
 Open access Proceedings Article DOI:10.1109/TEST.1996.557123

Orthogonal scan: low overhead scan for data paths — Source link

R.B. Norwood, Edward J. McCluskey

Institutions: Stanford University

Published on: 20 Oct 1996 - International Test Conference

Topics: Scan chain, Boundary scan and Test compression

Related papers:

 H-SCAN: A high level alternative to full-scan testing with reduced area and test application overheads

 Design for strong testability of RTL data paths to provide complete fault efficiency

 H-SCAN+: a practical low-overhead RTL design-for-testability technique for industrial designs

 Non-scan design-for-testability of RT-level data paths

 A design for testability technique for RTL circuits using control/data flow extraction

Share this paper:

View more about this paper here: https://typeset.io/papers/orthogonal-scan-low-overhead-scan-for-data-paths-
13qkgq7qix

https://typeset.io/
https://www.doi.org/10.1109/TEST.1996.557123
https://typeset.io/papers/orthogonal-scan-low-overhead-scan-for-data-paths-13qkgq7qix
https://typeset.io/authors/r-b-norwood-2ze95r96rf
https://typeset.io/authors/edward-j-mccluskey-3vv7xhaltg
https://typeset.io/institutions/stanford-university-24e5cwqm
https://typeset.io/conferences/international-test-conference-2twl0a7a
https://typeset.io/topics/scan-chain-327xeghw
https://typeset.io/topics/boundary-scan-3w021c61
https://typeset.io/topics/test-compression-2p5oohvv
https://typeset.io/papers/h-scan-a-high-level-alternative-to-full-scan-testing-with-4p6ptjzhka
https://typeset.io/papers/design-for-strong-testability-of-rtl-data-paths-to-provide-30eei65tif
https://typeset.io/papers/h-scan-a-practical-low-overhead-rtl-design-for-testability-xdw69z6h1t
https://typeset.io/papers/non-scan-design-for-testability-of-rt-level-data-paths-1bwqlyy6c4
https://typeset.io/papers/a-design-for-testability-technique-for-rtl-circuits-using-bwaln3k2ta
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/orthogonal-scan-low-overhead-scan-for-data-paths-13qkgq7qix
https://twitter.com/intent/tweet?text=Orthogonal%20scan:%20low%20overhead%20scan%20for%20data%20paths&url=https://typeset.io/papers/orthogonal-scan-low-overhead-scan-for-data-paths-13qkgq7qix
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/orthogonal-scan-low-overhead-scan-for-data-paths-13qkgq7qix
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/orthogonal-scan-low-overhead-scan-for-data-paths-13qkgq7qix
https://typeset.io/papers/orthogonal-scan-low-overhead-scan-for-data-paths-13qkgq7qix

ORTHOGONAL SCAN: LOW OVERHEAD SCAN FOR DATA PATHS

Robert B. Norwood and Edward J. McCluskey

Center for Reliable Computing
Stanford University

Gates Hall 2A
Stanford, CA 94305

Abstract
Orthogonal scan paths, which follow the path of the data

flow, can be used in data path designs to reduce the test

overhead — area, delay and test application time — by

sharing functional and test logic. Orthogonal scan paths

are orthogonal to traditional scan paths. Judicious

ordering of the registers in the orthogonal scan path can

allow the scan path to be implemented entirely with

existing interconnect, resulting in no additional wiring to

connect the scan path and no performance degradation

due to additional loading on the bistable outputs. Taking

the orthogonal scan path into account during high-level

synthesis operations such as register allocation allow for a

better final solution, but orthogonal scan paths can also be

used with non-synthesized data path,. Orthogonal scan

paths have roughly half the overhead of traditional scan

paths and greatly reduce the test application time. TOPS,

Stanford CRC's synthesis-for-test tool, has been modified

to implement orthogonal scan paths for synthesized

circuits.

1 Introduction
Scan paths are widely used to improve the testability

of circuits since a fully scanned circuit has complete

controllability and observability of every bistable element.

There are many varieties of scan paths [Eichelberger¬77]

[Williams¬83], all of which have overhead due to the

additional logic and interconnect [McCluskey¬86].

Traditional scan paths are implemented independent of the

actual circuit functions. Once the circuit is designed, the

scan path is inserted without regard to the logic between

flip-flops. By taking the circuit functionality into account

during scan path insertion, the overhead due to the test

features can be reduced by sharing the functional and the

test logic. Previous work has been done in this regard with

control paths [Norwood¬96], and work is presented here on

data paths. The structure of data paths is very well suited

to sharing the functional and test logic, and orthogonal

scan paths [Avra¬92] can be used to reduce the overhead of

scan paths.

