X = x0) > 0 for any x0 2 [0, 1]d, there

exists a sequence �n = Θ(
p

polylog(n/s)s/n), such that:

��1
n

D

�, ✓̂ � ✓0

E

!d N (0, 1) (9)

Given the result in Theorem 4.4, we can follow the same

approach of Bootstrap of Little Bags by (Athey et al., 2017;

Sexton & Laake, 2009) to build valid confidence intervals.

5. Nuisance Estimation: Forest Lasso

Next, we study the nuisance estimation problem in the first

stage and provide a general nuisance estimation method

that leverages locally sparse parameterization of the nui-

sance function, permitting low error rates even for high-

dimensional problems. Consider the case when the nuisance
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function h takes the form h(x,w) = g(w; ⌫(x)) for some

known functional form g, for some known function g but un-

known function ⌫ : X ! R
dν , with d⌫ potentially growing

with n. Moreover, the parameter ⌫0(x) of the true nuisance

function h0 is identified as the minimizer of some local loss,

as defined in Equation (6).

We consider the following estimation process: given a set of

observations D1, we run the same tree learner in Section 3

over B random subsamples (without replacement) to com-

pute ORF weights ai for each observation i over D1. Then

we apply a local `1 penalized M -estimation:

⌫̂(x) = argmin⌫2V

Pn
i=1 ai `(Zi; ⌫) + �k⌫k1 (10)

To provide formal guarantees for this method we will need

to make the following assumptions.

Assumption 5.1 (Assumptions for nuisance estimation).

The target parameter and data distribution satisfy:

• For any x 2 X , ⌫(x) is k-sparse with support S(x).
• ⌫(x) is a O(1)-Lipschitz in x and the func-

tion r⌫L(x; ⌫) = E [r⌫`(Z; ⌫) | X = x] is O(1)-
Lipschitz in x for any ⌫, with respect to the `2 norm.

• The data distribution satisfies the conditional restricted

eigenvalue condition: for all ⌫ 2 V and for all z 2 Z ,

for some matrix H(z) that depends only on the data:

r⌫⌫`(z; ⌫) ⌫ H(z) ⌫ 0, and for all x and for all ⌫ 2
C(S(x); 3) ⌘ {⌫ 2 R

d : k⌫S(x)ck1  3k⌫S(x)k1}:

⌫T E [H(Z) | X = x] ⌫ � �k⌫k22 (11)

Under Assumption 5.1 we show that the local penalized esti-

mator achieves the following parameter recovery guarantee.

Theorem 5.2. With probability 1� �:

k⌫̂(x)� ⌫0(x)k1  2�k

��32k
p

s ln(dν/�)/n

as long as � � Θ

✓

s�1/(2↵d) +
q

s ln(dν/�)
n

◆

.

Example 5.3 (Forest Lasso). For locally sparse linear re-

gression, Zi = (xi, yi,Wi) and `(Zi; ⌫) = (yi�h⌫,Wii)2.

This means, r⌫⌫`(Zi; ⌫) = WiW
T
i = H(Zi). Hence, the

conditional restricted eigenvalue condition is simply a con-

ditional covariance condition: E [WW | | x] ⌫ �I .

Example 5.4 (Forest Logistic Lasso). For locally

sparse logistic regression, Zi = (xi, yi,Wi), yi 2
{0, 1} and `(Zi; ⌫) = yi ln (L(h⌫,Wii)) + (1 �
yi) ln (1� L(h⌫,Wii)), where L(t) = 1/(1+e�t) is the lo-

gistic function. In this case, r⌫⌫`(Zi; ⌫) = L(h⌫,Wii)(1�
L(h⌫,Wii))WiW

|

i ⌫ ⇢WiW
|

i = H(Zi) (assuming the in-

dex h⌫, wi is bounded in some finite range). Hence, our

conditional restricted eigenvalue condition is the same con-

ditional covariance condition: ⇢E
⇥

WWT | x
⇤

⌫ ⇢�I .

