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ABSTRACT

This paper describes the design of the Cipherbase system. Ci-

pherbase is a full-fledged SQL database system that achieves high

performance and high data confidentiality by storing and process-

ing strongly encrypted data. The Cipherbase system incorporates

customized trusted hardware, extending Microsoft’s SQL Server

for efficient execution of queries using both secure hardware and

commodity servers. This paper presents the design of the Ci-

pherbase secure hardware and its implementation using FPGAs.

Furthermore, this paper shows how we addressed hardware / soft-

ware co-design in the Cipherbase system.

1. INTRODUCTION

1.1 Problem Statement
The goal of many organizations today is to push as much data

and computation into the cloud as possible. The cloud promises

several cost advantages; e.g., increasing the utilization of an IT in-

frastructure. Furthermore, cloud computing can reduce the time to

market for new data services and help organizations focus on their

core business by outsourcing mundane IT tasks.

One of the most important concerns in the adoption of cloud

computing is security; in particular, confidentiality. An organiza-

tion may trust a cloud provider to properly operate provisioned ser-

vices, but may not trust the employees of the cloud provider to keep

its data confidential. In a public cloud, organizations may not trust

co-tenants of shared cloud resources nor the isolation mechanisms

put forth by virtual machines and hypervisors. In fact, in some sce-

narios, an organization may not even trust its own employees who

operate a private cloud. As an example of a confidentiality breach,

recently database administrators of several Swiss banks sold cus-

tomer information to German and French tax authorities [23].

The goal of the Cipherbase project is to develop a novel cloud

computing platform that allows organizations to leverage the ad-

vantages of cloud computing and at the same time achieve data

confidentiality. The Cipherbase system provides the same features

as traditional database systems (e.g., support for full SQL, transac-
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tions, and recovery) with almost the same performance and scala-

bility characteristics, at little additional infrastructure cost. As will

be shown, Cipherbase is based on an architecture with secure co-

processors. In such an architecture, the goal is to decompose com-

putation between traditional (insecure) hardware and trusted hard-

ware.

In terms of confidentiality, the Cipherbase system supports vari-

ous levels of encryption (from no encryption to strong encryption)

and different end-to-end security settings so that the right level of

confidentiality can be selected for all data.

More concretely, Cipherbase has the following properties:

• Completeness: Cipherbase is a full-fledged (SQL) database

system. Thus, new applications can leverage the full richness

of SQL and legacy applications need not be rewritten.

• User-defined Confidentiality: Users can specify encryption and

end-to-end security for their data at a column granularity. Some

data requires strong confidentiality guarantees; for other data,

weaker guarantees suffice.

• Efficiency: Cipherbase executes queries and transactions effi-

ciently, while meeting the user’s confidentiality requirements

for all data.

We call this set of features orthogonal security because it allows

organizations to develop their applications and set their data secu-

rity goals relatively independently of any performance, scalability,

or cost considerations. Security comes at a cost and Cipherbase’s

performance degrades if all data requires strong confidentiality. So,

organizations should carefully specify the level of confidentiality

for data. For instance, public data such as country names should

be marked as public and highly confidential data such as customer

names should be marked as such. Cipherbase exploits these set-

tings by optimizing queries and transactions taking the encryption

and security of all data into account.

1.2 Design Space and Related Work
In general, there are three ways to build secure database sys-

tems:

• Encryption at Rest: Data is stored encrypted on a commodity

storage system (e.g., hard disks) and shipped to a trusted do-

main when it needs to be processed. In this trusted domain the

data is decrypted, processed, and possibly cached. The trusted

domain may be located on the same premises (or even within

the same box) as the (untrusted) storage system or remotely.

• Secure Servers: Data is stored and processed in the cloud on

specially designated secure nodes.

• Fully Homomorphic Encryption: The data is encrypted in such

a way that any operation (e.g., addition, multiplication, compar-

isons) can be performed directly on the data without decrypting



it. In this way, data can be processed using conventional un-

trusted servers. The encrypted results of a query from the un-

trusted system are shipped to the (trusted) client.

Encryption at Rest is the principle used in mainstream database

products such as Oracle and Microsoft SQL Server. Users (or

database administrators) can specify that certain data (tables or par-

titions) be stored encrypted (e.g., using AES) on disk. In these

systems, the disks are assumed to be untrusted while other system

components (main memory, CPU) are assumed to be trusted. Thus,

the data is decrypted in main memory to process queries and up-

dates. While these systems protect data against media theft or from

attackers with access to the storage system, they do not protect data

against attacks from administrators with super-user privileges. For

instance, these systems did not provide any protection for the Ger-

man and French customers of Swiss banks [23].

Dropbox [4] is an example of a remote Encryption at Rest sys-

tem. Dropbox keeps files encrypted at its servers and ships data to

client machines for processing. Secure databases that use the client

for query processing over encrypted data also belong to this cate-

gory [13]. Although this approach addresses the threat of adminis-

trator attacks, in a database context, shipping encrypted data (e.g.,

full tables) to off-cloud machines may be prohibitively expensive.

Secure Servers address the limitations of Encryption at Rest sys-

tems by offering special high-security processing nodes within the

cloud. Some implementations such as AWS GovCloud [10] are

built from commodity servers, but enhance their security by run-

ning specially vetted software stacks, highly restrictive security

policies, and isolating the machines, both in terms of network con-

nectivity and physical placement. However, this approach creates

several practical problems. For example, the physical and logical

isolation of these machines limits the types of applications that can

run and the clients that may connect. Furthermore, this approach

fragments the cloud. As a consequence, it increases the cost of

building and maintaining the facility and complicates key cloud

features such as seamless failover and dynamic scalability.

Other secure server arrangements employ devices such as IBM

secure coprocessors (SCPs) [16] or Hardware Security Modules

(HSMs) [15]. These devices are self-contained, forming a trusted

computing region that can be readily deployed as an expansion card

inside a commodity server. However, these devices have their own

drawbacks. For example, secure co-processors are heavily limited

in terms of memory and processing capabilities. This makes it

impractical to run an industrial-strength database system, such as

SQL Server, entirely in a secure co-processor. Similarly, HSMs are

highly application-specific devices, effectively locking a specific

application (perhaps even a specific instance of an application) to

a particular piece of hardware. This again fragments the cloud,

severely impacting adaptability and scalability.