Bit1 Bit2 Bitn

Bit1 Bit2 Bitn

Bit1 Bit2 Bitn
SDI SDO

Register1

Register1

Register2

SDI1 SDIn

SDO1 SDOn

1D
C1

1D
C1

1D
C1

1D
C1

1D
C1

1D
C1

1D
C1

1D
C1

1D
C1

Figure 1. Traditional Figure 2. Orthogonal

scan path scan path

Traditional scan paths, shown in Fig. 1, connect

individual flip-flops within a register and then connect the

registers, e.g., bit one of register one is connected to bit

two of register one, and bit two is connected to bit three of

register one, and so on until the last bit of register one is

connected to bit one of register two. An orthogonal scan

path, shown in Fig. 2, is orthogonal to the traditional scan

path. The flip-flops are connected in the scan path so that

bit one of register one connects to bit one of register two,

and bit two of register one connects to bit two of register

two, and likewise for all the bits of the register. In this

way, the scan path follows the normal data path flow, but

is orthogonal to the traditional scan path flow.

Judicious ordering of the registers in the orthogonal

scan path allows the scan path to be implemented entirely

with existing interconnect, resulting in no additional

wiring or pins needed to connect the scan path — though

some additional interconnect is necessary for the scan path

control signals. Orthogonal scan paths also allow

functional elements of the data path, such as adders and

multipliers, to be used, with slight modifications, to

implement the scan path. Orthogonal scan paths are used

to scan test vectors in and out with no dependence on

which part of the combinational logic is actually going to

be tested by which vectors. Other work has looked at

using the data path functionality to set up test vectors

[Abadir¬85] [Anirudhan¬89] [Bhatia¬94] [Chickermane¬94]

but these do not actually implement a scan path.

[Bhattacharya¬96] discusses H-SCAN which exploits some

+

+

1 2 1 2

21

1

A B A B

Z

*

A B

Z

1

+
*

2

Figure 3. DFG1 Figure 4. Data path for DFG1

1 2

+

Z

A B

*
Figure 5. Connectivity graph for data path in Fig. 4

of the parallelism in a design to reduce the scan overhead,

but it does not make use of functional units, and it adds

interconnect to the design. This paper focuses on using

orthogonal scan to implement full scan paths, where every

bistable is included in the scan path, but orthogonal scan

may also be useful for other testing techniques such as

circular built-in self-test (BIST) [Avra¬92] or arithmetic

BIST [Adham¬95].

An orthogonal scan path is configured to maximize

the amount of sharing of the functional elements and to

minimize the amount of additional interconnect needed for

the scan path. Taking the orthogonal scan path into

account during high-level synthesis operations such as

function binding and register allocation allow for a better

final solution, but orthogonal scan paths can be used with

any data path, whether it is synthesized or not. Once the

orthogonal scan path is determined, the functional

elements are modified to allow them to be used during the

scan operations. For example, an adder (Z = A + B) can be

used to pass data from input A to output Z if the B input is

forced to zero. Only a single gate per bit, along with the

scan mode select signal, is needed to mask an input.

Using Stanford CRC's synthesis-for-test tool, TOPS,

we have synthesized various benchmark circuits using this

technique, and results show that orthogonal scan paths can

require no additional scan in/out pins; no additional

interconnect other than for control signals; and only slight

modifications to the functional units. This is in contrast to

traditional scan paths that require additional test pins, extra

interconnect for the scan path and for control, and the

addition of multiplexers to every flip-flop. Orthogonal

scan paths also have the added benefit of reducing the

length of the scan chain and thereby reducing the test

vector application time.

Section 2 describes orthogonal scan path insertion.

Section 3 discusses issues involved with using an

orthogonal scan path during test.. Section 4 looks at

modifications to register allocation and binding during

synthesis to benefit orthogonal scan paths. Section 5 gives

results for inserting orthogonal scan paths in various

benchmark circuits.

2 Orthogonal Scan
Orthogonal scan paths are best inserted during

synthesis. At this stage the high level description provides

easier analysis of the data path, and the synthesis tools can

be enhanced to automatically insert the orthogonal scan

path into a design with no additional effort by the designer.

There are four steps to inserting orthogonal scan paths:

1. scheduling, allocation and binding

2. determining the orthogonal scan path

3. modifying the functional units

4. synthesizing the control

Each of these steps is described in more detail in Sections

2.1 through 2.4.

2.1 Scheduling, Allocation and Binding
Before the orthogonal scan path can be added to the

data path, the data path must be synthesized from the data-

flow graph (DFG). The DFG specifies the operations to be

performed by the data path, and the synthesis process

schedules the operations, allocates functional units for the

operations and binds the functional units and registers to

operations and variables [McFarland¬90]. The scheduling,

allocation and binding may be performed using any

desired methods, but knowledge of orthogonal scan during

these steps can improve the resulting orthogonal scan path.

Section 4 describes three different register binding

algorithms and Section 5 compares the orthogonal scan

paths obtained with each.