6. Heterogeneous Treatment Effects

Now we apply ORF to the problem of estimating hetero-

geneous treatment effects. We will consider the following

extension of the partially linear regression (PLR) model

due to Robinson (1988). 5 We have 2n i.i.d. observa-

tions D = {Zi = (Ti, Yi,Wi, Xi)}
2n
i=1 such that for each i,

Ti represents the treatment applied that can be either real-

valued (in R
p) or discrete (taking values in {0, e1, . . . , ep},

where each ej denotes the standard basis in R
p), Yi 2 R

represents the outcome, Wi 2 [�1, 1]dν represents potential

confounding variables (controls), and Xi 2 X = [0, 1]d is

the feature vector that captures the heterogeneity. The set of

parameters are related via the following equations:

Y = hµ0(X,W ), T i+ f0(X,W ) + ", (12)

T = g0(X,W ) + ⌘, (13)

where ⌘, " are bounded unobserved noises such that

E [" | W,X, T ] = 0 and E [⌘ | X,W, "] = 0. In the main

equation (12), µ0 : R
d ⇥ R

dν ! [�1, 1]p represents the

treatment effect function. Our goal is to estimate condi-

tional average treatment effect (CATE) ✓0(x) conditioned

on target feature x:

✓0(x) = E [µ0(X,W ) | X = x]. (14)

The confounding equation (13) determines the relationship

between treatments variable T and the feature X and con-

founder W . To create an orthogonal moment for identifying

✓0(x), we follow the classical residualization approach sim-

ilar to (Chernozhukov et al., 2017). First, observe that

Y �E [Y | X,W ] =
D

µ0(X,W ), T � E [T | X,W ]
E

+ "

Let us define the function q0(X,W ) = E [Y | X,W ], and

consider the residuals Ỹ = Y � q0(X,W ) and T̃ = T �
g0(X,W ) = ⌘. Then we can simplify the equation as

Ỹ = µ0(X,W ) · T̃ + ". As long as ⌘ is independent

of µ0(X,W ) conditioned on X (e.g. ⌘ is independent of

W or µ0(X,W ) does not depend on W ), we also have

E [µ0(X,W ) | X, ⌘] = E [µ0(X,W ) | X] = ✓(X). Since

E [" | X, ⌘] = E [E [" | X,W, T ] | X, ⌘] = 0, we have

E

h

Ỹ | X, T̃
i

= E [µ0(X,W ) | X] · T̃ = ✓(X) · T̃ .

This relationship suggests that we can obtain an estimate

of ✓(x) by regressing Ỹ on T̃ locally around X = x. We

can thus define the orthogonalized score function: for any

observation Z = (T, Y,W, x), any parameter ✓ 2 R
p,

any estimates q and g for functions q0 and g0, the score

 (Z; ✓, h(X,W )) is:

{Y � q(X,W )� ✓ (T � g(X,W )i)} (T � g(X,W )),

5The standard PLR model (Robinson, 1988) considers solely
the case of constant treatment effects, Y = hθ0, T i+ f0(X,W )+
ε, and the goal is the estimation of the parameter θ0.
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where h(X,W ) = (q(X,W ), g(X,W )). In the appendix,

we show that this moment condition satisfies local orthog-

onality, and it identifies ✓0(x) as long as as the noise ⌘ is

independent of µ0(X,W ) conditioned on X and the ex-

pected matrix E [⌘⌘| | X = x] is invertible. Even though

the approach applies generically, to obtain formal guaran-

tees on the nuisance estimates via our Forest Lasso, we will

restrict their functional form.

Real-valued treatments. Suppose f0 and each

coordinate j of g0 and µ0 are given by high-

dimensional linear functions: f0(X,W ) = hW,�0(X)i,
µj
0(X,W ) = hW,uj

0(X)i, gj0(X,W ) = hW, �j0(X)i,
where �0(X), �j0(X), uj

0(X) are k-sparse vectors in R
dν .

Consequently, q0(X,W ) can be written as a k2-sparse

linear function over degree-2 polynomial features �2(W ) of

W . Then as long as �0,�0 and µ0 are Lipschitz in X and the

confounders W satisfy E [�2(W )�2(W )| | X] ⌫ Ω(1)I ,

then we can use Forest Lasso to estimate both g0(x,w) and

q0(x,w). Hence, we can apply the ORF algorithm to get

estimation error rates and asymptotic normality results for

✓̂. (see Appendix B for formal statement).

