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Orthogonal wavelets with compact

support on locally compact abelian groups

Yu. A. Farkov

Abstract. We extend and improve the results of W. Lang (1998) on the wavelet
analysis on the Cantor dyadic group C. Our construction is realized on a locally
compact abelian group G which is defined for an integer p� 2 and coincides with C
when p = 2. For any integers p, n � 2 we determine a function ϕ in L2(G) which
1) is the sum of a lacunary series by generalized Walsh functions,

2) has orthonormal “integer” shifts in L2(G),
3) satisfies “the scaling equation” with pn numerical coefficients,
4) has compact support whose Haar measure is proportional to pn,

5) generates a multiresolution analysis in L2(G).
Orthogonal wavelets ψ with compact supports on G are defined by such func-

tions ϕ. The family of these functions ϕ is in many respects analogous to the
well-known family of Daubechies’ scaling functions. We give a method for estimat-
ing the moduli of continuity of the functions ϕ, which leads to sharp estimates for
small p and n. We also show that the notion of adapted multiresolution analysis
recently suggested by Sendov is applicable in this situation.

§ 1. Introduction
Multiresolution analysis in L2-spaces on locally compact abelian groups is one

of the fundamental concepts of wavelet theory (see, for example, [1], [2]) and can
be defined in the following way.
Let G be a locally compact abelian group and let L2(G) be the corresponding

Lebesgue space (see [3]). Suppose that H is a discrete subgroup of G such that the
quotient groupG/H is compact. Let A be an automorphism of G such that A(H) is
a proper subgroup of H. A collection of closed subspaces Vj ⊂ L2(G), j ∈ Z,
is called a multiresolution analysis in L2(G) associated with H and A if it satisfies
the following conditions:
(i) Vj ⊂ Vj+1 for j ∈ Z,
(ii)
⋃
Vj = L

2(G) and
⋂
Vj = {0},

(iii) f( · ) ∈ Vj ⇐⇒ f(A · ) ∈ Vj+1 for j ∈ Z,
(iv) f( · ) ∈ V0 =⇒ f( · − h) ∈ V0 for h ∈ H,
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(v) there is a function ϕ ∈ L2(G) such that the system {ϕ( · − h) | h ∈ H} is an
orthonormal basis of V0.
The function ϕ in condition (v) is called a scaling function in L2(G).
By conditions (iii) and (v), the system {ϕ(A · −h) | h ∈ H} is an orthonormal

basis of V1. Since ϕ ∈ V0 ⊂ V1, we have an expansion

ϕ(x) =
∑
h∈H
c(h)ϕ(Ax − h).

A function ψ is called an orthogonal wavelet in L2(G) if the system of functions
{ψ(Aj · −h) | j ∈ Z, h ∈ H} is an orthogonal basis of L2(G). If the quotient
group H/A(H) consists of two cosets (that is, the index of the subgroup A(H)
in H is 2), then the coefficients {c(h)} determine coefficients {d(h)} such that the
formula

ψ(x) =
∑
h∈H
d(h)ϕ(Ax− h)

defines an orthogonal wavelet in L2(G). If cardH/A(H) = i > 2 and φ is a given
scaling function, then one can define wavelets ψ1, . . . , ψi−1 in such a way that the
system of functions

{ψl(Aj · −h) | 1 � l � i− 1, j ∈ Z, h ∈ H}

is an orthogonal bases of L2(G).
Classical wavelet analysis on the line corresponds to the case when G = R, H = Z

and Ax = 2x for x ∈ R (see, for example, [1]). If G = Rd, then the subgroup H is a
lattice in Rd and the automorphism A can be given by a non-singular d× d-matrix
(see [1], § 10.3, and [4]–[6]). For some groups G different from Rd, multiresolution
analysis was studied in [7]–[11]. In particular, the group analogues of the B-spline
wavelet bases in L2(R) are defined in [7] and [8]. The book [12] describes structural
features of locally compact abelian groups G for which there exist subgroups H and
automorphisms A with the properties mentioned above (A(H) ⊂ H, A(H) �= H,
H is discrete and the quotient group G/H is compact).
In this paper we construct a set of scaling functions on a group G which is

determined by an integer p � 2 and consists of all sequences of the form

x = (xj) = (. . . , 0, 0, xk, xk+1, xk+2, . . .),

where xj ∈ {0, 1, . . . , p − 1} for j ∈ Z and xj = 0 for j < k = k(x). The group
operation on G is denoted by ⊕ and is defined as termwise addition modulo p:

(zj) = (xj)⊕ (yj) ⇐⇒ zj = xj + yj (mod p) for j ∈ Z.

A topology onG is introduced via the following complete system of neighbourhoods
of zero:

Ul = {(xj) ∈ G | xj = 0 for j � l}, l ∈ Z.
The inverse operation of ⊕ is denoted by �. (We have x�x = θ, where θ is the zero
sequence.) It is clear that each neighbourhood Ul is a subgroup of G, Ul+1 ⊂ Ul
for l ∈ Z, and

⋂
Ul = {θ}.
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Put U = U0. When p = 2, the subgroup U is isomorphic to the Cantor dyadic
group, which is the topological Cartesian product of countably many cyclic groups
of order 2 with the discrete topology. It is well known that U is a perfect nowhere-
dense totally disconnected metrizable space and, therefore, U is homeomorphic to
the Cantor ternary set (see [13], Russian p. 138). Some authors identify the Cantor
dyadic group with the whole group G when p = 2 (see, for example, [10]).
Elements of harmonic analysis on the group G and some of their applications

to problems in coding and digital signal processing are given in [14] and [15]. See
also [16], Chpts. 14, 15 for applications of the Cantor dyadic group to the theory
of Fourier series.
We define the Lebesgue spaces Lq(G), 1 � q � ∞, with respect to the Haar

measure µ on Borel subsets of G normalized by µ(U) = 1 (see, for example, [3]).
We denote the inner product and the norm in L2(G) by ( · , · ) and ‖ · ‖ respectively.
The group dual to G is denoted by G∗ and consists of all sequences of the form

ω = (ωj) = (. . . , 0, 0, ωk, ωk+1, ωk+2, . . .),

where ωj ∈ {0, 1, . . . , p− 1} for j ∈ Z and ωj = 0 for j < k = k(ω). We introduce
the operations of addition and subtraction, the neighbourhoods {U∗l } of zero
and the Haar measure µ∗ for G∗ as above for G. The value of a character ω ∈ G∗
on an element x ∈ G is given by

χ(x, ω) = exp

(
2πi

p

∞∑
j=1

xjω1−j

)
,

and the Fourier transform of a function f ∈ L1(G) is defined by

f̂(ω) =

∫
G

f(x)χ(x, ω) dµ(x).

(See [3], Ch. 8 for basic properties of the Fourier transform on L2(G).) By the
Plancherel formula,

(f, g) = (f̂ , ĝ), f, g ∈ L2(G).

