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Several laws are found for the Diffractive Deep Neural Networks (D2NN). They reveal the inner 
product of any two light fields in D2NN is invariant and the D2NN act as a unitary transformation 
for optical fields. If the output intensities of the two inputs are separated spatially, the input fields 
must be orthogonal. These laws imply that the D2NN is not only suitable for the classification of 
general objects but also more suitable for applications aim to the optical orthogonal modes. 
Additionally, our simulation shows D2NN do well in applications like mode conversion, mode 
multiplexer, and optical mode recognition.

As the fastest-growing machine learning methods, 
deep learning [1, 2] uses multi-layered artificial neural 
networks and has made major advances in many domains 
[3-8]. Due to the parallel ability and high speed of light, 
beginning with the first optical realization of artificial 
neural networks [9, 10], the attempts of optical neural 
networks never stop [11-21]. Recently, a framework called 
diffractive deep neural network (D2NN) [22] shows the 
ability for the realization of the depth learning. The system 
using multiple optimized diffractive elements to diffract 
coherent fields carried patterns, and focus them into spatial 
regions by the classes, realizing classification effectively. 

This paper finds there are several irresistible laws in 
D2NN. According to them, the inner product of any two 
light fields at any position in D2NN is invariant, which 
make the D2NN works as a unitary transformation to 
optical fields. If the output intensities are spatially 
separated entirely, the input optical fields must be 
orthogonal to each other. Therefore, we believe that the 
D2NN is not only applicable to the classification of general 
objects but more applicable for the optical orthogonal 
modes. Our simulations show D2NN performs well in 
mode conversion, mode multiplexer/ De-multiplexer and 
optical mode recognition. 

D2NN bases on phase modulations originated by the 
multiple layer diffractive surfaces and diffraction 
propagations between the layers. So, in a D2NN system, 
there exist only two operations: phase modulation and 
propagation. In this paper, the scalar coherent light fields 
are regarded as vectors in Hilbert space. According to the 
angular spectrum theory, the propagation of an optical field 
in free space can be described as 

𝐸௭൫𝑘௫, 𝑘௬൯ = 𝐸൫𝑘௫, 𝑘௬൯exp൫𝑖𝑧ඥ𝑘ଶ − 𝑘௫
ଶ − 𝑘௬

ଶ൯,  (1) 
where E(kx, ky) is the angular spectrum of the optical field 
before propagation, and Ez(kx, ky) for the angular spectrum 
after propagation of a distance z. The propagation operator 
𝑃෠ can be defined as 

𝑃෠𝐸 = 𝐹෠ିଵexp൫𝑖𝑧ඥ𝑘ଶ − 𝑘௫
ଶ − 𝑘௬

ଶ൯𝐹෠𝐸(𝑥, 𝑦),   (2) 
where 𝐹෠  is the operator for 2D-Fourier transform, 
correspondingly, 𝐹෠ିଵ  represents the inverse 2D-Fourier 
transform. k is the angular wavenumber of the fields. For 
any two arbitrary optical fields Q and W before 

propagation, the fields spread to any distance z and evolve 
into Qz and Wz, then the inner product of Qz and Wz can be 
deduced as 
  〈𝑃෠𝑊, 𝑃෠𝑄〉 = 〈𝑊௭ , 𝑄௭〉 

