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Orthogonal Representations of 
Object Shape and Category in Deep 
Convolutional Neural Networks and 
Human Visual Cortex
Astrid A. Zeman1*, J. Brendan Ritchie  1, Stefania Bracci1,2 & Hans Op de Beeck1

Deep Convolutional Neural Networks (CNNs) are gaining traction as the benchmark model of visual 

object recognition, with performance now surpassing humans. While CNNs can accurately assign one 

image to potentially thousands of categories, network performance could be the result of layers that 

are tuned to represent the visual shape of objects, rather than object category, since both are often 

confounded in natural images. Using two stimulus sets that explicitly dissociate shape from category, 

we correlate these two types of information with each layer of multiple CNNs. We also compare CNN 

output with fMRI activation along the human visual ventral stream by correlating artificial with neural 
representations. We find that CNNs encode category information independently from shape, peaking 
at the final fully connected layer in all tested CNN architectures. Comparing CNNs with fMRI brain data, 
early visual cortex (V1) and early layers of CNNs encode shape information. Anterior ventral temporal 
cortex encodes category information, which correlates best with the final layer of CNNs. The interaction 
between shape and category that is found along the human visual ventral pathway is echoed in multiple 

deep networks. Our results suggest CNNs represent category information independently from shape, 

much like the human visual system.

In recent years, the performance of Deep Convolutional Neural Networks (CNNs) has improved signi�cantly, 
such that they are able to meet1–3, and even surpass4 human performance in classifying objects. In light of these 
impressive �ndings, these arti�cial networks are increasingly compared to their biological counterparts, resulting 
in an accumulation of evidence for their use as a benchmark model of visual object recognition5,6. For example, 
the internal representations of CNNs show correspondence with human ventral temporal cortex (VTC) as meas-
ured by fMRI, as well as with primate inferotemporal cortex (IT) measured using single cell recordings7–12. �e 
correspondence between deep networks and neural representations along the visual pathway has even allowed for 
accurate neural response prediction of single-cell recordings in IT9 as well as fMRI13. Representational similarities 
have been further extended from the spatial into the temporal domain, with results showing a corresponding 
ordering of processing between CNNs and the human visual brain using MEG14. �ese accumulating �ndings 
showcase the ability of CNNs to model neurons from single unit responses to entire populations, spanning the 
multiple scales and dimensions used to study neural activity, and make CNNs some of the best models to date for 
studying vision in the human and primate brain.

While these feats are impressive, it is unclear to what extent these results are easily interpretable in terms of 
categorical representations. Object category information can o�en be confounded with low-level visual features, 
such as colour, texture, and shape15. In this paper, we highlight the signi�cant interaction between shape and 
category that is known to occur in natural images16 and address the possibility that these networks may distin-
guish between object categories by relying upon visual features, such as shape, rather than high-level category 
representations. Indeed, the shape similarity of objects has already been capitalised on in the machine learning 
�eld to improve performance17. CNNs are pro�cient at representing the perceived shape of objects, as opposed 
to their physical shape18 and it has been claimed that CNNs rely heavily upon local shape information for classi-
�cation19. Two-dimensional regular vs irregular shape representations have been found in monkey IT, which are 
highly comparable to late layers of CNNs12. Furthermore, CNNs mimic a behavioural bias in humans known as 
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the “shape-bias”, which is the preference to categorise an object based on shape rather than colour20. In contrast 
to humans, CNNs rely more heavily upon local shape information for classi�cation, known as texture-bias, which 
may potentially cause a greater discrepancy in performance than shape-bias21. Given that these networks are 
adept at representing object shape, to a degree that may even be greater than humans, it is possible they are taking 
advantage of shape-based features, instead of category information, to classify object images.

Recent neuroimaging studies have begun to de-confound category from visual features, including shape, in 
order to investigate their interaction along the visual ventral pathway10,16,22,23. VTC in humans is one of the main 
category-selective areas24, distinguishing, for example, between animate and inanimate objects25,26. To build up 
this category-related representation, visual information is processed in a series of stages along the ventral visual 
pathway, from primary visual cortex (area V1) through to VTC24. In recent years, the exact role of VTC has come 
under question, in particular whether this area encodes category-speci�c information, or simply the low-level 
visual properties associated with category, such as colour, shape, size and texture15,27,28. Proklova, Kaiser & 
Peelen23 found that VTC encodes texture and outline alongside category-speci�c information that is not present 
in earlier visual areas. Another higher visual area, lateral occipitotemporal complex (LOTC), was found to encode 
category-associated shape properties as well as category-selective information22. Other category-orthogonal 
object properties, including size, position and pose, show higher population decoding performance in monkey 
IT (analogous to human VTC) compared to early visual areas, contrary to what was previously believed10. Indeed, 
the majority of visual object representations in IT may be accounted for by object shape, or other low-level visual 
properties, rather than category29. Nevertheless, studies that explicitly de-confound category from more low-level 
properties suggest that the category selectivity cannot be fully explained by these other properties10,16,22, and point 
towards a so-called “feature-dependent categorical code15.” Such a code stands in contrast to a more abstract cat-
egorical code, and includes clear selectivity for the features that de�ne and correlate with the coded category (see 
Bracci, Ritchie & Op de Beeck15 for more information).