Take a discrete subgroup H = {(xj) ∈ G | xj = 0, j > 0} of G and define an
automorphism A ∈ AutG by (Ax)j = xj+1. It is easily seen that the quotient group
H/A(H) contains p elements and the annihilator H⊥ of the subgroup H consists
of all sequences (ωj) ∈ G∗ which satisfy ωj = 0 for j > 0.
For any function ϕ ∈ L2(G), we set

ϕj,h(x) = p
j/2ϕ(Ajx� h), j ∈ Z, h ∈ H,

Vj = closL2(G)span{ϕj,h | h ∈ H}, j ∈ Z. (1.1)

If the system {ϕ( · −h) | h ∈ H} is orthonormal and the family of subspaces (1.1)
is a multiresolution analysis in L2(G), then ϕ is a scaling function. Moreover,
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the system {ϕj,h | h ∈ H} is an orthonormal basis of Vj for every j ∈ Z, and
the standard method (see, for example, [4], [8]) enables us to define wavelets
ψ1, . . . , ψp−1 such that the system of functions

ψl,j,h(x) = p
j/2ψl(A

jx� h), 1 � l � p− 1, j ∈ Z, h ∈ H,

is an orthonormal basis of L2(G). When p = 2, only one wavelet ψ is obtained
and the system {2j/2ψ(Aj · �h) | j ∈ Z, h ∈ H} is an orthonormal basis of L2(G)
(see [10], § 3).
Let R+ = [0,+∞). We define a map λ : G→ R+ by

λ(x) =
∑
j∈Z
xjp

−j, x = (xj) ∈ G.

Note that λ takes the subgroup U onto the interval [0, 1] and defines an isomorphism
of the measure spaces (G, µ) and (R+, ν), where ν is the Lebesgue measure on R+
(compare [16], Ch. 14, Exercise 14.16). The image of H under λ is the set of
non-negative integers: λ(H) = Z+. For every α ∈ N, let h[α] and h−[α] denote the
elements of G such that

λ(h[α]) = λ(h
−
[α]) = α,

where the terms of the sequence h[α] (resp. h
−
[α]) are eventually equal to 0 (resp.

to p− 1). We also set h[α] = θ for α = 0. Hence h[α] ∈ H for all α ∈ Z+. For G∗,
we define the map λ∗ : G∗ → R+, the automorphism B ∈ AutG∗, the subgroup U∗
and the elements ω[α], ω

−
[α] of H

⊥ simlarly to λ, A, U and h[α], h
−
[α] respectively.

We note that

χ(Ax, ω) = χ(x, Bω), x ∈ G, ω ∈ G∗.

The generalized Walsh functions {Wα} for the group G can be defined by

Wα(x) = χ(x, ω[α]), α ∈ Z+, x ∈ G.

(The family {Wα} is sometimes called the Price system, see [14], Russian p. 30.)
These functions are continuous on G and satisfy the orthogonality relations

∫
U

Wα(x)Wβ(x) dµ(x) = δα,β α, β ∈ Z+,

where δα,β is the Kronecker delta. It is also known that the system {Wα} is complete
in L2(U). The corresponding system for the group G∗ is defined by

W ∗α(ω) = χ(h[α], ω), α ∈ Z+, ω ∈ G∗.

The system {W ∗α} is an orthonormal basis of L2(U∗).
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For s ∈ Z+ put
U∗n,s = B

−n(ω[s]) ⊕B−n(U∗),

so that λ∗(U∗n,s) = [sp
−n, (s+ 1)p−n]. The sets U∗n,s, 0 � s � pn − 1, are cosets of

the subgroup B−n(U∗) in the group U∗.
In this paper, given any p, n ∈ N with p � 2, we define coefficients aα such that

the functional equation

ϕ(x) = p

pn−1∑
α=0

aαϕ(Ax� h[α]) (1.2)

has a solution ϕ ∈ L2(G) with the following properties:
1) the system {ϕ( · � h) | h ∈ H} is orthonormal in L2(G),
2) suppϕ ⊂ U1−n,
3) ϕ generates a multiresolution analysis in L2(G) by (1.1).
For example, if n = 1, then all aα = 1/p, and a solution of (1.2) is the Haar

function ϕ = 1U (where 1E is the characteristic function of a subset E ⊂ G). In the
general case, ϕ is given by a generalized Walsh series expansion and the coefficients
aα are found from a system of linear algebraic equations using the discrete Vilenkin–
Chrestenson transform. The author [17] reported on an analogous construction of
scaling functions in the L2-space on the positive half-line R+.
To formulate a theorem, we introduce some notation. Let N0(p, n) be the set of

all positive integers m � pn−1 whose p-ary expansion

m =
k∑
j=0

µjp
j, µj ∈ {0, 1, . . . , p− 1}, µk �= 0, k = k(m) ∈ Z+ (1.3)

contains no n-tuple (µj, µj+1, . . . , µj+n−1) coinciding with any of the n-tuples

(0, 0, . . . , 0, 1), (0, 0, . . . , 0, 2), . . ., (0, 0, . . ., 0, p− 1).

Put N(p, n) = {1, 2, . . . , pn−1− 1}
⋃
N0(p, n). In particular, we have

N(2, 2) = {2j+1 − 1 | j ∈ Z+} = {1, 3, 7, 15, 31, . . .},

N(p, 2) =

{ k∑
j=0

mjp
j | mj ∈ {1, 2, . . . , p− 1}, k ∈ Z+

}
, p � 3.

For every m ∈ N(p, n), 1 � m � pn − 1, we choose a (real or complex) number bm
in such a way that the following conditions hold for all j ∈ {1, 2, . . ., pn−1 − 1}:

bj �= 0 and |bj|2 + |bpn−1+j |2 + |b2pn−1+j|2 + · · ·+ |b(p−1)pn−1+j|2 = 1. (1.4)

In particular, when p = n = 2 we obtain only one equality: |b1|2 + |b3|2 = 1, and
when p = 3, n = 2 we have

|b1|2 + |b4|2 + |b7|2 = |b2|2 + |b5|2 + |b8|2 = 1.
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The conditions (1.4) will be used to prove the orthonormality of the system
{ϕ( · � h) | h ∈ H} in the theorem below. (In connection with the inequality
bj �= 0, see Remark 1.1 and (3.4).)
Furthermore, for m ∈ N(p, n) and 1 � m � pn − 1, we set

γ(i1, i2, . . . , in) = bm if m = i1p
0+ i2p

1+ · · ·+ inpn−1, ij ∈ {0, 1, . . . , p−1}.

Then we represent every m ∈ N(p, n) by the p-ary expansion (1.3) and define
the coefficients {c(m)} by

c(m) = γ(µ0, 0, 0, . . . , 0, 0) if k(m) = 0;
c(m) = γ(µ1, 0, 0, . . ., 0, 0)γ(µ0, µ1, 0, . . . , 0, 0) if k(m) = 1;
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c(m) = γ(µk , 0, 0, . . . , 0, 0)γ(µk−1, µk, 0, . . . , 0, 0) . . .γ(µ0, µ1, µ2, . . . , µn−2, µn−1)

if k = k(m) � n − 1. Note that the subscripts of each factor (from the second
onwards) in the last product are obtained by “shifting” the subscripts of the pre-
vious factor one position to the right and filling the vacant first position with
a new digit from the p-ary expansion (1.3) of the number m. (Hence the factor
γ(µk−l−1, µk−l, . . . , µk−1, µk, 0 . . . , 0) follows γ(µk−l, µk−l+1, . . . , µk, 0, 0 . . . , 0).)
For s ∈ {0, 1, . . ., pn − 1} put

d(n)s =



1 if s = 0,

bs if s = j + lp
n−1, 1 � j � pn−1 − 1, 0 � l � p− 1,

0 if s = pn − lpn−1, 1 � l � p− 1.
(1.5)

Theorem. Let ϕ be given by the expansion

ϕ(x) = p1−n1U (A
1−nx)

(
1 +

∑
m∈N(p,n)

c(m)Wm(A
1−nx)

)
, x ∈ G, (1.6)

and let coefficients aα be defined by

aα =
1

pn

pn−1∑
s=0

d(n)s W
∗
α(B

−nω[s]), 0 � α � pn − 1. (1.7)

Then
(a) the function ϕ satisfies (1.2),
(b) the system {ϕ( · � h) | h ∈ H} is orthonormal in L2(G),
(c) the family {Vj} given by (1.1) is a multiresolution analysis in L2(G).