= ∬ 𝑊௭
∗(𝑥, 𝑦) ⋅ 𝑄௭(𝑥, 𝑦)𝑑𝑥𝑑𝑦  

= ∬ 𝑊௭
∗൫𝑘௫, 𝑘௬൯ ⋅ 𝑄௭൫𝑘௫, 𝑘௬൯𝑑𝑘௫𝑑𝑘௬  

= ∬൛𝑊൫𝑘௫ , 𝑘௬൯𝑒𝑥𝑝൫𝑖𝑧ඥ𝑘ଶ − 𝑘௫
ଶ − 𝑘௬

ଶ൯ൟ
∗

⋅

     ൛𝑄൫𝑘௫ , 𝑘௬൯𝑒𝑥𝑝൫𝑖𝑧ඥ𝑘ଶ − 𝑘௫
ଶ − 𝑘௬

ଶ൯ൟ𝑑𝑘௫𝑑𝑘௬  

= ∬ 𝑊∗൫𝑘௫, 𝑘௬൯𝑒𝑥𝑝൫−𝑖𝑧ඥ𝑘ଶ − 𝑘௫
ଶ − 𝑘௬

ଶ൯ ⋅

     𝑄൫𝑘௫, 𝑘௬൯𝑒𝑥𝑝൫𝑖𝑧ඥ𝑘ଶ − 𝑘௫
ଶ − 𝑘௬

ଶ൯𝑑𝑘௫𝑑𝑘௬  

= ∬ 𝑊∗൫𝑘௫, 𝑘௬൯ ⋅ 𝑄൫𝑘௫ , 𝑘௬൯𝑑𝑘௫𝑑𝑘௬  
= ∬ 𝑊∗(𝑥, 𝑦) ⋅ 𝑄(𝑥, 𝑦)𝑑𝑥𝑑𝑦  
= 〈𝑊, 𝑄〉.                                (3) 

Eq. (3) uses the generalized Parseval theorem and indicates 
that the inner product of any two light wave fields in free 
space is invariant during propagation. Operator 𝑀෡  for 
phase modulation is defined as 

𝑀෡𝐸 = exp൫𝑖𝜙(𝑥, 𝑦)൯𝐸(𝑥, 𝑦).        (4) 
where ϕ(x,y) is the phase induced by the diffractive 
surface. And it is easy to deduce that 

〈𝑀෡𝑊, 𝑀෡𝑄〉 = 〈𝑊, 𝑄〉.           (5) 
Eq. (5) shows the inner product of the two fields is also 
not changed after the phase modulation. Since there are 
only propagations and phase modulations in D2NN, the 
inner product of any two optical fields at any position in 
D2NN is constant, it is no exception on the detection plane. 
In other words, the inner product on the input plane is the 
same as on the detection plane. Therefore, the operation of 
D2NN to an optical field is a unitary transformation. We’d 
like to define two similarity coefficients. The first one is 
the field similarity coefficient. The projection from the 
unit vector along Q to the unit vector along W is 

𝑝ொௐ = 〈𝑒ௐ , 𝑒ொ〉 =
〈ௐ,ொ〉

ඥ〈ொ,ொ〉〈ௐ,ௐ〉
.        (6) 

where eQ and eW are the unit vectors along Q and W. And 
the field similarity coefficient 𝐹ொௐ is defined as the square 
of the norm of 𝑝ொௐ as 

𝐹ொௐ = ห𝑝ொௐห
ଶ

= 𝑝ொௐ
∗ 𝑝ொௐ =

〈ொ,ௐ〉〈ௐ,ொ〉

〈ொ,ொ〉〈ௐ,ௐ〉
.   (7) 

And 𝐹ொௐ is a real value between 0 and 1, representing the 
similarity between the fields Q and W. If 𝐹ொௐ = 0, Q and 



 

 

W are orthogonal. According to the invariant inner product 
in D2NN, the field similarity coefficient is also constant no 
matter how we optimize the D2NN. However, the detectors 
sense the amplitude of light, and the similarity of the fields 
do not mean the similarity of amplitudes. So we need the 
other coefficient to describe the similarity of amplitudes. 
Operator 𝑨෡ denotes amplitude operator as 

𝐴መ𝐸 = |𝐸(𝑥, 𝑦)|              (8) 
Then the amplitude similarity coefficient between Q and 
W can be defined as 

𝐼ொௐ =
〈஺෠ௐ,஺෠ொ〉〈஺෠ொ,஺෠ௐ〉

〈஺෠ொ,஺෠ொ〉〈஺෠ௐ,஺෠ௐ〉
=

〈஺෠ௐ,஺෠ொ〉〈஺෠ொ,஺෠ௐ〉

〈ொ,ொ〉〈ௐ,ௐ〉
     (9) 

And 𝐼ொௐ is also a value between 0 and 1, but representing 
the similarity of amplitude distributions between the Q and 
W. If 𝐼ொௐ = 0, then intensity distributions of Q and W are 
entirely separated. And it can deduce that 

𝟏 ≥ 𝐼ொௐ ≥ 𝐹ொௐ ≥ 0           (10) 
From proof above, we can get several irresistible laws.  