Fully Homomorphic Encryption [6] can avoid the disadvantages

of Encryption at Rest and Secure Servers since it allows processing

of encrypted data in-situ on untrusted machines. Unfortunately, it is

well-known that the state-of-the-art in fully homomorphic encryp-

tion is prohibitively expensive and therefore not practical [2]. There

are many partially homomorphic encryption schemes that limit the

kinds of operations (e.g., support multiplication but not addition) or

the number of certain kinds of operations (e.g. at most N multipli-

cations). These are less expensive, but cannot be used to achieve the

completeness requirement of orthogonal security. CryptDB [19] is

a recent system that exploits partially homomorphic properties of

various encryption schemes to support a significant (but not full)

subset of database functionality. Also, CryptDB does not provide

orthogonal security since one cannot set a security policy indepen-

dent of the query workload.

All three pure approaches have completeness, security, or per-

formance limitations. TrustedDB [2] is an approach that combines

the Secure Servers and Encryption at Rest approaches. TrustedDB

has a novel architecture that combines an IBM secure co-processor

(SCP) and a commodity server. It runs a lightweight SQLite

database on the SCP and a more feature-rich MySQL database on

the commodity server; as mentioned earlier, it is not practical to run

an industrial strength database on an SCP. Query processing is dis-

tributed between two databases: Encrypted data is processed using

SQLite in the SCP and plaintext data is processed using MySQL

in the commodity server. This approach makes the best use of the

available building blocks (secure hardware, commodity hardware,

SQLite, MySQL).

Cipherbase adopts from TrustedDB the idea of combining

trusted hardware and commodity servers in a single box. However,

Cipherbase has a more sophisticated and fine-grained hardware-

software co-design: Operators that involve encrypted data are

executed on both the trusted (special-purpose) and untrusted (com-

modity) hardware. This thereby exploits plentiful commodity

cloud servers as much as possible and uses comparatively limited

trusted hardware as little as necessary. Another advantage of

Cipherbase over TrustedDB is that Cipherbase extends a single

industrial-strength database system (Microsoft SQL Server) to run

all queries. This way, Cipherbase provides rich query-processing

capabilities for all data; in contrast, TrustedDB can only provide

rich SQL features for public data that is not encrypted.

1.3 Contributions
Cipherbase combines all three approaches discussed earlier to

achieve orthogonal security. The key idea is to simulate fully

homomorphic encryption on top of non-homomorphic encryption

schemes (e.g., AES in CBC-mode) by integrating trusted hardware.

In particular, Cipherbase uses trusted hardware to implement a core

set of basic primitives to operate on encrypted data. An extended

SQL Server database ships data to trusted hardware, invoking func-

tionality within to implement query processing over encrypted data.

Further, limiting the footprint of the trusted hardware enables Ci-

pherbase to use inexpensive and secure dedicated circuits to imple-

ment trusted hardware functionality.

This paper reports on our most important design decisions, the

Cipherbase architecture, and initial experimental results. Specifi-

cally, we present:

• Cipherbase Architecture: A new architecture that tightly in-

tegrates custom-designed, trusted hardware and commodity

servers for a high performance and secure database system.

• Trusted Hardware: We discuss why it is advantageous to

custom-design trusted hardware for secure database systems

and give the design of our FPGA-based implementation.

• Extended Database System: We show how a commercial SQL

database system (Microsoft SQL Server) can be extended to

achieve orthogonal security. In particular, we show how queries

can be processed across conventional servers and trusted hard-

ware.

• Security Models: We identify a subtle dimension of data con-

fidentiality: runtime information leakage. We show that any

secure database system that ships data back and forth between

trusted and untrusted domains reveals information even if data

in the untrusted domain is strongly encrypted at all times. We

also present novel ways to implement query operators in order

to support different levels of runtime security.

The remainder of this paper is structured as follows: Section 2

describes the Cipherbase architecture. Section 3 defines the differ-
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Figure 1: Cipherbase Architecture

ent levels of confidentiality that can be achieved with Cipherbase.

Section 4 explains why we chose FPGAs to implement the trusted

hardware and how we can make FPGAs secure. Section 5 gives

details of how queries are executed across trusted and untrusted

hardware. Section 6 lists several optimization techniques. Section

7 contains conclusions and possible avenues for future research.

2. OVERVIEW
Figure 1 gives an overview of the Cipherbase system. Appli-

cations (or end users) at client machines issue SQL queries and

updates using, e.g., ODBC, embedded SQL, or a console just like

in any other database system. These SQL statements are handled

by the database driver at the client (e.g., an ODBC driver) and then

processed by the server; again, just like in any other database sys-

tem. Furthermore, Cipherbase has the same components as tradi-

tional database systems such as a storage manager (buffer pool, in-

dexes, etc.) that reads/writes data in blocks from/to disks, a transac-

tion manager (concurrency control, write-ahead logging, etc.), and

a query processor (optimizer, runtime system, etc.).

What makes Cipherbase special is that it extends the main com-

ponents of a database system; in particular, the ODBC driver at the

client and the query processor. Specifically, Cipherbase extends

all these components of Microsoft’s SQL Server database system.

Furthermore, Cipherbase integrates a special secure database pro-

cessor that implements a stack machine to evaluate expressions on

encrypted data.

The Cipherbase ODBC driver extends basic ODBC functionality

in the following ways: First, the ODBC driver persists a (128-bit

AES) key for each application. It uses this key to encrypt data,

constants and parameter settings of queries and updates. Further-

more, it uses this key to decrypt results from the server. This way,

encryption and security is transparent to the application with the

only noticeable exception that the application needs to declare se-

curity requirements for data through column-level settings (Section

3). Second, the Cipherbase ODBC driver performs query optimiza-

tion. Query optimization and statistics (e.g., histograms) needed for

query optimization reveal information about underlying data, so we

perform query optimization at the client, which is assumed to be

trusted. Finally, for presentation in our examples, we assume that

only data is stored encrypted and schema is in clear-text. In prac-

tice, the schema is also anonymized using opaque identifiers for

table and column names with the Cipherbase ODBC driver manag-

ing the mappings.

The ODBC driver is assumed to run in a trusted computing en-

vironment. In many cloud computing environments, application

servers also run in an (untrusted) public cloud. As part of future

work, we plan to explore extending the architectural principles un-

derlying Cipherbase to application servers to enable securely push-

ing even more functionality into the cloud.

To improve compilation performance, the Cipherbase ODBC

driver locally caches meta-data and statistics, but original meta-data

and statistics are stored encrypted in the server, respecting the con-

fidentiality requirements of the application. The Cipherbase ODBC

driver also supports caching and persistent storage of query plans,

just like many other database products.

