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Metal oxide sensors are the most o�en used in electronic nose devices because of their high sensitivity, long lifetime, and low cost.
However, these sensors su	er from a lack of response stability making the electronic nose systems useless in industrial applications.
�e sensor instabilities are particularly caused by incomplete recovery process producing gradual dri�s in the sensor responses.
�is paper focuses on a signal processing method combining baseline manipulation and orthogonal signal correction technique in
order to reduce e	ectively the dri� impact from the sensor outputs.�e proposed signal processing is explored using experimental
data obtained from a gas sensor array responding to various concentrations of pine essential oil vapors. Partial Least Squaremethod
is then applied on the corrected dataset to establish a regression model for the estimation of gas concentration. In this work, we
show essentially how our dri� correction approach can help to improve signi
cantly the stability of the regression model, while
ensuring good accuracy.

1. Introduction

Gardner de
nes the electronic nose (E-nose) as “an instru-
ment, which comprises an array of electronic chemical
sensors with partial speci
city and an appropriate pattern-
recognition system, capable of recognizing simple or complex
odors” [1].�emetal oxide sensors (MOX) are the most used
in this instrument because they are very sensitive to many
gases, are commercially available, have a long lifetime, and
have low cost [2]. However, these sensors show a lack of
reproducibility (or instability) which limits the translation
of laboratory results to industrial applications [3]. Insta-
bility of sensor responses can be due to several problems.
(1) Dri�s: sensor response signals always tend to show a
small variation even if the E-nose is exposed to same gas
and concentration under constant environmental conditions.
Many reasons can explain this variation: (i) sensor aging due
to thermomechanical fatigue a�er successive gas expositions
[4] and (ii) sensor poisoning because of the exposure to
high concentration or to an aggressive chemical or silicone
vapors [5]. (2) Environmental disturbances: the humidity
variation and temperature or pressure uctuations change

also the sensor responses [6]. (3) Sampling condition: the
mechanism of MOX technology, which is the exchange of
oxygenmolecules between gasmixture andmetal 
lm,makes
the acquisition cycles very long, since in many applications
the steady-state responses of sensors are never reached [7].

A lot of correction methods have been investigated
to improve sensor response stabilities; they are based on
di	erent approaches: univariate or multivariate methods. In
univariate technique the correction is applied on each sensor
individually. Among these methods the baseline manipula-
tion, largely used in industry [8], consists of transforming a
sensor response with use of the initial response value. �ree
kinds of transformation can be made to correct the baseline
of sensor signals: di	erential, relative, and fractional correc-
tions. Generally baseline manipulation is used as preprocess-
ing of the sensor output [9]. Filtering techniques like Fourier
bandpass 
lter, moving median 
lter, or discrete wavelet
transform have been also utilized by many researchers in
this 
eld to remove dri� e	ects from measurements [10,
11]. Among the above-mentioned methods, discrete wavelet
transform is more exible because it can analyze the signal at
di	erent frequency bands with di	erent resolutions.
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Figure 1: (a) Schematic representation of the experimental set-up and (b) typical temporal response of a MOX gas sensor during exposition
and regeneration phases.

In case of E-nose measurements, since the dri� e	ects
are correlated, the multivariate methods allow capturing
more information from all the sensors permitting modeling
more complex or nonlinear dri� e	ects [12]. In the literature
around the E-nose research di	erent multivariate methods
can be found. For example, adaptive neural networkmethods
like Self-Organizing Maps [13] show good performances; but
they are limited to gas classi
cation applications and in case
of gas quanti
cation it would be hard to obtain good results
[14].

When gas sensors are exposed to the same gas under the
same sampling and environmental conditions, any changes
in the sensor response are related essentially to dri�. In order
to reduce the variance of this dri� that follows one direction,
the multivariate linear correction methods based on partial
least square PLS or Principal Component Analysis, PCA,
constitute the best approach [6, 15, 16]. Among thesemethods
orthogonal signal correction (OSC) has been chosen because
di	erent studies have proven that this method is the most
e�cient [16–18].