Remark 1.1. In terms of the Fourier transform, (1.2) may be rewritten as

ϕ̂(ω) =m0(B
−1ω) ϕ̂(B−1ω), (1.8)

where

m0(ω) =

pn−1∑
α=0

aαW ∗α(ω).
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Using the discrete Vilenkin–Chrestenson transform (see, for example, [18]), we
obtain that the coefficients aα defined by (1.7) satisfy the system of equations

pn−1∑
α=0

aαW ∗α(B
−nω[s]) = d

(n)
s , 0 � s � pn − 1,

and, conversely, (1.7) follows from this system. Since the polynomial m0(ω) is
constant on U∗n,s, equations (1.7) are equivalent to

m0(ω) = d
(n)
s for ω ∈ U∗n,s, 0 � s � pn − 1. (1.9)

Since d
(n)
0 = 1, we see from (1.8) that

ϕ̂(ω) =
∞∏
j=1

m0(B
−jω),

where, for each ω ∈ G∗, all but finitely many of the factors are equal to 1. Thus ϕ̂
is continuous on G∗. Since

pn−1−1⋃
s=0

U∗n,s = B
−1(U∗),

we obtain from (1.4), (1.5) and (1.9) that

m0(B
−1ω) �= 0, ω ∈ U∗.

Moreover, (1.6) implies that suppϕ ⊂ U1−n.

Remark 1.2. The generalized Walsh functions {wm} on the positive half-line R+
are defined by

w0(t) ≡ 1, wm(t) =
k∏
j=0

(r(pjt))µj , m ∈ N, t ∈ R+.

Here the µj are taken from the p-ary expansion (1.3) of m, and the function r is
defined on [0, 1) by

r(t) =

{
1 if t ∈ [0, 1/p),
exp(2πil) if t ∈ [lp−1, (l+ 1)p−1), l = 1, 2, . . . , p− 1,

and is extended to R+ by putting r(t+ 1) = r(t) for all t ∈ R+. Orthogonal series
by the systems {Wm} and {wm} are studied simultaneously (see, for example, [14]
and [15]) if one replaces the Fourier transform in L2(G) by the Walsh–Fourier
transform (for p = 2) or by the corresponding multiplicative transform in L2(R+)
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(for p > 2), see [14], Russian p. 127. Therefore, along with scaling functions ϕ of
type (1.6), it is natural to study their analogues Φ on R+. These are defined by

Φ(t) = p1−n1[0,1)(p
1−nt)

(
1 +

∑
m∈N(p,n)

c(m)wm(p
1−nt)

)
, t ∈ R+,

where N(p, n) and c(m) are the same as in (1.6). Every such function Φ satisfies
an equation of the type

Φ(t) = p

pn−1∑
α=0

aαΦ(pt �p α), t ∈ R+,

and generates a multiresolution analysis in the L2-space on (R+,⊕p). (We denote
by ⊕p and �p the operations of “addition” and “subtraction” modulo p defined by
the p-ary expansions of elements of R+, see [14], [15].)

Remark 1.3. Using the equality

pn−1−1∑
m=0

χ(y,m) =

{
pn−1 if y ∈ Un−1,
0 if y ∈ U \Un−1,

we easily verify that (1.6) determines the function ϕ = 1U1−n if b1 = b2 = · · · =
bpn−1−1 = 1. Hence the theorem also holds for n = 1 (the Haar case) if we put
N(p, 1) = ∅.

Example 1.4. If we take p = n = 2 and put b1 = a, b3 = b, then (1.6) takes the
form

ϕ(x) =
1

2
1U (A

−1x)

(
1 + a

∞∑
j=0

bjW2j+1−1(A
−1x)

)
, x ∈ G, (1.10)

where a �= 0, |a|2+ |b|2 = 1. In this case, the coefficients of (1.2) are defined by

a0 =
1 + a+ b

4
, a1 =

1 + a− b
4

, a2 =
1− a− b
4

, a3 =
1− a+ b
4

.

The formula (1.10) was found by Lang (see [10]).

Example 1.5. For p = 2 and n = 3, the conditions (1.4) take the form

|b1|2 + |b5|2 = |b2|2 + |b6|2 = |b3|2 + |b7|2 = 1.
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Putting b1 = a, b2 = b, b3 = c, b5 = α, b6 = β and b7 = γ, we see from (1.7) that

a0 =
1

8
(1 + a+ b+ c+ α+ β + γ),

a1 =
1

8
(1 + a+ b+ c− α− β − γ),

a2 =
1

8
(1 + a− b− c+ α− β − γ),

a3 =
1

8
(1 + a− b− c− α+ β + γ),

a4 =
1

8
(1− a+ b− c− α+ β − γ),

a5 =
1

8
(1− a+ b− c+ α− β + γ),

a6 =
1

8
(1− a− b+ c− α− β + γ),

a7 =
1

8
(1− a− b+ c+ α+ β − γ).

Moreover, we have

γ(1, 0, 0) = a, γ(0, 1, 0) = b, γ(1, 1, 0) = c,

γ(1, 0, 1) = α, γ(0, 1, 1) = β, γ(1, 1, 1) = γ

and
c(m) = γ(µk, 0, 0)γ(µk−1, µk, 0) . . .γ(µ0, µ1, µ2),

where

m =
k∑
i=0

µi2
i, µk �= 0, µi ∈ {0, 1}.

Observing that

N(2, 3) = {1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 21, 22, 23, 26, 27, 29, 30, 31, 42, . . .},

and defining y = A−2x, we see from (1.6) that

ϕ(x) =
1

4
1U (y)

(
1 +

∑
m∈N(2,3)

c(m)Wm(y)

)

=
1

4
1U (y)

(
1 + aW1(y) + abW2(y) + acW3(y) + abαW5(y)

+ acβW6(y) + acγW7(y) + ab
2αW10(y) + abcαW11(y)

+ acαβW13(y) + acβγW14(y) + acγ
2W15(y) + ab

2α2W21(y)

+ abcαβW22(y) + abαβγW23(y) + abcαβW26(y)

+ ac2αβW27(y) + acαβγW29(y) + acβγ
2W30(y) + . . .

)
. (1.11)
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Remark 1.6. The expansion (1.11) was found in [10] in the following cases:
1) a = 1, b = 0, |c| < 1 (and α = 0, β = 1, |γ| < 1);
2) |a| < 1, b = 1, c = 0 (and |α| < 1, β = 0, γ = 1).
Besides these two cases, the formula (1.6) was known only for p=n=2 (Exam-

ple 1.4). The above (easily computerizable) rules for calculating the coefficients aα,
c(m) and the elements of the set N(p, n) are new. We recommend using (1.7) and
the fast Vilenkin–Chrestenson transform (see, for example, [18], § 4) to compute
the aα.
In § 2 we prove the theorem stated above. In § 3 we show that the construction of

an adapted multiresolution analysis suggested in [19] may be modified to solve the
problem on the “optimal” sampling of the parameters bm for the approximation of
a “signal” f by its projections to subspaces of L2(G). Finally, in § 4 we discuss the
smoothness of the scaling functions constructed above. For example, if p = n = 2,
then the smoothness of ϕ is characterized by the sequence

Ωj(ϕ) := sup{|ϕ(x)− ϕ(y)| | x, y ∈ U−1, x� y ∈ Uj}, j ∈ N.

In particular, we shall establish the following estimate (which is sharp) for functions
ϕ given by (1.10): Ωj(ϕ) � C2−µj with µ = log2(1/|b|) (compare [1], Russian
page 319 and [10], p. 541).