Discrete treatments. We now describe how our theory

can be applied to discrete treatments. Suppose f0 and

each coordinate j of g0 are of the form: f0(X,W ) =
hW,�0(X)i and gj0(X,W ) = L(hW, �j0(X)i), where

L(t) = 1/(1 + e�t) is the logistic function. Note in

this case ⌘ is not independent of W since Var(⌘j) =

gj0(X,W )(1 � gj0(X,W )). To maintain the conditional

independence between µ0(X,W ) and ⌘ conditioned on X ,

we focus on the setting where µ0 is only a function of X ,

i.e. µ(X,W ) = ✓(X) for all W,X . In this setting we can

estimate g0 by running a forest logistic lasso for each treat-

ment j. Then we can estimate q0(x,W ) as follows: For

each t 2 {e1, . . . , ep} estimate the expected counter-factual

outcome function: mt
0(x,W ) = µt

0(x,W ) + f0(x,W ), by

running a forest lasso between Y and X,W only among

the subset of samples that received treatment t. Similarly,

estimate f0(x,W ) by running a forest lasso between Y and

X,W only among the subset of samples that received treat-

ment t = 0. Then observe that q0(x,W ) can be written as

a function of f0, gt0 and mt
0. Thus we can combine these

estimates to get an estimate of q0. Hence, we can obtain a

guarantee similar to that of Corollary B.1 (see appendix).

Doubly robust moment for discrete treatments. In the

setting where µ also depends on W and treatments are dis-

crete, we can formulate an alternative orthogonal moment

that identifies the CATE even when ⌘ is correlated with

µ(X,W ). This moment is based on first constructing unbi-

ased estimates of the counterfactual outcome mt
0(X,W ) =

µt
0(X,W )+f0(X,W ) for every observation X,W and for

any potential treatment t, i.e. even for t 6= T . The latter

Figure 2: Bias, variance and RMSE as a function of support size
for n = 5000, p = 500, d = 1 and a piecewise linear treatment
response function. The solid lines represent the mean of the metrics
over Monte Carlo experiments and test points, and the filled regions
depict the standard deviation, scaled down by 3 for clarity.

is done by invoking the doubly robust formula (Robins &

Rotnitzky, 1995; Cassel et al., 1976; Kang et al., 2007):

Y (t) = mt
0(X,W ) +

(Y�mt
0(X,W ))1{T=t}
gt
0(X,W )

with the convention that g00(X,W ) = 1�P

t 6=0 g
t
0(X,W )

and m0
0(X,W ) = f0(X,W ). Then we can

identify the parameter ✓t(x) using the moment:

E[Y (t) � Y (0)|X = x] = ✓t(x). One can easily show

that this moment satisfies the Neyman orthogonality

condition with respect to the nuisance functions m and g
(see appendix). In fact this property is essentially implied

by the fact that the estimates Y (t) satisfy the double

robustness property, since double robustness is a stronger

condition than orthogonality. We will again consider

µj
0(X,W ) = hW,uj

0(X)i. Then using similar reasoning as

in the previous paragraph, we see that with a combination

of forest logistic lasso for gt0 and forest lasso for mt
0, we

can estimate these nuisance functions at a sufficiently fast

rate for our ORF estimator (based on this doubly robust

moment) to be asymptotically normal, assuming they have

locally sparse linear or logistic parameterizations.

7. Monte Carlo Experiments

We compare the empirical performance of ORF with other

methods in the literature (and their variants).6 The

data generating process we consider is described by the

following equations: Yi = ✓0(xi)Ti + hWi, �0i + "i,

Ti = hWi,�0i + ⌘i. Moreover, xi is drawn from the uni-

form distribution U [0, 1], Wi is drawn from N (0, Ip), and

the noise terms "i ⇠ U [�1, 1], ⌘i ⇠ U [�1, 1]. The k-sparse

vectors �0, �0 2 R
p have coefficients drawn independently

from U [0, 1]. The dimension p = 500 and we vary the sup-

port size k over the range of {1, 5, 10, 15, 20, 25, 30}. We

examine a treatment function ✓(x) that is continuous and

piecewise linear (detailed in Figure 3). In Appendix H we

analyze other forms for ✓(x).

For each fixed treatment function, we repeat 100 experi-

ments, each of which consists of generating 5000 observa-

6The source code for running these experiments is available in
the git repo Microsoft/EconML.

https://github.com/Microsoft/EconML/tree/master/prototypes/orthogonal_forests
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tions from the DGP, drawing the vectors �0 and �0, and

estimating ✓̂(x) at 100 test points x over a grid in [0, 1].
We then calculate the bias, variance and root mean squared

error (RMSE) of each estimate ✓̂(x). Here we report sum-

mary statistics of the median and 5 � 95 percentiles of

these three quantities across test points, so as to evaluate

the average performance of each method. We compare two

variants of ORF with two variants of GRF (Athey et al.,

2017) (see Appendix H for a third variant) and two exten-

sions of double ML methods for heterogeneous treatment

effect estimation (Chernozhukov et al., 2017).