2.2 Determining Orthogonal Scan Path
Once the DFG has been scheduled, allocated and

bound, the structure of the data path is determined. The

structure can then be analyzed and an orthogonal scan path

found. The orthogonal scan path is constructed to take

advantage of the data flow in the data path so that the

existing hardware and interconnect can be used to

implement the scan path.

The DFG shown in Fig. 3 corresponds to the data path

shown in Fig. 4; the control signals for the multiplexers are

not shown. The numbers inside the boxes in the DFG

indicate the register bound to that edge's variable, and the

horizontal lines are clock cycle boundaries. Fig. 5 is a

connectivity graph showing the connections between

components in the data path of Fig. 4. The nodes of the

connectivity graph represent the primary inputs and

outputs, registers and functional units of the data path.

There are edges between two nodes to indicate a path in

the data path between the two corresponding components.

Nodes representing multiplexers may be added to the

connectivity graph, but since they do not add any

information for the data paths discussed here they have

been left out of the connectivity graphs in this paper.

Analysis of the connectivity graph shows that register 2

can form an orthogonal scan path with register 1 by using

the adder. The resulting orthogonal scan path uses input B

as the scan-in, output Z as the scan-out, and the path

through the adder to connect registers 2 and 1. A

shorthand notation for this orthogonal scan path is given

by B¬⇒ ¬2¬⇒+ ¬1¬⇒ ¬Z , where ⇒+ indicates that the adder is

used for that segment of the scan path and ⇒ indicates that

no functional unit is used. The scan path is highlighted in

Fig. 5.

The only overhead added to the data path is the AND

gate (one gate for each bit of the data path) needed to force

the first operand of the adder, coming from register 1, to

zero during scan mode. Section 2.3 talks more about the

overhead added to the functional units. No additional

interconnect is needed for the orthogonal scan path, nor are

any additional scan-in or scan-out pins necessary since

existing primary inputs and outputs are used during scan.

A traditional scan path would require the addition of a

multiplexer to each bit of every register, as well as

additional pins and interconnect. The additional

interconnect required for a traditional scan path adds not

only area, but also delay since the loads of the bistable

outputs are increased. Orthogonal scan paths do not have

this performance penalty due to the loading of the bistable

outputs since no additional interconnect is needed to

connect the scan path.

Another interesting benefit of orthogonal scan paths is

the elimination of hold time problems often associated

with scan path insertion. Replacing the flip-flops in the

design with scannable flip-flops and connecting them to

form the scan path, as is done in traditional scan paths,

often results in a circuit that does not satisfy the flip-flop

hold times because of the short paths between flip-flops

during scan. These short paths can be padded with buffers

to increase the propagation delay, or some form of two-

phase clocking [LSI Logic¬92] can be used to remove the

hold time problems, but both of these solutions increase

the scan path overhead. Since orthogonal scan paths use

the existing data paths, the scan paths are not any shorter

than the functional paths, and there are no hold time

violations — assuming, of course, that the original circuit

had no hold time problems.

Multiple orthogonal scan paths are also possible. Two

or more inputs (and outputs) are used to split the

orthogonal scan path into multiple parts, each with its own

scan-in and scan-out. The test application time is reduced

+

+

1 2 1 2

1

1

A B A B

Z

-

3

Y

-

12

AB

2 3
*

A B

Z Y

1

+

2

-

3

*

Figure 6. DFG2 Figure 7. Data path for DFG2

+

Z

A B

3

-

1 2 Y

*
Figure 8. Connectivity graph for data path in Fig. 7

with multiple orthogonal scan paths

since the length of the longest scan path is reduced. The

DFG in Fig. 6 has the data path shown in Fig. 7 and the

connectivity graph shown in Fig. 8. There are two

orthogonal scan paths highlighted in Fig. 8, A¬⇒ ¬1¬⇒ ¬Z
and B¬⇒ ¬2¬⇒- ¬3¬⇒ ¬Y . The connectivity graph in Fig. 8

reflects the fact that only one input to the subtractor (the

input from register 2) may actually be used for the

orthogonal scan path since the other input can not pass

data unmodified.

Data paths that have many more registers than

functional units may not be able to include every register

in the orthogonal scan path, even with multiple orthogonal

scan paths. For example, the DFG, data path and

connectivity graph shown in Figures 9, 10 and 11 have

four registers, but only one adder, and there is no way to

obtain an orthogonal scan path covering all the registers

with a single configuration. However, if the registers have

load enables then multiple scan path configurations may be

used to scan the registers in phases while the load enables

are used to preserve register contents from earlier phases.