§ 2. Proof of the theorem
Let l ∈ {0, 1, . . . , p−1}. We denote by δl the sequence ω = (ωj) such that ω1 = l

and ωj = 0 for j �= 1 (in particular, δ0 = θ). It is easily seen that

{ω ∈ H∗ | χ(x, ω) = 1, x ∈ A(H)} = {δ0, δ1, . . . , δp−1}. (2.1)

Hence the set {δl} is the annihilator of the subgroup A(H) in H.

Lemma 2.1. Let

m0(ω) =

pn−1∑
α=0

aαW ∗α(ω) (2.2)

be a polynomial satisfying the following conditions:
(a) m0(θ) = 1,

(b) m0(B
−1ω) �= 0 for ω ∈ U∗,

(c)
∑p−1
l=0 |m0(B−nω[s] ⊕ δl)|2 = 1 for s ∈ {0, 1, . . ., pn−1 − 1}.

Then the function

g(ω) =
∞∏
j=1

m0(B
−jω) (2.3)

belongs to L2(G∗). Moreover, if ϕ is obtained from g by the inverse Fourier trans-
form (so that ϕ ∈ L2(G) and ϕ̂ = g), then {ϕ( · � h) | h ∈ H} is an orthonormal
system in L2(G) and ϕ generates a multiresolution analysis in L2(G) by (1.1).
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Proof. Let g be defined by (2.3), where m0(ω) has the form (2.2) and satisfies con-
ditions (a)–(c). Since m0(ω⊕h∗) = m0(ω) for h∗ ∈ H⊥ and the polynomialm0(ω)
is constant on each U∗n,s, s ∈ {0, 1, . . . , pn − 1}, assertion (c) is equivalent to

p−1∑
l=0

|m0(ω ⊕ δl)|2 = 1, ω ∈ G∗. (2.4)

Step 1. We shall check that ∫
G∗
|g(ω)|2 dµ∗(ω) � 1. (2.5)

For every positive integer k, we put

µ[k](ω) =
k∏
j=1

m0(B
−jω)1U∗(B

−kω), ω ∈ G∗.

By condition (a), m0(ω) = 1 for ω ∈ U∗n,0. Thus it follows from (2.3) that

lim
k→∞

µ[k](ω) = g(ω), ω ∈ G∗. (2.6)

Observing that B−nω ∈ U∗n,0 for ω ∈ U∗, we have

g(ω) =
n−1∏
j=1

m0(B
−jω), ω ∈ U∗.

By condition (b), there is a constant c1 > 0 such that

|m0(B−jω)| � c1, j ∈ N, ω ∈ U∗,

and so c1−n1 |g(ω)| � 1U∗(ω) for ω ∈ G∗. Therefore

|µ[k](ω)| =
k∏
j=1

|m0(B−jω)|1U∗(B−kω) � c1−n1
k∏
j=1

|m0(B−jω)||g(B−kω)|,

which by (2.3) yields

|µ[k](ω)| � c1−n1 |g(ω)|, k ∈ N, ω ∈ G∗. (2.7)

Now, let

Ik(s) :=

∫
G∗
|µ[k](ω)|2W ∗s (ω) dµ∗(ω), k ∈ N, s ∈ Z+.
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Setting ζ = B−kω, we find that

Ik(s) =

∫
U∗k,0

k∏
j=1

|m0(B−jω)|2W ∗s (ω) dµ∗(ω)

= pk
∫
U∗
|m0(ζ)|2

k−1∏
j=1

|m0(Bjζ)|2W ∗s (Bkζ) dµ∗(ζ). (2.8)

Since U∗ =
⋃p−1
l=0

(
B−1(U∗) ⊕ δl

)
, where the δl are defined by (2.1), we have

Ik(s) = p
k−1
∫
U∗

p−1∑
l=0

|m0(B−1ω ⊕ δl)|2
k−1∏
j=1

|m0(Bj−1ω)|2W ∗s (Bk−1ω) dµ∗(ω),

and, in view of (2.4),

Ik(s) = p
k−1
∫
U∗

k−2∏
j=0

|m0(Bjω)|2W ∗s (Bk−1ω) dµ∗(ω).

Hence, by (2.8),
Ik(s) = Ik−1(s).

When k = 1, we similarly have

I1(s) = p

∫
U∗
|m0(ω)|2W ∗s (Bω) dµ∗(ω) =

∫
U∗
W ∗s (ω) dµ

∗(ω),

where the last integral is equal to δ0,s since the system {W ∗α} is orthonormal
in L2(U∗). Hence,

Ik(s) = δ0,s, k ∈ N, s ∈ Z+. (2.9)

In particular, for all k ∈ N,

Ik(0) =

∫
G∗
|µ[k](ω)|2 dµ∗(ω) = 1.

Using (2.6) and Fatou’s lemma, we obtain (2.5).

Step 2. Let us define a function ϕ in L2(G) by the condition ϕ̂ = g, where g is given
by (2.3). Using Lebesgue’s dominated convergence theorem, we see from (2.6), (2.7)
and (2.9) that

∫
G∗
|ϕ̂(ω)|2W ∗s (ω) dµ∗(ω) = lim

k→∞
Ik(s) = δ0,s.

By the Plancherel formula, it follows that the system {ϕ( · � h) | h ∈ H} is
orthonormal in L2(G).
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Step 3. We note that ϕ satisfies (1.2) if the coefficients aα in (1.2) are the same as
in the polynomial (2.2). Indeed, (2.3) implies that

ϕ̂(ω) =m0(B
−1ω) ϕ̂(B−1ω). (2.10)

Therefore (1.2) follows from (2.10) by the Fourier inversion formula. Hence the
condition Vj ⊂ Vj+1 holds for the family {Vj} given by (1.1) with our ϕ. Condition
(v) of the definition of a multiresolution analysis follows from the results of Step 2.
Conditions (iii) and (iv) follow immediately from (1.1).

Step 4. We shall prove that
⋂
Vj = {0}. Condition (v) and equation (1.1) imply

that {ϕj,h | h ∈ H} is an orthonormal basis of Vj for every j ∈ Z. Therefore the
orthogonal projection Pj : L

2(G)→ Vj acts by the formula

Pjf =
∑
h∈H
(f, ϕj,h)ϕj,h, f ∈ L2(G). (2.11)

Suppose that f ∈
⋂
Vj and fix ε > 0. The set C0(G) of compactly supported

continuous functions on G is dense in L2(G) (see [3], (12.10)). Choose f0 ∈ C0(G)
such that ‖f − f0‖ < ε. Then

‖f − Pjf0‖ � ‖Pj(f − f0)‖ � ‖f − f0‖ < ε,

and so

‖f‖ � ‖Pjf0‖+ ε (2.12)

for all j ∈ Z. If supp f0 ⊂ Ul, then

(Pjf0, ϕj,h) = (f0, ϕj,h) = p
j/2

∫
Ul

f0(x)ϕ(Ajx� h) dµ(x),

where the number l depends on f0. Using the Cauchy–Schwarz inequality, we get

‖Pjf0‖2 =
∑
h∈H
|(Pjf0, ϕj,h)|2 � ‖f0‖2

∑
h∈H
pj
∫
Ul

|ϕ(Ajx� h)|2 dµ(x).

For j < l we have

∑
h∈H
pj
∫
Ul

|ϕ(Ajx� h)|2 dµ(x) =
∫
Sl,j

|ϕ(x)|2 dµ(x),

where

Sl,j :=
⋃
h∈H
{y� h | y ∈ Ul−j}.

