
Orthogonal Weight Normalization: Solution to Optimization over
Multiple Dependent Stiefel Manifolds in Deep Neural Networks

Lei Huang,† Xianglong Liu,† Bo Lang,† Adams Wei Yu,‡ Yongliang Wang,♮ Bo Li♯
†State Key Laboratory of Software Development Environment, Beihang University, P.R.China

‡Machine Learning Department, Carnegie Mellon University
♮JD.COM, Beijing, P.R.China

♯Electrical Engineering and Computer Sciences, University of California, Berkeley

Abstract

Orthogonal matrix has shown advantages in training Recur-
rent Neural Networks (RNNs), but such matrix is limited to
be square for the hidden-to-hidden transformation in RNNs.
In this paper, we generalize such square orthogonal matrix to
orthogonal rectangular matrix and formulating this problem
in feed-forward Neural Networks (FNNs) as Optimization
over Multiple Dependent Stiefel Manifolds (OMDSM). We
show that the orthogonal rectangular matrix can stabilize the
distribution of network activations and regularize FNNs. We
propose a novel orthogonal weight normalization method to
solve OMDSM. Particularly, it constructs orthogonal trans-
formation over proxy parameters to ensure the weight matrix
is orthogonal. To guarantee stability, we minimize the distor-
tions between proxy parameters and canonical weights over all
tractable orthogonal transformations. In addition, we design or-
thogonal linear module (OLM) to learn orthogonal filter banks
in practice, which can be used as an alternative to standard lin-
ear module. Extensive experiments demonstrate that by simply
substituting OLM for standard linear module without revising
any experimental protocols, our method improves the perfor-
mance of the state-of-the-art networks, including Inception
and residual networks on CIFAR and ImageNet datasets.

Introduction

Standard deep neural networks (DNNs) can be viewed as
a composition of multiple simple nonlinear functions, each
of which usually consists of one linear transformation with
learnable weights or parameters followed by an element-wise
nonlinearity. Such hierarchy and deep architectures equip
DNNs with large capacity to represent complicated relation-
ships between inputs and outputs. However, they also intro-
duce potential risk of overfitting. Many methods have been
proposed to address this issue, e.g. weight decay (Krogh and
Hertz 1992) and Dropout (Srivastava et al. 2014) are com-
monly applied by perturbing objectives or adding random
noise directly. These techniques can improve generalization
of networks, but hurt optimization efficiency, which means
one needs to train more epochs to achieve better performance.
This naturally rises one question: is there any technique that
can regularize DNNs to guarantee generalization while still
guarantee efficient convergence?

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

To achieve this goal, we focus on the orthogonality con-
straint, which is imposed in linear transformation between
layers of DNNs. This technique performs optimization over
low embedded submanifolds, where weights are orthogonal,
and thus regularizes networks. Besides, the orthogonality im-
plies energy preservation, which is extensively explored for
filter banks in signal processing and guarantees that energy of
activations will not be amplified (Zhou, Do, and Kovacevic
2006) . Therefore, it can stabilize the distribution of acti-
vations over layers within DNNs (Desjardins et al. 2015;
Rodrı́guez et al. 2017) and make optimization more efficient.

Orthogonal matrix has been actively explored in Recurrent
Neural Networks (RNNs) (Arjovsky, Shah, and Bengio 2016;
Wisdom et al. 2016; Vorontsov et al. 2017). It helps to avoid-
ing gradient vanishing and explosion problem in RNNs due
to its energy preservation property (Dorobantu, Stromhaug,
and Renteria 2016). However, the orthogonal matrix here
is limited to be square for the hidden-to-hidden transforma-
tion in RNNs. More general setting of learning orthogonal
rectangular matrix is barely studied in DNNs (Harandi and
Fernando 2016), especially in deep Convolutional Neural Net-
works (CNNs) (Ozay and Okatani 2016). We formulate such
a problem as Optimization over Multiple Dependent Stiefel
Manifolds (OMDSM), due to the fact that the weight matrix
with orthogonality constraint in each layer is an embedded
Stiefel Manifold (Absil, Mahony, and Sepulchre 2008) and
the weight matrix in certain layer is affected by those in
preceding layers in DNNs.

To solve OMDSM problem, one straightforward idea is
to use Riemannian optimization method that is extensively
used for single manifold or multiple independent manifolds
problem, either in optimization communities (Absil and Mal-
ick 2012; Wen and Yin 2013; Cunningham and Ghahramani
2015) or in applications to the hidden-to-hidden transforma-
tion of RNNs (Wisdom et al. 2016). However, Riemannian
optimization methods suffer instability in convergence or
inferior performance in deep feed-forward neural networks
based on our comprehensive experiments. Therefore, a stable
method is highly required for OMDSM problem.

Inspired by the orthogonality-for-vectors problem (Garth-
waite et al. 2012) and the fact that eigenvalue decomposition
is differentiable (Ionescu, Vantzos, and Sminchisescu 2015),
we propose a novel proxy parameters based solution referred
to as orthogonal weight normalization. Specifically, we de-

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

3271



vise explicitly a transformation that maps the proxy parame-
ters to canonical weights such that the canonical weights are
orthogonal. Updating is performed on the proxy parameters
when gradient signal is ensured to back-propagate through
the transformation. To guarantee stability, we minimize the
distortions between proxy parameters and canonical weights
over all tractable orthogonal transformations.

Based on orthogonal weight normalization, we design or-
thogonal linear module for practical purpose. This module is
a linear transformation with orthogonality, and can be used
as an alternative of standard linear modules for DNNs. At
the same time, this module is capable of stabilizing the dis-
tribution of activation in each layer, and therefore facilitates
optimization process. Our method can also cooperate well
with other practical techniques in deep learning community,
e.g., batch normalization (Ioffe and Szegedy 2015), Adam op-
timization (Kingma and Ba 2014) and Dropout (Srivastava et
al. 2014), and moreover improve their original performance.