ORF variants. (1) ORF: We implement ORF as described

in Section 3, setting parameters under the guidance of our

theoretical result: subsample size s ⇡ (n/ log(p))1/(2⌧+1),

Lasso regularization �� ,�q ⇡
p

log(p)s/n/20 (for both

tree learner and kernel estimation), number of trees B =
100 � n/s, a max tree depth of 20, and a minimum leaf size

of r = 5. (2) ORF with LassoCV (ORF-CV): we replaced

the Lasso algorithm in ORF’s kernel estimation, with a

cross-validated Lasso for the selection of the regularization

parameter �� and �q . ORF-CV provides a more systematic

optimization over the parameters.

GRF variants. (1) GRF-Res-Lasso: We perform a naive

combination of double ML and GRF by first residualizing

the treatments and outcomes on both the features x and

controls W , then running GRF R package by (Tibshirani

et al., 2018) on the residualized treatments T̂ , residualized

outcomes Ŷ , and features x. A cross-validated Lasso is

used for residualization. (2) GRF-Res-RF: We combine

DoubleML and GRF as above, but we use cross-validated

Random Forests for calculating residuals T̂ and Ŷ .

Double ML with Polynomial Heterogeneity (DML-Poly). An

extension of the classic Double ML procedure for heteroge-

neous treatment effects introduced in (Chernozhukov et al.,

2017). This method accounts for heterogeneity by creat-

ing an expanded linear base of composite treatments (cross

products between treatments and features). (1) Heteroge-

neous Double ML using LassoCV for first-stage estimation

(HeteroDML-Lasso): In this version, we use Lasso with

cross-validation for calculating residuals on x [W in the

first stage. (2) Heterogeneous Double ML using random

forest for first-stage estimation (HeteroDML-RF): A more

flexible version that uses random forests to perform residu-

alization on treatments and outcomes. The latter performs

better when treatments and outcomes have a non-linear rela-

tionship with the joint features of (x,W ).

We generated data according to the Monte Carlo pro-

cess above and set the parameters to n = 5000 sam-

ples, p = 500 controls, d = 1 features and support size

k 2 {1, 5, 10, 15, 20, 25, 30} and three types of treatment

effect functions. In this section, we present the results for a

piecewise linear treatment effect function.

Figure 3: Treatment effect estimations for 100 Monte Carlo ex-
periments with parameters n = 5000, p = 500, d = 1, k = 15,
and θ(x) = (x+2)Ix≤0.3+(6x+0.5)Ix>0.3 and x≤0.6+(�3x+
5.9)Ix>0.6. The shaded regions depict the mean and the 5%-95%
interval of the 100 experiments.

In Figure 3, we inspect the goodness of fit for the chosen

estimation methods across 100 Monte Carlo experiments.

We note the limitations of two versions of the GRF-Res

estimators, GRF-Res-Lasso and GRF-Res-RF, in captur-

ing the treatment effect function well. The GRF-Res-RF

estimations have a consistent bias as the Random Forest

residualization cannot capture the dependency on the con-

trols W given their high-dimensionality. The HeteroDML

methods are not flexible enough to capture the complex-

ity of the treatment effect function. The best performers

are the ORF-CV, ORF, and GRF-Res-Lasso, with the latter

estimator having a larger bias and variance.

Figure 4: Sample 1%-99% confidence intervals for 1000 bootstrap
iterations with parameters n = 5000, p = 500, d = 1, k = 15,
and θ(x) = (x+2)Ix≤0.3+(6x+0.5)Ix>0.3 and x≤0.6+(�3x+
5.9)Ix>0.6. Approximately 90% of the sampled test points are
contained in the interval.

We analyze these estimators as we increase the support size

of W . Figures 2 illustrate the evaluation metrics across dif-

ferent support sizes. The ORF-CV performs very well, with

consistent bias and RMSE across support sizes and treat-

ment functions. The bias, variance and RMSE of the ORF

grow with support size, but this growth is at a lower rate

compared to the alternative estimators. The ORF-CV and

ORF algorithms perform better than the GRF-Res methods

on all metrics for this example. We observe this pattern for

the other choices of support size, sample size and treatment

effect function (see Appendix H). In figure 4, we provide a

snapshot of the bootstrap confidence interval coverage for

this example.
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