Hence,

‖Pjf0‖2 � ‖f0‖2
∫
G

1Sl,j(x)|ϕ(x)|2 dµ(x). (2.13)
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It is easy to check that limj→−∞ 1Sl,j(x) = 0 for all x /∈ H. By Lebesgue’s theorem,
we see from (2.13) that

lim
j→−∞

‖Pju‖ = 0.

Applying (2.12), we conclude that ‖f‖ � ε and hence
⋂
Vj = {0}.

Step 5. We shall now prove that

⋃
Vj = L

2(G). (2.14)

Let f ∈ (
⋃
Vj)
⊥ and ε > 0. We choose u ∈ L2(G) such that û ∈ C0(G∗) and

‖f̂ − û‖ < ε. For every j ∈ Z+, we see from (2.11) that

‖Pjf‖2 = (Pjf, Pjf) = (f, Pjf) = 0

and
‖Pju‖ = ‖Pj(f − u)‖ � ‖f − u‖ = ‖f̂ − û‖ < ε. (2.15)

Fix a number j ∈ N such that supp û ⊂ U∗−j and B−jω ∈ U∗n−1 for all ω ∈ supp û.
Since the system {p−j/2W ∗α(B−j · )} is orthonormal and complete in L2(U∗−j), we
see that Γ(ω) = û(ω) ϕ̂(B−jω) satisfies

p−j
∫
U∗−j

|Γ(ω)|2 dµ∗(ω) =
∑
α∈Z+

|cα(Γ)|2, (2.16)

where

cα(Γ) = p
−j/2

∫
U∗−j

Γ(ω)W ∗α(B
−jω) dµ∗(ω).

Since ∫
G

ϕ(Ajx� h[α])χ(x, ω) dµ(x) = p−jϕ̂(B−jω)W ∗α(B−jω),

we get

p−j/2(u, ϕj,h) = p
−j
∫
U∗−j

Γ(ω)W ∗α(B
−jω) dµ∗(ω).

Therefore, by (2.16) we have

‖Pju‖2 =
∑
h∈H
|(u, ϕj,h)|2 =

∫
U∗−j

|û(ω)|2|ϕ̂(B−jω)|2 dµ∗(ω). (2.17)

As m0(ω) = 1 on U
∗
n,0 and B

−jω ∈ U∗n+1 for ω ∈ supp û, it follows from (2.3)
that ϕ̂(B−jω) = 1 for all ω ∈ supp û. (We recall that ϕ̂ = g.) Since supp û ⊂ U∗−j ,
we see from (2.15) and (2.17) that

ε > ‖Pju‖ = ‖û‖ = ‖u‖.
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Consequently, ‖f‖ < ε + ‖u‖ < 2ε. Thus (
⋃
Vj)
⊥ = {0} and hence (2.14) holds.

The lemma is proved.

Remark 2.2. In connection with condition (b) of Lemma 2.1, we note that in gen-
eral there are points ω ∈ U∗ at which m0(ω) = 0 (see Examples 1.4, 1.5 and
Proposition 3.3).

Proof of the theorem. Put Xn−1 = 1U∗n−1 . For every x ∈ G, m ∈ N we have

∫
G

Xn−1(ω � B1−nω[m])χ(x, ω) dµ∗(ω) = χ(x, B1−nω[m])
∫
Un−1

χ(x, ω) dµ∗(ω)

= p1−n1U (A
1−nx)χ(A1−nx, ω[m]) = p

1−n1U (A
1−nx)Wm(A

1−nx).

Using the Fourier transform, we see from this and (1.6) that

ϕ̂(ω) = Xn−1(ω) +
∑

m∈N(p,n)
c(m)Xn−1(ω � B1−nω[m]).

Hence, for m ∈ N(p, n)

ϕ̂(ω) =



1 if ω ∈ U∗n−1,
c(m) if ω ∈ U∗n−1,m,
0 otherwise.

(2.18)

We now suppose that the coefficients aα are given by (1.7). According to (1.9),
the polynomial

m0(ω) =

pn−1∑
α=0

aαW ∗α(ω)

satisfies

m0(B
−n(ω[s])) = d

(n)
s , 0 � s � pn − 1.

Hence, by (2.18) and the definition of c(m), we have

ϕ̂(ω) =
∞∏
j=1

m0(B
−jω)

and so

ϕ̂(ω) =m0(B
−1ω) ϕ̂(B−1ω).

This proves assertion (a). Using Lemma 2.1, we conclude that assertions (b) and (c)
also hold. The theorem is proved.
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§ 3. On orthonormality conditions
in L2(G)L2(G)L2(G) and optimization of parameters

The following assertion can be deduced from the generalized Poisson summation
formula (see, for example, [2], p. 377). For completeness, we give an elementary
proof here.

Proposition 3.1. Let ϕ ∈ L2(G). The system {ϕ( · � h) | h ∈ H} is orthonormal
in L2(G) if and only if

∑
h∗∈H⊥

|ϕ̂(ω � h∗)|2 = 1 for a. e. ω ∈ G∗. (3.1)

Proof. The function

Φ(ω) =
∑
h∗∈H⊥

|ϕ̂(ω � h∗)|2

is H⊥-periodic: Φ(ω ⊕ h∗) = Φ(ω) for all h∗ ∈ H⊥. Furthermore, it has a finite
L1-norm on U∗ because

0 �
∫
U∗
Φ(ω) dµ∗(ω) =

∫
U∗

∑
h∗∈H⊥

|ϕ̂(ω � h∗)|2 dµ∗(ω)

=
∑
h∗∈H⊥

∫
U∗⊕h∗

|ϕ̂(ω)|2 dµ∗(ω) =
∫
G∗
|ϕ̂(ω)|2 dµ∗(ω) < +∞.

Let {Φ̂(h)} be the Fourier coefficients of Φ with respect to the system {χ(h, · )}.
For any h ∈ H, we get the following equations by the change of variables η = ω�h∗:

Φ̂(h) =

∫
U∗
Φ(ω)χ(h, ω) dµ∗(ω) =

∫
U∗
χ(h, ω)

∑
h∗∈H⊥

|ϕ̂(ω � h∗)|2 dµ∗(ω)

=
∑
h∗∈H⊥

∫
U∗⊕h∗

χ(h, η)|ϕ̂(η)|2 dµ∗(η) =
∫
G∗
|ϕ̂(ω)|2χ(h, ω) dµ∗(ω).

Applying the Plancherel equality, we get∫
G

ϕ(x� h)ϕ(x) dµ(x) = Φ̂(h), h ∈ H.

To complete the proof, we note that (3.1) is equivalent to Φ̂(h) = δθ, h for h ∈ H.

Proposition 3.2. If a function ϕ ∈ L2(G) satisfies (1.2) and the system {ϕ( · �h) |
h ∈ H} is orthonormal in L2(G), then

p−1∑
l=0

|m0(ω ⊕ δl)|2 = 1 for all ω ∈ G∗, (3.2)
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where

m0(ω) =

pn−1∑
α=0

aαW ∗α(ω).

Proof. For l ∈ {0, 1, . . ., p− 1} we put

H⊥l =
{
h∗ ∈ H⊥ | B−1h∗ � δl ∈ H⊥

}
(note that h∗0 = l for h∗ = (h∗j ) ∈ H⊥l ). Since ϕ̂ is continuous on G∗

(see Remark 1.1), we see from (3.1) that∑
h∗∈H⊥l

|ϕ̂(B−1ω ⊕B−1h∗)|2 = 1, l ∈ {0, 1, . . . , p− 1}

for any ω ∈ G∗. It follows from this and (1.8) that

1 =
∑
h∗∈H⊥

∣∣m0(B−1(ω ⊕ h∗))∣∣2∣∣ϕ̂(B−1(ω ⊕ h∗))∣∣2

=

p−1∑
l=0

|m0(B−1ω ⊕ δl)|2
∑
h∗∈H⊥l

|ϕ̂(B−1ω ⊕B−1h∗)|2 =
p−1∑
l=0

|m0(B−1ω ⊕ δl)|2.