The net effect of the multiple configurations is the

appearance of a single scan chain, though different

registers are possibly scanned through different hardware

configurations. Fig. 12 shows the first configuration,

B¬⇒ ¬2¬⇒+ ¬3¬⇒ ¬Y , and Fig. 13 shows the second

configuration, A¬⇒ ¬1¬⇒+ ¬4¬⇒ ¬X . Data is scanned into

registers 2 and 3 during the first configuration, and then

they hold their data, using the load enables, while data is

scanned into registers 1 and 4. The net effect is that all

four registers have data scanned in and out in four clocks,

and the multiple configurations can be treated as one

logical scan path, though the test mode signals change

during the scan operations. The data is scanned out in a

+

+

1 2

3

4

A B

Z

Y

+

4

1

1 3

3

2

2

2

ZX

A B

Z Y X

1

+

2 3 4

Figure 9. DFG3 Figure 10. Data-path for DFG3

Z

A B

Y

1 2+

3 4

X

Figure 11. Connectivity graph for data path in Fig. 10

with no single orthogonal scan path configuration

Z

A B

Y

1 2+

3 4

X

Z

A B

Y

1 2+

3 4

X

Figure 12. Configuration 1 Figure 13. Configuration 2

for data path in Fig. 10 for data path in Fig. 10

similar manner. Multiple configurations require additional

test mode signals so that the various configurations may be

selected.

Multiple configurations are distinct from multiple test

sessions [Abramovici¬90]. The fact that multiple test

configurations are used does not change the test pattern

generation or test application from when a single

configuration is used, other than the need to change test

mode signals during scan operations.

If the registers do not already have load enables as

part of the normal data path, then a subset of the registers

can have load enables added so that multiple

configurations may be used. In the previous example

shown in Fig. 10, registers 2 and 3 would need to have

load enables added. A load enable can be added to a

register for roughly the same cost as making the register

scannable since both cases require a multiplexer be added

to each bit. The resulting orthogonal scan path would still

have little interconnect added, and the overall overhead

can be less than for a traditional scan path, with the benefit

of short test application time.

Different configurations can also be used during scan-

in and scan-out, but it becomes harder to overlap the

scanning-in and scanning-out of data and the test

application time may increase.

2.3 Modifying Functional Units
When the orthogonal scan path configuration is

determined, some functional units may need to be

modified so that they can transfer the scan data.

Multiplexers used during orthogonal scan require no

modification, and paths between registers that are

composed solely of multiplexers have very little overhead

since no functional units must be modified. If a functional

unit is used during one of the orthogonal scan

configurations, then a logic gate must be added to each bit

of the inputs that are not part of the scan path. This

additional logic masks the input during scan. For example,

the orthogonal scan path in Fig. 5 uses the adder during

scan. Therefore the input that is not part of the scan path,

in this case the input from register 1, must have an AND

gate added to each bit so that during scan the input is

forced to zero. The modified adder is shown in Fig. 14.

Other types of functional units are modified in similar

fashions.

A B

Z

A

B

Z

⇒

Test

+ +

Figure 14. Adder modified for orthogonal scan

The masking logic adds a gate delay to the path

between some registers, as opposed to a multiplexer delay

being added to every register for traditional scan paths.

Traditional scan paths can also add extra interconnect

which can increase the load, and consequently the delay,

on the flip-flop outputs. The orthogonal scan path can be

added so that a minimum amount of masking logic is

added to the critical path, i.e., modify functional units and

functional unit inputs that are not on the critical path. In

this way the added delay can be minimized. Instead of

adding the 2-input gates directly, the function of the

masking logic can be combined with the multiplexer or

functional input to reduce the area and delay overhead.

These specially designed units would have an extra input,

the test mode signal, added to select orthogonal scan mode.

If multiple configurations are used, then multiple test mode

signals are required.

2.4 Synthesizing Control
The modifications to the data path necessitate some

changes to the control. The multiplexer address, register

⇒Address 0 1 0 1
Address

Test

Figure 15. Multiplexer with modified address signal

enables and functional unit controls of components used in

the orthogonal scan path may need to be modified to work

correctly during orthogonal scan so that multiplexers pass

the necessary data, registers are enabled at the right times

and functional units perform the required operations.

These modifications to the control signals make use of the

global test mode signals and require at most one logic gate

per control signal for each configuration, as shown in Fig.

15. The control signals may then be forced to appropriate

values during the orthogonal scan operation.

If the control logic is being synthesized, then

knowledge from the DFG may be used to allow the

additional control logic to be reduced since some control

signals may be shared. For example, the two multiplexers

in the data path shown in Fig. 4 may both use the same

control signal because of the nature of the data-flow graph.

If the DFG is not available for analysis, the

modifications to the control signals must be made without

taking advantage of any logic sharing and one logic gate

must be added to each control signal. The data path in Fig.

4 would require two additional gates, one for each

multiplexer select signal.

2.5 Creating Final Data Path
Once the data path has been synthesized, the

orthogonal scan path determined and the functional units

and control have been modified, the final data path with

orthogonal scan is created. The resulting data path circuit

for the DFG and data path of Figures 3 and 4 is shown in

Fig. 16.