Law. 1. The inner product of any two optical fields is 
invariant after the process of D2NN.  

Law. 2.  If 𝐼ொௐ = 0, then 𝐹ொௐ = 0, which means if the 
outputs are well separated, the fields must be orthogonal.  

Law. 3.  Amplitude similarity coefficient on detection 
plane ranges from field similarity coefficient to 1. 

From Law. 3, it seems that the D2NN is unsuitable to 
classify patterns with high similarity. Such as the 
characters ‘6’ and ‘E’ shown in Fig.1, the field similarity 
coefficient 𝐹଺ா ≈ 0.90. So no matter how we optimize the 
D2NN, we cannot make the amplitude similarity 
coefficient 𝐼଺ா  less than 0.90, which mean the tiny 
intensity distribution difference on detection plane will 
affect the judgment of classification.  

 
FIG. 1.The characters ‘6’ and ‘E’ 
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FIG. 2. How D2NN distinguish non-orthogonal patterns 

However, in fact, the D2NN can do a good job for 
classification [22]. We think the D2NN classifies patterns 
based on the following mechanism and obeying the Laws. 
Assuming each pattern can be expressed as the sum of 
common patterns between different types and the sum of 
feature patterns peculiar to different types. Pattern 𝑿(𝑖, 𝑗) 
can be expressed approximately as 

𝑿(𝑖, 𝑗) ≈ ∑ 𝑎௠𝑪(𝑚)௠ + ∑ 𝑏௡𝑫𝒊(𝑛).௡     (11) 
Here i and j are the type and the order of the pattern, 𝑪 is 
a set for common patterns, while 𝑫𝒊 is a set for feature 
patterns exclusive to type i. And each pattern in {𝑪, 𝑫𝒊} is 

normalized and orthogonal to each other. As shown in 
Fig.2, the circles are for the common patterns and triangles 
and squares represent the different type feature patterns. 
Obviously, the components of common patterns are useless 
for classification, but the components cannot be reduced 
for no reason and need places to settle them. So, the D2NN 
is optimized for finding the common patterns and feature 
patterns, and focus the feature patterns to their 
corresponding detectors, while the common patterns can 
be transferred to the background or the space without 
detectors.  

From the above discussion, it can see D2NN is more 
suitable for orthogonal patterns. Although there is often a 
lack of orthogonal patterns in life, there is often having 
orthogonal patterns in lasers and fiber optics. For example, 
Laguerre Gaussian (LG) modes and Hermite Gaussian 
(HG) modes with different orders are orthogonal. 
Therefore, it is possible to use D2NN for the applications 
aimed to lasers modes or fiber modes, such as mode 
conversion, mode multiplexer/De-multiplexer, and optical 
mode recognition. When the inputs are orthogonal fields, 
Law. 1 shows the outputs are also orthogonal. So, D2NN 
can work as a mode converter between two sets of 
orthogonal modes. For this situation, the modes should be 
one-to-one connections. And the system is reversible and 
the connection rules are arbitrary, as shown in Fig.3. In 
order to verify these, a Matlab-coded optimizing tool is 
developed and available online [23]. 
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FIG. 3. Mode conversion with D2NN 
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FIG. 4. A 5 layers D2NN for HG-LG mode conversion: Phase 
modulation of each layer (a); Interconversion between HG1,2 
and LG1,3 (b-c); Interconversion between HG2,2 and LG0,4 (d-e); 

Fig. 4 shows a 5 layers D2NN to transfer HGm,n modes 
to LGn-m,n+m modes. The phase modulation of each layer is 
shown in Fig. 4(a), and the distances of adjacent layers are 
both 30 cm. The m and n of HG modes are both range from 
0 to 2. As shown in Fig.4 (b) and 4(c), the HG1,2 mode 
converts to the LG1,3 mode with forward-propagating, 
while LG1,3 converts to HG1,2 with backward-propagating. 