Comprehensive experiments are conducted over Multilayer
Perceptrons (MLPs) and CNNs. By simply substituting the
orthogonal linear modules for standard ones without revis-
ing any experimental protocols, our method improves the
performance of various state-of-the-art CNN architectures,
including BN-Inception (Ioffe and Szegedy 2015) and resid-
ual networks (He et al. 2016a) over CIFAR (Krizhevsky
2009) and ImageNet (Russakovsky et al. 2015) datasets.

In summarization, our main contributions are as follows.

• To the best of our knowledge, this is the first work to for-
mulate the problem of learning orthogonal filters in DNNs
as optimization over multiple dependent Stiefel manifolds
problem (OMDSM). We further analyze two remarkable
properties of orthogonal filters for DNNs: stabilizing the
distributions of activation and regularizing the networks.

• We conduct comprehensive experiments to show that sev-
eral extensively used Riemannian optimization methods
for single Stiefel manifold suffer severe instability in solv-
ing OMDSM, We thus propose a novel orthogonal weight
normalization method to solve OMDSM and show that the
solution is stable and efficient in convergence.

• We devise an orthogonal linear module to perform as an
alternative to standard linear module for practical purpose.

• We apply the proposed method to various architectures in-
cluding BN-Inception and residual networks, and achieve
significant performance improvement over large scale
datasets, including ImageNet.

Optimization over Multiple Dependent Stiefel

Manifolds

Let X ⊆ Rd be the feature space, with d the number
of features. Suppose the training set {(xi,yi)}

M
i=1 is com-

prised of feature vector xi ∈ X generated according to
some unknown distribution xi ∼ D, with yi the corre-
sponding labels. A standard feed-forward neural network
with L-layers can be viewed as a function f(x; θ) parameter-
ized by θ, which is expected to fit the given training data
and generalize well for unseen data points. Here f(x; θ)
is a composition of multiple simple nonlinear functions.

Each of them usually consists of a linear transformation
sl = Wlhl−1 + bl with learnable weights Wl ∈ R

nl×dl

and biases bl ∈ R
nl , followed by an element-wise non-

linearity: hl = ϕ(sl). Here l ∈ {1, 2, ..., L} indexes the
layers. Under this notation, the learnable parameters are
θ = {Wl,bl|l = 1, 2, . . . , L}. Training neural networks
is to minimize the discrepancy between the desired output
y and the predicted output f(x; θ). This discrepancy is usu-
ally described by a loss function L(y, f(x; θ)), and thus the
objective is to optimize θ by minimizing the loss function:
θ∗ = argminθ E(x,y)∈D[L(y, f(x; θ))].

Formulation

This paper targets to train deep neural networks (DNNs)
with orthogonal rectangular weight matrix Wl ∈ R

nl×dl in
each layer. Particularly, we expect to learn orthogonal filters
of each layer (the rows of W ). We thus formulate it as a
constrained optimization problem:

θ∗ = argminθ E(x,y)∈D [L (y, f (x; θ))]

s.t. Wl ∈ Onl×dl

l , l = 1, 2, ..., L (1)

where the matrix family Onl×dl

l = {Wl ∈ R
nl×dl :

Wl(Wl)T = I} is real Stiefel manifold (Absil, Mahony,
and Sepulchre 2008; Cunningham and Ghahramani 2015),
which is an embedded sub-manifold of Rnl×dl . Note that
here we assume nl ≤ dl and will discuss how to handle the
case nl > dl in subsequent sections. The formulated prob-
lem has following characteristics: (1) the optimization space
is over multiple embedded submanifolds; (2) the embedded

submanifolds {On1×d1

1 , ...,OnL×dL

L } is dependent due to the

fact that the optimization of weight matrix Wl is affected
by those in preceding layers {Wi, i < l}; (3) moreover,
the dependencies amplify as the network becomes deeper.
We thus call such a problem as Optimization over Multiple
Dependent Stiefel Manifolds (OMDSM). To our best knowl-
edge, we are the first to learn orthogonal filters for deep feed-
forward neural networks and formulate such a problem as
OMDSM. Indeed, the previous works (Wisdom et al. 2016;
Vorontsov et al. 2017) that learning orthogonal hidden-to-
hidden transformation in RNNs is over single manifold due
to weight sharing of hidden-to-hidden transformation.

Properties of Orthogonal Weight Matrix

Before solving OMDSM, we first introduce two remarkable
properties of orthogonal weight matrix for DNNs.

Stabilize the Distribution of Activations Orthogonal
weight matrix can stabilize the distributions of activations in
DNNs as illustrated in the following theorem.

Theorem 1. Let s = Wx, where WWT = I and W ∈
R

n×d. (1) Assume the mean of x is Ex[x] = 0, and co-
variance matrix of x is cov(x) = σ2I. Then Es[s] = 0,
cov(s) = σ2I. (2) If n = d, we have ‖s‖ = ‖x‖. (3) Given

the back-propagated gradient ∂L
∂s , we have ‖∂L

∂x ‖ = ‖∂L
∂s ‖.

The proof of Theorem 1 is omitted to supplementary mate-
rials in the full paper (https://arxiv.org/abs/1709.06079). The
first point of Theorem 1 shows that in each layer of DNNs

3272



the weight matrix with orthonormality can maintain the acti-
vation s to be normalized and even de-correlated if the input
is whitened. The normalized and de-correlated activation is
well known for improving the conditioning of the Fisher
information matrix and accelerating the training of deep
neural networks (LeCun et al. 1998; Desjardins et al. 2015;
Yu et al. 2017). Besides, orthogonal filters can well keep the
norm of the activation and back-propagated gradient infor-
mation in DNNs as shown by the second and third point of
Theorem 1.