In this paper, we explicitly dissociate shape from category in two stimulus sets to determine: (i) how CNNs 
represent object shape and category when they are independent from one another; and (ii) how these arti�cial 
representations correspond with shape and category representations in human visual cortex. Using two carefully 
designed stimulus sets, which orthogonalise shape and category, we assess four top-performing CNNs in their 
ability to represent category independently from shape layer by layer. Taking the same two stimulus sets, we meas-
ure human fMRI responses when viewing these images and assess the interaction between shape and category 
along the visual ventral stream. Finally, we compare arti�cial representations with human fMRI responses for the 
same two stimulus sets, to evaluate how closely CNNs re�ect biological representations.

Methods
We aimed to determine the relationship between models of shape and category, CNNs, and neural responses in 
the human visual ventral pathway. We tested object shape and category representation in four top-performing 
CNNs and compared this with behavioural ratings of shape and category as well as human fMRI response pat-
terns from experiments in two previous studies16,30. Human fMRI responses that are reported here use di�erent 
ROIs than in the original studies. Some �ndings related to the second stimulus set have been published in pre-
vious work, which we acknowledge here and within the paper. For the second stimulus set, human behavioural 
ratings were compared to three of four of the CNNs we present here, in Kubilius et al.18. Human fMRI responses 
to shape and category were previously reported in Bracci & Op de Beeck16.

Below we describe participants, stimulus sets, CNN architectures, the neuroimaging experiments, and data 
analysis.

Participants. All participants gave written informed consent. All experiments were approved by the Ethics 
Committee at KU Leuven and the University Hospitals Leuven. All methods were performed in accordance with 
the relevant guidelines and regulations. For the behavioural ratings, each stimulus set was rated by an independ-
ent group of participants (N = 4 for set A; N = 16 for set B). For the neuroimaging experiments, there were 15 
participants (8 females, mean age of 30 years) scanned in fMRI experiment A, none whom were excluded. �ere 
were also 15 participants (8 females, mean age of 24 years) scanned for fMRI experiment B, with one subject who 
was excluded due to excessive head motion. All subjects had normal or corrected vision.

Stimulus sets. �e stimuli in both experiments were designed to dissociate shape from category informa-
tion. Both stimulus sets are grayscale images of objects on a white or grey background, centred at the origin and 
presented at a normal viewing angle (see Fig. 1). Set A contains 32 unique images, divided into 2 equally sized 
categories (animal vs non-animal) and 2 equally sized groups of shapes (low and high aspect ratio). Set B contains 
54 images divided into 6 object categories (minerals, animals, fruit/veg, music, sport and tools) and 9 shape types. 
�e model design for each stimulus set, which orthogonalises shape from category, is illustrated in Fig. 1. For 
additional information about the stimulus sets, refer to Ritchie and Op de Beeck30 and Bracci and Op de Beeck16, 
for Set A and B respectively.

To con�rm that shape was not predictive of category information for each of the stimulus sets, we analysed the 
images using low-level GIST descriptors31 and tested how well these visual features predicted shape or category 
using Linear Discriminant Analysis (LDA). GIST provides a low dimensional representation of an image based 
on spectral and coarsely localised information. We de�ned the GIST descriptors to include 8 orientations over 8 
scales and combined this with LDA. For Set A, we ran a two-way classi�cation using a leave-one-level out proce-
dure, for example, training on bar stimuli and generalising to blob stimuli to test for animacy classi�cation. For 
Set B, we followed a six-way classi�cation scheme using a leave-one-level out test procedure, permuting across all 
possible groups of train and test combinations and averaging across results. For example, we selected six shape 
clusters of the total nine, trained an LDA on GIST descriptors from �ve clusters (5 × 6 = 30 images) and tested 
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whether the algorithm could predict the 6 di�erent categories from the held out images. All six-way shape and 
category combinations were tested (totalling 504 possible outcomes), which were averaged across cross-validation 
folds to provide a summary result.

Behavioural ratings. Each stimulus set was rated on object category and shape properties by means of 
the multiple object arrangement method32. Participants rated similarity in two task contexts: for object category, 
“arrange the images based on the semantic similarity among objects”; for object shape, “arrange the images based 
on perceived object shape similarity”. �ese models, based on behavioural data, represent the stimulus psycho-
logical space and are shown in Fig. 1A,B.

fMRI experiments. Here we provide a summary of the fMRI procedures and analyses, the full details are 
provided in Ritchie and Op de Beeck30 for experiments using Set A and Bracci and Op de Beeck16 for Set B.