On the server side, Cipherbase receives a plan from the client’s

ODBC driver, interprets it using iterators, applies updates, and re-

turns results to the client. The results are encrypted according to

the application’s confidentiality requirements. Even when data is

strongly encrypted, the bulk of the query and transaction processing

is carried out at the server using conventional main memory, pro-

cessor caches, and CPUs, denoted as UM (for Untrusted Machine)

in Figure 1. Furthermore, all data (including meta-data, statistics,

logs, etc.) are stored on conventional disks (e.g., hard drives or

flash). In Figure 1, conventional, untrusted hardware is denoted

with a white background.

In addition to the UM, Cipherbase integrates a secure co-

processor which is represented with a blue background and denoted

as TM (for Trusted Machine) in Figure 1. The TM is used as a sub-

module for core operations over encrypted data. The TM uses an

FPGA and is placed inside the UM, connected via a high-speed 8x

PCI Express bus. Since the bandwidth of the PCI Express bus is

lower than the bandwidth of the UM’s memory system, one of the

design goals of Cipherbase is to minimize data transfer between the

UM and the TM. In Cipherbase, the TM runs a stack machine that

evaluates expressions such as predicates of SQL WHERE clauses.

Other architectures that push more functionality into the TM are

conceivable, but we try to limit the computations carried out in the

TM. This is because it is comparatively more expensive to imple-

ment operations in the TM than on a commodity server. To provide

the best scalability, we would like push as much of the compu-

tational load as possible to commodity cloud servers (while still

observing the security policy). Cipherbase uses a stack machine

for expression evaluation because this is the internal processing ab-

straction used in the SQL Server product. (More details on the

evaluation of expressions are given in Section 5). Finally, the por-

tions of the query plan that are to be run in the TM are signed by the

client in order to prevent the adversary from issuing an instruction

stream that sends plaintext back to UM.

The interpretation of a query plan involves shipping (encrypted)

tuples from the UM to the TM and then decrypting, processing,

and re-encrypting these tuples in the TM, before shipping the (en-

crypted) results back from the TM to the UM. The query plan spec-

ifies when and which tuples are shipped to the TM and which func-

tions (i.e., stack code) the TM applies to the tuples. In order to

decrypt and re-encrypt tuples, the application-specific secret key

is known to the TM; it is not available and visible anywhere in the

UM. More precisely, each TM has its own secret key which is burnt

into hardware. Using this secret key, a TM stores the secret keys

of applications in an encrypted format on the disks of the UM. It

is important to note that just like the UM, the TM can have many

“cores” (i.e., many FPGAs) in order to exploit intra-query paral-

lelism for complex queries and/or inter-query parallelism for short

transactions.

There are many challenges to extend a complex system such as

SQL Server in order to implement orthogonal security using the ar-



chitecture shown in Figure 1. For instance, we had to devise new

protocols to establish new keys for new applications and to recover

such keys in case they are lost at client machines. Furthermore, we

are investing a great deal of engineering into extending the transac-

tion manager and the implementation of indexes and materialized

views. In this paper, however, we would like to highlight only a few

extensions that we felt were particularly critical. Section 3 defines

the security model and extensions to the SQL DDL that allow users

to annotate whether data is confidential or public. Section 4 ex-

plains why we choose to implement the TM using FPGAs and how

we make the TM secure. Section 5 shows how we extend the SQL

Server runtime system to run operators on encrypted data both in

the UM and TM. Section 6 explains how we extend the SQL Server

query optimizer to generate plans that decide which data to ship to

the TM, when to ship that data to the TM, and which functions to

execute on that data in the TM.

Before describing these aspects, a final note on the Cipherbase

architecture. This architecture makes use of all three design princi-

ples listed in the introduction. It uses the Encryption at Rest prin-

ciple to store data, meta-data, statistics, and application keys per-

sistently on disks in an encrypted form according to the confiden-

tiality needs of the application. It uses secure hardware to evaluate

expressions as part of the stack machine in the TM. Furthermore,

it simulates fully homomorphic encryption by executing functions

on encrypted data in the TM; that is, with the help of the TM, Ci-

pherbase can apply a function efficiently on strongly encrypted data

as if it were fully homomorphically encrypted. Whenever possible,

Cipherbase also makes use of homomorphic properties of an en-

cryption scheme. For instance, if the data is encrypted in an order-

preserving way [3] and if the security model allows to do so, then

the order-preserving encryption of the data is exploited to carry out

as much computation as possible on encrypted data in the untrusted

server. Likewise, a (partially) homomorphic encryption technique

may support additions on encrypted data but no multiplications;

again, Cipherbase will exploit this property for all queries that in-

volve only additions and process those in the UM.

3. DATA SECURITY
In this section, we introduce two dimensions of security identi-

fied in Cipherbase: static security and runtime security. We also

discuss their implications for the design of Cipherbase. We begin

by describing our adversary model.

3.1 Adversary Model
There is a variety of threats in migrating to the cloud. One im-

portant category is the threats to data confidentiality. Information

about sensitive data could get breached to cloud administrators who

manage the server or hackers who can gain the equivalent of root

access. Another category is threats to data integrity where an ad-

versary actively tries to tamper with the data: e.g. deleting or in-

serting records, and modifying query results. It is also possible for

an adversary to disrupt the database-as-a-service in other ways, e.g.

selective or total denial of service.

This paper focuses primarily on threats to data confidentiality. In

Cipherbase, this is accomplished primarily by restricting access to

keys and plaintext to the TM. We note that the adversary does not

need to have access to the key to tamper with the database. Integrity

protection can be added on top of Cipherbase by using techniques

from prior work [20, 24]. The main adversary we study is an eaves-

dropping cloud administrator. We assume an attack model where

the adversary has complete control of the UM’s software and hard-

ware through super-user privileges, and can monitor the contents

of disk, memory, the traffic between the UM and TM, the traffic
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Figure 2: Information Leakage Through Query Access Patterns

between the client and the server, and all operations in the UM. We

assume that the TM is secure and that the adversary does not have

access to the internal state within the TM. We believe that, when

properly built, the TM will only be vulnerable to physical attacks

to the silicon itself. Protecting the TM against physical attacks

is beyond the scope of this paper. However, there is a multitude

of potential protective measures that can be applied to the TM’s

hardware to mitigate attacks such as eavesdropping, side-channel

analysis or fault-based manipulation [21, 17]. We will discuss the

security of TM in more detail in Section 4.