Regularize Neural Networks Orthogonal weight matrix
can also ensure each filter to be orthonomal: i.e. wT

i wj =
0, i �= j and ‖wi‖2 = 1, where wi ∈ R

d indicates the weight
vector of the i-th neuron and ‖wi‖2 denotes the Euclidean
norm of wi. This provides n(n+1)/2 constraints. Therefore,
orthogonal weight matrix regularizes the neural networks as
the embedded Stiefel manifold On×d with degree of freedom
nd−n(n+1)/2 (Absil, Mahony, and Sepulchre 2008). Note
that this regularization may harm the representation capacity
if neural networks is not enough deep. We can relax the con-
straint of orthonormal to orthogonal, which means we don’t
need ‖wi‖2 = 1. A practical method is to introduce a learn-
able scalar parameter g to fine tune the norm of w (Salimans
and Kingma 2016). This trick can recover the representation
capacity of orthogonal weight layer to some extent, that is
practical in shallow neural networks but for deep CNNs, it is
unnecessary based on our observation. We also discuss how
to trade off the regularization and optimization efficiency of
orthogonal weight matrix in subsequent sections.

Orthogonal Weight Normalization

To solve OMDSM problem, one straightforward idea is to
use Riemannian optimization methods that are used for the
hidden-to-hidden transform in RNNs (Wisdom et al. 2016;
Vorontsov et al. 2017). However, we find that the Riemannian
optimization methods to solve OMDSM suffered instability
in convergence or inferior performance as shown in the ex-
periment section.

Here we propose a novel algorithm to solve OMDSM prob-
lem via re-parameterization (Salimans and Kingma 2016).
For each layer l, we represent the weight matrix Wl in terms
of the proxy parameter matrix Vl ∈ R

nl×dl as Wl = φ(Vl),
and parameter update is performed with respect to Vl. By
devising a transformation φ : Rnl×dl → R

nl×dl such that
φ(Vl) ∗ φ(Vl)T = I, we can ensure the weight matrix Wl

is orthogonal. Besides, we require the gradient information
back-propagates through the transformation φ. An illustrative
example is shown in Figure 1. Without loss of generality, we
drop the layer indexes of Wl and Vl for clarity.

Devising Transformation Inspired by the classic problem
of orthogonality-for-vectors (Garthwaite et al. 2012), we rep-
resent φ(V) as linear transformation φ(V) = PV. In gen-
eral, vectors in this problem are usually assumed to be zero-
centered. We therefore first center V by: VC = V − c1T

d

where c = 1
dV1d and 1d is d-dimension vector with all ones.

The transformation is performed over VC .

There can be infinite P satisfying W = PVC and

… 

… 

… 

…
…

…

…
…

…

…

…

…

Figure 1: An illustrative example of orthogonal weight nor-
malization in certain layer of neural networks (for brevity,
we leave out the bias nodes).

WWT = I. For example, if P̂ is the solution, QP̂ is
also the solution where Q is an arbitrary orthogonal matrix

Q ∈ R
n×n, since we have WWT = QP̂VCV

T
CP̂

TQT =
QQT = I. The question is which P should be chosen?

In order to achieve a stable solution, we expect the singular
values of Jacobians ∂W/∂V close to 1 (Saxe, McClelland,
and Ganguli 2013). However, this constraint is difficult to
be formulated. We thus look for a relaxation and tractable
constraint as minimizing the distortion between W and VC
in a least square way:

minP tr
(

(W −VC) (W −VC)
T
)

s.t. W = PVC and WW
T = I, (2)

where tr(·) indicates the trace of matrix. We omit the deriva-
tion of solving this optimization to supplementary mate-
rials due to the space limitation. The solution is P∗ =
DΛ−1/2DT , where Λ = diag(σ1, . . . , σn) and D represent
the eigenvalues and eigenvectors of the covariance matrix

Σ = (V− c1T
d )(V− c1T

d )
T . Based on this solution, we use

the transformation as follows:

W = φ(V) = DΛ−1/2
D

T (V − c1
T
d ). (3)

We also consider another transformation Pvar = Λ−1/2DT

without minimizing such distortions, and observe that Pvar

suffers the instability problem and fails convergence in sub-
sequent experiments. Therefore, we hypothesize that mini-
mizing distortions formulated by Eqn. 2 is essential to ensure
the stability of solving OMDSM.

Back-Propagation We target to update proxy parameters
V, and therefore it is necessary to back-propagate the gradi-
ent information through the transformation φ(V). To achieve
this, we use the result from matrix differential calculus
(Ionescu, Vantzos, and Sminchisescu 2015), which combines
the derivatives of eigenvalues and eigenvectors based on

chain rule: given ∂L
∂D ∈ R

n×n and ∂L
∂Λ ∈ R

n×n, where L is

the loss function, the back-propagate derivatives are ∂L
∂Σ =

D((KT ⊙ (DT ∂L
∂D )) + (∂L∂Λ )diag)D

T , where K ∈ R
n×n

is 0-diagonal and structured as Kij = 1
σi−σj

[i �= j], and

(∂L∂Λ )diag sets all off-diagonal elements of ∂L
∂Λ to zero. The

⊙ operator represents element-wise matrix multiplication.
Based on the chain rule, the back-propagated formulations

3273



for calculating ∂L
∂V are shown as below.