Preprocessing and analysis. All imaging data was pre-processed and analysed using SPM and MATLAB. 
For each participant, fMRI data was slice-time corrected, motion corrected (using spatial realignment to the �rst 
image), coregistered to each individual’s anatomical scan, segmented and spatially normalised to the standard 
MNI template. Functional images were resampled to 3 × 3 × 3 mm voxel size and spatially smoothed by con-
volving with a Gaussian kernel of 6 mm FWHM for Set A and 4 mm FWHM for Set B33. A�er pre-processing, a 
GLM was used to model the BOLD signal for each participant, for each stimulus, at each voxel. Regressors for the 
GLM included each stimulus condition of interest (32 for A, 54 for B) and 6 motion correction parameters (x, y 
and z coordinates for translation and rotation). Each predictor had its time course modelled as a boxcar function 
convolved with the canonical haemodynamic response function, producing a single estimate for each voxel per 
predictor for every run. �e beta weights �tted to each GLM were used to create Representational Dissimilarity 
Matrices (RDMs) for each participant (de�ned below).

Figure 1. (A) 32 stimuli in 2 categories (animal and non-animal), (B) 54 stimuli in 6 categories (animals, 
minerals, fruit/vegetables, music, sports equipment, tools). Le�: Each category division is highlighted by a 
distinct colour. Common shape information is circled in grey. Numbers indicate indexing for RDMs. Due to 
copyright restrictions, not all images are shown in Set A and the ones displayed are representative. Set A images 
are published in compliance with a CC BY-SA license (https://creativecommons.org/licenses/by-sa/3.0/) and 
their sources are: guinea pig (https://commons.wikimedia.org/wiki/File:AniarasKelpoKalle.jpg by Tavu); squash 
(https://commons.wikimedia.org/wiki/File:Festival-Squash.jpg by Evan-Amos); slug (Black Slug at Aggregate 
Ponds, https://www.�ickr.com/photos/brewbooks/2606728819 by brewbooks); and wooden spoon (https://
upload.wikimedia.org/wikipedia/commons/7/7b/Wooden_Spoon.jpg by Donovan Govan). Images have been 
changed to greyscale and have the background removed. �e �nal two images have also been rotated. Set B 
images are published in compliance with a CC-BY license (https://creativecommons.org/licenses/by/4.0/) 
and are re-used from Fig. 5a in Kubilius, Bracci and Op de Beeck18. Right: Shape and category RDMs. �ese 
behavioural models are obtained via multiple object arrangement32; see methods.
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Regions of interest (ROIs). Neural representational content was investigated in three main ROIs in visual 
cortex: primary visual cortex (V1), and ventral temporal cortex (VTC), which was split into posterior (VTC post) 
and anterior (VTC ant) halves. �ese ROIs were chosen for their relevance in both object shape and category 
information processing24. VTC is bounded laterally by the occipitotemporal sulcus (OTS), posteriorly by the pos-
terior transverse collateral sulcus (ptCoS) and anteriorly by the anterior tip of the mid-fusiform sulcus (MFS)24. 
ROIs were de�ned at the group level by combining the anatomical criteria above (using the Neuromorphometrics 
atlas in SPM) with functional criteria (all active voxels for the contrast of all conditions versus baseline that 
responded to visual information exceeding the statistically uncorrected threshold of p < 0.001 in a second-level 
analysis). For further details on ROI de�nition, please refer to Bracci, Kalfas & Op de Beeck34 where the exact 
same ROI criteria were applied. We used a two-factor repeated-measures Analysis of Variance Model (ANOVA) 
to assess the interaction between two within-participant factors: conditions (shape, category) and area (V1, VTC 
post and VTC ant).

Deep neural network architectures. Each architecture consists of multiple convolutional layers followed 
by pooling operations and fully-connected layers. For each CNN, which was pre-trained on the ImageNet data-
set35, we ran a forward pass of each image in the stimulus set through the network. We output the activation of 
weights in each layer, resulting in a matrix with size of the nodes per layer times the stimulus set (32 for A, 54 for 
B). We calculated 1 - correlation for each activation pattern of one stimulus with another to obtain an RDM with 
size N × N, where N = the number of stimulus conditions (32 × 32 for A, 54 × 54 for B). We did not include �nal 
so�max classi�cation layers in our analysis, since we were interested in the structure of layer representations and 
not classi�cation performance per se.

CaffeNet. Ca�eNet is an implementation of AlexNet1 in the Ca�e deep learning framework36. Ca�eNet is 
an 8-layer convolutional neural network (CNNs) with �ve convolutional layers and three fully connected layers.

VGG-19. VGG-193 was the top ranking CNN for single object localisation in ILSVRC 2014, and 
second-running in image classi�cation35. VGG-19 consists of 19 weighted layers with an additional so�max 
read-out layer for classi�cation. �e architecture contains 16 convolutional layers separated by �ve max pooling 
layers, with the �nal 3 layers being fully-connected.