3.2 Static Security
We use the term static security to refer to the security of data at

rest, i.e., when stored on disk. Currently, Cipherbase supports the

following column-level static security options: no encryption (for

public data), deterministic and/or order-preserving (weaker, par-

tially homomorphic encryption), and strong (using AES in CBC

mode). The information leaked by weaker encryption has been an-

alyzed in prior work. We note that information about a strongly

encrypted column can be revealed from the data at rest through its

relationship to other columns that are encrypted differently. We il-

lustrate through an example. Suppose that we have a table Emp

(Name, Age, Salary) of employee records where Salary is

sensitive, so it is strongly encrypted, and Name and Age are public

and not encrypted. Suppose that the adversary knows that older em-

ployees earn more on the average. Then the adversary gains some

information about the ordering of employee salaries even though

the Salary column is strongly encrypted. The above information

leakage is an inevitable consequence of the user-specified options

and therefore the only way to address it in Cipherbase is to encrypt

more columns.

3.3 Runtime Security
Data confidentiality overall depends not only on the security of

data at rest but also the information revealed during query process-

ing. One aspect of query processing that affects data confidentiality

is query encryption. As noted in Section 2, we encrypt only query

constants. The encryption of constants is the same as the static se-

curity option of the corresponding column, for example constants

corresponding to public columns are public. We now illustrate

another example of how information about encrypted columns is

leaked through their relationship to non-encrypted (or weakly en-

crypted) columns.

EXAMPLE 3.1. Consider an employee table Emp

(Name, Salary) where Salary is strongly encrypted and Name

is not. Suppose that we have a workload of queries shown in Fig-

ure 2 that essentially treat the Salary column as a blob; every
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query references the employee by name and updates its salary to

a new strongly encrypted value (we show queries instead of plans

for ease of exposition). Suppose that the adversary’s knows as part

of background knowledge that (1) salaries of contracted employ-

ees are generally larger than salaries of hourly-wage employees,

and (2) salaries of hourly-wage employees are updated more often

(since the number of hours can vary from week to week) than those

of full-time employees. By observing the frequency with which the

salaries of different employees are updated, the adversary learns

about the ordering of employee names by salary.

In Cipherbase, we treat the information leakage as illustrated above

also as an inevitable consequence of the user-defined static security

options.

We now turn to information leakage through computation on en-

crypted columns which is our main focus in developing protective

mechanisms. The most straightforward illustration of the above

leakage is the disk encryption technique discussed in Section 1

which is the state of the art data encryption technique in the in-

dustry. Here, data is decrypted when it is read from disk into the

buffer pool and the rest of the engine proceeds as usual. This tech-

nique is insecure against the adversary we are studying since the

data is kept encrypted only on disk; everything else including the

contents of main memory and the communication with the client is

in the clear. It is possible to improve significantly upon the above

technique by keeping the data encrypted across the stack — data

is kept encrypted in the buffer pool, query intermediate results are

encrypted and the final query results communicated to the client

are encrypted. Computations over encrypted data are performed by

using the TM. While encrypting data across the stack is sufficient

to protect the data from casual intrusions, it reveals information to

a sophisticated adversary who observes the access patterns of data

movement. We illustrate through examples.

EXAMPLE 3.2. We continue with the employee table, Emp

(Name, Salary) where Salary is sensitive, so it is strongly en-

crypted, and Name is public and not encrypted. Consider a query

that orders employees by salary. The execution plan on the left of

Figure 3 illustrates an execution plan for this query. Since the data

is encrypted both on disk and in memory, the TM is used to com-

pare records. An adversary who observes the sequence of events

during query execution can infer the ordering of employee names

by salary even though the Salary column is strongly encrypted,

both on disk and in memory.

Now we present a more subtle form of information leakage. Con-

sider the two concurrent transactions, T1 and T2, shown on the

right in Figure 3 (we show queries instead of plans for ease of ex-

position). T1 updates the salary of Alice, waits for 10 minutes,

and then commits (we note that relevant constants are encrypted

since the Salary column is encrypted). T2 starts after T1’s up-

date and attempts to update the salary of the highest paid employee.

If T2 is running in a read-committed isolation level, T1 blocks T2,

and an attacker has access to T1’s and T2’s execution plan, then

the attacker can infer that Alice is the highest paid employee.

3.4 Implications For System Design
Similar to static security, we develop more than one option for

the runtime. We first present the design of a system that: (1) has

user-defined confidentiality (and hence, orthogonal), and (2) sig-

nificantly improves upon TDE by encrypting data across the stack,

but at the same time does not hide access patterns, thereby per-

mitting information leakage of the form illustrated in Example 3.2.

We refer to the above setting as basic security. Basic security does

protect the data from casual intrusions and we believe that there

are many applications for which this setting is acceptable. We note

that engineering the DBMS to efficiently support the above setting

is challenging. We discuss the challenges and our design in Sec-

tion 5.

We also develop the mechanism of an oblivious operator that

hides access patterns and hence lets us control the leakage from

computations on encrypted columns. For example, we can pre-

vent the information leakage illustrated in the sort example using

an oblivious sort operator. We design oblivious implementations of

all relational operators. Section 5 presents oblivious operators and

discusses higher security settings that utilize them. While the no-

tion of an oblivious operator is a promising direction in helping in-

crease the security of the system, we note that higher security does

come at a potentially greater cost and restricts the functionality that

can be wholly supported in the server. In particular, we address the

information leakage through concurrent execution illustrated above

by incorporating client-side processing.

4. FPGA BASED TRUSTED MACHINE
This section describes: (1) the potential security and practical

benefits of reconfigurable hardware devices such as FPGAs for the

Trusted Machine (TM), (2) techniques to secure FPGAs, and (3)

our methodology for establishing a strong trusted compute resource

in the FPGA.

4.1 Platform Alternatives
There are multiple potential platforms that can be used to imple-

ment the TM. To be suited for an orthogonally secure system like

Cipherbase, such a platform should meet three requirements. First,

the platform must be secure. By design, some hardware platforms

are more difficult to attack than others. Second, the platform should

offer high performance, both in terms of computational speed and

communication bandwidth. This is because we would like to min-

imize the effect of shipping computations and data between the

TM and UM. Third, the platform should be programmable and

re-configurable. This allows us to support future releases of Ci-

pherbase with more powerful features and optimizations. The re-

mainder of this sub-section assesses four different hardware plat-

forms with regard to these three requirements. As mentioned in

the introduction, we chose FPGAs for Cipherbase because it best

meets these three requirements.