∂L
∂Λ

= −
1

2
D

T ∂L

∂W
W

T
DΛ−1

∂L
∂D

= DΛ
1

2D
T
W

∂L

∂W

T

DΛ−
1

2 +
∂L

∂W
W

T
D

∂L
∂Σ

= D((KT
� (DT ∂L

∂D
)) + (

∂L

∂Λ
)diag)D

T

∂L
∂c

= −1
T
d

∂L

∂W

T

DΛ−
1

2D
T
− 2 · 1T

d (V − c1
T
d )

T (
∂L

∂Σ
)s

∂L
∂V

= DΛ−
1

2D
T ∂L

∂W
+ 2(

∂L

∂Σ
)s(V − c1

T
d ) +

1

d

∂L

∂c

T

1
T
d

where ( ∂L∂Σ )s means symmetrizing ∂L
∂Σ by ( ∂L∂Σ )s =

1
2 (

∂L
∂Σ

T
+

∂L
∂Σ ). Given ∂L

∂V , we can apply regular gradient decent or other
tractable optimization methods to update V.

Algorithm 1 Forward pass of OLM.

1: Input: mini-batch input H ∈ R
d×m and parameters:

b ∈ R
n×1, V ∈ R

n×d.
2: Output: S ∈ R

n×m and W ∈ R
n×d.

3: Calculate: Σ = (V − 1
dV1d1

T
d )(V − 1

dV1d1
T
d )

T .

4: Eigenvalue decomposition: Σ = DΛDT .
5: Calculate W based on Eqn. 3.
6: Calculate S as standard linear module does.

Algorithm 2 Backward pass of OLM.

1: Input: activation derivative ∂L
∂S ∈ R

n×m and variables
from respective forward pass.

2: Output: { ∂L
∂H ∈ R

d×m}, V ∈ R
n×d and b ∈ R

n×1.

3: Calculate: ∂L
∂W , ∂L

∂b and ∂L
∂H as standard linear module

does.
4: Calculate ∂L

∂V base on Eqn. 4
5: Update V and b.

Orthogonal Linear Module

Based on our orthogonal weight normalization method for
solving OMDSM, we build up the Orthogonal Linear Module
(OLM) from practical perspective. Algorithm 1 and 2 sum-
marize the forward and backward pass of OLM, respectively.
This module can be an alternative of standard linear module.
Based on this, we can train DNNs with orthogonality con-
straints by simply substituting it for standard linear module
without any extra efforts. After training, we calculate the
weight matrix W based on Eqn. 3. Then W will be saved
and used for inference as the standard module does.

Convolutional Layer With regards to the convolutional
layer parameterized by weights WC ∈ R

n×d×Fh×Fw where
Fh and Fw are the height and width of the filter, it takes
feature maps X ∈ R

d×h×r as input, where h and r are the
height and width of the feature maps, respectively. We denote
Δ the set of spatial locations and Ω the set of spatial offsets.
For each output feature map k and its spatial location δ ∈ Δ,
the convolutional layer computes the activation {sk,δ} as:

sk,δ =
∑d

i=1

∑
τ∈Ω wk,i,τhi,δ+τ =< wk,hδ >. Here wk

eventually can be viewed as unrolled filter produced by WC .
We thus reshape WC as W ∈ R

n×p where p = d · Fh ·
Fw, and the orthogonalization is executed over the unrolled

weight matrix W ∈ R
n×(d·Fh·Fw).

Group Based Orthogonalization In previous sections, we
assume n <= d, and obtain the solution of OMDSM such
that the rows of W is orthogonal. To handle the case with n >
d, we propose the group based orthogonalization method.
That is, we divide the weights {wi}

n
i=1 into groups with size

NG <= d and the orthogonalization is performed over each
group, such that the weights in each group is orthogonal.

One appealing property of group based orthogonalization
is that we can use group size NG to control to what extent
we regularize the networks. Assume NG can be divided by n,
the free dimension of embedded manifold is nd− n(NG +
1)/2 by using orthogonal group method. If we use NG = 1,
this method reduces to Weight Normalization (Salimans and
Kingma 2016) without learnable scalar parameters.

Besides, group based orthogonalization is a practical strat-
egy in real application, especially reducing the computational
burden. Actually, the cost of eigen decomposition with high
dimension in GPU is expensive. When using group with small
size (e.g., 64), the eigen decomposition is not the bottleneck
of computation, compared to convolution operation. This
make our orthogonal linear module possible to be applied in
very deep and high dimensional CNNs.

Computational Complexity We show our method is scal-
able from complexity analysis here and provide empirical
results later for large CNNs. Given a convolutional layer
with filters W ∈ R

n×d×Fh×Fw , and m mini-batch data
{xi ∈ R

d×h×w}mi=1. The computational complexity of our
method with group size NG is O(nNGdFhFw + nN2

G +
nmdhwFhFw) per iteration, and if we control a small group
size NG � mhw, it will be close to the standard convolu-
tional layer as O(nmdhwFhFw).

Experiments

In this section, we first conduct comprehensive experiments
to explore different methods to solve the OMDSM problem,
and show the advantages of our proposed orthogonal weight
normalization solution in terms of the stability and efficiency
in optimization. We then evaluate the effectiveness of the
proposed method that learns orthogonal weight matrix in
DNNs, by simply replacing our OLM with standard ones on
MLPs and CNNs. Codes to reproduce our results are available
from: https://github.com/huangleiBuaa/OthogonalWN.

Comparing Methods for Solving OMDSM

In this section, we use 3 widely used Riemannian optimiza-
tion methods for solving OMDSM and compared two other
baselines. For completeness, we provide a brief review for
Riemannian optimization shown in supplementary material
and for more details please refer to (Absil, Mahony, and
Sepulchre 2008) and references therein.