GoogLeNet. GoogLeNet2, also known as InceptionNet, was the top-performing architecture for image clas-
si�cation in ILSVRC 201435. GoogLeNet is a 22-layer deep network, when counting only parameterised layers, or 
27 layers deep if including pooling operations. All convolution, reduction and projection layers use recti�ed lin-
ear activation. �e bottom layers of the network follow conventional convolutional neural network architecture, 
consisting of chained convolutional operations followed by max pooling. �e top layers of the network replace 
multiple fully-connected layers with an average pooling layer, a single fully connected layer and a classi�cation 
layer. �e middle layers of the network di�er substantially from traditional convolutional neural network struc-
ture, consisting of stacked “inception” modules, which are miniature networks containing one max pooling and 
3 multi-sized convolution operations (1 × 1, 3 × 3 and 5 × 5 convolutions) in parallel con�guration. Convolution 
operations inside inception modules are optimised with dimensionality reduction, by preceding expensive 3 × 3 
and 5 × 5 convolution operations with 1 × 1 convolutions. Inception modules allow for increased width of the 
network, as well as depth, while maintaining a constant computational budget.

ResNet50. ResNets are a family of extremely deep architectures that won the ILSVRC classi�cation task in 
201537. ResNet50 contains 50 stacked “residual units”, which use a split-transform-merge strategy to perform 
identity mappings in parallel to 3 × 3 convolutions with recti�cation. ResNets, like GoogLeNet2, are multi-branch 
architectures, containing only 2 branches (performing identity projection and 3 × 3 convolutions) instead of 
GoogLeNet’s maximum 4 branch inception modules (performing multi-size convolutions). Identity mappings 
perform a key role in the architecture’s success, forcing the network to preserve features, rather than learn entirely 
new representations at every layer, as is the case with conventional CNNs38. �e �nal 3 layers of ResNet50 are 
identical in design to GoogleNet, performing average pooling, transformation to 1000 dimensions using full 
connections and so�max classi�cation (not included in our analysis).

Representational similarity analysis. We used Representational Similarity Analysis (RSA) to quantita-
tively compare CNN representations per layer with design models, behavioural ratings, and with fMRI neuro-
imaging data. RSA compares RDMs, which characterise the representational information in a brain or model39. 
Given a set of activity patterns (biological, behavioural or arti�cial) for a set of experimental conditions, the 
dissimilarity between patterns is computed as 1 minus the correlation across the units that compose the patterns. 
RDMs are symmetrical about a zero diagonal, where 0 denotes perfect correlation. RSA assesses second-order 
isomorphism, which is the shared similarity in structure between dissimilarity matrices40. Spearman rank order 
correlation was used to compare dissimilarity matrices, since the relationship between RDMs cannot be assumed 
to be linear39. In cases where there was any dependency relationship between shape and category RDMs (visible 
in the Set A behavioural data), we used partial correlation.

Results
Behavioural data. For each stimulus set, participants provided similarity judgments for the shape and cate-
gory dimension (see Fig. 1, right column). For Set A, we found a signi�cant correlation between the behavioural 
models for shape and category (Spearman’s ρ = 0.4753, p < 0.001 permutation test with 1000 randomisations 
of stimulus labels) and so partial correlations were performed when carrying out RSA with Set A models (this 
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includes comparisons with CNN layers and with brain data). For Set B, we found no signi�cant correlation 
between behavioural models for shape and category (ρ = 0.006, p = 0.8209). Behavioural ratings for Set B have 
been previously used in Bracci & Op de Beeck16.

Low-level shape analysis of stimuli. Using GIST31 descriptors of each image and combining this with 
LDA, we con�rmed that category could not be predicted based upon these low-level descriptors whereas shape 
could, demonstrating that our stimulus sets were properly orthogonalised. LDA with GIST predicted shape above 
chance level, at 87.5% for Set A and 69% for Set B. Category was predicted below chance level, at 37.5% for Set A 
and 10% for Set B.

Shape and category RSA on all CNN layers for stimulus sets A and B. Figure 2 illustrates 
layer-by-layer RSA between the CNN representations and the shape and category models in the two stimulus sets. 
Note that all applications of RSA using the Set A behavioural models involved partial correlations (see Results: 
Behavioural). Looking across all networks, in the �rst layer of all CNNs, shape is already represented above 
the signi�cance threshold in most cases, whereas category is not. We determined the signi�cance threshold of 
every correlation by comparing it with a null distribution obtained by randomly permuting the RDM labels and 
then calculating dissimilarity relationships 1000 times. Shape correlations at the �rst layer of CNNs are lower 
and closer to the signi�cance threshold for Set A (0.12 < ρ < 0.24) than Set B (0.24 < ρ < 0.36). For Set A, shape 
correlations remain relatively high at the �nal layer (0.29 < ρ < 0.59). In contrast, for Set B, shape correlation 
levels increase in the networks before falling in the �nal layers of all networks, to roughly their initial values 
(0.32 < ρ < 0.36). For all networks, category information remains low across the majority of layers, hovering at or 
below the signi�cance level until the �nal few layers, where it increases above the signi�cance threshold to peak at 
the �nal layer. At the �nal layer, for Set A, category correlations reach between 0.34 < ρ < 0.42. For Set B, category 
correlations reach between 0.24 < ρ < 0.37 at the �nal layer. �e values of �nal layer correlations are presented in 
Table 1. Set B correlations with Ca�eNet, VGG-19 and GoogLeNet are reproduced from Kubilius et al.18.