General-Purpose Processors (GPP): Although versatile, available

conventional processor-based systems such as a Single Board Com-

puter have two characteristics that make them fundamentally more

difficult to secure as compared to more specialized hardware plat-

forms. First, GPPs are built with a single, physically unified mem-

ory space for both program and data. Although this makes these

systems more adaptable when the intended use is not known a pri-

ori, this feature is also specifically exploited by attacks such as



buffer overruns and rootkits that can defeat or sidestep memory

protection mechanisms. Custom hardware solutions can be spe-

cialized to an application, completely separating the specification

of the computation and the data flowing through that computation.

A second issue with GPPs is that they are inherently sequen-

tial with centralized control. This means that even basic oper-

ations such as reliably handling system I/O while computing re-

quires multi-tasking. This feature implies an operating system and

a certain level of complexity to implement context switching and

time-slicing. Complexity does not necessarily lead to poor secu-

rity, but it increases the potential surface area for coding mistakes

and attack. Furthermore, time-multiplexing a single resource in-

troduces the possibility of undesired side-effects and the intermin-

gling of data. Custom hardware on the other hand, can be inher-

ently parallel. Although more specific to a given operation (e.g.

an I/O protocol), these circuits can be relatively simple, running

completely independently from one another. Any communication

between these circuits will be explicit and well-formed.

Secure Co-Processors (SCP): Secure co-processors have been used

in prior work (including TrustedDB [2]) in settings requiring secure

state and computation. SCPs can offer better security than general-

purpose processor systems because they offer a small amount of

secure non-volatile memory (e.g. to securely store keys within the

processor) and come pre-installed with a restricted OS [16]. That

said, some of the same characteristics discussed for GPPs can hold

true for SCPs.

More importantly for the purposes of Cipherbase, existing SCPs

are built for non-performance critical applications such as use in

cash machines. Thus, they are unsuitable for high-throughput sys-

tems such as Cipherbase. As a concrete example, TrustedDB [2]

reports AES decryption (a common operation in Cipherbase) rates

on the order of tens of MB/s. At the same time, dedicated hardware

implementations are easily capable of multiple GB/s [8].

Hardware Security Modules (HSM): Similar to the above platforms,

HSMs are also small, self-contained expansion cards. Unlike SCPs,

though, they typically use high-speed dedicated logic for compu-

tation rather than embedded processors. This dedicated logic ad-

dresses many of the performance issues. Furthermore, platforms

built from dedicated logic also have security advantages. For ex-

ample, processor-based systems traditionally operate with a pro-

gram counter that iterates though a program held in memory to

implement computation. This memory-based instruction execution

opens the door to attack since malware may be able to manipulate

the contents of this memory. Dedicated logic on the other hand is

typically built from individual hardware state machines, hardwired

to implement a computation. This makes modifying the execution

of dedicated logic fundamentally more difficult, particularly as we

are primarily concerned with network-based attacks in which the

adversary does not have the physical access to the device in order

to manipulate electrical connections.

At the same time though, existing HSMs are built as specialized,

essentially black-box appliances. Although this may be appropri-

ate for specific common operations such as generic encryption of-

fload, different workloads will generally require different HSMs.

This creates many practical issues. For example, the simple cost

of multiple different cards is a non-trivial barrier to entry. Also,

since cloud machines will generally have very few expansion slots,

any given server may be unable to support all necessary cards si-

multaneously. This limits the migration of applications between

machines, compromising cloud scaling and failover. Furthermore,

since server farms often operate lights-out, installing new cards

presents a logistical problem. This makes it difficult to support

future customer applications.

Field Programmable Gate Array (FPGA): FPGAs are readily avail-

able programmable hardware devices that can combine the flexibil-

ity of processor-based systems with the security and performance

of dedicated hardware. Like HSMs, we can implement the TM

as hardware state machines. At the same time, the logic itself is

built from volatile configuration memories and the binary that ac-

tually defines the computation is loaded at power-on from an exter-

nal non-volatile memory. This allow us to change the computation

quickly and easily.

4.2 Securing FPGAs
Since the behavior of an FPGA is dynamically defined by the bi-

nary that is loaded, the binary (also known as a bitstream) must be

protected from alteration, reverse-engineering or duplication. This

holds true for virtually all commercial applications, beyond spe-

cific security-oriented systems such as Cipherbase. Towards this

end, FPGA device manufacturers have developed binary protection

schemes. These techniques have been used for years and have be-

come industry standard.

Specifically, as shown in Figure 4, hardware developers can cre-

ate a unique AES key for each device and program this key into a

small non-volatile, externally write-only memory inside the FPGA.

This is performed after they receive it from the manufacturer but

before they ship the finished product to the customer. The hard-

ware developer then encrypts and signs the binary with this key

and a hash-based message authentication code (HMAC), creating a

bitstream unique to the specific device. The binary is then loaded

into a non-volatile memory external to the FPGA and the system is

deployed.

When the FPGA is powered on, the device will attempt to load a

binary from the external memory. The FPGA decrypts and authen-

ticates the binary using onboard dedicated decryption logic and the

previously programmed AES key. This key can only be read by

the decryption logic and is not accessible to any other circuitry,

internal or external to the FPGA. If the binary can be properly

decrypted and authenticated, the programming succeeds and the

FPGA is ready for use. If not, the device enters an error state and

will not function until provided with a valid bitstream. Since the

encryption key and the decrypted binary are held only within the

device, this process is generally considered to offer very high pro-

tection. Notice that since the binary is held encrypted and signed in

external memory, the hardware developer (or other authorized party

with access to the key) can easily distribute new binaries without

compromising security.

Also note that despite the programmability of the platform, like

conventional hardwired logic, FPGAs can maintain a strict separa-

tion between the “program” address space that defines the compu-

tation and the “data” address space that contains the values that are

computed upon. Discounting special programming ports that must

be explicitly instantiated in a binary that is loaded, the configura-

tion memory and the programming pins for the FPGA are disjoint

from normal I/O pins and the logic fabric itself. As Cipherbase

does not use such ports, this is beyond the scope of this paper and

we consider the two systems completely isolated from one another.

4.3 Building the TM
As shown in Figure 4, setting up the TM begins with a trusted

authority (TA). This is a third party that both potential clients and

the cloud operator trust. The TA generates and maintains the FPGA

binary encryption keys. They also vet and compile the hardware

code associated with the TM and create the encrypted and signed

binaries for each device. As mentioned earlier, the TM also needs
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a separate encryption key to perform database operations. In the

simplest scenario, the TA creates and embeds a “master key” into

the TM binary and distributes it to the database client. For example,

the client could use this master key to encrypt their data with AES.