We design comprehensive experiments on MNIST dataset
to compare methods for solving OMDSM. The compared

3274



0 1000 2000 3000 4000 5000

Epochs

0

0.5

1

1.5

2

2.5

T
r
a
i
n
i
n
g
 
l
o
s
s

plain

0.0005

0.001

0.005

0.01

0.05

0.1

0.5

(a) EI+QR

0 1000 2000 3000 4000 5000

Epochs

0

0.5

1

1.5

2

2.5

T
r
a
i
n
i
n
g
 
l
o
s
s

plain

0.0005

0.001

0.005

0.01

0.05

0.1

0.5

(b) CI+QR

0 1000 2000 3000 4000 5000

Epochs

0

0.5

1

1.5

2

2.5

T
r
a
i
n
i
n
g
 
l
o
s
s

plain

0.0005

0.001

0.005

0.01

0.05

0.1

0.5

(c) CayT

0 1000 2000 3000 4000 5000

Epochs

0

0.5

1

1.5

2

2.5

T
r
a
i
n
i
n
g
 
l
o
s
s

plain

QR

OLM
var

OLM

(d) Our OLM

Figure 2: Results of Riemannian optimization methods to solve OMDSM on MNIST dataset under the 4-layer MLP. We show
the training loss curves for different learning rate of ‘EI+QR’, ‘CI+QR’ and ‘CayT’ compared to the baseline ‘plain’ in (a), (b)
and (c) respectively. We compare our methods to baselines and report the best performance among all learning rates based on the
training loss for each method in (d).

methods including: (1) ‘EI+QR’: using Riemannian gradient
with Euclidean inner product and QR-retraction (Harandi
and Fernando 2016); (2) ‘CI+QR’: using Riemannian gra-
dient with canonical inner product and QR-retraction; (3)
‘CayT’: using the Cayley transformation (Wisdom et al. 2016;
Vorontsov et al. 2017); (4) ‘QR’: a conventional method that
runs the ordinary gradient descent based on gradient ∂F

∂W
and projects the solution back to the manifold M by QR
decomposition; (5) ‘OLMvar’: using orthogonal transfor-

mation: Pvar = Λ−1/2DT ; (6) ‘OLM’: our proposed or-
thogonal transformation by minimizing distortions: P∗ =
DΛ−1/2DT . The baseline is the standard network without
any orthogonal constraints referred to as ‘plain’.

We use MLP architecture with 4 hidden layers. The num-
ber of neurons in each hidden layer is 100. We train the
model with stochastic gradient descent and mini-batch size
of 1024. We tried a broadly learning rate in ranges of
{0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5}.

We firstly explored the performance of Riemannian opti-
mization methods for solving OMDSM problem. Figure 2
(a), (b) and (c) show the training loss curves for different
learning rate of ‘EI+QR’, ‘CI+QR’ and ‘CayT’ respectively,
compared to the baseline ‘plain’. From Figure 2, we can find
that under larger learning rate (e.g., larger than 0.05) these
Riemannian optimization methods suffer severe instability
and divergence, even though they show good performance
in the initial iterations. They can also obtain stable optimiza-
tion behaviours under small learning rate but are significantly
slower in convergence than the baseline ‘plain’ and suffer
worse performance.

We then compared our proposed method with the baseline
‘plain’ and the conventional method ‘QR’, and report the best
performance among all learning rates based on the training
loss for each method in Figure 2 (d). We can find that the
conventional method ‘QR’ performs stably. However, it also
suffers inferior performance of final training loss compared
to ‘plain’. The proposed ‘OLM’ works stably and converges
the fastest. Besides, we find that ‘OLMvar’ suffered instabil-
ity, which means that minimizing distortions formulated by
Eqn. 2 is essential to ensure the stability of solving OMDSM.

We also explore 6-layer and 8-layer MLPs and further with
mini-batch size of 512 and 256. We observe the similar phe-
nomena shown in supplementary materials due to space limit.
Especially with the number of layer increasing, ‘OLM’ shows

0 20 40 60 80

Epochs

0

10

20

30

40

50

60

T
r
a
i
n
i
n
g
 
e
r
r
o
r
 
(
%
)

plain

WN

OLM-8

OLM-64

OLM-128

OLM-scale-128

(a) training error

0 20 40 60 80

Epochs

0

10

20

30

40

50

60

T
e
s
t
 
e
r
r
o
r
 
(
%
)

plain

WN

OLM-8

OLM-64

OLM-128

OLM-scale-128

(b) test error

Figure 3: Performance comparisons in MLP architecture on
PIE dataset. We compare the effect of different group size of
OLM.

0 10 20 30 40

Epochs

0

10

20

30

40

50

60

E
r
r
o
r
 
(
%
)

batch

WN+batch

OLM+batch

(a) batch normalization

0 10 20 30 40 50 60

Epochs

0

10

20

30

40

50

60

E
r
r
o
r
 
(
%
)

plain

WN

OLM

(b) Adam optimization

Figure 4: Performance comparisons in MLP architecture on
PIE dataset by combining (a) batch normalization; (b) Adam
optimization. We evaluate the training error (solid lines) and
test error (dash lines marked with triangle).

more advantages compared to other methods. These compre-
hensive experiments strongly support our empirical conclu-
sions that: (1) Riemannian optimization methods probably do
not work for the OMDSM problem, and if work, they must
be under fine designed algorithms or tuned hyper-parameters;
(2) deep feed-forward neural networks (e.g., MLP in this ex-
periment) equipped with orthogonal weight matrix is easier
for optimization by our ‘OLM’ solution.

MLP Architecture

Now we investigate the performance of OLM in MLP archi-
tecture. On PIE face recognition dataset with 11,554 images
from 68 classes, we sample 1,340 images as the test set and
others as training set. Here, we employ standard networks
(referred as plain) and networks with Weight Normalization
(WN) (Salimans and Kingma 2016) as baselines for compar-
isons. WN is one of the most related study that normalizes the

3275



weights as unit norm via re-parameterization as OLM does,
but it does not introduce the orthogonality for the weights ma-
trix. For all methods, we train a 6-layers MLP with the num-
ber of neurons in each hidden layer as 128,128,128,128,128,
and Relu as nonlinearity. The mini-batch size is set to 256.
We evaluate the training error and test error as a function with
respect to epochs.