To investigate the interaction between shape and category and CNN layers, we tested correlation values in 
a 2 × 2 ANOVA with Layer (modelled linearly with intercept and slope) and Condition (Shape or Category) as 
factors. Table 2 summarises the statistical results of the main e�ects (Layer, Condition) and their interaction in 
CNNs and models. For Set A, across all networks, Layer has a highly signi�cant main e�ect and Condition is also 
signi�cant (Table 2) which suggests that correlation values can be predicted given the CNN layer and the condi-
tion of interest (shape or category information). �eir interaction is signi�cant in GoogleNet and VGG-19, but 
not in Ca�eNet and ResNet50, suggesting that as category information increases, shape information decreases 
signi�cantly in two out of the four networks tested. For Set B, across all networks, Condition is highly signi�cant, 
and Layer has a signi�cant main e�ect in behavioural model correlations. �is suggests that it is possible to make 
signi�cant predictions of behavioural shape and category judgements given CNN layer information. For Set B, 
Condition is highly signi�cant across all networks, and the interaction between Layer and Condition is only 
signi�cant in Ca�eNet.

In summary, across both Sets A and B, we can see that shape information gradually increases and/or wavers as 
the network is traversed, before falling in the �nal layers. Across both Sets A and B, category information is at or 
below the signi�cance threshold in the initial layer before reaching the maximum value at the �nal layer, showing 
the opposite trend with shape correlations. Figure 3 contains multidimensional scaling plots of peak shape and 
category information for Sets A and B.

Shape versus category information in visual ventral stream regions. Figure 4 summarises the 
representational similarity in three regions of interest (ROIs) along the visual ventral pathway, from low-level 
area V1 through to posterior and anterior VTC, compared with models of shape and category. Note that all RSA 
using Set A involved partial correlations (explained above in Results: Behavioural). For Set A, shape information 
reduces along the ventral stream, from 18% to 10%. Category information increases along the ventral pathway, 
from −6% to 40%. We tested RSA results using a two-factor ANOVA, with ROI (V1, VTC ant, VTC post) and 
Condition (category, shape) as within-subject factors. For Set A, results reveal a signi�cant main e�ect for ROI 
(F2, 15 = 35.81, p < 0.001), whereas the main e�ect of Condition (shape vs category) is not signi�cant (F1, 15 = 1.02). 
�ere is a signi�cant interaction between ROI and Condition (F2, 15 = 73.34, p < 0.001), indicating that as cate-
gory information increases from V1 to VTC ant, shape information decreases. Post hoc pairwise t-tests further 
con�rmed the dissociation between shape and category along the visual ventral stream: category divisions were 
able to signi�cantly better explain the neural pattern in later ventral areas (VTC ant) relative to shape (t(15) = 5.67, 
p < 0.0001); whereas the opposite was true in early visual area V1, where shape was signi�cantly more related to 
the neural data compared to category divisions (t(15) = 8.16, p < 0.0001).

For Set B, we see a qualitatively similar trend of decreasing shape information from V1 to VTC anterior (from 
18% to 4%) and increasing category information (from 1% to 6%). �e two-factor ANOVA, with ROI (V1, VTC 
ant, VTC post) and Condition (Category, Shape), revealed that when correlating ROI representations with the 
models for Set B, the e�ect of ROI is signi�cant (F2, 14 = 3.79, p = 0.027), as is Condition (F1, 14 = 33.84, p < 0.001) 
and there is a highly signi�cant interaction e�ect between ROI and Condition (F2, 14 = 13.33, p < 0.001). Again, 
pairwise t-tests further con�rmed the dissociation between shape and category in visual brain regions, with Shape 
being signi�cantly more related to neural data in early visual area V1 than Category (t(14) = 5.28, p = 0.0001). 
Category was not able to signi�cantly explain neural patterns more in VTC ant than shape (t(14) = 1.20, p = 0.24). 
Overall, these results illustrate a decrease in shape combined with an increase in category going from V1 to VTC 
anterior.
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RSA for fMRI brain data and all CNN layers. Neural fMRI responses for each participant, and ROI, for 
Set A and Set B were correlated with the RDMs of every layer for each CNN. Results are shown in Fig. 5. For each 
stimulus set and network, correlation values were tested in a 2 × 3 ANOVA with Layer (modelled linearly with 
intercept and slope) and ROI as within subject factors. In Ca�eNet, V1 and VTC posterior correlations peaked 
at the third convolutional layer, and VTC anterior peaks at the �nal layer for both stimulus sets. For both stim-
ulus sets, the 2 × 3 ANOVA results reveal a signi�cant main e�ect of ROI (Set A: F2, 15 = 88.73, p < 0.001; Set B: 
F2, 14 = 57.00, p < 0.001) and Layer (Set A: F1, 15 = 41.06, p < 0.001; F1, 14 = 48.38, p < 0.001) and their interaction 
(Set A: F2, 15 = 133.72, p < 0.001; Set B: F2, 14 = 44.88, p < 0.001). In VGG-19, both stimulus sets show similar 
peaks in correlations, with V1 reaching a maximum at layer 13, VTC posterior at layer 15, and VTC anterior at 
the �nal 19th layer. For both sets, there is a signi�cant main e�ect of ROI (Set A: F2, 15 = 59.12, p < 0.001; Set B: 
F2, 14 = 26.98, p < 0.001) and Layer (Set A: F1, 15 = 294.14, p < 0.001; F1, 14 = 40.30, p < 0.001). �e ROI x Layer 