�e orthogonal signal correction (OSC) was proposed

rstly by Wold for NIR spectra correction [19], and then sev-
eral algorithms were published to improve its performance.
�e main idea of OSC technique is focused on removing the
variance that is not correlated to the variable to estimate.

In this study, we combine baseline manipulation with
OSC technique in order to remove the dri� e	ects on aMOX
sensor array. �en PLS is used to model the behavior of our
gas sensors responding to di	erent concentrations of pine
essential oil vapors (EO) diluted in pure air.�e combination
of this correction approach gives a good quanti
cation of
essential oil vapors by using only a few components of PLS
in the modeling.

2. Materials and Methods

�e data used in this work are obtained from a home-made
experimental equipment mainly composed of a gas sensor
cell and an EO vapor di	user (Figure 1). �e sensor cell
contains seven metal oxide gas sensors (TGS882, TGS2620,

SP31, SPAQ1, MQ3, and MQ138 produced by Figaro, FIS,
and Hanowei companies) and the di	user unit uses an air
bubbling system in liquid EO. So, the concentration of the
EO in pure air is controlled by the ow rates of twomass ow
controllers, MFC1 and MFC2. �e total ow rate (MFC1 +
MFC2) through the sensor cell is maintained constant, which
also allows generating di	erent EO concentrations by varying
the percentage of the MFC1 ow rate over the total ow rate.
�e sensors cell and liquid EO bottle are placed in Plexiglas
chamber to keep the sensors in constant climatic conditions
[20].

2.1. Measurement Protocol. According to our previous study
[20], we performed series of measurements on di	erent
EO concentrations. Each measurement comprises an EO
exposure phase followed by a sensor cleaning phase through
dry synthetic air. �e response type of MOX sensors during
this measurement cycle is presented in Figure 1(b): the sensor
conductance increases during the gas exposition and then
decreases during the cleaning process through its previous
baseline. Gas exposition time is 
xed at 75 seconds to provide
a quanti
able response of the sensors, and cleaning time is
set to 350 s to permit an acceptable recovery of the sensor
sensitive element. For the learning measurements, we have
created nine constant concentrations in the range of 0.5% to
4.5%, producing pleasant odor for aromatherapy, with a step
of 0.5%.

Sensor outputs are digitalized, 
ltered, and then recorded
every second in terms of sensor conductance values. We have
opted to express the sensor response in conductance rather
than resistance because this parameter is more e�cient when
gas concentrations identi
cation with n-type semiconductor
metal oxide sensors is demanded [1].

Forty measurements have been realized for each of the
nine EO concentrations randomly selected throughout the
experiments. Each sensor output is characterized by 425
recorded points (75 points during gas exposition, 350 points
at recovery process). Data are arranged on a dataset formed
from 2975 columns {425 data ∗ 7 sensors} and 360 rows
{40 measurements ∗ 9 concentrations}.
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Figure 2: Temporal responses at 1 to 4% EO concentrations for each of the seven gas sensors (TGS880, TGS822, TGS2620, MQ3, MQ138,
SP31, and SPAQ1).

2.2. Instability of the Measurements. To illustrate the insta-
bility of the temporal responses, we have grouped on the
same axis the signals for 1, 2, 3, and 4% EO concentration of
each sensor (Figure 2). We can easily reach the conclusion
of an important disparity of the sensor responses obtained
for the same EO concentration and the same conditions.�is
instability can be explained by the sensor dri�which ismainly
due to incomplete recovery process. In Figure 3, we have
reported the temporal responses of TGS2620 sensor during
several successive measurements at di	erent concentrations.
In this 
gure, the observation of the di	erent baselines
(sensor conductance at the beginning of a measurement)
shows that the baseline value depends highly on the gas
concentration used in the previous measurement. As shown
in Figure 3, starting a measurement at 3% EO, the sensor
baseline is 26�S when following a measurement at 2% and
35 �S if the previous experiment was at 4% EO. Moreover,
Figure 3 highlights that this dri� alters not only the baseline
but also the sensitivity of the sensors.
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Figure 3: Illustration of the TGS2620 gas sensor instability in
terms of its initial conductance during successive measurements by
varying the EO concentrations.
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�is elementary comparison con
rms the none�ciency
of the sensor recovery process causing noticeable dri�s. In
fact, these dri�s will be greater in case of real-time and
continuous measurement with an E-nose.