Thus (3.2) holds. The proof is complete.

A subset E of G∗ is said to be congruent to U∗ modulo H⊥ if µ∗(E) = 1 and,
for each ω ∈ E, there is an element h∗ ∈ H⊥ such that ω ⊕ h∗ ∈ U∗. We have the
following analogue of Cohen’s theorem (see [20]).

Proposition 3.3. Let m0 be a polynomial of the form

m0(ω) =
∑
h∈H
a(h)χ(h, ω),

where a( · ) is a finitary function on H. Then the following conditions are equivalent.
1) The polynomial m0 satisfies

m0(θ) = 1,

p−1∑
l=0

|m0(ω ⊕ δl)|2 = 1, ω ∈ G∗, (3.3)

and there is a compact set E congruent to U∗ modulo H⊥ and containing a neigh-
bourhood of zero such that

inf
j∈N
inf
ω∈E
|m0(B−jω)| > 0. (3.4)

2) There is a function ϕ ∈ L2(G) whose Fourier transform can be written as

ϕ̂(ω) =
∞∏
j=1

m0(B
−jω)

and the system {ϕ( · � h) | h ∈ H} is orthonormal in L2(G).
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We note that since E is compact, there is a number j0 such that m0(B
−jω) = 1

for all j > j0, ω ∈ E. Therefore (3.4) holds if the polynomial m0(ω) does not
vanish on the sets B−1(E), . . . , B−j0(E).

Remark 3.4. If ϕ satisfies the conditions of Proposition 3.3, then the family {Vj}
given by (1.1) is a multiresolution analysis in L2(G) (compare [1], Russian p. 248).

Let ϕ be given by (1.6) and let the aα be determined from (1.7). (Then (3.4)
holds forE = U∗ by Remark 1.1.) As above, for each j ∈ Z, let Pj be the orthogonal
projection of L2(G) onto the subspace

Vj = closL2(G)span{ϕj,h | h ∈ H}.

Given f in L2(G), it is natural to choose the parameters bm in (1.4) such that the
approximations f ≈ Pjf be optimal. If we know that f belongs to some class M
in L2(G), then we can use the methods of approximation theory (see, for example,
[14], Ch. 10 and [21], Ch. 2) to seek the parameters bm that minimize the quantity

sup{‖f − Pjf‖ | f ∈M}

for a fixed j and to study the behaviour of this quantity as j → +∞. As in the
recent paper [19], we shall discuss a different approach to the problem of optimal
approximations f ≈ Pjf of a given function f .
For every j ∈ Z, letWj be the orthogonal complement of Vj in Vj+1 and letQj be

the orthogonal projection of L2(G) to Wj . Since {Vj} is a multiresolution analysis,
for any f ∈ L2(G) we have

f =
∑
j

Qjf = P0f +
∑
j�0
Qjf

and

lim
j→+∞

‖f − Pjf‖ = 0, lim
j→−∞

‖Pjf‖ = 0.

Also, it is easy to see that

Pjf = Qj−1f +Qj−2f + · · ·+Qj−sf + Pj−sf, j ∈ Z, s ∈ N.

The equality Vj = Vj−1 ⊕Wj−1 means that Wj−1 contains the “details” needed
for passing from the (j − 1)th level of approximation to the more exact jth level.
Since ‖Pjf‖2 = ‖Pj−1f‖2 + ‖Qj−1f‖2, it is natural to choose the parameters bm
that maximize ‖Pj−1f‖ (or, equivalently, minimize ‖Qj−1f‖).
We write (1.2) as

ϕ(x) =
√
p

pn−1∑
α=0

ãαϕ
(
Ax� h[α]

)
,

where
ãα =

√
p aα =

√
p
(
ϕ( · ), ϕ

(
A · �h[α]

))
.
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Put ϕj(x) = p
j/2ϕ(Ajx). Then

ϕj−1(x) =

pn−1∑
α=0

ãαϕj
(
x� A−jh[α]

)
(3.5)

and
ϕj(x� A−jh) = ϕj,h(x) = pj/2ϕj(Ajx� h), j ∈ Z, h ∈ H.

Given f ∈ L2(G), we set

f(j, h) := (f, ϕj,h) =

∫
G

f(x)ϕj(x� A−jh) dµ(x), j ∈ Z, h ∈ H.

Using the relations (3.5), we obtain

f(j − 1, h) =
∫
G

f(x)ϕj−1(x� A−j+1h) dµ(x)

=

pn−1∑
α=0

ãα

∫
G

f(x)ϕj
(
x� A−j

(
Ah ⊕ h[α]

))
dµ(x)

and hence

f(j − 1, h) =
pn−1∑
α=0

ãαf
(
j, Ah⊕ h[α]

)
. (3.6)

Since
Pjf =

∑
h∈H
f(j, h)ϕj,h, j ∈ Z,

we see from (3.6) that

‖Pj−1f‖2 =
∑
h∈H
|f(j − 1, h)|2 =

∑
h∈H

∣∣∣∣
pn−1∑
α=0

ãαf
(
j, Ah⊕ h[α]

)∣∣∣∣
2

=
∑
h∈H

( pn−1∑
α,β=0

ãαãβf
(
j, Ah⊕ h[α]

)
f
(
j, Ah⊕ h[β]

))
. (3.7)

For 0 � α, β � pn − 1 we put

Fα,β(j) :=
∑
h∈H
f
(
j, Ah⊕ h[α]

)
f
(
j, Ah⊕ h[β]

)
.

Then Fβ,α(j) = Fα,β(j) and (3.7) implies that

‖Pj−1f‖2 =
pn−1∑
α,β=0

Fα,β(j)ãαãβ . (3.8)
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We denote by U(p, n) the set of vectors u = (u0, u1, . . . , upn−1) such that

u0 = 1, uj = 0, j ∈ {pn−1, 2pn−1, . . . , (p− 1)pn−1},

and

uj �= 0,
p−1∑
l=0

|ulpn−1+j |2 = 1, j ∈ {1, 2, . . ., pn−1 − 1}.

For every u = (u0, u1, . . . , upn−1) in U(p, n), we define the coefficients aα(u) by the
system

pn−1∑
α=0

aα(u)W ∗α
(
B−nω[s]

)
= us, 0 � s � pn − 1.

Fix a positive integer j0. If a vector u
∗ is a solution of the extremal problem

pn−1∑
α,β=0

Fα,β(j0)aα(u)aβ(u)→ max, u ∈ U(p, n), (3.9)

then ϕ∗j0−1 is defined by

ϕ∗j0−1(x) =

pn−1∑
α=0

aα(u
∗)ϕj0

(
x� A−j0h[α]

)
.

We see from (3.8) and (3.9) that ‖P ∗j f‖ � ‖Pjf‖ for j = j0 − 1. We similarly
construct ϕ∗j0−2 on the base of ϕ

∗
j0−1 and so on. Then we fix a number s and

replace the orthogonal projections Pjf (j ∈ {j0 − 1, . . . , j0− s}) by the orthogonal
projections P ∗j f of f to the subspaces V

∗
j given by

V ∗j = closL2(G)span{ϕ∗j ( · − A−jh) | h ∈ H}.

The effectiveness of this method of adaptation can be demonstrated by numer-
ical examples using the entropy criterion. (Similar examples for the Daubechies’
multiresolution analysis and for wavelet-packets are given in [19] and [22].)