Figure 2. Correlation between layers in CNNs and shape (orange) versus category (blue) in Set A (top row) 
and B (bottom row). �e horizontal axis indicates network depth and the vertical axis indicates correlation 
(Spearman’s ρ). For GoogLeNet and ResNet architectures, the correlations shown are for 3 × 3 convolutional 
operations, while other parallel operations (projections and convolutions of di�erent sizes) are omitted. Dashed 
line indicates signi�cance threshold of p < 0.05, which was calculated by randomly permuting the RDM labels 
and then calculating dissimilarity relationships 1000 times. Grey shading indicates fully-connected layers. 
Results for Set B Ca�eNet, VGG-19 and GoogLeNet were previously reported in Kubilius et al.18.

Network

Set A Set B

Shape Category Shape Category

Ca�eNet 0.5965 0.3737 0.3639 0.2394

VGG-19 0.2888 0.3556 0.2786 0.3605

GoogLeNet 0.4375 0.4247 0.3125 0.3569

ResNet50 0.4978 0.2209 0.3159 0.3652

Table 1. Final network layer correlations with shape and category for Set A and B. Maximum values across the 
four networks are highlighted in bold.

Stimulus 
Set Network

Number of 
Layers Layer F1,1 Layer p Condition F1,1 Condition p Interaction F1,1 Interaction p

A

Ca�eNet 8 41.233 <0.001 126.651 <0.001 0.202 0.661

VGG-19 19 17.370 <0.001 99.161 <0.001 6.252 0.017

GoogLeNet 22 18.59 <0.001 87.68 <0.001 10.21 0.003

ResNet50 52 25.010 <0.001 750.551 <0.001 0.323 0.571

B

Ca�eNet 8 8.306 0.014 212.106 <0.001 7.774 0.016

VGG-19 19 22.075 <0.001 207.91 <0.001 3.536 0.069

GoogLeNet 22 27.727 <0.001 329.938 <0.001 1.833 0.183

ResNet50 52 61.007 <0.001 1108.272 <0.001 0.311 0.578

Table 2. 2 × 2 ANOVA results of Layer (modelled linearly with slope and intercept) and Condition (shape or 
category) and their interaction in CNNs and models.
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interaction is signi�cant in Set A (F2, 15 = 55.49, p < 0.001), but does not reach signi�cance in Set B (F2, 14 = 2.76, 
p = 0.06). GoogLeNet has multiple peaks for correlations with V1 and VTC posterior, and there is a clear peak in 
VTC anterior in the �nal layer for both stimulus sets. For both Sets, ROI (Set A: F2, 15 = 73.76, p < 0.001; Set B: F2, 

14 = 37.07, p < 0.001), Layer (Set A: F1, 15 = 152.19, p < 0.001; Set B: F1, 14 = 18.08, p < 0.001) and their interaction 
(Set A: F2, 15 = 130.85, p < 0.001; Set B: F2, 14 = 12.46, p < 0.001) are all highly signi�cant. Finally, in ResNet50, V1 
peaks at layers 44 to 47, VTC posterior peaks at layers 47 to 49, and VTC anterior peaks at the �nal layer. For 

Figure 3. Multidimensional scaling plots of (1) Peak shape correlations with common shape represented by 
common symbols, and (2) peak category correlations, with common category represented by shared colour, for 
each network and Set A (top 2 rows) and B (bottom 2 rows). Colour coding corresponds to Fig. 1.

Figure 4. RSA results for shape and category models for Set A (le�) and B (right) in ROIs. �ree regions 
along the ventral visual pathway are analysed: V1, VTC post and VTC ant. Error bars represent standard error. 
ROI visualisations are re-used from (A) in (Bracci, Kalfas, & Op de Beeck34, p. 8). Note the di�erence in scale 
between A and B.
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both Sets, ROI (Set A: F2, 15 = 31.20, p < 0.001; Set B: F2, 14 = 20.26, p < 0.001) and Layer (Set A: F1, 15 = 1431.40, 
p < 0.001; Set B: F1, 14 = 895.32, p < 0.001) are highly signi�cant, and their interaction is signi�cant (Set A: F2, 

15 = 5.97, p = 0.003; Set B: F2, 14 = 52.54, p < 0.001). Together these results show that across all deep neural net-
works, there is a cascade in correlation peaks from V1 to VTC posterior to VTC anterior along the layers of each 
network, matching with the �ow of activation along the human visual ventral pathway. For all networks, and both 
stimulus sets, the highest correlation of VTC anterior occurs at the �nal layer. Post hoc Tukey tests showed that 
all pair-wise comparisons between V1 and VTC anterior were signi�cant for all four networks and both stimulus 
sets (all p < 0.005). Paired t-tests show a signi�cant increase between the �rst and �nal layers of CNNs correlated 
with VTC anterior for Set B for all networks (Ca�eNet: t(13) = 2.871, p = 0.013; VGG-19: t(13) = 4.105, p = 0.001, 
GoogLeNet: t(13) = 4.524, p < 0.001, ResNet50: t(13) = 4.095, p = 0.001). We also ran a one sample t-test and 
found that across all networks, the correlations between the �nal four layers and the activation of VTC anterior 
across subjects were signi�cantly di�erent from zero, for both datasets (Set A: p < 0.0001, Set B: p <= 0.0006).