The TM can then use its copy of the key to directly process data.

While technically functional, this simple arrangement has several

limitations. First, the client is locked into using a single key for

all database operations. The client may want to encrypt different

columns with different keys or they may have multiple databases.

Second, the TA will need to generate separate binaries, each loaded

onto the device independently for every set of potential database

clients.

A more sophisticated system instead uses this master key to al-

low clients to bootstrap their own keys. In this case, the TM would

embed an RSA public/private master key pair. The FPGA’s pub-

lic key is then published via standard public key infrastructure

techniques, allowing clients to uniquely identify a given FPGA.

Clients could then negotiate specific AES “session” keys for differ-

ent database fields or different database applications. These session

keys could be re-negotiated by the client before each transaction,

or they could be cached locally in the cloud in a “key vault”, main-

tained by the UM. In this case, the FPGA would encrypt each ses-

sion key with its master key (either the aforementioned RSA key

or another key defined by the TA) such that only it could recover

the contents of the key vault. When the UM receives a query for

a given database, the UM would transfer the encrypted session key

to the TM along with the encrypted data. Additional information

regarding the secure bootstrapping and operation of FPGAs can be

found in [5]. Beyond this, additional information regarding the use

of secure hardware can be found in [11].

5. QUERY EXECUTION RUNTIME
This section presents the Cipherbase runtime system. We start

by presenting in Section 5.1 our system design for basic secu-

rity. Higher security that hides access patterns is discussed in Sec-

tion 5.2.

5.1 Basic Security
As discussed in Section 3, basic security improves upon encryp-

tion at rest by keeping data encrypted through the DBMS stack,

while at the same time doing all processing in the server. The basic

idea is to use the TM to run computations on the data. Engineer-

ing an efficient infrastructure that supports basic security involves

two broad challenges. The first challenge is architectural — how is

the processing to be divided between the UM and TM? The second

inter-related challenge is performance. This section discusses each

of the above challenges. We finally discuss the security offered by

the basic system.

Plaintext Operation Primitive in TM

σA=5 Dec(A) =Dec(5)

πA+B Enc(Dec(A) + Dec(B))

⊲⊳hash
A=B

Hash(Dec(A)); Dec(A) =Dec(B)

AGG(SUM(B)) Enc(Dec(B) + Dec(partialsum))

INDEX OPERATIONS FINDPOS(Dec(k), 〈 Dec(k1), . . . , Dec(kn) 〉)

RANGELOCK Dec(v) ∈[Dec(l), Dec(h)]

Figure 5: Common plaintext operations and corresponding

primitives in TM to support the same operation in ciphertext

5.1.1 System Architecture

The UM and the TM constitute an asymmetric distributed sys-

tem: the TM is secure but since it is based on specialized hardware

is resource limited, while the UM is (potentially) insecure but pow-

erful. This asymmetry holds independent of whether we use FP-

GAs or other alternatives, and argues for a design that minimizes

the TM footprint.

One possibility is a loosely coupled architecture studied in prior

work in the TrustedDB system [2]. TrustedDB runs a full database

system SQLite in the TM for query processing over encrypted data

and another, MySQL, in the UM for query processing over plain-

text data. The loosely coupled approach uses limited computational

resources at the TM for functionality (e.g., disk spills in hash join)

that does not depend on encryption. If all columns are encrypted

all query processing in TrustedDB happens within the TM.

In contrast, Cipherbase adopts a tightly coupled design. We re-

visit each module of the database system and identify core primi-

tives that need to operate on encrypted data and factor these out to

be implemented in TM. The goal is to minimize the work that is to

be done in the TM. Interestingly, a small class of primitives involv-

ing encryption, decryption, and expression evaluation suffices to

support query processing, concurrency control, and other database

functionality.

Figure 5 lists, for a few typical operations, the primitives that are

invoked in the TM during the execution of the operation. Here, A

indicates the ciphertext of A and Enc, Dec, and Hash represent

encryption, decryption, and hashing, respectively. For example, we

use the following (single) primitive to implement indexing over en-

crypted columns: given an encrypted (index) key, find its position

in an array of encrypted (index) keys.

The Cipherbase server runs an extended database system (SQL

Server) with some components modified to make round-trips to the

TM for operations over encrypted data. The main advantage of this

design is that we are able to leverage the relatively powerful UM

for operations that do not depend on encryption, even when data is

strongly encrypted.

We illustrate through two examples. One is (B+-Tree) indexing.

The index is stored encrypted in the UM. An index lookup is bro-

ken down into index page searches. The index page search requires

access to clear-text and hence is performed in TM. Index lookup

invokes the FINDPOS primitive for each index page traversed to

identify the next page to visit. All other indexing logic including

concurrency control, recovery and also index update are performed

almost wholly in the UM (the solitary exception is checking range

predicates on index keys in order to perform key value range lock-

ing in order to address phantom reads). Similarly, the hash join

operator uses the TM for computing hashes and checking equality.

The rest of hash join logic—memory management, writing hash

buckets to disk, and reloading them—runs in the UM.

The second advantage is software engineering: by attaching

hooks to a small number of places in the SQL Server code and



routing data to the TM, we are able to get rich functionality of an

industrial strength database system. The third advantage, as dis-

cussed earlier, is that by keeping TM functionality simple, we are

able to leverage the power of FPGAs.

Design of the TM: While the set of primitives that we support in

the TM is small, involving encryption, decryption, and expression

evaluation in the TM, Cipherbase is a complete general-purpose

database system on strongly encrypted data; e.g., expressions in

a projection could be arbitrarily complex and involve a variety of

types. To be able to support these we design the TM as a stack ma-

chine that can be programmed to evaluate complex expressions. In

fact, we adopted this design from the (existing) SQL Server product

because this design is useful even in traditional database systems.

Figure 6 illustrates the stack machine instructions used to evaluate

the (parameterized) expression Dec($0) = Dec($1). The parame-

terization in this example also highlights the separation of program

and data. The program needed to evaluate instances of TM primi-

tives is derived at query compilation time; the runtime merely sup-

plies parameters to the program. In the FPGA, we directly imple-

ment in hardware each instruction supported by the stack machine.

The details include dedicated circuitry for encryption, decryption,

and basic data operations, and various parallelization optimizations

such as those in [18].