Using Different Group Sizes We explore the effects of
group size NG on the performance when applying OLM.
In this setup, we employ stochastic gradient descent (SGD)
optimization and the learning rates are selected based on
the validation set (10% samples of the training set) from
{0.05, 0.1, 0.2, 0.5, 1}. Figure 3 shows the performance of
OLM using different NG (‘OLM-NG’), compared with plain
and WN methods. We can find that OLM achieves signifi-
cantly better performance in all cases, which means intro-
ducing orthogonality to weight matrix can largely improve
the network performance. Another observation is that though
increasing group size would help improve orthogonalization,
too large group size will reduce the performance. This is
mainly because a large NG = 128 provides overmuch reg-
ularization. Fortunately, when we add extra learnable scale
(indicated by ‘OLM-scale-128’) to recover the model capac-
ity as described in previous section, it can help to achieve the
best performance.

Combining with Batch Normalization Batch normaliza-
tion (Ioffe and Szegedy 2015) has been shown to be helpful
for training the deep architectures (Ioffe and Szegedy 2015;
He et al. 2016b). Here, we show that OLM enjoys good
compatibility to incorporate well with batch normalization,
which still outperforms others in this case. Figure 4 (a) shows
the results of training/test error with respect to epochs. We
can see that WN with batch normalization (‘WN+batch’)
has no advantages compared with the standard network with
batch normalization (‘batch’), while ‘OLM+batch’ consis-
tently achieves the best performance.

Applying Adam Optimization We also try different op-
timization technique such as Adam (Kingma and Ba 2014)
optimization. The hyper-parameters are selected from learn-
ing rates in {0.001, 0.002, 0.005, 0.01}. We show error rates
based on Adam optimization in Figure 4 (b). From the figure,
we can see OLM also obtains the best performance.

CNN Architectures

In this section, We evaluate our method on a VGG-
style CNN (Simonyan and Zisserman 2015), BN-Inception
(Szegedy et al. 2015; Ioffe and Szegedy 2015), and Wide
Residual Networks (Zagoruyko and Komodakis 2016) for
image classification, respectively on CIFAR-10 and CIFAR-
100 (Krizhevsky 2009). For each dataset, We use the official
training set of 50k images and the standard test set of 10k im-
ages. The data preprocessing and data argumentation follow
the commonly used mean&std normalization and flip trans-
lation as described in (He et al. 2016a). For OLM method,
we replace all convolution layers with our OLM modules by
default on CNNs, if we do not specify it. Among all experi-
ments, the group size NG of OLM is set as 64.

0 20 40 60 80 100

Epochs

0

10

20

30

40

E
r
r
o
r
 
(
%
)

plain

WN

OLM-L2

OLM-L4

OLM

(a) CIFAR-10

0 20 40 60 80 100

Epochs

0

20

40

60

80

E
r
r
o
r
 
(
%
)

plain

WN

OLM-L2

OLM-L4

OLM

(b) CIFAR-100

Figure 5: Experimental results on VGG-style architectures
over CIFAR datasets. We evaluate the training error (solid
lines) and test error (dash lines marked with triangle) with
respect to epochs, and all results are averaged over 5 runs.

0 20 40 60 80 100

Epochs

0

5

10

15

20

25

30

E
r
r
o
r
 
(
%
)

plain

WN

OLM

(a) CIFAR-10

0 20 40 60 80 100

Epochs

0

10

20

30

40

50

60

E
r
r
o
r
 
(
%
)

plain

WN

OLM

(b) CIFAR-100

Figure 6: Experimental results on BN-Inception over CIFAR
datasets. We evaluate the training error (solid lines) and test
error (dash lines marked with triangle) with respect to epochs,
and all results are averaged over 5 runs.

VGG-style network We adopt the 3 × 3 convolutional
layer as the following specification: → conv(64) →
conv(128) → maxPooling(2, 2, 2, 2) → conv(256) →
conv(256) → maxPooling(2, 2, 2, 2) → conv(512) →
conv(512) → AvePooling(8, 8, 1, 1) → fc(512 ×
ClassNum). SGD is used as our optimization method with
mini-batch size of 256. The best initial learning rate is chosen
from {0.01, 0.05, 0.1} over the validation set of 5k examples
from the training set, and exponentially decayed to 1% in
the last (100th) epoch. We set the momentum to 0.9 and
weight decay to 5 × 10−4. Table 1 reports the test error,
from which we can find OLM achieves the best performance
consistently on both datasets. Figure 5 (a) and (b) show the
training and test errors with respect to epochs on CIFAR-10
and CIFAR-100, respectively. On CIFAR-100, to achieve
the final test error of plain as 36.02 %, OLM takes only 17
epochs. Similarly, on CIFAR-10, OLM only takes 21 epochs
to achieve the final test error of plain as 10.39 %. While on
both datasets, ’plain’ takes about 100 epochs. Results demon-
strate that OLM converges significantly faster in terms of
training epochs and achieves better error rate compared to
baselines.

We also study the effect of OLM on different layers. We
optionally replace the first 2 and 4 convolution layers with
OLM modules (referred as OLM-L2 and OLM-L4 respec-
tively). From Figure 5 and Table 1, we can find that with the
numbers of used OLM increasing, the VGG-style network
achieves better performance both in optimization efficiency
and generalization.

3276



Table 1: Test error (%) on VGG-style over CIFAR datasets.
We report the ‘mean ±std’ computed over 5 independent
runs.

CIFAR-10 CIFAR-100

plain 10.39 ± 0.14 36.02 ± 0.40
WN 10.29± 0.39 34.66 ± 0.75
OLM-L2 10.06 ± 0.23 35.42 ± 0.32
OLM-L4 9.61 ± 0.23 33.66 ± 0.11
OLM 8.61 ± 0.18 32.58 ± 0.10

Table 2: Test error (%) on BN-Inception over CIFAR datasets.
We report the ‘mean ±std’ computed over 5 independent
runs.