Explained variance from shape versus category information in correlations between fMRI brain 
data and CNN layers. We partialled out shape and category when correlating between brain data and CNN 
layers to investigate the level of variance that could be explained by each of these factors individually. Figure 6 
shows partial correlations for all CNNs and V1 (�rst two columns) and VTC anterior (last two columns), partial-
ling out shape (magenta) or category (blue). Zero is indicated by the dotted line.

Looking at partial correlations with VTC anterior, for Set A, when shape is partialled out (magenta), the 
correlation values drop, which is expected given that the two dimensions are partially correlated. However, 
importantly, category alone (indicated by the blue line) in anterior VTC is still signi�cant in the �nal 3 lay-
ers of all CNNs (Ca�eNet: t(14) = 3.306, p = 0.005, t(14) = 4.166, p < 0.0001, t(14) = 9.055, p < 0.0001; VGG-
19: t(14) = 7.608, p < 0.0001, t(14) = 7.620, p < 0.0001, t(14) = 7.758, p < 0.0001; GoogLeNet: t(14) = 7.015, 
p < 0.0001, t(14) = 9.320, p < 0.0001, t(14) = 9.060, p < 0.0001; ResNet50: t(14) = 6.643, p < 0.0001, t(14) = 7.089, 
p < 0.0001, t(14) = 10.033, p < 0.0001). �is is visible and clearly consistent in all four CNNs. For Set B, in anterior 
VTC, the drop in correlation values when partialling out shape is not apparent in any of the CNNs, con�rming 
that the two dimensions are already independent in the stimulus set.

Looking at the �rst row of Fig. 6, we see that partial correlations between V1 and both datasets follow a similar 
pattern. When partialling out shape or category, correlations are still quite high along the convolutional layers, 
indicating that there is additional information contained in V1 and these CNN layers that is not accounted for by 
shape or category alone. Across all layers, the information contained by partialling out shape (magenta) is lower 
than the information contained by partialling out category (blue). �e main decrease in these partial correla-
tions is seen in the �nal fully connected layers, where there is near zero information related to category that is in 

Figure 5. RSA comparing models (Ca�eNet, VGG-19, GoogLeNet and ResNet50) and fMRI activation in V1 
(blue), VTC post (magenta) and VTC ant (red) ROIs for Sets A (top row) and B (bottom row). Grey shading 
indicates fully-connected layers. Shading indicates SEM across subjects.
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common in V1 or in the �nal layers of CNNs. �ere is still some correlation related to shape (indicated by the blue 
line) that is preserved in V1 and in the �nal layers of CNNs.

Discussion
In this study, we investigated orthogonal shape and category representations in biological and arti�cial networks 
by making comparisons between: (i) CNNs and behavioural models of shape and category; (ii) behavioural mod-
els and the brain; and (iii) CNNs and the brain. First, comparing arti�cial networks and models, we found that 
CNNs represent category information as well as shape, and that category information peaks at the �nal layer for 
all tested CNNs, regardless of network depth. Second, comparing models and the brain, there is a two-way inter-
action between shape and category in the human visual ventral pathway, where shape is best represented earlier 
in V1, and category emerges later in anterior VTC. �is interaction between shape and category is signi�cant 
across both stimulus sets. �ird, comparing arti�cial networks and the brain, V1 correlates highest with early to 
mid-level layers of deep networks, and anterior VTC correlates best with the �nal layer of CNNs. Across both 
stimulus sets and for all networks, peak correlations with V1 always occur in earlier network layers than peak 
correlations with anterior VTC, demonstrating that CNNs re�ect a similar order of computational stages as the 
human ventral pathway when processing these object images.

Our results allow for a greater understanding of how shape and category are represented in deep networks 
and in the visual ventral pathway, in particular: (i) how di�ering shape and category de�nitions between the two 
stimulus sets reveal di�erences between low-level and high-level shape representations in CNNs and the brain; 
(ii) how shape and category processing along deep network layers maps onto brain regions; and iii) how careful 
stimulus design allows us to make better inferences about category information in the brain and in CNNs.