5.1.2 Optimizations

One efficiency challenge we face is to ensure that the TM is not

a bottleneck. Since the latency to the TM is large, one strategy for

meeting the above challenge is to batch requests to the TM. We ex-

plore both inter-query and intra-query batching. In an OLTP work-

load with multiple concurrent transactions, we could batch requests

from multiple transactions to the TM. In an OLAP workload where

large amounts of data are scanned, we explore intra-query batching

where, for example, every operator sends multiple records (typi-

cally with the same instructions) in a single round trip to the TM.

Another general strategy to improve performance is to exploit the

programmability and parallelism of the FPGA as studied in prior

work [18]. We note that the design of the TM as discussed above is

stateless. Extending the TM to be stateful opens up new optimiza-

tions — for instance, aggregation can be made faster by storing

partial aggregates in the TM. Saving state in the TM not only re-

duces round trips but also reduces the number of encryption and

decryption operations to be performed.

Another important set of optimizations is centered around the

physical design of the database in order to reduce the storage over-

heads of encrypted data. Consider the case where every fixed length

column (say 32 bits) is encrypted independently to a value that is

128 bits, this would lead to a storage overhead and a reduction of

scan bandwidth for these columns by a factor of 4. In order to im-

prove the effective bandwidth, we also consider optimizations to

“batch” data tuples before encryption. We study multi-row encryp-

tion techniques where multiple values in a column are concatenated

and then encrypted. While multi-row encryption would eliminate

the storage overhead, extending the DBMS stack to support multi-

row encryption is clearly challenging.

5.1.3 Security

We now briefly discuss the overall security implications of ba-

sic security for strongly encrypted columns. We can think of basic

security as follows. The DBMS uses various operations in order

to run queries — does a given record satisfy a given predicate, do

these two records join, do these records share the same value in

the grouping columns, etc. The TM is the oracle that answers the

above questions without revealing the clear-text. Therefore, the in-

Id Instruction

1 GetData $0

2 Decrypt

3 GetData $1

4 Decrypt

5 Compare

Figure 6: Stack Machine for Dec($0) =Dec($1)

formation revealed is the results of operations used during query

processing. A filter operator reveals identities of records satisfying

the filter predicate. A sort operator reveals the ordering of records

and a join operator reveals the join graph. If no operations are per-

formed on a column, no information is revealed (besides what is

inevitable, as discussed in Section 3). We note that concurrency

makes the information leakage no worse; for example, in Figure 3,

the execution of transaction T2 itself reveals the employee who has

the maximum salary. The security of our basic system is similar

to the security offered by CryptDB [19]. However, there are key

differences. Even when computation is performed on a column, we

only reveal information about the subset over which computation

happens. For instance, if a subset of a table is sorted, we only re-

veal the ordering for the subset; in contrast, CryptDB reveals the

ordering of the whole column. Second, we do not change the data

storage, whereas CryptDB changes the data on disk to use weaker

encryption and hence reveals information even to a weaker adver-

sary who only has access to the disk. Finally, we note that in terms

of functionality our basic system is complete whereas CryptDB is

not.

5.2 Higher Security
While we believe basic security is an acceptable level of data

confidentiality for a wide class of applications, as noted before it

does not hide access patterns. In this section, we first introduce our

key mechanism to hide data access patterns namely the notion of

an oblivious operator, and then discuss security settings that utilize

this mechanism.

5.2.1 Oblivious Operators

We define an implementation of a relational operator to be obliv-

ious if it reveals nothing about the data other than its input and

output sizes, thereby hiding access patterns. We can adapt previous

work [9] to design oblivious implementations of some relational

operators such as sort and filter. An oblivious sort for example

performs the same set of comparisons independent of the input col-

lection to be sorted, hence hiding access patterns, and can be per-

formed with the same external memory complexity as a standard

sort [9]. It is possible to design an oblivious filter using oblivious

sort as follows. In the first pass over the data, we tag every record

with an encrypted boolean flag indicating whether the record sat-

isfied the filter. We then perform an oblivious sort by the boolean

flag and return the prefix of records satisfying the predicate. We

can show that the above algorithm yields an oblivious filter.

In Cipherbase, we have developed oblivious implementations of

all scan-based relational operators including joins, anti-joins and

grouping-aggregation [1]. We illustrate an oblivious implementa-

tion of the groupby-aggregation operator for the special case of a

single grouping attribute and COUNT(*) aggregate (our algorithm

can be generalized to handle more general grouping and all stan-

dard aggregation functions.) Traditional sort-based grouping and

aggregation with the sort step replaced with an oblivious sort step

is not oblivious since it reveals the size of each group. Our imple-



Algorithm 1 Grouping and COUNT(*) aggregation of R =
r1, . . . , rn with a single grouping attribute A.

1: procedure OBLIVIOUSGROUPAGGR(R,A)
2: Rsort ← oblivious sort of R on A
3: curA← null
4: curCount ← 0
5: Gi ← φ ⊲ Output with dummy records
6: for all r in Rsort do

7: if r[A] = curA then

8: curCount ← curCount + 1
9: Append 〈dummy〉 to Gi

10: else

11: Append 〈curA, curCount〉 to Gi
12: curA← r[A]
13: curCount ← 0
14: end if

15: endfor

16: Output Gi with 〈dummy〉 removed (oblivious filter)
17: end procedure

mentation is a slight modification and is shown in Algorithm 1. We

begin by obliviously sorting input stream R on grouping attribute A

(Step 2). As in traditional aggregation, we scan the sorted stream

and compute the counts of each group. The traditional aggrega-

tion produces one output tuple per group after the last input tuple

belonging to the group has been processed (Step 11). Our modifi-

cation is to produce dummy output tuples for the other input tuples

of a group as well (Step 9). An oblivious filter is used to remove

dummy tuples and get the final output (Step 16). The oblivious-

ness of the operator follows since the input output pattern of the

operator is independent of the contents of R, and the overall time

and data complexity is the same as traditional sort-based group by

aggregation. Similarly, our oblivious implementations of other re-

lational operators also have almost the same data complexity as the

traditional counterparts. The impact on the instructions supported

by the TM is modest. For example, in order to implement oblivious

sorting, the TM needs to be able to sort a block of records.

Finally, we note that the problem of oblivious indexing reduces

to previously proposed oblivious RAM technology [7] that leads to

a loss of spatial and temporal locality of reference and hence has

potentially serious performance ramifications. We are investigat-

ing ways of making oblivious indexing practical along the lines of

recent work [22].