3. Drift Correction and Calibration

We have grouped all the sensor responses �(�) in a dataset
which is represented bymatrix of 396 rows and 2975 columns,
where rows correspond to the observations and columns
to the corrected temporal response of sensors. Concentra-
tions of the various experiments are grouped in vector �
(396).

3.1. Dri	 Correction. �e reliability of E-nose results depends
strongly on how the sensor outputs are treated particularly to
minimize noises and dri� a	ects (shown in previous section).
So, the signal processing has a key role in E-nose performance
and many studies were already done on this subject.

3.1.1. BaselineManipulation. Baselinemanipulations are very
o�en cited in literature to remove the dri� e	ects on sensor
responses [9, 10]. Usually, baseline corrections are based on
the initial response of a sensor. In this work, we have opted
for sensor conductance (��nal) obtained at the end of the
precedent cleaning process [21] and fractional correction on
temporal response �(�), as shown in

�� (�) =
� (�) − ��nal
��nal

. (1)

�is manipulation is made for temporal signals of each
sensor. We observe only a very light amelioration con-
cerning the disparity of the sensor responses obtained at
same measurement condition and gas; so the concentration
discrimination is still not conceivable (feasible).

For further development of the dri� correction, the
dataset named � containing corrected data a�er baseline
manipulation is used.

3.1.2. Orthogonal Signal Correction (OSC). Prior to applying
the regression modeling, we followed the baseline manipu-
lation of OSC technique to reduce more e�ciently the dri�
e	ects from the sensor signals. We show that the use of
this correction technique improves the calibration processes
making it reliable and stable.

�e main objective of the OSC technique is to remove
the variance which is not correlated to the variation of
concentration�.�is procedure is done by the suppression of
nonrelevant information of gas response inmatrix�. So, only
information orthogonal to � is removed, and this condition
will guarantee that the information useful for the calibration
is largely saved.

�e algorithm for OSC [19] is based on the following
steps:

(i) Use Principal Component Analysis (PCA) to decom-
pose� into scores �.

(ii) Orthogonalize the 
rst score �1 (
rst component
containing maximum of information) to � in order
to obtain new score �� as follows:

�� = (1 − � (���)
−1 �) �1, (2)

where �� is the transpose of �.
(iii) Calculate weight vectors � as follows: � = �−1��

using PLS.

(iv) Calculate the new score �, � = ��.
(v) Compute the loading vector , � = ���/(���).
(vi) �e new corrected matrix�corr is given by

�corr = � − ��. (3)

In order to test the bene
ts of the OSC technique, the new
dataset (�corr) composed of 396 observations is divided into
“training set” which contains 75% of observations and the
“test set” (25% of observations). Both of these datasets cover
the concentration range.

For each gas sensor, applying OSC technique makes
the responses at the same EO concentrations more similar.
Figure 4 shows the temporal responses of the test set a�er
OSC treatment for the 1, 2, 3, and 4% EO concentrations.
Comparing Figures 2 and 4, we can observe that the
dispersion of temporal responses at same concentration is
signi
cantly attenuated. Figure 4 also highlights how it could
be easier to discriminate the di	erent EO concentrations a�er
temporal signal correction with OSC.