A B

Z

1

+

2

x n

Address1

Test

Address2

*

n n

n

nn

n nn

n n

n n

Figure 16. Data path from Fig. 4

modified for orthogonal scan

The additional logic is shaded. The two OR gates

added to the multiplexer selects may be reduced to one OR

gate if the DFG control information is analyzed. n AND

gates are added to the adder, where n is the width of the

data path.

3 Orthogonal Scan During Testing
Test application with the orthogonal scan path is the

same as with a traditional scan path, except the test vectors

are scanned-in and scanned-out in parallel as words as

opposed to being scanned serially as bits. This

parallelization of the test data reduces the total test time —

the wider the data path, the greater the reduction.

The test vectors are generated in the same manner as

for any other full scan design. ATPG is strictly

combinational since all of the flip-flops are scanned. The

orthogonal scan path itself can be tested prior to the actual

circuit testing by shifting a pattern of zeros and ones

through the scan path while in scan mode. This initial test

verifies the correct shifting of vectors through the scan

path and assures a valid test for the circuit. Once the scan

path has been verified, it can be used during debugging to

help diagnose problems by scanning out the state of the

circuit — just as traditional scan paths can help with

debugging and diagnosis.

The data paths discussed are assumed to have some

primary inputs and outputs that are directly accessible so

that test vectors may be applied and examined. If the data

paths are embedded so that the inputs and outputs are not

directly accessible, then some means of accessing them

must be added.

This discussion of orthogonal scan does not cover the

testing of the control. The control is assumed to be tested

in some fashion that is complementary to orthogonal scan,

e.g., using some form of traditional full scan

[McCluskey¬86] or beneficial scan [Norwood¬96].

4 Register Allocation and Binding
Register allocation is the process of determining the

number of registers that are necessary to implement a

specified DFG. Register binding then takes the available

registers and maps them to specific variables (edges in the

DFG that cross clock boundaries).

The register allocation and binding operations use a

register conflict graph. Each node in the register conflict

graph represents an edge from the DFG that crosses a

clock cycle boundary. Edges, called conflict edges

[Avra¬91], between two nodes indicate that the variables

associated with the two nodes cannot be bound to the same

register. Register binding assigns a color to each node of

the register conflict graph such that adjacent nodes have

different colors. Nodes with the same colors can be bound

to the same register. The minimum number of colors

needed to color the register conflict graph indicates the

number of registers allocated to the data path.

+

+

A B A B C

Z Y

d e

*

*

A B d

C e

Y

Z

Figure 17. DFG4 before Figure 18. Register conflict

register allocation graph for DFG4

A B

d

C1

e

Y

Z

C2

A B

d

C

e

Y

Z

e'

Figure 19. Register conflict Figure 20. Register conflict

graph with delayed variable graph with multiple targets

A B

d

e

Y

Z

e'

C1

C2

Figure 21. Register conflict graph with variable migration

+

1 2

A B

Z

1

A B

Z

1

+

2

Figure 22. DFG5 Figure 23. Data path for DFG5

A B d

C e

Y

Z

Figure 24. Register conflict graph with cost edges in gray

4.1 Standard Allocation and Binding
A simple method for allocation and binding creates

one node in the register conflict graph for each variable in

the DFG [Avra¬91]. Conflict edges are added to the

register conflict graph to indicate which variables cannot

be assigned to the same register. These edges are added

between any two nodes that represent variables that are

both being used at the same clock cycle boundary. The

resulting graph is colored and the variables bound to the

corresponding registers.

Fig. 17 shows a DFG before the allocation and

binding of registers. There are seven variables in the DFG

— A, B, C, d, e, Y and Z . The corresponding register

conflict graph is shown in Figure 18 with the nodes

colored.

This register allocation and binding method provides a

standard baseline with which to compare some alternate

methods.

4.2 Allocation and Binding with Migration
The basic register conflict graph from Section 4.1 can

be modified by creating additional nodes for delayed

variables or for variables with multiple targets [Avra¬91].

Delayed variables extend across more than one clock cycle

boundary and have one node in the register conflict graph

for each clock cycle in the variables lifetime. For

example, variable C in Fig. 17 has two nodes added to the

register conflict graph, shown in Fig. 19, one node, C1, for

the first clock cycle boundary and a second node, C2, for

the second clock cycle boundary. These two nodes are

treated independently when determining conflict edges to

be added. Originally, there were conflict edges between

node C and nodes A, B , d and e, now there are edges

between node C1 and nodes A and B and between node C2

and nodes d and e. This modification to the register

conflict graph allows variables to migrate between

registers over clock cycle boundaries.