CIFAR-10 CIFAR-100

plain 5.38± 0.18 24.87 ± 0.15
WN 5.87± 0.35 23.85 ± 0.28
OLM 4.74± 0.16 22.02 ± 0.13

BN-Inception For BN-inception network, batch normal-
ization (Ioffe and Szegedy 2015) is inserted after each linear
layer based on original Inception architecture (Szegedy et
al. 2015). Again, we train the network using SGD, with the
momentum 0.9, weight decay 5× 10−4 and the batch size 64.
The initial learning rate is set to 0.1 and decays exponentially
every two epochs until the end of 100 epoches with 0.001.
Table 2 reports the test error after training and Figure 5 (c)
and (d) show the training/test error with respect to epochs
on CIFAR-10 and CIFAR-100, respectively. We can find that
OLM converges faster in terms of training epochs and achieve
better optimum, compared to baselines, which indicate con-
sistent conclusions for VGG-style network above.

Wide Residual Netwok Wide Residual Network (WRN)
has been reported to achieve state-of-the-art results on CI-
FARs (Zagoruyko and Komodakis 2016). We adopt WRN
architecture with depth 28 and width 10 and the same ex-
perimental setting as in (Zagoruyko and Komodakis 2016).
Instead of ZCA whitening, we preprocess the data using
per-pixel mean subtract and standard variance divided as
described in (He et al. 2016a). We implement two setups
of OLM: (1) replace all the convolutional layers by WRN
(WRN-OLM); (2) only replace the first convolutional layer in
WRN (WRN-OLM-L1). Table 3 reports the test errors. We can
see that OLM can further improve the state-of-the-art results
achieved by WRN. For example, on CIFAR-100, our method
WRN-OLM achieves the best 18.61 test error, compared to
20.04 of WRN reported in (Zagoruyko and Komodakis 2016).
Another interesting observation is that WRN-OLM-L1 ob-
tains the best performance on CIFAR-10 with test error as
3.73%, compare to 4.17% of WRN, which means that we
can improve residual networks by only constraining the first
convolution layer orthogonal and the extra computation cost
is negligible.

Computation Cost We also evaluate computational cost
per iteration in our current Torch-based implementation,

Table 3: Test errors (%) of different methods on CIFAR-
10 and CIFAR-100. For OLM, we report the ‘mean ±std’
computed over 5 independent runs. ‘WRN-28-10*’ indicates
the new results given by authors on their Github.

CIFAR-10 CIFAR-100

pre-Resnet-1001 4.62 22.71
WRN-28-10 4.17 20.04
WRN-28-10* 3.89 18.85
WRN-28-10-OLM (ours) 3.73 ± 0.12 18.76 ± 0.40
WRN-28-10-OLM-L1 (ours) 3.82 ± 0.19 18.61 ± 0.14

Table 4: Top-5 test error (%, single model and single-crop)
on ImageNet dataset.

AlexNet BN-Inception ResNet Pre-ResNet

plain 20.91 12.5 9.84 9.79
OLM 20.43 9.83 9.68 9.45

where the convolution relies on the fastest cudnn package.
In the small VGG-style architecture with batch size of 256,
OLM costs 0.46s, while plain and WN cost 0.26s and 0.38s,
respectively. On large WRN network, OLM costs 3.12s com-
pared to 1.1s of plain. Note that, our current implementation
of OLM can be further optimized.

Large Scale Classification on ImageNet Challenge

To further validate the effectiveness of OLM on large-scale
dataset, we employ ImageNet 2012 consisting of more than
1.2M images from 1,000 classes (Russakovsky et al. 2015).
We use the given 1.28M labeled images for training and the
validation set with 50k images for testing. We evaluate the
classification performance based on top-5 error. We apply
the well-known AlexNet (Krizhevsky, Sutskever, and Hinton
2012) with batch normalization inserted after the convolution
layers, BN-Inception, ResNet (He et al. 2016a) with 34 layers
and its advanced version Pre-ResNet (He et al. 2016b) to
perform the classification task. In AlexNet and BN-Inception,
we replace all the convolution layers with OLM modules for
our method, and in ResNet and Pre-ResNet, we only replace
the first convolution layer with OLM module, which is shown
effective with negligible computation cost based on previous
experiment.

We run our experiments on one GPU. To guaran-
tee a fair comparison between our method with the
baseline, we keep all the experiments settings the
same as the publicly available Torch implementation
from: https://github.com/facebook/fb.resnet.torch. We apply
stochastic gradient descent with momentum of 0.9, weight
decay of 0.0001, and set the initial learning rate to 0.1. The
exception is that we use mini-batch size of 64 and 50 training
epochs considering the GPU memory limitations and train-
ing time costs. Regarding learning rate annealing, we use
exponential decay to 0.001, which has slightly better perfor-
mance than the method of lowering by a factor of 10 after
epoch 20 and epoch 40 for each method. The final test errors
are shown in Table 4. We can find that our proposed OLM

3277



method obtains better performance compared to the base-
lines over AlexNet, BN-Inception, ResNet and Pre-ResNet
architectures.

Conclusions and Further Work

We formulate learning orthogonal linear transformation in
DNNs as Optimization over Multiple Dependent Stiefel Man-
ifolds (OMDSM) and propose the Orthogonal Weight Nor-
malization method to solve it, which is stable and can be
applied to large and deep networks. Base on this solution,
we design Orthogonal Linear Module (OLM) which can be
applied as an alternative to standard linear module. We show
that neural networks equipped with OLM can improve op-
timization efficiency and generalization ability. In addition,
new deep architectures that address domain-specific represen-
tation can also benefit from the proposed method by simply
replacing standard linear module with OLM.