§ 4. On the smoothness of scaling functions
Let ϕ be a scaling function in L2(G) defined by (1.6) (so that suppϕ ⊂ U1−n).

We recall that for l ∈ Z,

Ul = {(xj) ∈ G | xj = 0 for j � l} and Ul ⊃ Ul+1.

The modulus of continuity of a continuous complex-valued function f on U1−n
is the following sequence {Ωj(f)}, j � 1− n:

Ωj(f) = sup{|f(x)− f(y)| | x, y ∈ U1−n, x� y ∈ Uj}.
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Given any non-increasing sequence with zero limit,

ε1−n � ε2−n � ε3−n � . . . , lim
j→∞

εj = 0,

one can find a function f ∈ C(U1−n) such that Ωj(f) = εj for all j � 1−n (see [23]).
A method for estimating the smoothness of scaling functions was suggested in [24].
Concentrating on the case p = 2 for brevity, we shall show how to apply this method
to estimate the modulus of continuity of ϕ. We shall assume that the coefficients aα
are real, although all arguments can easily be extended to the complex case.
So we take p = 2 and cα = 2aα for α ∈ {0, 1, . . . , 2n − 1}, where the aα are real

and defined by (1.7). Then

ϕ(x) =
2n−1∑
α=0

cαϕ
(
Ax� h[α]

)
, x ∈ G, (4.1)

2n−1∑
α=0

cα = 2,
2n−1−1∑
α=0

c2α =
2n−1−1∑
α=0

c2α+1 = 1. (4.2)

Put N = 2n−1. Using (1.6) and the easily verified equalities

N−1∑
α=0

Wm
(
A1−nh[α]

)
=
N−1∑
α=0

Wm
(
A1−nh−[α+1]

)
= 0, m ∈ N(2, n),

we get
N−1∑
α=0

ϕ
(
h[α]
)
=
N−1∑
α=0

ϕ
(
h−
[α+1]

)
= 1. (4.3)

By definition, the equality k = i⊕2 j for i, j, k ∈ {1, 2, . . . , 2N − 1} means that

ks = is + js (mod 2), s ∈ {0, 1, . . . , 2N − 1},

where is, js, ks are digits of the binary expansions

i =
2N−1∑
s=0

is2
s, j =

2N−1∑
s=0

js2
s, k =

2N−1∑
s=0

ks2
s.

We define N ×N matrices T0 and T1 by

(T0)i,j = c2(i−1)⊕2(j−1), (T1)i,j = c(2i−1)⊕2(j−1), (4.4)

where i, j ∈ {1, 2, . . . , N}. In particular, for n = 2

T0 =

(
c0 c1
c2 c3

)
, T1 =

(
c1 c0
c3 c2

)
,
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and for n = 3

T0 =



c0 c1 c2 c3
c2 c3 c0 c1
c4 c5 c6 c7
c6 c7 c4 c5


 , T1 =



c1 c0 c3 c2
c3 c2 c1 c0
c5 c4 c7 c6
c7 c6 c5 c4


 .

Let e1 = (1, 1, . . . , 1) be the N -dimensional row vector all of whose components
are equal to 1. Then by (4.2),

e1T0 = e1T1 = e1. (4.5)

For any N -dimensional vectors v = (v1, . . . , vN) and w = (w1, . . . , wN) we set

v · wT :=
N∑
j=1

vjwj, ‖v‖ :=
√
v · vT ,

where the column vectors vT, wT are obtained from the row vectors v, w by trans-
position.
We define E1 to be the subspace of R

N orthogonal to e1:

E1 := {u = (u1, . . . , uN)T | e1 · u = 0}.

For any real N ×N matrix M we put

‖M‖ := sup{‖Mu‖/‖u‖ | u ∈ RN , u �= 0},
‖M |E1‖ := sup{‖Mu‖/‖u‖ | u ∈ E1, u �= 0}.

It is well known that ‖M‖ coincides with the square-root of the largest eigenvalue
of the matrix MTM .
We have the following analogue of Theorem 2.2 in [24].

Proposition 4.1. Let ϕ be a function given by (1.6) and let the coefficients aα be
defined by (1.7) for p = 2. Assume that the elements of the N ×N matrices T0, T1
are given by (4.4), where N = 2n−1 and cα = 2aα. If, for all m ∈ N, we have

max
{
‖Td1Td2 . . . Tdm |E1‖ | dj ∈ {0, 1}, 1 � j � m

}
� Cqm, (4.6)

where 0 < q < 1 and C > 0, then ϕ is continuous on U1−n and the following
inequality holds for any integer j � n− 1:

Ωj(ϕ) � Cqj. (4.7)

Proof. For any x ∈ U and α ∈ {0, 1, . . ., N − 1} we put

ϕ0
(
x⊕ h[α]

)
:=
(
1− λ(x)

)
ϕ
(
h[α]
)
+ λ(x)ϕ

(
h−[α+1]

)
. (4.8)
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The group U has two cosets with respect to the subgroup A−1(U):

U1,0 := A
−1(U), U1,1 := A

−1(h[1])⊕ A−1(U).
We define a sequence vj(x) of vector-valued functions for j ∈ Z+ and x ∈ U by

v0(x) :=
(
ϕ0(x), ϕ0(x⊕ h[1]), . . . , ϕ0(x⊕ h[N−1])

)T
,

vj+1(x) :=

{
T0vj(Ax) if x ∈ U1,0,
T1vj(Ax� h[1]) if x ∈ U1,1.

For each x = (xj) in U , we put dj(x) = xj and

τ(x) :=

{
Ax if x ∈ U1,0,
Ax� h[1] if x ∈ U1,1.

Then
vj+1(x) = Td1(x)vj(τx)

and hence
vj(x) = Td1(x)Td2(x) . . . Tdj(x)v0(τ

jx). (4.9)

We see from (4.3) and (4.8) that

e1 · v0(x) =
N−1∑
α=0

ϕ0
(
x⊕ h[α]

)

=
(
1− λ(x)

) N−1∑
α=0

ϕ
(
h[α]
)
+ λ(x)

N−1∑
α=0

ϕ
(
h−[α+1]

)
= 1.

Then (4.6), (4.9) imply that

e1 · vj(x) = e1Td1(x)Td2(x) . . . Tdj(x)v0(τ jx) = e1 · v0(τ jx) = 1.

Hence, for each l ∈ Z+ we have

e1 ·
(
vj+l(x)− vl(x)

)
= 0.

Thus the following formulae hold for all x ∈ U and j, l ∈ Z+:

e1 · vj(x) = 1, vj+l(x) − vl(x) ∈ E1. (4.10)

Using (4.9), we have

vj+l(x)− vj(x) = Td1(x)Td2(x) . . . Tdj(x)[vl(τ jx)− v0(τ jx)]. (4.11)

For l = 1 we see from (4.6), (4.10) and (4.11) that

‖vj+1(x)− vj(x)‖ � Cqj sup
y∈U
‖v1(y) − v0(y)‖.
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Therefore,

‖vj(x)‖ � ‖v0(x)‖+
j∑
l=1

‖vl(x)− vl−1(x)‖

� sup
y∈U
‖v0(y)‖ +C(1− q)−1 sup

y∈U
‖v1(y) − v0(y)‖.