 

 

And Fig. 4(d) and 4(f) show the interconversion between 
HG2,2 and LG0,4. And the conversion efficiency reached 
73%, and it can up to 95% with a 10 layer design.  
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FIG. 5. A 5 layers D2NN for LG mode multiplexer: Phase 
modulation of each layer (a); Each LG mode is mapped to a 
Gaussian mode of a different position, horizontal sorting by 
topological orders and vertical sorting by radial orders (b); 
Interconversion between LG11 mode and the Gaussian mode on 
the corresponding position (c-d); 
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FIG. 6. Efficiency and crosstalk of the D2NN mode multiplexer 

Law. 2 reveals the well spatially separated fields are 
also orthogonal fields. So, it is possible for transforming 
space overlapping orthogonal modes into spatially 
separated modes. It means we can optimize the D2NN for 
modes multiplexer or De-multiplexer. Such as the inputs 
are LG modes, and expected outputs are Gaussian modes 
at different positions. And the Gaussian modes are well 
separated to make them orthogonal. Fig. 5 shows a 5 layers 
D2NN for converting 9 LG modes to Gaussian modes on 
different positions. The phase modulation of each layer is 
shown in Fig. 5(a), and the distances between layers are 
also 30cm. The radial orders and topological orders of LG 
modes are range from 0 to 2 and -1 to 1. Each mode is 
mapped to a Gaussian mode of a different position, as 

shown in Fig. 5(b). Fig.5(c) and 5(d) show the 
interconversion between LG11 mode and the Gaussian 
mode on the corresponding position. As shown in Fig .6, 
the conversion efficiency of each mode is about 76%, and 
the maximum crosstalk is -13dB. By using a 10 layers 
design, the conversion efficiency can up to 94% and the 
maximum crosstalk can go to -32dB. 
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FIG. 7. Modes can be linked to a same intensity distribution 
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FIG.8. A 5 layers D2NN for LG mode order recognizer: Phase 
modulation of each layer (a); Orders show on the detection plane 
for LG-1,0, LG1,0, LG0,2, and LG1,2 (b-e); 

According to Law. 3, when the input is a collection of 
orthogonal modes, amplitude similarity coefficient ranges 
from 0 to 1. Which means the output intensity of each input 
can be arbitrarily defined. Even the multi-modes can be 
linked to a same intensity distribution. But the connections 
are not reversible any more, as shown in Fig.7. Fig.8 shows 
a 5 layers LG mode order recognizer for showing the value 
of |l| and p of LGl,p modes on the detection plane. Basing 
on this rule, LG-1,0 and LG1,0 convert to the same intensity 
distribution in the detection plane, as shown in Fig.8(b) and 
8(c). The recognizer also shows the correct value for LG0,2 
and LG1,2, as shown in Fig.8(d) and 8(e). 

In summary, we find there are several laws in D2NN. 
First, the inner product of any two light fields in D2NN is 
invariant and the D2NN act as a unitary transformation for 
optical fields. Then, the laws reveal that if the output 
intensities of the two inputs are entirely separated, the 
input fields must be orthogonal. Last, the laws show 
amplitude similarity coefficient in the detection plane 
ranges from field similarity coefficient to 1. Basing on 
these laws, we believe that the D2NN is not only suitable 
for the classification of general objects but more applicable 
for applications of optical orthogonal modes. And our 
simulation shows D2NN do well in applications like mode 
conversion, mode multiplexer/De-multiplexer, and optical 
mode recognition. We believe D2NN is a powerful tool for 
manipulation of optical orthogonal modes, which have the 



 

 

potential applications in many fields, especially in modal 
characterization and optical communication. 
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