Various shallow dimensional reduction methods have been
unified under the optimization framework with orthogonal-
ity constraints (Cunningham and Ghahramani 2015). Our
method has potentials to improve the performance of corre-
sponding unsupervised (Qi Wang 2017) and semi-supervised
methods (Rasmus et al. 2015) in DNNs. Besides, our method
has great potential to be used in improving the robust of the
networks to adversarial examples (Cisse et al. 2017).

Acknowledgments

This work was partially supported by NSFC-61370125,
NSFC-61402026, NSFC-61502022, SKLSDE-2017ZX-03,
the Innovation Foundation of BUAA for PhD Graduates,
China Scholarship Council and NVIDIA PhD Fellowship.

References

Absil, P.-A., and Malick, J. 2012. Projection-like retractions on
matrix manifolds. SIAM Journal on Optimization 22(1):135–158.

Absil, P.-A.; Mahony, R.; and Sepulchre, R. 2008. Optimization
Algorithms on Matrix Manifolds. Princeton University Press.

Arjovsky, M.; Shah, A.; and Bengio, Y. 2016. Unitary evolution
recurrent neural networks. In ICML.

Cisse, M.; Bojanowski, P.; Grave, E.; Dauphin, Y.; and Usunier,
N. 2017. Parseval networks: Improving robustness to adversarial
examples. In ICML.

Cunningham, J. P., and Ghahramani, Z. 2015. Linear dimensionality
reduction: Survey, insights, and generalizations. J. Mach. Learn.
Res. 16(1):2859–2900.

Desjardins, G.; Simonyan, K.; Pascanu, R.; and Kavukcuoglu, K.
2015. Natural neural networks. In NIPS.

Dorobantu, V.; Stromhaug, P. A.; and Renteria, J. 2016. Dizzyrnn:
Reparameterizing recurrent neural networks for norm-preserving
backpropagation. CoRR abs/1612.04035.

Garthwaite, P. H.; Critchley, F.; Anaya-Izquierdo, K.; and Mub-
wandarikwa, E. 2012. Orthogonalization of vectors with minimal
adjustment. Biometrika 99(4):787 – 798.

Harandi, M., and Fernando, B. 2016. Generalized backpropagation,
etude de cas: Orthogonality. CoRR abs/1611.05927.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016a. Deep residual
learning for image recognition. In CVPR.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016b. Identity mappings
in deep residual networks. In ECCV.

Ioffe, S., and Szegedy, C. 2015. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In ICML.

Ionescu, C.; Vantzos, O.; and Sminchisescu, C. 2015. Training
deep networks with structured layers by matrix backpropagation. In
ICCV.

Kingma, D. P., and Ba, J. 2014. Adam: A method for stochastic
optimization. CoRR abs/1412.6980.

Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Imagenet
classification with deep convolutional neural networks. In NIPS.

Krizhevsky, A. 2009. Learning multiple layers of features from tiny
images. Technical report.

Krogh, A., and Hertz, J. A. 1992. A simple weight decay can
improve generalization. In NIPS.

LeCun, Y.; Bottou, L.; Orr, G. B.; and Müller, K.-R. 1998. Effiicient
backprop. In Neural Networks: Tricks of the Trade.

Ozay, M., and Okatani, T. 2016. Optimization on submanifolds of
convolution kernels in cnns. CoRR abs/1610.07008.

Qi Wang, Zequn Qin, F. N. Y. Y. 2017. Convolutional 2d lda for
nonlinear dimensionality reduction. In IJCAI.

Rasmus, A.; Valpola, H.; Honkala, M.; Berglund, M.; and Raiko, T.
2015. Semi-supervised learning with ladder networks. In NIPS.

Rodrı́guez, P.; Gonzàlez, J.; Cucurull, G.; Gonfaus, J. M.; and Roca,
F. X. 2017. Regularizing cnns with locally constrained decorrela-
tions. In ICLR.

Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.;
Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; Berg, A. C.;
and Fei-Fei, L. 2015. ImageNet Large Scale Visual Recognition
Challenge. IJCV 115(3):211–252.

Salimans, T., and Kingma, D. P. 2016. Weight normalization:
A simple reparameterization to accelerate training of deep neural
networks. In NIPS.

Saxe, A. M.; McClelland, J. L.; and Ganguli, S. 2013. Exact
solutions to the nonlinear dynamics of learning in deep linear neural
networks. CoRR abs/1312.6120.

Simonyan, K., and Zisserman, A. 2015. Very deep convolutional
networks for large-scale image recognition. In ICLR.

Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; and
Salakhutdinov, R. 2014. Dropout: A simple way to prevent neural
networks from overfitting. J. Mach. Learn. Res. 15(1):1929–1958.

Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.;
Erhan, D.; Vanhoucke, V.; and Rabinovich, A. 2015. Going deeper
with convolutions. In CVPR.

Vorontsov, E.; Trabelsi, C.; Kadoury, S.; and Pal, C. 2017. On
orthogonality and learning recurrent networks with long term de-
pendencies. In ICML.

Wen, Z., and Yin, W. 2013. A feasible method for optimization
with orthogonality constraints. Math. Program. 142(1-2):397–434.

Wisdom, S.; Powers, T.; Hershey, J.; Le Roux, J.; and Atlas, L. 2016.
Full-capacity unitary recurrent neural networks. In NIPS.

Yu, A. W.; Huang, L.; Lin, Q.; Salakhutdinov, R.; and Carbonell,
J. G. 2017. Block-normalized gradient method: An empirical study
for training deep neural network. CoRR abs/1707.04822.

Zagoruyko, S., and Komodakis, N. 2016. Wide residual networks.
In BMVC.

Zhou, J.; Do, M. N.; and Kovacevic, J. 2006. Special paraunitary
matrices, cayley transform, and multidimensional orthogonal filter
banks. IEEE Trans. Image Processing 15(2):511–519.

3278