Variables with multiple targets have one node in the

register conflict graph for each operation that uses the

variable. For example, variable e in Fig. 17 has two nodes,

e and e' added to the register conflict graph, shown in Fig.

20, since the variable is used by the addition operation and

the multiplication operation. Fig. 21 shows both of these

modifications combined for DFG4.

Both of these modifications create more paths

between registers in the data path, making the

determination of the orthogonal scan path much easier, but

also possibly adding to the number and size of the

multiplexers in the data path.

4.3 Allocation and Binding for Self-Adjacency
The third register allocation and binding method

attempts to make the determination of the orthogonal scan

path easier without adding the potential overhead of

variable migration.

The key observation is that self-adjacent registers are

beneficial for orthogonal scan paths, even though they may

not be advantageous for other techniques such as circular

BIST. A self-adjacent register is a register that is both an

input and an output of a functional unit. For example,

register 1 in Fig. 23 is a self-adjacent register since it is

both the input to the adder and the output of the adder.

The DFG shown in Fig. 22 corresponds to the data path in

Fig. 23, and the fact that register 1 is both the input and the

output of the addition operation indicates that register 1 is

a self-adjacent register. Register 2 is not self-adjacent

since it is used only as the input to the adder.

Self-adjacent registers reduce the number of distinct

registers associated with a specific functional unit. For

example, for a functional unit with two inputs and one

output, a self-adjacent register results in a functional unit

having only two distinct registers as inputs and outputs, as

opposed to having three distinct registers if none of them

are self-adjacent. With only two registers, an orthogonal

scan path, B¬⇒ ¬2¬⇒+ ¬1¬⇒ ¬Z , through the functional unit can

access both registers, as shown by the highlighted path in

Fig. 23. With three registers, only two can be included in

that portion of the orthogonal scan path and the other

register must be included in some other manner —

possibly requiring another configuration. Maximizing the

number of self-adjacent registers in a data path minimizes

the number of distinct registers associated with each

functional unit.

A register allocation and binding technique discussed

in [Avra¬91] can be used to add cost edges to the register

conflict graph. Cost edges are weighted edges that are

added between certain compatible nodes (nodes that do not

already have a conflict edge between them) in the register

conflict graph, and are used to guide the graph coloring

algorithm. A cost edge has a positive edge if it is not

advantageous to assign the same color to the adjacent

nodes and a negative edge if it is advantageous.

Cost edges with negative weights can be added

between nodes to indicate that the variables associated

with those nodes should be bound to the same register, if

possible, in order to make the register self-adjacent. For

example, again using DFG4 shown in Fig. 17, node A in

the register conflict graph would have a negative-weight

cost edge added between node d because if nodes A and d

are colored with the same color, the register bound to both

those variables will be a self-adjacent register. The

register conflict graph in Fig. 24 shows all conflict edges

(black edges) and cost edges (gray edges) for DFG4.

5 Implementation and Results
The Stanford CRC synthesis-for-test tool, TOPS, has

been modified to add orthogonal scan paths to data paths.

TOPS has been used to add orthogonal scan paths to five

benchmark circuit examples — three from the HLSW 92

benchmark circuits (diffeq, ellipf and gcd), one from the

HLSW 95 benchmark circuits (fft) and a circuit described

in [Tseng 86] (tseng). Table 1 shows the data path

characteristics of these circuits.

Table 1. Benchmark circuit characteristics

Circuit Data Path

Width

Registers # Functional Units

diffeq 32-bits 7 2 multipliers

1 adder

1 subtractor

1 comparator

ellipf 16-bits 11 4 adders

fft 32-bits 13 4 multipliers

2 adders

2 subtractors

1 divider

1 comparator

4 1024x32 RAMs

gcd 8-bits 2 1 adder/subtractor

1 comparator

tseng 32-bits 5 1 multiplier

3 adders

1 subtractor

1 AND

1 OR

The five benchmark circuits were each synthesized

using the three register allocation and binding techniques

described in Section 4, and then orthogonal scan paths

were added to the circuits. Table 2 summarizes the results.

The circuit size before the addition of the orthogonal scan

path, the area overhead due to modifying the control

signals and the functional units, and the total size of the

circuit with the orthogonal scan path are given. The sizes

do not include the control logic, other than the

modifications due to the orthogonal scan path, nor do they

include the routing.

All of the circuits synthesized with the standard

register allocation and binding technique can have

orthogonal scan paths inserted, but two of them (diffeq and

ellipf) require two configurations. Since all registers in

TOPS are synthesized with load enables, the additional

configurations do not add a lot of overhead, but two scan

mode signals are needed The other three circuits have

only one configuration.

When the circuits are synthesized allowing variable

migration, the circuits with orthogonal scan paths are

larger than the corresponding circuits synthesized with the

two other register allocation and binding techniques.

However, they also require the smallest overhead to make

the original, non-scanned, circuit orthogonal scannable.