5.2.2 Security Settings

We now explore security settings that utilize the mechanism of

oblivious operators. By running a query with oblivious operators,

we obtain an execution plan where the only information that may be

leaked is aggregate statistics such as the intermediate result sizes.

We therefore investigate a security setting corresponding to the

above execution strategy. The meaning of the setting at a column-

level is that the query evaluation can only reveal result sizes for all

sub-expressions involving the column.

Another interesting security setting is where we are required to

leak no information about a column, in addition to the inevitable

leakage that happens from the static security setting as discussed in

Section 3. While the above setting is essentially equivalent in secu-

rity terms to treating the column as a blob on which no computation

is performed, we can support an interesting class of queries wholly

in the server by combining oblivious operators so long as the out-

put sizes are determined either by the schema (which we assume

to be known for the purposes of analyzing information leakage for-

mally) or by the execution plan of the query. For example, consider

the sort example in Figure 3. The output size of sorting is the same

as the input size and hence reveals no additional information about

the data. In general, we can support a larger class of queries at this

setting including foreign-key joins, grouping, sorting and top-k.

Finally, we note that the both of the above higher security set-

tings restrict the functionality that is wholly supported in the server.

In particular, we address updates of the form shown in Figure 3 cur-

rently by incorporating client-side processing.

6. QUERY COMPILER
The Cipherbase query compiler extends the SQL Server query

compiler. Just like the SQL Server (and most other compilers),

it is composed of three main phases: (a) parsing, (b) (cost-based)

optimization, and (c) code generation. Cipherbase extends all three

phases; in particular, it uses the extensibility of the Cascades frame-

work on which the SQL server optimizer is based [12]. What makes

the Cipherbase compiler different are the following requirements:

• Secure optimization and statistics: As shown in Figure 1, the

ODBC driver at client machines carries out query compila-

tion and query optimization because this process can leak in-

formation such as statistics about the distribution of values in

the database. A number of engineering challenges arise to ef-

fect such client-side query compilation. One issue is that the

API of the server needs to be extended to run a plan shipped

from the client instead of a query. Another issue is the main-

tenance of database statistics to be used as part of the cost

model. Cipherbase stores statistics persistently at the server

in an encrypted form and caches them in client machines in

clear text. Furthermore, client machines generate statistics

based on samples.

• Enforcing security: In Cipherbase, not every query plan is le-

gal. Query plans that leak more information than allowed by

the user-defined options are not legal and must be precluded

even if they are feasible and return correct results. The Ci-

pherbase optimizer, therefore, must be security-aware. We

achieve this goal by providing additional plan annotations

that keep track of the encryption of each column generated

by the results of a plan and extending the enumeration rules

to respect the client’s requirements.

• Optimizations: In a system like Cipherbase, several op-

timizations are useful that are not useful in a traditional

database system. Examples are specific join methods and re-

orderings that try to avoid multiple trips back and forth from

the TM. To effect these optimizations, we choose to model

the Cipherbase server as a distributed system with two nodes,

the UM and the TM. This modeling does not reflect reality

because the execution of most query operators involves both

the UM and TM in a collaborative way. This abstraction,

however, helps to reason about all the new optimizations and

extend the SQL Server cost model for Cipherbase.

To get a feeling for the extensions implemented in Cipherbase, the

remainder of this section describes the Cipherbase plans and some

of the Cipherbase-specific optimization techniques.

6.1 Canonical Plan
The first step in implementing the Cipherbase compiler is to

come up with a new canonical query plan that is generated by the

Cipherbase SQL parser. Figure 7 shows an example canonical plan

for a three-way join query with a group-by. The canonical query

plan of Figure 7 specifies that all operators are executed in the TM

and it explicitly models the movement of tuples from the UM to

the TM using decrypt operators and back from the TM to the UM
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Figure 7: Canonical Plan

using encrypt operators. The canonical plan is secure because it

works even for a database that is strongly encrypted and for a TM

with limited main memory. However, it may not be the optimal

plan because it relies heavily on operations in the expensive TM.

So such a canonical plan is only the starting point for further opti-

mizations.

6.2 Example Optimizations
There are a number of optimization techniques that make sense

for Cipherbase and that typically do not make sense in a traditional

relational database system. We list a few below.

• Traditional: Traditional optimizations such as join ordering and

different join methods are just as useful in Cipherbase as in a

traditional database system.

• Move to UM: If data is public or encrypted in a partially homo-

morphic way that matches the operation (e.g., order-preserving

encryption), then the operation can be executed wholly by UM.

• Exploiting Security Annotations: The optimizer uses the secu-

rity annotation to make decisions such as encryption of any in-

termediate results as well as the choice of physical operators.

• Merge: If there is sufficient memory available in the TM, then

two operators can be executed in the TM without shipping tu-

ples back and forth from the TM to the UM.

• Semi-joins: Since memory is a scarce resource in the TM, it

is often better to project out only the relevant columns for an

operation to the TM and/or to even apply semi-join programs,

just as in a distributed database system.

• Predicate Migration: Executing predicates on encrypted data is

expensive. So, all work on optimization of queries with expen-

sive predicates or UDFs is applicable [14].

It is often the combination of applying these optimizations that

give the biggest performance boosts. Furthermore, all these opti-

mizations and the generation of security-aware plans can impact

the join order. In a traditional database, for instance, it might be

best to choose the following join order for a three-way join query:

(A ✶ B) ✶ C. If A ✶ C can be carried out entirely in the UM

(because the join attributes are public) and the join with B involves

the TM (because B’s join attribute is private), then Cipherbase may

choose the following join order: (A ✶ C) ✶ B. Since SQL Server

already enumerates all join orders, we do not have to extend join-

ordering logic for Cipherbase: We only have to extend the cost

model that costs out the different options to enable the Cipherbase

optimizer to find the best join order and apply the best combination

of optimizations.

7. CONCLUSIONS
In this paper, we presented an overview of Cipherbase which is a

complete SQL database system that allows organizations to lever-

age the advantages of cloud computing and at the same time main-

tain the confidentiality of sensitive data. It achieves orthogonal-

ity (the system provides full functionality independent of the cho-

sen security policy) with a tightly coupled hardware / software co-

design that integrates FPGAs as trusted hardware into Microsoft’s

SQL Server database system. This paper described the architecture

of Cipherbase and some of the most important design considera-

tions. Cipherbase is still under active research and development at

Microsoft Research.
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