For better perception of the OSC impact on gas quan-
ti
cation, we have plotted in Figure 5 PCA scores of all our
data before and a�er the correctionwithOSC technique. PCA
plot of the dataset (before OSC) con
rms the impossibility
of concentration discrimination, but we can clearly observe
on Figure 5(b) the improvement brought by OSC correction
which permits a successful separation of all the EO concen-
trations, even with a very small step (0.5%).

3.2. Calibration. As the predictors in our dataset are highly
correlated and their number is very large (number of
columns) by comparison with the number of observations
(number of lines), the use ofmultiple linear regression (MLR)
model is not suitable because of the existing multicollinearity
[19]. To deal with the multicollinearity problem, regression
model should be performed on independent variables. So,
we have utilized the partial least square (PLS) analysis to

nd independent components that can explain as much as
possible the covariance between� and �. �ese components
can be used for regression modeling and guaranteed a good
prediction [22]. However regressionmethods can su	er from
the over
tting or the under
tting: if we take a large number
of components, the model shows poor performance for the
recognition of new data, and the use of a small number of
components may not be su�cient to reach a good precision.
�en, the number of components should be optimized.

We have performed the calibration of our E-nose by using
PLS regression as recognition method. In this aim, dataset
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Figure 4: Temporal responses at 1 to 4% EO concentrations a�er using OSC technique for each of the seven gas sensors (TGS880, TGS822,
TGS2620, MQ3, MQ138, SP31, and SPAQ1).
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Table 1: CV values of regression coe�cient and TOTAL RMSE along with number of OSC + PLS components.

CV
Number of variables

1 2 3 4 5 6 7

�0 0,0430 0,0476 0,0470 0,0474 0,0474 0,0470 2,5036

�1 0,0020 0,0135 0,0208 0,0231 0,0299 0,0352 2,5372

�2 0,0015 0,0051 0,0141 0,0124 0,0060 0,0072 −2,5057
�3 0,0019 0,0113 0,0105 0,0110 0,0099 0,0093 2,6227

�4 0,0022 0,0096 0,0316 0,2056 −0,1426 −0,1391 2,4622

�5 0,0015 0,0198 0,0248 0,0242 0,0179 0,0139 −2,5424
�6 0,0026 0,0096 0,0127 0,0144 0,0379 0,0394 −2,4941
�7 0,0020 0,0051 0,0122 0,0228 0,0572 0,0348 −2,5388
TOTAL RMSE 0,2454 0,2449 0,2447 0,2446 0,2446 0,2446 0,494

Table 2: CV values of regression coe�cient and TOTAL RMSE along with number of PLS components.

CV
Number of variables

1 2 3 4 5 6 7

�0 −0,0176 0,0674 0,1342 0,0479 0,1913 0,0839 0,0573

�1 0,0030 0,2424 0,3032 0,0754 0,0282 0,01317 0,0130

�2 0,0023 0,0614 0,0403 0,02821 0,1543 −0,4366 −0,3317
�3 0,0028 0,0456 0,4243 −0,2263 0,0503 0,04381 0,0316

�4 0,0026 −0,8605 2,1887 0,1037 9,1080 0,0993 0,0740

�5 0,0019 −0,0188 −0,0463 −0,02986 −0,0257 −0,01194 −0,0111
�6 0,0033 −0,1652 −0,3465 0,06188 0,3475 −0,1358 −0,0810
�7 0,0024 −0,0341 −0,2107 −0,0621 −0,0203 −0,0167 −0,0133
TOTAL RMSE 0,4442 0,3725 0,3569 0,30796 0,2522 0,24428 0,2433
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Figure 6: Plot of RMSE versus number of PLS or OSC + PLS
components.

is divided into 12 segments with 33 observations each: one
segment is used as data test to evaluate the performance of
the calibration model when the other segments (11 segments)
are used as learning data. To obtain a valuable indicator based
on cross validation, this operation is performed 12 times,
and successively the data test is changed. So, each of the
396 observations becomes a predicted one. �e RMSE was
calculated by averaging the twelve RMSEs.