Both of these factors are due to the same phenomenon —

the increase in the number of multiplexer inputs. By

allowing the variables to migrate between registers,

additional connections are made between the registers,

Table 2. Orthogonal scan overhead for circuits with various register allocation and binding algorithms

Circuit Register

Binding

Algorithm

Circuit

Size

(1000 λ2)

Control

Overhead

(1000 λ2)

Func Unit

Overhead

(1000 λ2)

Total

Overhead

(1000 λ2)

Total

Size

(1000 λ2)

Number

Test Pins

diffeq standard 13385 121 23 144 13529 2

migration 14452 40 26 66 14518 1

self-adjacent 13385 121 14 135 13520 1

ellipf standard 2611 60 47 107 2718 2

migration 4094 20 55 75 4169 1

self-adjacent 2500 81 29 110 2610 1

fft standard 129218 49 282 331 129549 1

migration 131913 57 0 57 131970 1

self-adjacent 129054 48 282 330 129384 1

gcd standard 359 11 11 22 381 1

migration 366 0 10 10 376 1

self-adjacent 327 11 8 19 346 1

tseng standard 8234 121 10 131 8365 1

migration 8628 40 18 58 8686 1

self-adjacent 8234 121 9 130 8364 1

Table 3. Circuit sizes in 1000 λ2

Circuit No

Scan

Trad

Scan

%

Ovhd

Orth

Scan

%

Ovhd

diffeq 13385 13668 2.1 13520 1.0

ellipf 2500 2722 8.9 2610 4.4

fft 129054 129580 0.4 129384 0.3

gcd 327 352 7.6 346 5.8

tseng 8234 8437 2.5 8364 1.6

connections that do not go through any functional units.

This increased connectivity results in very low overhead

orthogonal scan paths, but it also results in large

multiplexers that add a lot of area to the original, non-

scanned circuit.

The circuits synthesized to maximize the number of

self-adjacent registers have the smallest total size for all

five circuits. The original circuits are the same size, or

slightly smaller, as the circuits synthesized with the

standard register allocation and binding technique, but the

overhead needed to add the orthogonal scan path is much

less, resulting in a smaller overall size for the scannable

circuit. By guiding the register allocation and binding to

maximize the number of self-adjacent registers a much

better orthogonal scan path implementation is possible.

The rest of this paper uses these circuits, synthesized to

maximize the number of self-adjacent registers, to

compare orthogonal scan paths to traditional scan paths.

Table 3 compares the sizes of 1) the circuit without

scan, 2) the circuit with a traditional scan path and 3) the

circuit with an orthogonal scan path. Again, the sizes do

not include the control logic or interconnect. For the

technology used, the size of an AND gate is the same as

the difference in size of a scannable register and a non-

s c a n n a b l e r e g i s t e r . I n o t h e r w o r d s ,

AREAAND¬gate¬=¬AREAscan¬flip-flop¬–¬AREAflip-flop. The

circuits with the orthogonal scan paths are smaller than the

circuits with the traditional scan paths, with roughly half

the scan overhead.

The data path widths of the five benchmark circuits

can be changed without significantly affecting the results.

The number of logic gates added for orthogonal scan (or

multiplexers added for traditional scan) simply scales

accordingly.

As the results in Table 4 show, the test application

time for orthogonal scan paths is significantly reduced

from that of traditional scan paths. Orthogonal scan paths

are shorter because they make use of the buses in the data

path. For an n-bit data path, there are n duplicate scan

paths that differ only in bit position — they use exactly the

same registers and functional units in exactly the same

fashion. The orthogonal scan path is at least n times

shorter than the traditional scan path; possibly even shorter

if multiple orthogonal scan paths are used. Shortening the

scan path length increases the number of pins that are used

for scanning data in and out, but the total number of pins

Table 4. Scan characteristics of benchmark circuits

Circuit Scan # Test Pins Scan Overhead Scan Shifts

diffeq traditional 1 scan mode
2 scan in/out

225 multiplexers 225

orthogonal 1 scan mode 96 gates functional
11 gates control

4

ellipf traditional 1 scan mode
2 scan in/out

176 multiplexers 176

orthogonal 1 scan mode 64 gates functional
23 gates control

4

fft traditional 1 scan mode
2 scan in/out

417 multiplexers 417

orthogonal 1 scan mode 224 gates functional
38 gates control

13

gcd traditional 1 scan mode
2 scan in/out

20 multiplexers 20

orthogonal 1 scan mode 8 gates functional
6 gates control

2

tseng traditional 1 scan mode
2 scan in/out

161 multiplexers 161

orthogonal 1 scan mode 96 gates functional
7 gates control

3

does not increase since the orthogonal scan paths use

existing primary inputs and outputs to scan the data in and

out. Consequently, orthogonal scan paths do not increase

the number of channels necessary on the tester. However,

tester interfaces with multiple scan capable channels are

necessary, but the memory requirements for each channel

are significantly reduced.