One major advantage of this study is that we consider two stimulus sets that carefully control shape and cat-
egory to draw conclusions about their interaction and interplay, rather than broadly extrapolating results based 
on a single set of images. �ese two well-controlled stimulus sets are similar in design but di�er slightly in how 
shape and category are de�ned, allowing us to extract a �ner interpretation of results. Looking at the di�er-
ences in shape de�nitions between these stimulus sets, in Set A, shape is de�ned with a low to high aspect ratio 
(described as “bar-like” or “blob-like”), while it is characterized retinotopically in Set B. Comparing CNNs and 
models, both low-level (Set B) and high-level (Set A) shape information is preserved until the very last layer 
of all networks, however there is a visible reduction in low-level compared to high-level shape information in 
the �nal layers. Comparing models and the brain, we see that the high-level (Set A) shape information remains 
quite high in VTC ant, compared to low-level (Set B) shape information, which reduces to correlation levels 
that are at or near zero. �e plausible explanation for why shape information drops o� in Set B but not in A, is 

Figure 6. Partial correlations between CNNs and V1 (�rst two columns) or VTC ant (last two columns). 
Magenta shows shape information with category partialled out, blue shows category information with shape 
partialled out. Error bars show SEM across subjects.
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that higher level regions represent a more abstract form of shape, which is factored into the design of Set A, but 
not B. Indeed, previous studies showed that perceived shape similarity strongly overlaps with higher-level brain 
representations in humans41, and in monkeys12,42. Kalfas et al.12 found that the deepest layers of networks, rather 
than IT responses, correlated best with human shape similarity judgements. We also found that CNNs correlated 
much higher with behavioural shape judgements than fMRI. �is �nding suggests that there is at least some cor-
respondence between how humans and models use shape, even though there are very likely also di�erences (see 
e.g. Baker et al.19 and Geirhos et al.21).

Considering the di�erences in category de�nitions between the stimulus sets, Set A has only two category 
clusters de�ned by the animate-inanimate division, whereas Set B has six object clusters. �e number of groups 
clearly a�ects the size di�erence in correlation levels between category models and CNNs as well as the brain, 
where fewer groupings boost the signal. In the �nal layer of all CNNs, we see that category, as de�ned by animacy 
in Set A, reaches correlation levels up to three times the magnitude of Set B. Considering brain data, category 
as de�ned by animacy in Set A reaches six times the magnitude in VTC ant compared to Set B. However, when 
the contributions of category and shape are analysed separately, the di�erence between Sets A and B, in terms of 
category information, disappears. �is is evident in Fig. 6, with the blue line showing a very similar peak in both 
datasets for all DNNs. �e very high correlations for category that were observed in Fig. 5 for Set A were mainly 
driven by the shape component, and when this is dissociated the results across the two stimuli sets largely corre-
spond (Fig. 6). We �nd that in all four networks, human similarity judgements of category are best explained by 
the �nal layer of CNNs, more so than fMRI representations in late ventral areas.

It may seem striking that in some cases the correlations for shape remain higher than those for category, 
even at the �nal layer (see Fig. 2, Ca�eNet both sets and ResNet50 Set A). �e shape model itself is a behavioural 
model, which captures high-level properties of shape that are presumably, still represented at the �nal layers of 
CNNs. If the shape model was de�ned instead using basic low-level shape features, we would expect more of a 
decrease in the �nal layers of CNNs.

Our use of multiple CNNs allows us to observe the in�uence of network depth on peak correlations with brain 
regions. Hong et al.9 compared their brain data to a CNN consisting of 6 parallelised convolutional layers, �nding 
that the model’s top hidden layer was most predictive of IT response patterns and that lower layers had higher 
resemblance to V1-like Gabor patterns. Consistent with their �ndings, we also found that the �nal layer of CNNs 
had maximum correspondence with later ventral stream areas, and that earlier layers showed higher correlation 
with V1. Cichy et al.14 found peak V1 correlations in the second layer of an 8-layer CNN trained for object recog-
nition. Similarly in our experiments, we found that peak V1 correlations occurred at layer 3 in an 8-layer network 
(Ca�eNet) for both stimulus sets. As network depth increases, peak correlations with V1 shi� from earlier tiers 
in the network to later layers. Interestingly, some of the highest V1 correlations occur immediately prior to fully 
connected layers, as is the case in ResNet50 and VGG-19.

Figure 5 illustrates peak V1 correlations occurring as late as the 45th layer in ResNet50, bringing into question 
the explanatory value of additional processing stages in deeper networks, especially when an 8-layer network 
achieves similar magnitudes of correlation with V1 by the third layer. Nevertheless, while the maximum correla-
tion values of brain regions shi� to later layers in larger networks, the rank-order of correlation peaks with brain 
regions still matches the order of information processing along the ventral pathway. �at is, correlations with V1 
always peak before VTC ant, regardless of network depth. We extend upon the �ndings of Cichy et al.14 that early 
visual area correlations peak before later ones, from a single 8 layer network to multiple networks, including a 50 
layer network.

In conclusion, despite shape and category o�en being confounded in natural images, and the possibility for 
arti�cial neural networks to exploit this correlation when performing classi�cation tasks, we �nd that deep con-
volutional neural networks are able to represent category information independently from low-level shape in a 
manner similar to higher level visual cortex in humans.

Data availability
�e datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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