Thus the sequence {vj( · )} is uniformly bounded on U :

sup{‖vj(x)‖ | x ∈ U, j ∈ Z+} <∞. (4.12)

As above, we see from (4.6), (4.10) and (4.11) that

‖vj+l(x) − vj(x)‖ � Cqj sup
y∈U
‖vl(y) − v0(y)‖

for every x ∈ U and l ∈ N. Combining this with (4.12), we get

sup
x∈U
‖vj+l(x)− vj(x)‖ � Cqj, (4.13)

where C is a constant independent of l. Hence {vj( · )} is a Cauchy sequence in the
space [C(U)]N = C(U)× · · · × C(U).
The limit ṽ( · ) of the sequence {vj( · )} is continuous on U . Hence we see from

(4.13) that
sup
x∈U
‖ṽ(x) − vj(x)‖ � Cqj. (4.14)

Let
v(x) :=

(
ϕ(x), ϕ

(
x⊕ h[1]

)
, . . . , ϕ

(
x⊕ h[N−1]

))T
.

Then
v(x) = Td1(x)v(τx)

for all x ∈ U . Letting j → ∞ in the equality vj+1(x) = Td1(x)vj(τx), we conclude
that ṽ(x) = v(x). Combining this with (4.14), we have

sup
x∈U1−n

‖ϕ(x) − ϕj(x)‖ � Cqj (4.15)

for all ∈ Z+.
We fix an integer j � n and choose elements

x = (. . . , 0, 0, x2−n, x3−n, . . . , x0, x1, . . . ),

y = (. . . , 0, 0, y2−n, y3−n, . . . , y0, y1, . . .)

of U1−n such that y�x ∈ Uj \Uj+1. Then xi = yi for 2−n � i � j and xj+1 �= yj+1.
Hence x and y belong to the class A−j

(
h[m] ⊕ U

)
, where

m =

j∑
i=2−n

xi2
j−i =

j∑
i=2−n

yi2
j−i.
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According to (4.15), we have

|ϕ(x)− ϕ(y)| � |ϕ(x)− ϕj(x)|+
∣∣ϕj(x)− ϕj(A−jh[m])∣∣

+
∣∣ϕj(A−jh[m]) − ϕj(y)∣∣ + |ϕj(y) − ϕ(y)|

� 2Cqj +
∣∣ϕj(x) − ϕj(A−jh[m])∣∣+ ∣∣ϕj(y) − ϕj(A−jh[m])∣∣. (4.16)

Suppose that x ∈ U , that is, x0 = x−1 = · · · = x2−n = 0. Then

m = x12
j−1 + x22

j−2 + · · ·+ xj20

and, similarly to (4.11),

vj(x) − vj
(
A−jh[m]

)
= Td1(x)Td2(x) . . . Tdj(x)

[
v0(τ

jx)− v0
(
τ jA−jh[m]

)]
. (4.17)

Taking into account that the v0(τ
j · ) are uniformly bounded on U and that

∣∣ϕj(x)− ϕj(A−jh[m])∣∣ � ∥∥vj(x)− vj(A−jh[m])∥∥,
‖Td1(x)Td2(x) . . . Tdj(x)‖ � Cqj,

we obtain from (4.17) that

∣∣ϕj(x)− ϕj(A−jh[m])∣∣ � Cqj. (4.18)

Now suppose that x ∈ Un−1 \ U . Put x′ = x� h[k] and m′ = m− k, where

k = x02
j + x−12

j+1 + · · ·+ x2−n2j+n−2.

Then x′ ∈ U and

vj(x
′)− vj

(
A−jh[m′]

)
= Td1(x′)Td2(x′) . . . Tdj(x′)

[
v0(τ

jx′)− v0
(
τ jA−jh[m′]

)]
.

Since ∣∣ϕj(x)− ϕj(A−jh[m])∣∣ � ∥∥vj(x′)− vj(A−jh[m′])∥∥,
we get (4.18) again. The last term in (4.16) is estimated similarly. Thus the
inequality (4.7) holds. This proves the proposition.

Remark 4.2. The following formula is useful for computing values of ϕ:

v(x) =

{
T0v(Ax) if x ∈ U1,0,
T1v
(
Ax� h[1]

)
if x ∈ U1,1.

(4.19)

In particular, setting x = θ in (4.19), we see that the vector

v(θ) =
(
ϕ
(
h[0]
)
, ϕ
(
h[1]
)
, . . . , ϕ

(
h[N−1]

))T
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is an eigenvector of the matrix T0 with eigenvalue 1. We note that the number 1
belongs to the spectrum of T0 by (4.2). When p = n = 2 we see from (4.3) and (4.19)
that

ϕ
(
h[0]
)
=
1 + a− b
2(1− b) , ϕ

(
h−[1]
)
=
1 + a+ b

2(1 + b)
,

ϕ
(
h[1]
)
=
1− a− b
2(1− b) , ϕ

(
h−[2]
)
=
1− a+ b
2(1 + b)

,

where the parameters a, b are the same as in (1.10). If p = 2 and n = 3 while the
function ϕ is defined by (1.11) with a = 1 and |γ| < 1, then

ϕ
(
h[0]
)
=
1 + c − γ
2(1− γ) −

c(1− β)
4(1− γ) +

b

4
,

ϕ
(
h[1]
)
=
1− c − γ
2(1− γ) +

c(1− β)
4(1− γ) −

b

4
,

ϕ
(
h[2]
)
=
b

2
− c(1− β)
2(1− γ) ,

ϕ
(
h[3]
)
= − b
2
+
c(1− β)
2(1− γ) ,

where ϕ
(
h[2]
)
= ϕ
(
h[3]
)
= 0 if b = 0 (β = 1) or b = c (β = γ).

Example 4.3. If the function ϕ is given by (1.10), then

Ωj(ϕ) � C|b|j, j ∈ N. (4.20)

Indeed, for n = 2 we have

E1 = {v ∈ R2 | v1 + v2 = 0} = {te01 | t ∈ R},
T0e

0
1 = be

0
1, T1e

0
1 = −be01,

where e01 = (−1, 1)T. Therefore the inequality (4.20) follows from Proposition 4.1.
Since

ϕ
(
h[0]
)
− ϕ
(
A−jh[1]

)
=
abj

1− b ,

we see that the estimate (4.20) is sharp. Since |b| < 1, the continuity of ϕ follows
from (4.20).

Example 4.4. If the function ϕ is given by (1.11) with a = 1 and 0 < |γ| < 1,
then

Ωj(ϕ) � C|γ|j, j ∈ N. (4.21)

Indeed, the vectors

e01 =



1
−1
1
−1


 , e02 =



1
−1
−1
1


 , e03 =



1
1
−1
−1



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form a basis of the space E1 when n = 3. Since a = 1, we have

T0e
0
1 = T1e

0
1 = 0,

T0e
0
2 = −T1e02 = βe01 + γe02,
T0e

0
3 = T1e

0
3 = be

0
1 + ce

0
2.

Using these equalities, we get the following formulae for any vector w =
ν1e
0
1 + ν2e

0
2 + ν3e

0
3 in the space E1:

T 20w = −T1T0w = (ν2γ + ν3c)T0e02, T 21w = −T0T1w = (ν2γ − ν3c)T0e02.
(4.22)

In particular,
T 20 e

0
2 = T

2
1 e
0
2 = −T0T1e02 = −T1T0e02 = γT0e02.

Thus the following equation holds for all d1, d2, . . . , dm ∈ {0, 1}:

Td1Td2 . . . Tdme
0
2 = ±γm−1T0e02.

Hence we see from (4.22) that

‖Td1Td2 . . . Tdm |E1‖ � C|γ|m,

and the estimate (4.21) follows from Proposition 4.1. If a = 1, b = 0, and |γ| < 1,
then (1.11) yields the following equations for all j ∈ N:

ϕ
(
h[0]
)
− ϕ
(
A−jh[1]

)
=
cγj+3

4(1− γ) .

Thus the estimate (4.21) is also sharp.

The author is grateful to V. Yu. Protasov for useful remarks on the first draft of
this paper.
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