6 Summary
Orthogonal scan paths follow the path of the data flow

and are orthogonal to the flow of normal scan paths.

Orthogonal scan paths result in scanned data paths that

have much less overhead than traditional scan paths. Less

logic must be added to get the scan functionality, the

number of additional test pins can be reduced, and little, or

no, extra interconnect, along with the associated load, is

added. The test application time is also drastically reduced

due to the short lengths of the orthogonal scan paths, and

orthogonal scan paths do not have the hold time problems

that traditional scan paths often have.

Knowledge of orthogonal scan paths can be used

during the data path synthesis to improve the final

orthogonal scan path. Modifications to the register

allocation and binding to maximize the number of self-

adjacent registers in the final data path can reduce the

overhead of the orthogonal scan path that is inserted into

the data path.

Acknowledgments
This work was supported in part by the Ballistic

Missile Defense Organization, Innovative Science and

Technology (BMDO/IST) Directorate and administered

through the Department of the Navy, Office of Naval

Research under Grant No. N00014-92-J-1782, by the

National Science Foundation under Grant No. MIP-

9107760, and by the Advanced Research Projects Agency

under prime contract No. DABT63-94-C-0045.

References
[Abadir 85] Abadir, M.S., et. al., “A Knowledge Based

System for Designing Testable VLSI Chips,” IEEE

Design & Test of Computers, Vol. 2, No. 4, pp. 56-68,

August 1985.

[Abramovici 90] Abramovici, M., et. al., Digital Systems

Testing and Testable Design, Computer Science Press,

New York, NY, 1990.

[Adham 95] Adham, S., et. al., “Arithmetic built-in self-

test for digital signal processing architectures,” Proc.

IEEE 1995 Custom Integrated Circuits, New York,

NY, pp. 659-662, May 1-4, 1995.

[Anirudhan 89] Anirudhan, P.N., et. al., “Symbolic Test

Generation for Hierarchically Modeled Digital

Systems,” Proc. Intl. Test Conf., Washington, DC, pp.

461-469, Aug. 29-31, 1989.

[Avra 91] Avra, L., “Allocation and Assignment in High-

Level Synthesis for Self-Testable Data Paths,” Proc.

Intl. Test Conf., Nashville, TN, pp. 463-472, Oct. 26-

30, 1991.

[Avra 92] Avra, L., “Orthogonal Built-In Self-Test,”

COMPCON Spring 1992 Dig. of Papers, San

Francisco, CA, pp. 452-457, February 24-28, 1992.

[Bhatia 94] Bhatia, S., et. al., “Behavioral Synthesis for

Hierarchical Testability of Controller/Data Path

Circuits with Conditional Branches,” Proc. IEEE Intl.

Conf. Computer Design, Cambridge, MA, pp. 91-96,

Oct. 10-12, 1994.

[Bhattacharya 96] Bhattacharya, S., et. al., “H-SCAN: A

High Level Alternative to Full-Scan Testing With

Reduced Area and Test Application Overheads,”

Proc. IEEE VLSI Test Symp., Princeton, NJ, pp. 74-

80, April 28-May 1, 1996.

[Chickermane 94] Chickermane, V., et. al., “Addressing

Design for Testability at the Architectural Level,”

IEEE Trans. Computer-Aided Design, Vol. 13, No. 7,

pp. 920-934, July 1994.

[Eichelberger 77] Eichelberger, E.B., et. al., “A Logic

Design Structure for LSI Testability,” 14th Design

Automation Conf., New Orleans, LA, pp. 462-467,

June 1977.

[LSI Logic 92] LSI Logic Corporation, Chip-Level Full

Scan Design Methodology Guide, Milpitas, CA, 1992.

[McCluskey 86] McCluskey, E.J., Logic Design

Principles, Prentice-Hall, Englewood Cliffs, NJ, 1986.

[McFarland 90] McFarland, M.C., et. al., “The High-Level

Synthesis of Digital Systems,” Proc. IEEE, Vol. 78,

No. 2, pp. 301-318, Feb. 1990.

[Norwood 96] Norwood, R., et. al., “Synthesis-for-Scan

and Scan Chain Ordering,” Proc. IEEE VLSI Test

Symp., Princeton, NJ, pp. 87-92, April 28-May 1,

1996.

[Tseng 86] Tseng, C.-J., et. al., “Automated Synthesis of

Data Paths in Digital Systems,” IEEE Trans.

Computer-Aided Design, Vol. CAD-5, No. 3, pp. 379-

395, July, 1986.

[Williams 83] Williams, T., et. al., “Design for Testability-

A Survey,” Proc. IEEE, Vol. 71, No. 1, pp. 98-112,

Jan. 1983.