In Figure 6 we illustrate the value of the RMSEs versus
of number of components in the case of performing PLS on

raw data or performing PLS on OSC corrected data. We can
observe that both PLS and PLS + OSC give a good accuracy
but PLS uses 18 components to reach RMSE = 0.1% while

OSC + PLS needs only one component.

3.2.1. Feature Selection. To investigate the stability of the
pattern, we compare between the variability of regression
coe�cients obtained by PLS or OSC + PLS. Each sensor
output is characterized by 425 points; hence the number of
regression coe�cient is (425 ∗ 7 + 1) making the comparison
extremely challenging. To reduce this dimensionality we
decide to use the average of the 425 points of a sensor signal as
characteristic feature [23]. So we only have (7 + 1) coe�cients
to compare.

3.2.2. Stability Test. �e coe�cient of variation (CV) is
calculated for all the regression coe�cients in the two cases
(PLS analysis or OSC + PLS analysis) for seven cycles. In the

rst cycle we started to build a model using one component
and we added one more component in each cycle until we
used all of them (7 components) in the 
nal cycle. Dataset
was divided on 12 subsets, so in one cycle we have calculated
12 times the regression coe�cients and the RMSE. At the
end of each cycle, CVs are calculated as the ratio of the
standard deviation over the mean value of each coe�cient
and TOTAL RMSE as the average of twelve RMSE. �ese
results are presented in Tables 1 and 2.
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As we can see, in the case of OSC + PLS the CVs of the
regression coe�cient are approximately 10 times lower than
those obtained in the case of applying only PLS. Moreover,
to obtain the best result for TOTAL RMSE, we need 1
component if applying OSC and 7 components without OSC.

Consequently, we have chosen the model with one com-
ponent for OSC + PLS and the model with 7 components
for PLS because they give the best results, and also because
they have approximatively the same RMSE allowing us to
compare the stability of regression coe�cients independently.
�is statement is con
rmed in Figure 7 which shows the
distribution Boxplot of the regression coe�cients using PLS
and OSC + PLS. Distribution boxes are very narrow in
the case of using OSC + PLS, highlighting a very poor
disturbance.

For better comparison of regression coe�cients stability
we have plotted on the same 
gure the absolute value of CV;
Figure 8 shows that the CV of regression coe�cients of OSC
+ PLS model is ten times less than those of PLS model.

4. Conclusion

�e main challenge in E-nose 
eld is based on sensor
signal processing, particularly to correct the gas sensor dri�
a	ects. As a 
rst step, a fractional baseline correction is
suggested by the use of a reference value corresponding to
the sensor conductance taken at the end of the cleaning
phase (��nal). A�erwards, PLS regression was combined with
orthogonal signal correction to improve regressionmodeling
performances for gas quanti
cation. In this paper, the pro-
posed signal processing is performed on a dataset obtained
from experiments carried out on various dilutions of pine
EO vapors in dry synthetic air. �e Principal Component
Analysis of the dataset shows clearly how signal treatment
with OSC technique is essential for the EO concentration
discrimination. Regarding the performances of the regressing

PLS with 7 components

／３＃ + ０，３ with 1 component

100

10−1

10−2

10−3

|＃
６
|

A0 A1 A2 A3 A4 A5 A6 A7

Figure 8: Magnitude of CV for the regression coe�cients of OSC +
PLS and PLS model.

model, the two methods PLS and OSC + PLS were compared
in terms of stability and accuracy. Each of the two methods
gives high accuracy, but PLS without OSC needs more
variables to reach the same performance as OSC + PLS.
We have investigated the stability of the regression model
by comparing the variability of regression coe�cients of
these two methods. Our results show incontestably that for
the same accuracy OSC + PLS model has high robustness
comparing with PLS model.
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